aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp')
-rw-r--r--contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp1882
1 files changed, 1882 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp b/contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp
new file mode 100644
index 0000000000..b5f8dfa9aa
--- /dev/null
+++ b/contrib/libs/llvm12/lib/Transforms/Scalar/LoopFuse.cpp
@@ -0,0 +1,1882 @@
+//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the loop fusion pass.
+/// The implementation is largely based on the following document:
+///
+/// Code Transformations to Augment the Scope of Loop Fusion in a
+/// Production Compiler
+/// Christopher Mark Barton
+/// MSc Thesis
+/// https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
+///
+/// The general approach taken is to collect sets of control flow equivalent
+/// loops and test whether they can be fused. The necessary conditions for
+/// fusion are:
+/// 1. The loops must be adjacent (there cannot be any statements between
+/// the two loops).
+/// 2. The loops must be conforming (they must execute the same number of
+/// iterations).
+/// 3. The loops must be control flow equivalent (if one loop executes, the
+/// other is guaranteed to execute).
+/// 4. There cannot be any negative distance dependencies between the loops.
+/// If all of these conditions are satisfied, it is safe to fuse the loops.
+///
+/// This implementation creates FusionCandidates that represent the loop and the
+/// necessary information needed by fusion. It then operates on the fusion
+/// candidates, first confirming that the candidate is eligible for fusion. The
+/// candidates are then collected into control flow equivalent sets, sorted in
+/// dominance order. Each set of control flow equivalent candidates is then
+/// traversed, attempting to fuse pairs of candidates in the set. If all
+/// requirements for fusion are met, the two candidates are fused, creating a
+/// new (fused) candidate which is then added back into the set to consider for
+/// additional fusion.
+///
+/// This implementation currently does not make any modifications to remove
+/// conditions for fusion. Code transformations to make loops conform to each of
+/// the conditions for fusion are discussed in more detail in the document
+/// above. These can be added to the current implementation in the future.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopFuse.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Verifier.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/CodeMoverUtils.h"
+#include "llvm/Transforms/Utils/LoopPeel.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-fusion"
+
+STATISTIC(FuseCounter, "Loops fused");
+STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
+STATISTIC(InvalidPreheader, "Loop has invalid preheader");
+STATISTIC(InvalidHeader, "Loop has invalid header");
+STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
+STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
+STATISTIC(InvalidLatch, "Loop has invalid latch");
+STATISTIC(InvalidLoop, "Loop is invalid");
+STATISTIC(AddressTakenBB, "Basic block has address taken");
+STATISTIC(MayThrowException, "Loop may throw an exception");
+STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
+STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
+STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
+STATISTIC(UnknownTripCount, "Loop has unknown trip count");
+STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
+STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
+STATISTIC(NonAdjacent, "Loops are not adjacent");
+STATISTIC(
+ NonEmptyPreheader,
+ "Loop has a non-empty preheader with instructions that cannot be moved");
+STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
+STATISTIC(NonIdenticalGuards, "Candidates have different guards");
+STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block with "
+ "instructions that cannot be moved");
+STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block with "
+ "instructions that cannot be moved");
+STATISTIC(NotRotated, "Candidate is not rotated");
+
+enum FusionDependenceAnalysisChoice {
+ FUSION_DEPENDENCE_ANALYSIS_SCEV,
+ FUSION_DEPENDENCE_ANALYSIS_DA,
+ FUSION_DEPENDENCE_ANALYSIS_ALL,
+};
+
+static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
+ "loop-fusion-dependence-analysis",
+ cl::desc("Which dependence analysis should loop fusion use?"),
+ cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
+ "Use the scalar evolution interface"),
+ clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
+ "Use the dependence analysis interface"),
+ clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
+ "Use all available analyses")),
+ cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
+
+static cl::opt<unsigned> FusionPeelMaxCount(
+ "loop-fusion-peel-max-count", cl::init(0), cl::Hidden,
+ cl::desc("Max number of iterations to be peeled from a loop, such that "
+ "fusion can take place"));
+
+#ifndef NDEBUG
+static cl::opt<bool>
+ VerboseFusionDebugging("loop-fusion-verbose-debug",
+ cl::desc("Enable verbose debugging for Loop Fusion"),
+ cl::Hidden, cl::init(false), cl::ZeroOrMore);
+#endif
+
+namespace {
+/// This class is used to represent a candidate for loop fusion. When it is
+/// constructed, it checks the conditions for loop fusion to ensure that it
+/// represents a valid candidate. It caches several parts of a loop that are
+/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
+/// of continually querying the underlying Loop to retrieve these values. It is
+/// assumed these will not change throughout loop fusion.
+///
+/// The invalidate method should be used to indicate that the FusionCandidate is
+/// no longer a valid candidate for fusion. Similarly, the isValid() method can
+/// be used to ensure that the FusionCandidate is still valid for fusion.
+struct FusionCandidate {
+ /// Cache of parts of the loop used throughout loop fusion. These should not
+ /// need to change throughout the analysis and transformation.
+ /// These parts are cached to avoid repeatedly looking up in the Loop class.
+
+ /// Preheader of the loop this candidate represents
+ BasicBlock *Preheader;
+ /// Header of the loop this candidate represents
+ BasicBlock *Header;
+ /// Blocks in the loop that exit the loop
+ BasicBlock *ExitingBlock;
+ /// The successor block of this loop (where the exiting blocks go to)
+ BasicBlock *ExitBlock;
+ /// Latch of the loop
+ BasicBlock *Latch;
+ /// The loop that this fusion candidate represents
+ Loop *L;
+ /// Vector of instructions in this loop that read from memory
+ SmallVector<Instruction *, 16> MemReads;
+ /// Vector of instructions in this loop that write to memory
+ SmallVector<Instruction *, 16> MemWrites;
+ /// Are all of the members of this fusion candidate still valid
+ bool Valid;
+ /// Guard branch of the loop, if it exists
+ BranchInst *GuardBranch;
+ /// Peeling Paramaters of the Loop.
+ TTI::PeelingPreferences PP;
+ /// Can you Peel this Loop?
+ bool AbleToPeel;
+ /// Has this loop been Peeled
+ bool Peeled;
+
+ /// Dominator and PostDominator trees are needed for the
+ /// FusionCandidateCompare function, required by FusionCandidateSet to
+ /// determine where the FusionCandidate should be inserted into the set. These
+ /// are used to establish ordering of the FusionCandidates based on dominance.
+ const DominatorTree *DT;
+ const PostDominatorTree *PDT;
+
+ OptimizationRemarkEmitter &ORE;
+
+ FusionCandidate(Loop *L, const DominatorTree *DT,
+ const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE,
+ TTI::PeelingPreferences PP)
+ : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
+ ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
+ Latch(L->getLoopLatch()), L(L), Valid(true),
+ GuardBranch(L->getLoopGuardBranch()), PP(PP), AbleToPeel(canPeel(L)),
+ Peeled(false), DT(DT), PDT(PDT), ORE(ORE) {
+
+ // Walk over all blocks in the loop and check for conditions that may
+ // prevent fusion. For each block, walk over all instructions and collect
+ // the memory reads and writes If any instructions that prevent fusion are
+ // found, invalidate this object and return.
+ for (BasicBlock *BB : L->blocks()) {
+ if (BB->hasAddressTaken()) {
+ invalidate();
+ reportInvalidCandidate(AddressTakenBB);
+ return;
+ }
+
+ for (Instruction &I : *BB) {
+ if (I.mayThrow()) {
+ invalidate();
+ reportInvalidCandidate(MayThrowException);
+ return;
+ }
+ if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
+ if (SI->isVolatile()) {
+ invalidate();
+ reportInvalidCandidate(ContainsVolatileAccess);
+ return;
+ }
+ }
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (LI->isVolatile()) {
+ invalidate();
+ reportInvalidCandidate(ContainsVolatileAccess);
+ return;
+ }
+ }
+ if (I.mayWriteToMemory())
+ MemWrites.push_back(&I);
+ if (I.mayReadFromMemory())
+ MemReads.push_back(&I);
+ }
+ }
+ }
+
+ /// Check if all members of the class are valid.
+ bool isValid() const {
+ return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
+ !L->isInvalid() && Valid;
+ }
+
+ /// Verify that all members are in sync with the Loop object.
+ void verify() const {
+ assert(isValid() && "Candidate is not valid!!");
+ assert(!L->isInvalid() && "Loop is invalid!");
+ assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
+ assert(Header == L->getHeader() && "Header is out of sync");
+ assert(ExitingBlock == L->getExitingBlock() &&
+ "Exiting Blocks is out of sync");
+ assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
+ assert(Latch == L->getLoopLatch() && "Latch is out of sync");
+ }
+
+ /// Get the entry block for this fusion candidate.
+ ///
+ /// If this fusion candidate represents a guarded loop, the entry block is the
+ /// loop guard block. If it represents an unguarded loop, the entry block is
+ /// the preheader of the loop.
+ BasicBlock *getEntryBlock() const {
+ if (GuardBranch)
+ return GuardBranch->getParent();
+ else
+ return Preheader;
+ }
+
+ /// After Peeling the loop is modified quite a bit, hence all of the Blocks
+ /// need to be updated accordingly.
+ void updateAfterPeeling() {
+ Preheader = L->getLoopPreheader();
+ Header = L->getHeader();
+ ExitingBlock = L->getExitingBlock();
+ ExitBlock = L->getExitBlock();
+ Latch = L->getLoopLatch();
+ verify();
+ }
+
+ /// Given a guarded loop, get the successor of the guard that is not in the
+ /// loop.
+ ///
+ /// This method returns the successor of the loop guard that is not located
+ /// within the loop (i.e., the successor of the guard that is not the
+ /// preheader).
+ /// This method is only valid for guarded loops.
+ BasicBlock *getNonLoopBlock() const {
+ assert(GuardBranch && "Only valid on guarded loops.");
+ assert(GuardBranch->isConditional() &&
+ "Expecting guard to be a conditional branch.");
+ if (Peeled)
+ return GuardBranch->getSuccessor(1);
+ return (GuardBranch->getSuccessor(0) == Preheader)
+ ? GuardBranch->getSuccessor(1)
+ : GuardBranch->getSuccessor(0);
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ LLVM_DUMP_METHOD void dump() const {
+ dbgs() << "\tGuardBranch: ";
+ if (GuardBranch)
+ dbgs() << *GuardBranch;
+ else
+ dbgs() << "nullptr";
+ dbgs() << "\n"
+ << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
+ << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
+ << "\n"
+ << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
+ << "\tExitingBB: "
+ << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
+ << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
+ << "\n"
+ << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
+ << "\tEntryBlock: "
+ << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
+ << "\n";
+ }
+#endif
+
+ /// Determine if a fusion candidate (representing a loop) is eligible for
+ /// fusion. Note that this only checks whether a single loop can be fused - it
+ /// does not check whether it is *legal* to fuse two loops together.
+ bool isEligibleForFusion(ScalarEvolution &SE) const {
+ if (!isValid()) {
+ LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
+ if (!Preheader)
+ ++InvalidPreheader;
+ if (!Header)
+ ++InvalidHeader;
+ if (!ExitingBlock)
+ ++InvalidExitingBlock;
+ if (!ExitBlock)
+ ++InvalidExitBlock;
+ if (!Latch)
+ ++InvalidLatch;
+ if (L->isInvalid())
+ ++InvalidLoop;
+
+ return false;
+ }
+
+ // Require ScalarEvolution to be able to determine a trip count.
+ if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
+ LLVM_DEBUG(dbgs() << "Loop " << L->getName()
+ << " trip count not computable!\n");
+ return reportInvalidCandidate(UnknownTripCount);
+ }
+
+ if (!L->isLoopSimplifyForm()) {
+ LLVM_DEBUG(dbgs() << "Loop " << L->getName()
+ << " is not in simplified form!\n");
+ return reportInvalidCandidate(NotSimplifiedForm);
+ }
+
+ if (!L->isRotatedForm()) {
+ LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
+ return reportInvalidCandidate(NotRotated);
+ }
+
+ return true;
+ }
+
+private:
+ // This is only used internally for now, to clear the MemWrites and MemReads
+ // list and setting Valid to false. I can't envision other uses of this right
+ // now, since once FusionCandidates are put into the FusionCandidateSet they
+ // are immutable. Thus, any time we need to change/update a FusionCandidate,
+ // we must create a new one and insert it into the FusionCandidateSet to
+ // ensure the FusionCandidateSet remains ordered correctly.
+ void invalidate() {
+ MemWrites.clear();
+ MemReads.clear();
+ Valid = false;
+ }
+
+ bool reportInvalidCandidate(llvm::Statistic &Stat) const {
+ using namespace ore;
+ assert(L && Preheader && "Fusion candidate not initialized properly!");
+ ++Stat;
+ ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
+ L->getStartLoc(), Preheader)
+ << "[" << Preheader->getParent()->getName() << "]: "
+ << "Loop is not a candidate for fusion: " << Stat.getDesc());
+ return false;
+ }
+};
+
+struct FusionCandidateCompare {
+ /// Comparison functor to sort two Control Flow Equivalent fusion candidates
+ /// into dominance order.
+ /// If LHS dominates RHS and RHS post-dominates LHS, return true;
+ /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
+ bool operator()(const FusionCandidate &LHS,
+ const FusionCandidate &RHS) const {
+ const DominatorTree *DT = LHS.DT;
+
+ BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
+ BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
+
+ // Do not save PDT to local variable as it is only used in asserts and thus
+ // will trigger an unused variable warning if building without asserts.
+ assert(DT && LHS.PDT && "Expecting valid dominator tree");
+
+ // Do this compare first so if LHS == RHS, function returns false.
+ if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
+ // RHS dominates LHS
+ // Verify LHS post-dominates RHS
+ assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
+ return false;
+ }
+
+ if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
+ // Verify RHS Postdominates LHS
+ assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
+ return true;
+ }
+
+ // If LHS does not dominate RHS and RHS does not dominate LHS then there is
+ // no dominance relationship between the two FusionCandidates. Thus, they
+ // should not be in the same set together.
+ llvm_unreachable(
+ "No dominance relationship between these fusion candidates!");
+ }
+};
+
+using LoopVector = SmallVector<Loop *, 4>;
+
+// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
+// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
+// dominates FC1 and FC1 post-dominates FC0.
+// std::set was chosen because we want a sorted data structure with stable
+// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
+// loops by moving intervening code around. When this intervening code contains
+// loops, those loops will be moved also. The corresponding FusionCandidates
+// will also need to be moved accordingly. As this is done, having stable
+// iterators will simplify the logic. Similarly, having an efficient insert that
+// keeps the FusionCandidateSet sorted will also simplify the implementation.
+using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
+using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
+
+#if !defined(NDEBUG)
+static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
+ const FusionCandidate &FC) {
+ if (FC.isValid())
+ OS << FC.Preheader->getName();
+ else
+ OS << "<Invalid>";
+
+ return OS;
+}
+
+static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
+ const FusionCandidateSet &CandSet) {
+ for (const FusionCandidate &FC : CandSet)
+ OS << FC << '\n';
+
+ return OS;
+}
+
+static void
+printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
+ dbgs() << "Fusion Candidates: \n";
+ for (const auto &CandidateSet : FusionCandidates) {
+ dbgs() << "*** Fusion Candidate Set ***\n";
+ dbgs() << CandidateSet;
+ dbgs() << "****************************\n";
+ }
+}
+#endif
+
+/// Collect all loops in function at the same nest level, starting at the
+/// outermost level.
+///
+/// This data structure collects all loops at the same nest level for a
+/// given function (specified by the LoopInfo object). It starts at the
+/// outermost level.
+struct LoopDepthTree {
+ using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
+ using iterator = LoopsOnLevelTy::iterator;
+ using const_iterator = LoopsOnLevelTy::const_iterator;
+
+ LoopDepthTree(LoopInfo &LI) : Depth(1) {
+ if (!LI.empty())
+ LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
+ }
+
+ /// Test whether a given loop has been removed from the function, and thus is
+ /// no longer valid.
+ bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
+
+ /// Record that a given loop has been removed from the function and is no
+ /// longer valid.
+ void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
+
+ /// Descend the tree to the next (inner) nesting level
+ void descend() {
+ LoopsOnLevelTy LoopsOnNextLevel;
+
+ for (const LoopVector &LV : *this)
+ for (Loop *L : LV)
+ if (!isRemovedLoop(L) && L->begin() != L->end())
+ LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
+
+ LoopsOnLevel = LoopsOnNextLevel;
+ RemovedLoops.clear();
+ Depth++;
+ }
+
+ bool empty() const { return size() == 0; }
+ size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
+ unsigned getDepth() const { return Depth; }
+
+ iterator begin() { return LoopsOnLevel.begin(); }
+ iterator end() { return LoopsOnLevel.end(); }
+ const_iterator begin() const { return LoopsOnLevel.begin(); }
+ const_iterator end() const { return LoopsOnLevel.end(); }
+
+private:
+ /// Set of loops that have been removed from the function and are no longer
+ /// valid.
+ SmallPtrSet<const Loop *, 8> RemovedLoops;
+
+ /// Depth of the current level, starting at 1 (outermost loops).
+ unsigned Depth;
+
+ /// Vector of loops at the current depth level that have the same parent loop
+ LoopsOnLevelTy LoopsOnLevel;
+};
+
+#ifndef NDEBUG
+static void printLoopVector(const LoopVector &LV) {
+ dbgs() << "****************************\n";
+ for (auto L : LV)
+ printLoop(*L, dbgs());
+ dbgs() << "****************************\n";
+}
+#endif
+
+struct LoopFuser {
+private:
+ // Sets of control flow equivalent fusion candidates for a given nest level.
+ FusionCandidateCollection FusionCandidates;
+
+ LoopDepthTree LDT;
+ DomTreeUpdater DTU;
+
+ LoopInfo &LI;
+ DominatorTree &DT;
+ DependenceInfo &DI;
+ ScalarEvolution &SE;
+ PostDominatorTree &PDT;
+ OptimizationRemarkEmitter &ORE;
+ AssumptionCache &AC;
+
+ const TargetTransformInfo &TTI;
+
+public:
+ LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
+ ScalarEvolution &SE, PostDominatorTree &PDT,
+ OptimizationRemarkEmitter &ORE, const DataLayout &DL,
+ AssumptionCache &AC, const TargetTransformInfo &TTI)
+ : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
+ DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE), AC(AC), TTI(TTI) {}
+
+ /// This is the main entry point for loop fusion. It will traverse the
+ /// specified function and collect candidate loops to fuse, starting at the
+ /// outermost nesting level and working inwards.
+ bool fuseLoops(Function &F) {
+#ifndef NDEBUG
+ if (VerboseFusionDebugging) {
+ LI.print(dbgs());
+ }
+#endif
+
+ LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
+ << "\n");
+ bool Changed = false;
+
+ while (!LDT.empty()) {
+ LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
+ << LDT.getDepth() << "\n";);
+
+ for (const LoopVector &LV : LDT) {
+ assert(LV.size() > 0 && "Empty loop set was build!");
+
+ // Skip singleton loop sets as they do not offer fusion opportunities on
+ // this level.
+ if (LV.size() == 1)
+ continue;
+#ifndef NDEBUG
+ if (VerboseFusionDebugging) {
+ LLVM_DEBUG({
+ dbgs() << " Visit loop set (#" << LV.size() << "):\n";
+ printLoopVector(LV);
+ });
+ }
+#endif
+
+ collectFusionCandidates(LV);
+ Changed |= fuseCandidates();
+ }
+
+ // Finished analyzing candidates at this level.
+ // Descend to the next level and clear all of the candidates currently
+ // collected. Note that it will not be possible to fuse any of the
+ // existing candidates with new candidates because the new candidates will
+ // be at a different nest level and thus not be control flow equivalent
+ // with all of the candidates collected so far.
+ LLVM_DEBUG(dbgs() << "Descend one level!\n");
+ LDT.descend();
+ FusionCandidates.clear();
+ }
+
+ if (Changed)
+ LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
+
+#ifndef NDEBUG
+ assert(DT.verify());
+ assert(PDT.verify());
+ LI.verify(DT);
+ SE.verify();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
+ return Changed;
+ }
+
+private:
+ /// Determine if two fusion candidates are control flow equivalent.
+ ///
+ /// Two fusion candidates are control flow equivalent if when one executes,
+ /// the other is guaranteed to execute. This is determined using dominators
+ /// and post-dominators: if A dominates B and B post-dominates A then A and B
+ /// are control-flow equivalent.
+ bool isControlFlowEquivalent(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) const {
+ assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
+
+ return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
+ DT, PDT);
+ }
+
+ /// Iterate over all loops in the given loop set and identify the loops that
+ /// are eligible for fusion. Place all eligible fusion candidates into Control
+ /// Flow Equivalent sets, sorted by dominance.
+ void collectFusionCandidates(const LoopVector &LV) {
+ for (Loop *L : LV) {
+ TTI::PeelingPreferences PP =
+ gatherPeelingPreferences(L, SE, TTI, None, None);
+ FusionCandidate CurrCand(L, &DT, &PDT, ORE, PP);
+ if (!CurrCand.isEligibleForFusion(SE))
+ continue;
+
+ // Go through each list in FusionCandidates and determine if L is control
+ // flow equivalent with the first loop in that list. If it is, append LV.
+ // If not, go to the next list.
+ // If no suitable list is found, start another list and add it to
+ // FusionCandidates.
+ bool FoundSet = false;
+
+ for (auto &CurrCandSet : FusionCandidates) {
+ if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
+ CurrCandSet.insert(CurrCand);
+ FoundSet = true;
+#ifndef NDEBUG
+ if (VerboseFusionDebugging)
+ LLVM_DEBUG(dbgs() << "Adding " << CurrCand
+ << " to existing candidate set\n");
+#endif
+ break;
+ }
+ }
+ if (!FoundSet) {
+ // No set was found. Create a new set and add to FusionCandidates
+#ifndef NDEBUG
+ if (VerboseFusionDebugging)
+ LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
+#endif
+ FusionCandidateSet NewCandSet;
+ NewCandSet.insert(CurrCand);
+ FusionCandidates.push_back(NewCandSet);
+ }
+ NumFusionCandidates++;
+ }
+ }
+
+ /// Determine if it is beneficial to fuse two loops.
+ ///
+ /// For now, this method simply returns true because we want to fuse as much
+ /// as possible (primarily to test the pass). This method will evolve, over
+ /// time, to add heuristics for profitability of fusion.
+ bool isBeneficialFusion(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) {
+ return true;
+ }
+
+ /// Determine if two fusion candidates have the same trip count (i.e., they
+ /// execute the same number of iterations).
+ ///
+ /// This function will return a pair of values. The first is a boolean,
+ /// stating whether or not the two candidates are known at compile time to
+ /// have the same TripCount. The second is the difference in the two
+ /// TripCounts. This information can be used later to determine whether or not
+ /// peeling can be performed on either one of the candiates.
+ std::pair<bool, Optional<unsigned>>
+ haveIdenticalTripCounts(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) const {
+
+ const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
+ if (isa<SCEVCouldNotCompute>(TripCount0)) {
+ UncomputableTripCount++;
+ LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
+ return {false, None};
+ }
+
+ const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
+ if (isa<SCEVCouldNotCompute>(TripCount1)) {
+ UncomputableTripCount++;
+ LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
+ return {false, None};
+ }
+
+ LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
+ << *TripCount1 << " are "
+ << (TripCount0 == TripCount1 ? "identical" : "different")
+ << "\n");
+
+ if (TripCount0 == TripCount1)
+ return {true, 0};
+
+ LLVM_DEBUG(dbgs() << "The loops do not have the same tripcount, "
+ "determining the difference between trip counts\n");
+
+ // Currently only considering loops with a single exit point
+ // and a non-constant trip count.
+ const unsigned TC0 = SE.getSmallConstantTripCount(FC0.L);
+ const unsigned TC1 = SE.getSmallConstantTripCount(FC1.L);
+
+ // If any of the tripcounts are zero that means that loop(s) do not have
+ // a single exit or a constant tripcount.
+ if (TC0 == 0 || TC1 == 0) {
+ LLVM_DEBUG(dbgs() << "Loop(s) do not have a single exit point or do not "
+ "have a constant number of iterations. Peeling "
+ "is not benefical\n");
+ return {false, None};
+ }
+
+ Optional<unsigned> Difference = None;
+ int Diff = TC0 - TC1;
+
+ if (Diff > 0)
+ Difference = Diff;
+ else {
+ LLVM_DEBUG(
+ dbgs() << "Difference is less than 0. FC1 (second loop) has more "
+ "iterations than the first one. Currently not supported\n");
+ }
+
+ LLVM_DEBUG(dbgs() << "Difference in loop trip count is: " << Difference
+ << "\n");
+
+ return {false, Difference};
+ }
+
+ void peelFusionCandidate(FusionCandidate &FC0, const FusionCandidate &FC1,
+ unsigned PeelCount) {
+ assert(FC0.AbleToPeel && "Should be able to peel loop");
+
+ LLVM_DEBUG(dbgs() << "Attempting to peel first " << PeelCount
+ << " iterations of the first loop. \n");
+
+ FC0.Peeled = peelLoop(FC0.L, PeelCount, &LI, &SE, &DT, &AC, true);
+ if (FC0.Peeled) {
+ LLVM_DEBUG(dbgs() << "Done Peeling\n");
+
+#ifndef NDEBUG
+ auto IdenticalTripCount = haveIdenticalTripCounts(FC0, FC1);
+
+ assert(IdenticalTripCount.first && *IdenticalTripCount.second == 0 &&
+ "Loops should have identical trip counts after peeling");
+#endif
+
+ FC0.PP.PeelCount += PeelCount;
+
+ // Peeling does not update the PDT
+ PDT.recalculate(*FC0.Preheader->getParent());
+
+ FC0.updateAfterPeeling();
+
+ // In this case the iterations of the loop are constant, so the first
+ // loop will execute completely (will not jump from one of
+ // the peeled blocks to the second loop). Here we are updating the
+ // branch conditions of each of the peeled blocks, such that it will
+ // branch to its successor which is not the preheader of the second loop
+ // in the case of unguarded loops, or the succesors of the exit block of
+ // the first loop otherwise. Doing this update will ensure that the entry
+ // block of the first loop dominates the entry block of the second loop.
+ BasicBlock *BB =
+ FC0.GuardBranch ? FC0.ExitBlock->getUniqueSuccessor() : FC1.Preheader;
+ if (BB) {
+ SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
+ SmallVector<Instruction *, 8> WorkList;
+ for (BasicBlock *Pred : predecessors(BB)) {
+ if (Pred != FC0.ExitBlock) {
+ WorkList.emplace_back(Pred->getTerminator());
+ TreeUpdates.emplace_back(
+ DominatorTree::UpdateType(DominatorTree::Delete, Pred, BB));
+ }
+ }
+ // Cannot modify the predecessors inside the above loop as it will cause
+ // the iterators to be nullptrs, causing memory errors.
+ for (Instruction *CurrentBranch: WorkList) {
+ BasicBlock *Succ = CurrentBranch->getSuccessor(0);
+ if (Succ == BB)
+ Succ = CurrentBranch->getSuccessor(1);
+ ReplaceInstWithInst(CurrentBranch, BranchInst::Create(Succ));
+ }
+
+ DTU.applyUpdates(TreeUpdates);
+ DTU.flush();
+ }
+ LLVM_DEBUG(
+ dbgs() << "Sucessfully peeled " << FC0.PP.PeelCount
+ << " iterations from the first loop.\n"
+ "Both Loops have the same number of iterations now.\n");
+ }
+ }
+
+ /// Walk each set of control flow equivalent fusion candidates and attempt to
+ /// fuse them. This does a single linear traversal of all candidates in the
+ /// set. The conditions for legal fusion are checked at this point. If a pair
+ /// of fusion candidates passes all legality checks, they are fused together
+ /// and a new fusion candidate is created and added to the FusionCandidateSet.
+ /// The original fusion candidates are then removed, as they are no longer
+ /// valid.
+ bool fuseCandidates() {
+ bool Fused = false;
+ LLVM_DEBUG(printFusionCandidates(FusionCandidates));
+ for (auto &CandidateSet : FusionCandidates) {
+ if (CandidateSet.size() < 2)
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
+ << CandidateSet << "\n");
+
+ for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
+ assert(!LDT.isRemovedLoop(FC0->L) &&
+ "Should not have removed loops in CandidateSet!");
+ auto FC1 = FC0;
+ for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
+ assert(!LDT.isRemovedLoop(FC1->L) &&
+ "Should not have removed loops in CandidateSet!");
+
+ LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
+ dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
+
+ FC0->verify();
+ FC1->verify();
+
+ // Check if the candidates have identical tripcounts (first value of
+ // pair), and if not check the difference in the tripcounts between
+ // the loops (second value of pair). The difference is not equal to
+ // None iff the loops iterate a constant number of times, and have a
+ // single exit.
+ std::pair<bool, Optional<unsigned>> IdenticalTripCountRes =
+ haveIdenticalTripCounts(*FC0, *FC1);
+ bool SameTripCount = IdenticalTripCountRes.first;
+ Optional<unsigned> TCDifference = IdenticalTripCountRes.second;
+
+ // Here we are checking that FC0 (the first loop) can be peeled, and
+ // both loops have different tripcounts.
+ if (FC0->AbleToPeel && !SameTripCount && TCDifference) {
+ if (*TCDifference > FusionPeelMaxCount) {
+ LLVM_DEBUG(dbgs()
+ << "Difference in loop trip counts: " << *TCDifference
+ << " is greater than maximum peel count specificed: "
+ << FusionPeelMaxCount << "\n");
+ } else {
+ // Dependent on peeling being performed on the first loop, and
+ // assuming all other conditions for fusion return true.
+ SameTripCount = true;
+ }
+ }
+
+ if (!SameTripCount) {
+ LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
+ "counts. Not fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ NonEqualTripCount);
+ continue;
+ }
+
+ if (!isAdjacent(*FC0, *FC1)) {
+ LLVM_DEBUG(dbgs()
+ << "Fusion candidates are not adjacent. Not fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
+ continue;
+ }
+
+ // Ensure that FC0 and FC1 have identical guards.
+ // If one (or both) are not guarded, this check is not necessary.
+ if (FC0->GuardBranch && FC1->GuardBranch &&
+ !haveIdenticalGuards(*FC0, *FC1) && !TCDifference) {
+ LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
+ "guards. Not Fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ NonIdenticalGuards);
+ continue;
+ }
+
+ if (!isSafeToMoveBefore(*FC1->Preheader,
+ *FC0->Preheader->getTerminator(), DT, &PDT,
+ &DI)) {
+ LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
+ "instructions in preheader. Not fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ NonEmptyPreheader);
+ continue;
+ }
+
+ if (FC0->GuardBranch) {
+ assert(FC1->GuardBranch && "Expecting valid FC1 guard branch");
+
+ if (!isSafeToMoveBefore(*FC0->ExitBlock,
+ *FC1->ExitBlock->getFirstNonPHIOrDbg(), DT,
+ &PDT, &DI)) {
+ LLVM_DEBUG(dbgs() << "Fusion candidate contains unsafe "
+ "instructions in exit block. Not fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ NonEmptyExitBlock);
+ continue;
+ }
+
+ if (!isSafeToMoveBefore(
+ *FC1->GuardBranch->getParent(),
+ *FC0->GuardBranch->getParent()->getTerminator(), DT, &PDT,
+ &DI)) {
+ LLVM_DEBUG(dbgs()
+ << "Fusion candidate contains unsafe "
+ "instructions in guard block. Not fusing.\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ NonEmptyGuardBlock);
+ continue;
+ }
+ }
+
+ // Check the dependencies across the loops and do not fuse if it would
+ // violate them.
+ if (!dependencesAllowFusion(*FC0, *FC1)) {
+ LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ InvalidDependencies);
+ continue;
+ }
+
+ bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
+ LLVM_DEBUG(dbgs()
+ << "\tFusion appears to be "
+ << (BeneficialToFuse ? "" : "un") << "profitable!\n");
+ if (!BeneficialToFuse) {
+ reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
+ FusionNotBeneficial);
+ continue;
+ }
+ // All analysis has completed and has determined that fusion is legal
+ // and profitable. At this point, start transforming the code and
+ // perform fusion.
+
+ LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
+ << *FC1 << "\n");
+
+ FusionCandidate FC0Copy = *FC0;
+ // Peel the loop after determining that fusion is legal. The Loops
+ // will still be safe to fuse after the peeling is performed.
+ bool Peel = TCDifference && *TCDifference > 0;
+ if (Peel)
+ peelFusionCandidate(FC0Copy, *FC1, *TCDifference);
+
+ // Report fusion to the Optimization Remarks.
+ // Note this needs to be done *before* performFusion because
+ // performFusion will change the original loops, making it not
+ // possible to identify them after fusion is complete.
+ reportLoopFusion<OptimizationRemark>((Peel ? FC0Copy : *FC0), *FC1,
+ FuseCounter);
+
+ FusionCandidate FusedCand(
+ performFusion((Peel ? FC0Copy : *FC0), *FC1), &DT, &PDT, ORE,
+ FC0Copy.PP);
+ FusedCand.verify();
+ assert(FusedCand.isEligibleForFusion(SE) &&
+ "Fused candidate should be eligible for fusion!");
+
+ // Notify the loop-depth-tree that these loops are not valid objects
+ LDT.removeLoop(FC1->L);
+
+ CandidateSet.erase(FC0);
+ CandidateSet.erase(FC1);
+
+ auto InsertPos = CandidateSet.insert(FusedCand);
+
+ assert(InsertPos.second &&
+ "Unable to insert TargetCandidate in CandidateSet!");
+
+ // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
+ // of the FC1 loop will attempt to fuse the new (fused) loop with the
+ // remaining candidates in the current candidate set.
+ FC0 = FC1 = InsertPos.first;
+
+ LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
+ << "\n");
+
+ Fused = true;
+ }
+ }
+ }
+ return Fused;
+ }
+
+ /// Rewrite all additive recurrences in a SCEV to use a new loop.
+ class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
+ public:
+ AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
+ bool UseMax = true)
+ : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
+ NewL(NewL) {}
+
+ const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
+ const Loop *ExprL = Expr->getLoop();
+ SmallVector<const SCEV *, 2> Operands;
+ if (ExprL == &OldL) {
+ Operands.append(Expr->op_begin(), Expr->op_end());
+ return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
+ }
+
+ if (OldL.contains(ExprL)) {
+ bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
+ if (!UseMax || !Pos || !Expr->isAffine()) {
+ Valid = false;
+ return Expr;
+ }
+ return visit(Expr->getStart());
+ }
+
+ for (const SCEV *Op : Expr->operands())
+ Operands.push_back(visit(Op));
+ return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
+ }
+
+ bool wasValidSCEV() const { return Valid; }
+
+ private:
+ bool Valid, UseMax;
+ const Loop &OldL, &NewL;
+ };
+
+ /// Return false if the access functions of \p I0 and \p I1 could cause
+ /// a negative dependence.
+ bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
+ Instruction &I1, bool EqualIsInvalid) {
+ Value *Ptr0 = getLoadStorePointerOperand(&I0);
+ Value *Ptr1 = getLoadStorePointerOperand(&I1);
+ if (!Ptr0 || !Ptr1)
+ return false;
+
+ const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
+ const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
+#ifndef NDEBUG
+ if (VerboseFusionDebugging)
+ LLVM_DEBUG(dbgs() << " Access function check: " << *SCEVPtr0 << " vs "
+ << *SCEVPtr1 << "\n");
+#endif
+ AddRecLoopReplacer Rewriter(SE, L0, L1);
+ SCEVPtr0 = Rewriter.visit(SCEVPtr0);
+#ifndef NDEBUG
+ if (VerboseFusionDebugging)
+ LLVM_DEBUG(dbgs() << " Access function after rewrite: " << *SCEVPtr0
+ << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
+#endif
+ if (!Rewriter.wasValidSCEV())
+ return false;
+
+ // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
+ // L0) and the other is not. We could check if it is monotone and test
+ // the beginning and end value instead.
+
+ BasicBlock *L0Header = L0.getHeader();
+ auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
+ if (!AddRec)
+ return false;
+ return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
+ !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
+ };
+ if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
+ return false;
+
+ ICmpInst::Predicate Pred =
+ EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
+ bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
+#ifndef NDEBUG
+ if (VerboseFusionDebugging)
+ LLVM_DEBUG(dbgs() << " Relation: " << *SCEVPtr0
+ << (IsAlwaysGE ? " >= " : " may < ") << *SCEVPtr1
+ << "\n");
+#endif
+ return IsAlwaysGE;
+ }
+
+ /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
+ /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
+ /// specified by @p DepChoice are used to determine this.
+ bool dependencesAllowFusion(const FusionCandidate &FC0,
+ const FusionCandidate &FC1, Instruction &I0,
+ Instruction &I1, bool AnyDep,
+ FusionDependenceAnalysisChoice DepChoice) {
+#ifndef NDEBUG
+ if (VerboseFusionDebugging) {
+ LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
+ << DepChoice << "\n");
+ }
+#endif
+ switch (DepChoice) {
+ case FUSION_DEPENDENCE_ANALYSIS_SCEV:
+ return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
+ case FUSION_DEPENDENCE_ANALYSIS_DA: {
+ auto DepResult = DI.depends(&I0, &I1, true);
+ if (!DepResult)
+ return true;
+#ifndef NDEBUG
+ if (VerboseFusionDebugging) {
+ LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
+ dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
+ << (DepResult->isOrdered() ? "true" : "false")
+ << "]\n");
+ LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
+ << "\n");
+ }
+#endif
+
+ if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
+ LLVM_DEBUG(
+ dbgs() << "TODO: Implement pred/succ dependence handling!\n");
+
+ // TODO: Can we actually use the dependence info analysis here?
+ return false;
+ }
+
+ case FUSION_DEPENDENCE_ANALYSIS_ALL:
+ return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
+ FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
+ dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
+ FUSION_DEPENDENCE_ANALYSIS_DA);
+ }
+
+ llvm_unreachable("Unknown fusion dependence analysis choice!");
+ }
+
+ /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
+ bool dependencesAllowFusion(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) {
+ LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
+ << "\n");
+ assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
+ assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
+
+ for (Instruction *WriteL0 : FC0.MemWrites) {
+ for (Instruction *WriteL1 : FC1.MemWrites)
+ if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
+ /* AnyDep */ false,
+ FusionDependenceAnalysis)) {
+ InvalidDependencies++;
+ return false;
+ }
+ for (Instruction *ReadL1 : FC1.MemReads)
+ if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
+ /* AnyDep */ false,
+ FusionDependenceAnalysis)) {
+ InvalidDependencies++;
+ return false;
+ }
+ }
+
+ for (Instruction *WriteL1 : FC1.MemWrites) {
+ for (Instruction *WriteL0 : FC0.MemWrites)
+ if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
+ /* AnyDep */ false,
+ FusionDependenceAnalysis)) {
+ InvalidDependencies++;
+ return false;
+ }
+ for (Instruction *ReadL0 : FC0.MemReads)
+ if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
+ /* AnyDep */ false,
+ FusionDependenceAnalysis)) {
+ InvalidDependencies++;
+ return false;
+ }
+ }
+
+ // Walk through all uses in FC1. For each use, find the reaching def. If the
+ // def is located in FC0 then it is is not safe to fuse.
+ for (BasicBlock *BB : FC1.L->blocks())
+ for (Instruction &I : *BB)
+ for (auto &Op : I.operands())
+ if (Instruction *Def = dyn_cast<Instruction>(Op))
+ if (FC0.L->contains(Def->getParent())) {
+ InvalidDependencies++;
+ return false;
+ }
+
+ return true;
+ }
+
+ /// Determine if two fusion candidates are adjacent in the CFG.
+ ///
+ /// This method will determine if there are additional basic blocks in the CFG
+ /// between the exit of \p FC0 and the entry of \p FC1.
+ /// If the two candidates are guarded loops, then it checks whether the
+ /// non-loop successor of the \p FC0 guard branch is the entry block of \p
+ /// FC1. If not, then the loops are not adjacent. If the two candidates are
+ /// not guarded loops, then it checks whether the exit block of \p FC0 is the
+ /// preheader of \p FC1.
+ bool isAdjacent(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) const {
+ // If the successor of the guard branch is FC1, then the loops are adjacent
+ if (FC0.GuardBranch)
+ return FC0.getNonLoopBlock() == FC1.getEntryBlock();
+ else
+ return FC0.ExitBlock == FC1.getEntryBlock();
+ }
+
+ /// Determine if two fusion candidates have identical guards
+ ///
+ /// This method will determine if two fusion candidates have the same guards.
+ /// The guards are considered the same if:
+ /// 1. The instructions to compute the condition used in the compare are
+ /// identical.
+ /// 2. The successors of the guard have the same flow into/around the loop.
+ /// If the compare instructions are identical, then the first successor of the
+ /// guard must go to the same place (either the preheader of the loop or the
+ /// NonLoopBlock). In other words, the the first successor of both loops must
+ /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
+ /// the NonLoopBlock). The same must be true for the second successor.
+ bool haveIdenticalGuards(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) const {
+ assert(FC0.GuardBranch && FC1.GuardBranch &&
+ "Expecting FC0 and FC1 to be guarded loops.");
+
+ if (auto FC0CmpInst =
+ dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
+ if (auto FC1CmpInst =
+ dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
+ if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
+ return false;
+
+ // The compare instructions are identical.
+ // Now make sure the successor of the guards have the same flow into/around
+ // the loop
+ if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
+ return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
+ else
+ return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
+ }
+
+ /// Modify the latch branch of FC to be unconditional since successors of the
+ /// branch are the same.
+ void simplifyLatchBranch(const FusionCandidate &FC) const {
+ BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
+ if (FCLatchBranch) {
+ assert(FCLatchBranch->isConditional() &&
+ FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
+ "Expecting the two successors of FCLatchBranch to be the same");
+ BranchInst *NewBranch =
+ BranchInst::Create(FCLatchBranch->getSuccessor(0));
+ ReplaceInstWithInst(FCLatchBranch, NewBranch);
+ }
+ }
+
+ /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
+ /// successor, then merge FC0.Latch with its unique successor.
+ void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
+ moveInstructionsToTheBeginning(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
+ if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
+ MergeBlockIntoPredecessor(Succ, &DTU, &LI);
+ DTU.flush();
+ }
+ }
+
+ /// Fuse two fusion candidates, creating a new fused loop.
+ ///
+ /// This method contains the mechanics of fusing two loops, represented by \p
+ /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
+ /// postdominates \p FC0 (making them control flow equivalent). It also
+ /// assumes that the other conditions for fusion have been met: adjacent,
+ /// identical trip counts, and no negative distance dependencies exist that
+ /// would prevent fusion. Thus, there is no checking for these conditions in
+ /// this method.
+ ///
+ /// Fusion is performed by rewiring the CFG to update successor blocks of the
+ /// components of tho loop. Specifically, the following changes are done:
+ ///
+ /// 1. The preheader of \p FC1 is removed as it is no longer necessary
+ /// (because it is currently only a single statement block).
+ /// 2. The latch of \p FC0 is modified to jump to the header of \p FC1.
+ /// 3. The latch of \p FC1 i modified to jump to the header of \p FC0.
+ /// 4. All blocks from \p FC1 are removed from FC1 and added to FC0.
+ ///
+ /// All of these modifications are done with dominator tree updates, thus
+ /// keeping the dominator (and post dominator) information up-to-date.
+ ///
+ /// This can be improved in the future by actually merging blocks during
+ /// fusion. For example, the preheader of \p FC1 can be merged with the
+ /// preheader of \p FC0. This would allow loops with more than a single
+ /// statement in the preheader to be fused. Similarly, the latch blocks of the
+ /// two loops could also be fused into a single block. This will require
+ /// analysis to prove it is safe to move the contents of the block past
+ /// existing code, which currently has not been implemented.
+ Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
+ assert(FC0.isValid() && FC1.isValid() &&
+ "Expecting valid fusion candidates");
+
+ LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
+ dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
+
+ // Move instructions from the preheader of FC1 to the end of the preheader
+ // of FC0.
+ moveInstructionsToTheEnd(*FC1.Preheader, *FC0.Preheader, DT, PDT, DI);
+
+ // Fusing guarded loops is handled slightly differently than non-guarded
+ // loops and has been broken out into a separate method instead of trying to
+ // intersperse the logic within a single method.
+ if (FC0.GuardBranch)
+ return fuseGuardedLoops(FC0, FC1);
+
+ assert(FC1.Preheader ==
+ (FC0.Peeled ? FC0.ExitBlock->getUniqueSuccessor() : FC0.ExitBlock));
+ assert(FC1.Preheader->size() == 1 &&
+ FC1.Preheader->getSingleSuccessor() == FC1.Header);
+
+ // Remember the phi nodes originally in the header of FC0 in order to rewire
+ // them later. However, this is only necessary if the new loop carried
+ // values might not dominate the exiting branch. While we do not generally
+ // test if this is the case but simply insert intermediate phi nodes, we
+ // need to make sure these intermediate phi nodes have different
+ // predecessors. To this end, we filter the special case where the exiting
+ // block is the latch block of the first loop. Nothing needs to be done
+ // anyway as all loop carried values dominate the latch and thereby also the
+ // exiting branch.
+ SmallVector<PHINode *, 8> OriginalFC0PHIs;
+ if (FC0.ExitingBlock != FC0.Latch)
+ for (PHINode &PHI : FC0.Header->phis())
+ OriginalFC0PHIs.push_back(&PHI);
+
+ // Replace incoming blocks for header PHIs first.
+ FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
+ FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
+
+ // Then modify the control flow and update DT and PDT.
+ SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
+
+ // The old exiting block of the first loop (FC0) has to jump to the header
+ // of the second as we need to execute the code in the second header block
+ // regardless of the trip count. That is, if the trip count is 0, so the
+ // back edge is never taken, we still have to execute both loop headers,
+ // especially (but not only!) if the second is a do-while style loop.
+ // However, doing so might invalidate the phi nodes of the first loop as
+ // the new values do only need to dominate their latch and not the exiting
+ // predicate. To remedy this potential problem we always introduce phi
+ // nodes in the header of the second loop later that select the loop carried
+ // value, if the second header was reached through an old latch of the
+ // first, or undef otherwise. This is sound as exiting the first implies the
+ // second will exit too, __without__ taking the back-edge. [Their
+ // trip-counts are equal after all.
+ // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
+ // to FC1.Header? I think this is basically what the three sequences are
+ // trying to accomplish; however, doing this directly in the CFG may mean
+ // the DT/PDT becomes invalid
+ if (!FC0.Peeled) {
+ FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
+ FC1.Header);
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
+ } else {
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0.ExitBlock, FC1.Preheader));
+
+ // Remove the ExitBlock of the first Loop (also not needed)
+ FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
+ FC1.Header);
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
+ FC0.ExitBlock->getTerminator()->eraseFromParent();
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
+ new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
+ }
+
+ // The pre-header of L1 is not necessary anymore.
+ assert(pred_empty(FC1.Preheader));
+ FC1.Preheader->getTerminator()->eraseFromParent();
+ new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC1.Preheader, FC1.Header));
+
+ // Moves the phi nodes from the second to the first loops header block.
+ while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
+ if (SE.isSCEVable(PHI->getType()))
+ SE.forgetValue(PHI);
+ if (PHI->hasNUsesOrMore(1))
+ PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
+ else
+ PHI->eraseFromParent();
+ }
+
+ // Introduce new phi nodes in the second loop header to ensure
+ // exiting the first and jumping to the header of the second does not break
+ // the SSA property of the phis originally in the first loop. See also the
+ // comment above.
+ Instruction *L1HeaderIP = &FC1.Header->front();
+ for (PHINode *LCPHI : OriginalFC0PHIs) {
+ int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
+ assert(L1LatchBBIdx >= 0 &&
+ "Expected loop carried value to be rewired at this point!");
+
+ Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
+
+ PHINode *L1HeaderPHI = PHINode::Create(
+ LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
+ L1HeaderPHI->addIncoming(LCV, FC0.Latch);
+ L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
+ FC0.ExitingBlock);
+
+ LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
+ }
+
+ // Replace latch terminator destinations.
+ FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
+ FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
+
+ // Modify the latch branch of FC0 to be unconditional as both successors of
+ // the branch are the same.
+ simplifyLatchBranch(FC0);
+
+ // If FC0.Latch and FC0.ExitingBlock are the same then we have already
+ // performed the updates above.
+ if (FC0.Latch != FC0.ExitingBlock)
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0.Latch, FC1.Header));
+
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
+ FC0.Latch, FC0.Header));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
+ FC1.Latch, FC0.Header));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
+ FC1.Latch, FC1.Header));
+
+ // Update DT/PDT
+ DTU.applyUpdates(TreeUpdates);
+
+ LI.removeBlock(FC1.Preheader);
+ DTU.deleteBB(FC1.Preheader);
+ if (FC0.Peeled) {
+ LI.removeBlock(FC0.ExitBlock);
+ DTU.deleteBB(FC0.ExitBlock);
+ }
+
+ DTU.flush();
+
+ // Is there a way to keep SE up-to-date so we don't need to forget the loops
+ // and rebuild the information in subsequent passes of fusion?
+ // Note: Need to forget the loops before merging the loop latches, as
+ // mergeLatch may remove the only block in FC1.
+ SE.forgetLoop(FC1.L);
+ SE.forgetLoop(FC0.L);
+
+ // Move instructions from FC0.Latch to FC1.Latch.
+ // Note: mergeLatch requires an updated DT.
+ mergeLatch(FC0, FC1);
+
+ // Merge the loops.
+ SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
+ for (BasicBlock *BB : Blocks) {
+ FC0.L->addBlockEntry(BB);
+ FC1.L->removeBlockFromLoop(BB);
+ if (LI.getLoopFor(BB) != FC1.L)
+ continue;
+ LI.changeLoopFor(BB, FC0.L);
+ }
+ while (!FC1.L->isInnermost()) {
+ const auto &ChildLoopIt = FC1.L->begin();
+ Loop *ChildLoop = *ChildLoopIt;
+ FC1.L->removeChildLoop(ChildLoopIt);
+ FC0.L->addChildLoop(ChildLoop);
+ }
+
+ // Delete the now empty loop L1.
+ LI.erase(FC1.L);
+
+#ifndef NDEBUG
+ assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+ assert(PDT.verify());
+ LI.verify(DT);
+ SE.verify();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Fusion done:\n");
+
+ return FC0.L;
+ }
+
+ /// Report details on loop fusion opportunities.
+ ///
+ /// This template function can be used to report both successful and missed
+ /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
+ /// be one of:
+ /// - OptimizationRemarkMissed to report when loop fusion is unsuccessful
+ /// given two valid fusion candidates.
+ /// - OptimizationRemark to report successful fusion of two fusion
+ /// candidates.
+ /// The remarks will be printed using the form:
+ /// <path/filename>:<line number>:<column number>: [<function name>]:
+ /// <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
+ template <typename RemarkKind>
+ void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
+ llvm::Statistic &Stat) {
+ assert(FC0.Preheader && FC1.Preheader &&
+ "Expecting valid fusion candidates");
+ using namespace ore;
+ ++Stat;
+ ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
+ FC0.Preheader)
+ << "[" << FC0.Preheader->getParent()->getName()
+ << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
+ << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
+ << ": " << Stat.getDesc());
+ }
+
+ /// Fuse two guarded fusion candidates, creating a new fused loop.
+ ///
+ /// Fusing guarded loops is handled much the same way as fusing non-guarded
+ /// loops. The rewiring of the CFG is slightly different though, because of
+ /// the presence of the guards around the loops and the exit blocks after the
+ /// loop body. As such, the new loop is rewired as follows:
+ /// 1. Keep the guard branch from FC0 and use the non-loop block target
+ /// from the FC1 guard branch.
+ /// 2. Remove the exit block from FC0 (this exit block should be empty
+ /// right now).
+ /// 3. Remove the guard branch for FC1
+ /// 4. Remove the preheader for FC1.
+ /// The exit block successor for the latch of FC0 is updated to be the header
+ /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
+ /// be the header of FC0, thus creating the fused loop.
+ Loop *fuseGuardedLoops(const FusionCandidate &FC0,
+ const FusionCandidate &FC1) {
+ assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
+
+ BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
+ BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
+ BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
+ BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
+ BasicBlock *FC0ExitBlockSuccessor = FC0.ExitBlock->getUniqueSuccessor();
+
+ // Move instructions from the exit block of FC0 to the beginning of the exit
+ // block of FC1, in the case that the FC0 loop has not been peeled. In the
+ // case that FC0 loop is peeled, then move the instructions of the successor
+ // of the FC0 Exit block to the beginning of the exit block of FC1.
+ moveInstructionsToTheBeginning(
+ (FC0.Peeled ? *FC0ExitBlockSuccessor : *FC0.ExitBlock), *FC1.ExitBlock,
+ DT, PDT, DI);
+
+ // Move instructions from the guard block of FC1 to the end of the guard
+ // block of FC0.
+ moveInstructionsToTheEnd(*FC1GuardBlock, *FC0GuardBlock, DT, PDT, DI);
+
+ assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
+
+ SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
+
+ ////////////////////////////////////////////////////////////////////////////
+ // Update the Loop Guard
+ ////////////////////////////////////////////////////////////////////////////
+ // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
+ // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
+ // Thus, one path from the guard goes to the preheader for FC0 (and thus
+ // executes the new fused loop) and the other path goes to the NonLoopBlock
+ // for FC1 (where FC1 guard would have gone if FC1 was not executed).
+ FC1NonLoopBlock->replacePhiUsesWith(FC1GuardBlock, FC0GuardBlock);
+ FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
+
+ BasicBlock *BBToUpdate = FC0.Peeled ? FC0ExitBlockSuccessor : FC0.ExitBlock;
+ BBToUpdate->getTerminator()->replaceUsesOfWith(FC1GuardBlock, FC1.Header);
+
+ // The guard of FC1 is not necessary anymore.
+ FC1.GuardBranch->eraseFromParent();
+ new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
+
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
+
+ if (FC0.Peeled) {
+ // Remove the Block after the ExitBlock of FC0
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0ExitBlockSuccessor, FC1GuardBlock));
+ FC0ExitBlockSuccessor->getTerminator()->eraseFromParent();
+ new UnreachableInst(FC0ExitBlockSuccessor->getContext(),
+ FC0ExitBlockSuccessor);
+ }
+
+ assert(pred_empty(FC1GuardBlock) &&
+ "Expecting guard block to have no predecessors");
+ assert(succ_empty(FC1GuardBlock) &&
+ "Expecting guard block to have no successors");
+
+ // Remember the phi nodes originally in the header of FC0 in order to rewire
+ // them later. However, this is only necessary if the new loop carried
+ // values might not dominate the exiting branch. While we do not generally
+ // test if this is the case but simply insert intermediate phi nodes, we
+ // need to make sure these intermediate phi nodes have different
+ // predecessors. To this end, we filter the special case where the exiting
+ // block is the latch block of the first loop. Nothing needs to be done
+ // anyway as all loop carried values dominate the latch and thereby also the
+ // exiting branch.
+ // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
+ // (because the loops are rotated. Thus, nothing will ever be added to
+ // OriginalFC0PHIs.
+ SmallVector<PHINode *, 8> OriginalFC0PHIs;
+ if (FC0.ExitingBlock != FC0.Latch)
+ for (PHINode &PHI : FC0.Header->phis())
+ OriginalFC0PHIs.push_back(&PHI);
+
+ assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
+
+ // Replace incoming blocks for header PHIs first.
+ FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
+ FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
+
+ // The old exiting block of the first loop (FC0) has to jump to the header
+ // of the second as we need to execute the code in the second header block
+ // regardless of the trip count. That is, if the trip count is 0, so the
+ // back edge is never taken, we still have to execute both loop headers,
+ // especially (but not only!) if the second is a do-while style loop.
+ // However, doing so might invalidate the phi nodes of the first loop as
+ // the new values do only need to dominate their latch and not the exiting
+ // predicate. To remedy this potential problem we always introduce phi
+ // nodes in the header of the second loop later that select the loop carried
+ // value, if the second header was reached through an old latch of the
+ // first, or undef otherwise. This is sound as exiting the first implies the
+ // second will exit too, __without__ taking the back-edge (their
+ // trip-counts are equal after all).
+ FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
+ FC1.Header);
+
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
+
+ // Remove FC0 Exit Block
+ // The exit block for FC0 is no longer needed since control will flow
+ // directly to the header of FC1. Since it is an empty block, it can be
+ // removed at this point.
+ // TODO: In the future, we can handle non-empty exit blocks my merging any
+ // instructions from FC0 exit block into FC1 exit block prior to removing
+ // the block.
+ assert(pred_empty(FC0.ExitBlock) && "Expecting exit block to be empty");
+ FC0.ExitBlock->getTerminator()->eraseFromParent();
+ new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
+
+ // Remove FC1 Preheader
+ // The pre-header of L1 is not necessary anymore.
+ assert(pred_empty(FC1.Preheader));
+ FC1.Preheader->getTerminator()->eraseFromParent();
+ new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Delete, FC1.Preheader, FC1.Header));
+
+ // Moves the phi nodes from the second to the first loops header block.
+ while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
+ if (SE.isSCEVable(PHI->getType()))
+ SE.forgetValue(PHI);
+ if (PHI->hasNUsesOrMore(1))
+ PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
+ else
+ PHI->eraseFromParent();
+ }
+
+ // Introduce new phi nodes in the second loop header to ensure
+ // exiting the first and jumping to the header of the second does not break
+ // the SSA property of the phis originally in the first loop. See also the
+ // comment above.
+ Instruction *L1HeaderIP = &FC1.Header->front();
+ for (PHINode *LCPHI : OriginalFC0PHIs) {
+ int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
+ assert(L1LatchBBIdx >= 0 &&
+ "Expected loop carried value to be rewired at this point!");
+
+ Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
+
+ PHINode *L1HeaderPHI = PHINode::Create(
+ LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
+ L1HeaderPHI->addIncoming(LCV, FC0.Latch);
+ L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
+ FC0.ExitingBlock);
+
+ LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
+ }
+
+ // Update the latches
+
+ // Replace latch terminator destinations.
+ FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
+ FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
+
+ // Modify the latch branch of FC0 to be unconditional as both successors of
+ // the branch are the same.
+ simplifyLatchBranch(FC0);
+
+ // If FC0.Latch and FC0.ExitingBlock are the same then we have already
+ // performed the updates above.
+ if (FC0.Latch != FC0.ExitingBlock)
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(
+ DominatorTree::Insert, FC0.Latch, FC1.Header));
+
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
+ FC0.Latch, FC0.Header));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
+ FC1.Latch, FC0.Header));
+ TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
+ FC1.Latch, FC1.Header));
+
+ // All done
+ // Apply the updates to the Dominator Tree and cleanup.
+
+ assert(succ_empty(FC1GuardBlock) && "FC1GuardBlock has successors!!");
+ assert(pred_empty(FC1GuardBlock) && "FC1GuardBlock has predecessors!!");
+
+ // Update DT/PDT
+ DTU.applyUpdates(TreeUpdates);
+
+ LI.removeBlock(FC1GuardBlock);
+ LI.removeBlock(FC1.Preheader);
+ LI.removeBlock(FC0.ExitBlock);
+ if (FC0.Peeled) {
+ LI.removeBlock(FC0ExitBlockSuccessor);
+ DTU.deleteBB(FC0ExitBlockSuccessor);
+ }
+ DTU.deleteBB(FC1GuardBlock);
+ DTU.deleteBB(FC1.Preheader);
+ DTU.deleteBB(FC0.ExitBlock);
+ DTU.flush();
+
+ // Is there a way to keep SE up-to-date so we don't need to forget the loops
+ // and rebuild the information in subsequent passes of fusion?
+ // Note: Need to forget the loops before merging the loop latches, as
+ // mergeLatch may remove the only block in FC1.
+ SE.forgetLoop(FC1.L);
+ SE.forgetLoop(FC0.L);
+
+ // Move instructions from FC0.Latch to FC1.Latch.
+ // Note: mergeLatch requires an updated DT.
+ mergeLatch(FC0, FC1);
+
+ // Merge the loops.
+ SmallVector<BasicBlock *, 8> Blocks(FC1.L->blocks());
+ for (BasicBlock *BB : Blocks) {
+ FC0.L->addBlockEntry(BB);
+ FC1.L->removeBlockFromLoop(BB);
+ if (LI.getLoopFor(BB) != FC1.L)
+ continue;
+ LI.changeLoopFor(BB, FC0.L);
+ }
+ while (!FC1.L->isInnermost()) {
+ const auto &ChildLoopIt = FC1.L->begin();
+ Loop *ChildLoop = *ChildLoopIt;
+ FC1.L->removeChildLoop(ChildLoopIt);
+ FC0.L->addChildLoop(ChildLoop);
+ }
+
+ // Delete the now empty loop L1.
+ LI.erase(FC1.L);
+
+#ifndef NDEBUG
+ assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+ assert(PDT.verify());
+ LI.verify(DT);
+ SE.verify();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Fusion done:\n");
+
+ return FC0.L;
+ }
+};
+
+struct LoopFuseLegacy : public FunctionPass {
+
+ static char ID;
+
+ LoopFuseLegacy() : FunctionPass(ID) {
+ initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<PostDominatorTreeWrapperPass>();
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ AU.addRequired<DependenceAnalysisWrapperPass>();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+
+ AU.addPreserved<ScalarEvolutionWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<PostDominatorTreeWrapperPass>();
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
+ auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
+ auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ const TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
+ return LF.fuseLoops(F);
+ }
+};
+} // namespace
+
+PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
+ auto &LI = AM.getResult<LoopAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &DI = AM.getResult<DependenceAnalysis>(F);
+ auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
+ auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
+ auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ const TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
+ const DataLayout &DL = F.getParent()->getDataLayout();
+
+ LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL, AC, TTI);
+ bool Changed = LF.fuseLoops(F);
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<PostDominatorTreeAnalysis>();
+ PA.preserve<ScalarEvolutionAnalysis>();
+ PA.preserve<LoopAnalysis>();
+ return PA;
+}
+
+char LoopFuseLegacy::ID = 0;
+
+INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
+
+FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }