aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/X86/README-SSE.txt
diff options
context:
space:
mode:
authorheretic <heretic@yandex-team.ru>2022-02-10 16:45:43 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:43 +0300
commit397cbe258b9e064f49c4ca575279f02f39fef76e (patch)
treea0b0eb3cca6a14e4e8ea715393637672fa651284 /contrib/libs/llvm12/lib/Target/X86/README-SSE.txt
parent43f5a35593ebc9f6bcea619bb170394ea7ae468e (diff)
downloadydb-397cbe258b9e064f49c4ca575279f02f39fef76e.tar.gz
Restoring authorship annotation for <heretic@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Target/X86/README-SSE.txt')
-rw-r--r--contrib/libs/llvm12/lib/Target/X86/README-SSE.txt1656
1 files changed, 828 insertions, 828 deletions
diff --git a/contrib/libs/llvm12/lib/Target/X86/README-SSE.txt b/contrib/libs/llvm12/lib/Target/X86/README-SSE.txt
index d52840e5c4..40f526b478 100644
--- a/contrib/libs/llvm12/lib/Target/X86/README-SSE.txt
+++ b/contrib/libs/llvm12/lib/Target/X86/README-SSE.txt
@@ -1,829 +1,829 @@
-//===---------------------------------------------------------------------===//
-// Random ideas for the X86 backend: SSE-specific stuff.
-//===---------------------------------------------------------------------===//
-
-//===---------------------------------------------------------------------===//
-
-SSE Variable shift can be custom lowered to something like this, which uses a
-small table + unaligned load + shuffle instead of going through memory.
-
-__m128i_shift_right:
- .byte 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- .byte -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
-
-...
-__m128i shift_right(__m128i value, unsigned long offset) {
- return _mm_shuffle_epi8(value,
- _mm_loadu_si128((__m128 *) (___m128i_shift_right + offset)));
-}
-
-//===---------------------------------------------------------------------===//
-
-SSE has instructions for doing operations on complex numbers, we should pattern
-match them. For example, this should turn into a horizontal add:
-
-typedef float __attribute__((vector_size(16))) v4f32;
-float f32(v4f32 A) {
- return A[0]+A[1]+A[2]+A[3];
-}
-
-Instead we get this:
-
-_f32: ## @f32
- pshufd $1, %xmm0, %xmm1 ## xmm1 = xmm0[1,0,0,0]
- addss %xmm0, %xmm1
- pshufd $3, %xmm0, %xmm2 ## xmm2 = xmm0[3,0,0,0]
- movhlps %xmm0, %xmm0 ## xmm0 = xmm0[1,1]
- movaps %xmm0, %xmm3
- addss %xmm1, %xmm3
- movdqa %xmm2, %xmm0
- addss %xmm3, %xmm0
- ret
-
-Also, there are cases where some simple local SLP would improve codegen a bit.
-compiling this:
-
-_Complex float f32(_Complex float A, _Complex float B) {
- return A+B;
-}
-
-into:
-
-_f32: ## @f32
- movdqa %xmm0, %xmm2
- addss %xmm1, %xmm2
- pshufd $1, %xmm1, %xmm1 ## xmm1 = xmm1[1,0,0,0]
- pshufd $1, %xmm0, %xmm3 ## xmm3 = xmm0[1,0,0,0]
- addss %xmm1, %xmm3
- movaps %xmm2, %xmm0
- unpcklps %xmm3, %xmm0 ## xmm0 = xmm0[0],xmm3[0],xmm0[1],xmm3[1]
- ret
-
-seems silly when it could just be one addps.
-
-
-//===---------------------------------------------------------------------===//
-
-Expand libm rounding functions inline: Significant speedups possible.
-http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
-
-//===---------------------------------------------------------------------===//
-
-When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
-other fast SSE modes.
-
-//===---------------------------------------------------------------------===//
-
-Think about doing i64 math in SSE regs on x86-32.
-
-//===---------------------------------------------------------------------===//
-
-This testcase should have no SSE instructions in it, and only one load from
-a constant pool:
-
-double %test3(bool %B) {
- %C = select bool %B, double 123.412, double 523.01123123
- ret double %C
-}
-
-Currently, the select is being lowered, which prevents the dag combiner from
-turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
-
-The pattern isel got this one right.
-
-//===---------------------------------------------------------------------===//
-
-Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
-feasible.
-
-//===---------------------------------------------------------------------===//
-
-Codegen:
- if (copysign(1.0, x) == copysign(1.0, y))
-into:
- if (x^y & mask)
-when using SSE.
-
-//===---------------------------------------------------------------------===//
-
-Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
-of a v4sf value.
-
-//===---------------------------------------------------------------------===//
-
-Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
-Perhaps use pxor / xorp* to clear a XMM register first?
-
-//===---------------------------------------------------------------------===//
-
-External test Nurbs exposed some problems. Look for
-__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
-emits:
-
- movaps (%edx), %xmm2 #59.21
- movaps (%edx), %xmm5 #60.21
- movaps (%edx), %xmm4 #61.21
- movaps (%edx), %xmm3 #62.21
- movl 40(%ecx), %ebp #69.49
- shufps $0, %xmm2, %xmm5 #60.21
- movl 100(%esp), %ebx #69.20
- movl (%ebx), %edi #69.20
- imull %ebp, %edi #69.49
- addl (%eax), %edi #70.33
- shufps $85, %xmm2, %xmm4 #61.21
- shufps $170, %xmm2, %xmm3 #62.21
- shufps $255, %xmm2, %xmm2 #63.21
- lea (%ebp,%ebp,2), %ebx #69.49
- negl %ebx #69.49
- lea -3(%edi,%ebx), %ebx #70.33
- shll $4, %ebx #68.37
- addl 32(%ecx), %ebx #68.37
- testb $15, %bl #91.13
- jne L_B1.24 # Prob 5% #91.13
-
-This is the llvm code after instruction scheduling:
-
-cond_next140 (0xa910740, LLVM BB @0xa90beb0):
- %reg1078 = MOV32ri -3
- %reg1079 = ADD32rm %reg1078, %reg1068, 1, %noreg, 0
- %reg1037 = MOV32rm %reg1024, 1, %noreg, 40
- %reg1080 = IMUL32rr %reg1079, %reg1037
- %reg1081 = MOV32rm %reg1058, 1, %noreg, 0
- %reg1038 = LEA32r %reg1081, 1, %reg1080, -3
- %reg1036 = MOV32rm %reg1024, 1, %noreg, 32
- %reg1082 = SHL32ri %reg1038, 4
- %reg1039 = ADD32rr %reg1036, %reg1082
- %reg1083 = MOVAPSrm %reg1059, 1, %noreg, 0
- %reg1034 = SHUFPSrr %reg1083, %reg1083, 170
- %reg1032 = SHUFPSrr %reg1083, %reg1083, 0
- %reg1035 = SHUFPSrr %reg1083, %reg1083, 255
- %reg1033 = SHUFPSrr %reg1083, %reg1083, 85
- %reg1040 = MOV32rr %reg1039
- %reg1084 = AND32ri8 %reg1039, 15
- CMP32ri8 %reg1084, 0
- JE mbb<cond_next204,0xa914d30>
-
-Still ok. After register allocation:
-
-cond_next140 (0xa910740, LLVM BB @0xa90beb0):
- %eax = MOV32ri -3
- %edx = MOV32rm %stack.3, 1, %noreg, 0
- ADD32rm %eax<def&use>, %edx, 1, %noreg, 0
- %edx = MOV32rm %stack.7, 1, %noreg, 0
- %edx = MOV32rm %edx, 1, %noreg, 40
- IMUL32rr %eax<def&use>, %edx
- %esi = MOV32rm %stack.5, 1, %noreg, 0
- %esi = MOV32rm %esi, 1, %noreg, 0
- MOV32mr %stack.4, 1, %noreg, 0, %esi
- %eax = LEA32r %esi, 1, %eax, -3
- %esi = MOV32rm %stack.7, 1, %noreg, 0
- %esi = MOV32rm %esi, 1, %noreg, 32
- %edi = MOV32rr %eax
- SHL32ri %edi<def&use>, 4
- ADD32rr %edi<def&use>, %esi
- %xmm0 = MOVAPSrm %ecx, 1, %noreg, 0
- %xmm1 = MOVAPSrr %xmm0
- SHUFPSrr %xmm1<def&use>, %xmm1, 170
- %xmm2 = MOVAPSrr %xmm0
- SHUFPSrr %xmm2<def&use>, %xmm2, 0
- %xmm3 = MOVAPSrr %xmm0
- SHUFPSrr %xmm3<def&use>, %xmm3, 255
- SHUFPSrr %xmm0<def&use>, %xmm0, 85
- %ebx = MOV32rr %edi
- AND32ri8 %ebx<def&use>, 15
- CMP32ri8 %ebx, 0
- JE mbb<cond_next204,0xa914d30>
-
-This looks really bad. The problem is shufps is a destructive opcode. Since it
-appears as operand two in more than one shufps ops. It resulted in a number of
-copies. Note icc also suffers from the same problem. Either the instruction
-selector should select pshufd or The register allocator can made the two-address
-to three-address transformation.
-
-It also exposes some other problems. See MOV32ri -3 and the spills.
-
-//===---------------------------------------------------------------------===//
-
-Consider:
-
-__m128 test(float a) {
- return _mm_set_ps(0.0, 0.0, 0.0, a*a);
-}
-
-This compiles into:
-
-movss 4(%esp), %xmm1
-mulss %xmm1, %xmm1
-xorps %xmm0, %xmm0
-movss %xmm1, %xmm0
-ret
-
-Because mulss doesn't modify the top 3 elements, the top elements of
-xmm1 are already zero'd. We could compile this to:
-
-movss 4(%esp), %xmm0
-mulss %xmm0, %xmm0
-ret
-
-//===---------------------------------------------------------------------===//
-
-Here's a sick and twisted idea. Consider code like this:
-
-__m128 test(__m128 a) {
- float b = *(float*)&A;
- ...
- return _mm_set_ps(0.0, 0.0, 0.0, b);
-}
-
-This might compile to this code:
-
-movaps c(%esp), %xmm1
-xorps %xmm0, %xmm0
-movss %xmm1, %xmm0
-ret
-
-Now consider if the ... code caused xmm1 to get spilled. This might produce
-this code:
-
-movaps c(%esp), %xmm1
-movaps %xmm1, c2(%esp)
-...
-
-xorps %xmm0, %xmm0
-movaps c2(%esp), %xmm1
-movss %xmm1, %xmm0
-ret
-
-However, since the reload is only used by these instructions, we could
-"fold" it into the uses, producing something like this:
-
-movaps c(%esp), %xmm1
-movaps %xmm1, c2(%esp)
-...
-
-movss c2(%esp), %xmm0
-ret
-
-... saving two instructions.
-
-The basic idea is that a reload from a spill slot, can, if only one 4-byte
-chunk is used, bring in 3 zeros the one element instead of 4 elements.
-This can be used to simplify a variety of shuffle operations, where the
-elements are fixed zeros.
-
-//===---------------------------------------------------------------------===//
-
-This code generates ugly code, probably due to costs being off or something:
-
-define void @test(float* %P, <4 x float>* %P2 ) {
- %xFloat0.688 = load float* %P
- %tmp = load <4 x float>* %P2
- %inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
- store <4 x float> %inFloat3.713, <4 x float>* %P2
- ret void
-}
-
-Generates:
-
-_test:
- movl 8(%esp), %eax
- movaps (%eax), %xmm0
- pxor %xmm1, %xmm1
- movaps %xmm0, %xmm2
- shufps $50, %xmm1, %xmm2
- shufps $132, %xmm2, %xmm0
- movaps %xmm0, (%eax)
- ret
-
-Would it be better to generate:
-
-_test:
- movl 8(%esp), %ecx
- movaps (%ecx), %xmm0
- xor %eax, %eax
- pinsrw $6, %eax, %xmm0
- pinsrw $7, %eax, %xmm0
- movaps %xmm0, (%ecx)
- ret
-
-?
-
-//===---------------------------------------------------------------------===//
-
-Some useful information in the Apple Altivec / SSE Migration Guide:
-
-http://developer.apple.com/documentation/Performance/Conceptual/
-Accelerate_sse_migration/index.html
-
-e.g. SSE select using and, andnot, or. Various SSE compare translations.
-
-//===---------------------------------------------------------------------===//
-
-Add hooks to commute some CMPP operations.
-
-//===---------------------------------------------------------------------===//
-
-Apply the same transformation that merged four float into a single 128-bit load
-to loads from constant pool.
-
-//===---------------------------------------------------------------------===//
-
-Floating point max / min are commutable when -enable-unsafe-fp-path is
-specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
-nodes which are selected to max / min instructions that are marked commutable.
-
-//===---------------------------------------------------------------------===//
-
-We should materialize vector constants like "all ones" and "signbit" with
-code like:
-
- cmpeqps xmm1, xmm1 ; xmm1 = all-ones
-
-and:
- cmpeqps xmm1, xmm1 ; xmm1 = all-ones
- psrlq xmm1, 31 ; xmm1 = all 100000000000...
-
-instead of using a load from the constant pool. The later is important for
-ABS/NEG/copysign etc.
-
-//===---------------------------------------------------------------------===//
-
-These functions:
-
-#include <xmmintrin.h>
-__m128i a;
-void x(unsigned short n) {
- a = _mm_slli_epi32 (a, n);
-}
-void y(unsigned n) {
- a = _mm_slli_epi32 (a, n);
-}
-
-compile to ( -O3 -static -fomit-frame-pointer):
-_x:
- movzwl 4(%esp), %eax
- movd %eax, %xmm0
- movaps _a, %xmm1
- pslld %xmm0, %xmm1
- movaps %xmm1, _a
- ret
-_y:
- movd 4(%esp), %xmm0
- movaps _a, %xmm1
- pslld %xmm0, %xmm1
- movaps %xmm1, _a
- ret
-
-"y" looks good, but "x" does silly movzwl stuff around into a GPR. It seems
-like movd would be sufficient in both cases as the value is already zero
-extended in the 32-bit stack slot IIRC. For signed short, it should also be
-save, as a really-signed value would be undefined for pslld.
-
-
-//===---------------------------------------------------------------------===//
-
-#include <math.h>
-int t1(double d) { return signbit(d); }
-
-This currently compiles to:
- subl $12, %esp
- movsd 16(%esp), %xmm0
- movsd %xmm0, (%esp)
- movl 4(%esp), %eax
- shrl $31, %eax
- addl $12, %esp
- ret
-
-We should use movmskp{s|d} instead.
-
-//===---------------------------------------------------------------------===//
-
-CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
-(aligned) vector load. This functionality has a couple of problems.
-
-1. The code to infer alignment from loads of globals is in the X86 backend,
- not the dag combiner. This is because dagcombine2 needs to be able to see
- through the X86ISD::Wrapper node, which DAGCombine can't really do.
-2. The code for turning 4 x load into a single vector load is target
- independent and should be moved to the dag combiner.
-3. The code for turning 4 x load into a vector load can only handle a direct
- load from a global or a direct load from the stack. It should be generalized
- to handle any load from P, P+4, P+8, P+12, where P can be anything.
-4. The alignment inference code cannot handle loads from globals in non-static
- mode because it doesn't look through the extra dyld stub load. If you try
- vec_align.ll without -relocation-model=static, you'll see what I mean.
-
-//===---------------------------------------------------------------------===//
-
-We should lower store(fneg(load p), q) into an integer load+xor+store, which
-eliminates a constant pool load. For example, consider:
-
-define i64 @ccosf(float %z.0, float %z.1) nounwind readonly {
-entry:
- %tmp6 = fsub float -0.000000e+00, %z.1 ; <float> [#uses=1]
- %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
- ret i64 %tmp20
-}
-declare i64 @ccoshf(float %z.0, float %z.1) nounwind readonly
-
-This currently compiles to:
-
-LCPI1_0: # <4 x float>
- .long 2147483648 # float -0
- .long 2147483648 # float -0
- .long 2147483648 # float -0
- .long 2147483648 # float -0
-_ccosf:
- subl $12, %esp
- movss 16(%esp), %xmm0
- movss %xmm0, 4(%esp)
- movss 20(%esp), %xmm0
- xorps LCPI1_0, %xmm0
- movss %xmm0, (%esp)
- call L_ccoshf$stub
- addl $12, %esp
- ret
-
-Note the load into xmm0, then xor (to negate), then store. In PIC mode,
-this code computes the pic base and does two loads to do the constant pool
-load, so the improvement is much bigger.
-
-The tricky part about this xform is that the argument load/store isn't exposed
-until post-legalize, and at that point, the fneg has been custom expanded into
-an X86 fxor. This means that we need to handle this case in the x86 backend
-instead of in target independent code.
-
-//===---------------------------------------------------------------------===//
-
-Non-SSE4 insert into 16 x i8 is atrociously bad.
-
-//===---------------------------------------------------------------------===//
-
-<2 x i64> extract is substantially worse than <2 x f64>, even if the destination
-is memory.
-
-//===---------------------------------------------------------------------===//
-
-INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
-any number of 0.0 simultaneously. Currently we only use it for simple
-insertions.
-
-See comments in LowerINSERT_VECTOR_ELT_SSE4.
-
-//===---------------------------------------------------------------------===//
-
-On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
-Custom. All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
-legal, it'll just take a few extra patterns written in the .td file.
-
-Note: this is not a code quality issue; the custom lowered code happens to be
-right, but we shouldn't have to custom lower anything. This is probably related
-to <2 x i64> ops being so bad.
-
-//===---------------------------------------------------------------------===//
-
-LLVM currently generates stack realignment code, when it is not necessary
-needed. The problem is that we need to know about stack alignment too early,
-before RA runs.
-
-At that point we don't know, whether there will be vector spill, or not.
-Stack realignment logic is overly conservative here, but otherwise we can
-produce unaligned loads/stores.
-
-Fixing this will require some huge RA changes.
-
-Testcase:
-#include <emmintrin.h>
-
-typedef short vSInt16 __attribute__ ((__vector_size__ (16)));
-
-static const vSInt16 a = {- 22725, - 12873, - 22725, - 12873, - 22725, - 12873,
-- 22725, - 12873};;
-
-vSInt16 madd(vSInt16 b)
-{
- return _mm_madd_epi16(a, b);
-}
-
-Generated code (x86-32, linux):
-madd:
- pushl %ebp
- movl %esp, %ebp
- andl $-16, %esp
- movaps .LCPI1_0, %xmm1
- pmaddwd %xmm1, %xmm0
- movl %ebp, %esp
- popl %ebp
- ret
-
-//===---------------------------------------------------------------------===//
-
-Consider:
+//===---------------------------------------------------------------------===//
+// Random ideas for the X86 backend: SSE-specific stuff.
+//===---------------------------------------------------------------------===//
+
+//===---------------------------------------------------------------------===//
+
+SSE Variable shift can be custom lowered to something like this, which uses a
+small table + unaligned load + shuffle instead of going through memory.
+
+__m128i_shift_right:
+ .byte 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
+ .byte -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
+
+...
+__m128i shift_right(__m128i value, unsigned long offset) {
+ return _mm_shuffle_epi8(value,
+ _mm_loadu_si128((__m128 *) (___m128i_shift_right + offset)));
+}
+
+//===---------------------------------------------------------------------===//
+
+SSE has instructions for doing operations on complex numbers, we should pattern
+match them. For example, this should turn into a horizontal add:
+
+typedef float __attribute__((vector_size(16))) v4f32;
+float f32(v4f32 A) {
+ return A[0]+A[1]+A[2]+A[3];
+}
+
+Instead we get this:
+
+_f32: ## @f32
+ pshufd $1, %xmm0, %xmm1 ## xmm1 = xmm0[1,0,0,0]
+ addss %xmm0, %xmm1
+ pshufd $3, %xmm0, %xmm2 ## xmm2 = xmm0[3,0,0,0]
+ movhlps %xmm0, %xmm0 ## xmm0 = xmm0[1,1]
+ movaps %xmm0, %xmm3
+ addss %xmm1, %xmm3
+ movdqa %xmm2, %xmm0
+ addss %xmm3, %xmm0
+ ret
+
+Also, there are cases where some simple local SLP would improve codegen a bit.
+compiling this:
+
+_Complex float f32(_Complex float A, _Complex float B) {
+ return A+B;
+}
+
+into:
+
+_f32: ## @f32
+ movdqa %xmm0, %xmm2
+ addss %xmm1, %xmm2
+ pshufd $1, %xmm1, %xmm1 ## xmm1 = xmm1[1,0,0,0]
+ pshufd $1, %xmm0, %xmm3 ## xmm3 = xmm0[1,0,0,0]
+ addss %xmm1, %xmm3
+ movaps %xmm2, %xmm0
+ unpcklps %xmm3, %xmm0 ## xmm0 = xmm0[0],xmm3[0],xmm0[1],xmm3[1]
+ ret
+
+seems silly when it could just be one addps.
+
+
+//===---------------------------------------------------------------------===//
+
+Expand libm rounding functions inline: Significant speedups possible.
+http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00909.html
+
+//===---------------------------------------------------------------------===//
+
+When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
+other fast SSE modes.
+
+//===---------------------------------------------------------------------===//
+
+Think about doing i64 math in SSE regs on x86-32.
+
+//===---------------------------------------------------------------------===//
+
+This testcase should have no SSE instructions in it, and only one load from
+a constant pool:
+
+double %test3(bool %B) {
+ %C = select bool %B, double 123.412, double 523.01123123
+ ret double %C
+}
+
+Currently, the select is being lowered, which prevents the dag combiner from
+turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
+
+The pattern isel got this one right.
+
+//===---------------------------------------------------------------------===//
+
+Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
+feasible.
+
+//===---------------------------------------------------------------------===//
+
+Codegen:
+ if (copysign(1.0, x) == copysign(1.0, y))
+into:
+ if (x^y & mask)
+when using SSE.
+
+//===---------------------------------------------------------------------===//
+
+Use movhps to update upper 64-bits of a v4sf value. Also movlps on lower half
+of a v4sf value.
+
+//===---------------------------------------------------------------------===//
+
+Better codegen for vector_shuffles like this { x, 0, 0, 0 } or { x, 0, x, 0}.
+Perhaps use pxor / xorp* to clear a XMM register first?
+
+//===---------------------------------------------------------------------===//
+
+External test Nurbs exposed some problems. Look for
+__ZN15Nurbs_SSE_Cubic17TessellateSurfaceE, bb cond_next140. This is what icc
+emits:
+
+ movaps (%edx), %xmm2 #59.21
+ movaps (%edx), %xmm5 #60.21
+ movaps (%edx), %xmm4 #61.21
+ movaps (%edx), %xmm3 #62.21
+ movl 40(%ecx), %ebp #69.49
+ shufps $0, %xmm2, %xmm5 #60.21
+ movl 100(%esp), %ebx #69.20
+ movl (%ebx), %edi #69.20
+ imull %ebp, %edi #69.49
+ addl (%eax), %edi #70.33
+ shufps $85, %xmm2, %xmm4 #61.21
+ shufps $170, %xmm2, %xmm3 #62.21
+ shufps $255, %xmm2, %xmm2 #63.21
+ lea (%ebp,%ebp,2), %ebx #69.49
+ negl %ebx #69.49
+ lea -3(%edi,%ebx), %ebx #70.33
+ shll $4, %ebx #68.37
+ addl 32(%ecx), %ebx #68.37
+ testb $15, %bl #91.13
+ jne L_B1.24 # Prob 5% #91.13
+
+This is the llvm code after instruction scheduling:
+
+cond_next140 (0xa910740, LLVM BB @0xa90beb0):
+ %reg1078 = MOV32ri -3
+ %reg1079 = ADD32rm %reg1078, %reg1068, 1, %noreg, 0
+ %reg1037 = MOV32rm %reg1024, 1, %noreg, 40
+ %reg1080 = IMUL32rr %reg1079, %reg1037
+ %reg1081 = MOV32rm %reg1058, 1, %noreg, 0
+ %reg1038 = LEA32r %reg1081, 1, %reg1080, -3
+ %reg1036 = MOV32rm %reg1024, 1, %noreg, 32
+ %reg1082 = SHL32ri %reg1038, 4
+ %reg1039 = ADD32rr %reg1036, %reg1082
+ %reg1083 = MOVAPSrm %reg1059, 1, %noreg, 0
+ %reg1034 = SHUFPSrr %reg1083, %reg1083, 170
+ %reg1032 = SHUFPSrr %reg1083, %reg1083, 0
+ %reg1035 = SHUFPSrr %reg1083, %reg1083, 255
+ %reg1033 = SHUFPSrr %reg1083, %reg1083, 85
+ %reg1040 = MOV32rr %reg1039
+ %reg1084 = AND32ri8 %reg1039, 15
+ CMP32ri8 %reg1084, 0
+ JE mbb<cond_next204,0xa914d30>
+
+Still ok. After register allocation:
+
+cond_next140 (0xa910740, LLVM BB @0xa90beb0):
+ %eax = MOV32ri -3
+ %edx = MOV32rm %stack.3, 1, %noreg, 0
+ ADD32rm %eax<def&use>, %edx, 1, %noreg, 0
+ %edx = MOV32rm %stack.7, 1, %noreg, 0
+ %edx = MOV32rm %edx, 1, %noreg, 40
+ IMUL32rr %eax<def&use>, %edx
+ %esi = MOV32rm %stack.5, 1, %noreg, 0
+ %esi = MOV32rm %esi, 1, %noreg, 0
+ MOV32mr %stack.4, 1, %noreg, 0, %esi
+ %eax = LEA32r %esi, 1, %eax, -3
+ %esi = MOV32rm %stack.7, 1, %noreg, 0
+ %esi = MOV32rm %esi, 1, %noreg, 32
+ %edi = MOV32rr %eax
+ SHL32ri %edi<def&use>, 4
+ ADD32rr %edi<def&use>, %esi
+ %xmm0 = MOVAPSrm %ecx, 1, %noreg, 0
+ %xmm1 = MOVAPSrr %xmm0
+ SHUFPSrr %xmm1<def&use>, %xmm1, 170
+ %xmm2 = MOVAPSrr %xmm0
+ SHUFPSrr %xmm2<def&use>, %xmm2, 0
+ %xmm3 = MOVAPSrr %xmm0
+ SHUFPSrr %xmm3<def&use>, %xmm3, 255
+ SHUFPSrr %xmm0<def&use>, %xmm0, 85
+ %ebx = MOV32rr %edi
+ AND32ri8 %ebx<def&use>, 15
+ CMP32ri8 %ebx, 0
+ JE mbb<cond_next204,0xa914d30>
+
+This looks really bad. The problem is shufps is a destructive opcode. Since it
+appears as operand two in more than one shufps ops. It resulted in a number of
+copies. Note icc also suffers from the same problem. Either the instruction
+selector should select pshufd or The register allocator can made the two-address
+to three-address transformation.
+
+It also exposes some other problems. See MOV32ri -3 and the spills.
+
+//===---------------------------------------------------------------------===//
+
+Consider:
+
+__m128 test(float a) {
+ return _mm_set_ps(0.0, 0.0, 0.0, a*a);
+}
+
+This compiles into:
+
+movss 4(%esp), %xmm1
+mulss %xmm1, %xmm1
+xorps %xmm0, %xmm0
+movss %xmm1, %xmm0
+ret
+
+Because mulss doesn't modify the top 3 elements, the top elements of
+xmm1 are already zero'd. We could compile this to:
+
+movss 4(%esp), %xmm0
+mulss %xmm0, %xmm0
+ret
+
+//===---------------------------------------------------------------------===//
+
+Here's a sick and twisted idea. Consider code like this:
+
+__m128 test(__m128 a) {
+ float b = *(float*)&A;
+ ...
+ return _mm_set_ps(0.0, 0.0, 0.0, b);
+}
+
+This might compile to this code:
+
+movaps c(%esp), %xmm1
+xorps %xmm0, %xmm0
+movss %xmm1, %xmm0
+ret
+
+Now consider if the ... code caused xmm1 to get spilled. This might produce
+this code:
+
+movaps c(%esp), %xmm1
+movaps %xmm1, c2(%esp)
+...
+
+xorps %xmm0, %xmm0
+movaps c2(%esp), %xmm1
+movss %xmm1, %xmm0
+ret
+
+However, since the reload is only used by these instructions, we could
+"fold" it into the uses, producing something like this:
+
+movaps c(%esp), %xmm1
+movaps %xmm1, c2(%esp)
+...
+
+movss c2(%esp), %xmm0
+ret
+
+... saving two instructions.
+
+The basic idea is that a reload from a spill slot, can, if only one 4-byte
+chunk is used, bring in 3 zeros the one element instead of 4 elements.
+This can be used to simplify a variety of shuffle operations, where the
+elements are fixed zeros.
+
+//===---------------------------------------------------------------------===//
+
+This code generates ugly code, probably due to costs being off or something:
+
+define void @test(float* %P, <4 x float>* %P2 ) {
+ %xFloat0.688 = load float* %P
+ %tmp = load <4 x float>* %P2
+ %inFloat3.713 = insertelement <4 x float> %tmp, float 0.0, i32 3
+ store <4 x float> %inFloat3.713, <4 x float>* %P2
+ ret void
+}
+
+Generates:
+
+_test:
+ movl 8(%esp), %eax
+ movaps (%eax), %xmm0
+ pxor %xmm1, %xmm1
+ movaps %xmm0, %xmm2
+ shufps $50, %xmm1, %xmm2
+ shufps $132, %xmm2, %xmm0
+ movaps %xmm0, (%eax)
+ ret
+
+Would it be better to generate:
+
+_test:
+ movl 8(%esp), %ecx
+ movaps (%ecx), %xmm0
+ xor %eax, %eax
+ pinsrw $6, %eax, %xmm0
+ pinsrw $7, %eax, %xmm0
+ movaps %xmm0, (%ecx)
+ ret
+
+?
+
+//===---------------------------------------------------------------------===//
+
+Some useful information in the Apple Altivec / SSE Migration Guide:
+
+http://developer.apple.com/documentation/Performance/Conceptual/
+Accelerate_sse_migration/index.html
+
+e.g. SSE select using and, andnot, or. Various SSE compare translations.
+
+//===---------------------------------------------------------------------===//
+
+Add hooks to commute some CMPP operations.
+
+//===---------------------------------------------------------------------===//
+
+Apply the same transformation that merged four float into a single 128-bit load
+to loads from constant pool.
+
+//===---------------------------------------------------------------------===//
+
+Floating point max / min are commutable when -enable-unsafe-fp-path is
+specified. We should turn int_x86_sse_max_ss and X86ISD::FMIN etc. into other
+nodes which are selected to max / min instructions that are marked commutable.
+
+//===---------------------------------------------------------------------===//
+
+We should materialize vector constants like "all ones" and "signbit" with
+code like:
+
+ cmpeqps xmm1, xmm1 ; xmm1 = all-ones
+
+and:
+ cmpeqps xmm1, xmm1 ; xmm1 = all-ones
+ psrlq xmm1, 31 ; xmm1 = all 100000000000...
+
+instead of using a load from the constant pool. The later is important for
+ABS/NEG/copysign etc.
+
+//===---------------------------------------------------------------------===//
+
+These functions:
+
+#include <xmmintrin.h>
+__m128i a;
+void x(unsigned short n) {
+ a = _mm_slli_epi32 (a, n);
+}
+void y(unsigned n) {
+ a = _mm_slli_epi32 (a, n);
+}
+
+compile to ( -O3 -static -fomit-frame-pointer):
+_x:
+ movzwl 4(%esp), %eax
+ movd %eax, %xmm0
+ movaps _a, %xmm1
+ pslld %xmm0, %xmm1
+ movaps %xmm1, _a
+ ret
+_y:
+ movd 4(%esp), %xmm0
+ movaps _a, %xmm1
+ pslld %xmm0, %xmm1
+ movaps %xmm1, _a
+ ret
+
+"y" looks good, but "x" does silly movzwl stuff around into a GPR. It seems
+like movd would be sufficient in both cases as the value is already zero
+extended in the 32-bit stack slot IIRC. For signed short, it should also be
+save, as a really-signed value would be undefined for pslld.
+
+
+//===---------------------------------------------------------------------===//
+
+#include <math.h>
+int t1(double d) { return signbit(d); }
+
+This currently compiles to:
+ subl $12, %esp
+ movsd 16(%esp), %xmm0
+ movsd %xmm0, (%esp)
+ movl 4(%esp), %eax
+ shrl $31, %eax
+ addl $12, %esp
+ ret
+
+We should use movmskp{s|d} instead.
+
+//===---------------------------------------------------------------------===//
+
+CodeGen/X86/vec_align.ll tests whether we can turn 4 scalar loads into a single
+(aligned) vector load. This functionality has a couple of problems.
+
+1. The code to infer alignment from loads of globals is in the X86 backend,
+ not the dag combiner. This is because dagcombine2 needs to be able to see
+ through the X86ISD::Wrapper node, which DAGCombine can't really do.
+2. The code for turning 4 x load into a single vector load is target
+ independent and should be moved to the dag combiner.
+3. The code for turning 4 x load into a vector load can only handle a direct
+ load from a global or a direct load from the stack. It should be generalized
+ to handle any load from P, P+4, P+8, P+12, where P can be anything.
+4. The alignment inference code cannot handle loads from globals in non-static
+ mode because it doesn't look through the extra dyld stub load. If you try
+ vec_align.ll without -relocation-model=static, you'll see what I mean.
+
+//===---------------------------------------------------------------------===//
+
+We should lower store(fneg(load p), q) into an integer load+xor+store, which
+eliminates a constant pool load. For example, consider:
+
+define i64 @ccosf(float %z.0, float %z.1) nounwind readonly {
+entry:
+ %tmp6 = fsub float -0.000000e+00, %z.1 ; <float> [#uses=1]
+ %tmp20 = tail call i64 @ccoshf( float %tmp6, float %z.0 ) nounwind readonly
+ ret i64 %tmp20
+}
+declare i64 @ccoshf(float %z.0, float %z.1) nounwind readonly
+
+This currently compiles to:
+
+LCPI1_0: # <4 x float>
+ .long 2147483648 # float -0
+ .long 2147483648 # float -0
+ .long 2147483648 # float -0
+ .long 2147483648 # float -0
+_ccosf:
+ subl $12, %esp
+ movss 16(%esp), %xmm0
+ movss %xmm0, 4(%esp)
+ movss 20(%esp), %xmm0
+ xorps LCPI1_0, %xmm0
+ movss %xmm0, (%esp)
+ call L_ccoshf$stub
+ addl $12, %esp
+ ret
+
+Note the load into xmm0, then xor (to negate), then store. In PIC mode,
+this code computes the pic base and does two loads to do the constant pool
+load, so the improvement is much bigger.
+
+The tricky part about this xform is that the argument load/store isn't exposed
+until post-legalize, and at that point, the fneg has been custom expanded into
+an X86 fxor. This means that we need to handle this case in the x86 backend
+instead of in target independent code.
+
+//===---------------------------------------------------------------------===//
+
+Non-SSE4 insert into 16 x i8 is atrociously bad.
+
+//===---------------------------------------------------------------------===//
+
+<2 x i64> extract is substantially worse than <2 x f64>, even if the destination
+is memory.
+
+//===---------------------------------------------------------------------===//
+
+INSERTPS can match any insert (extract, imm1), imm2 for 4 x float, and insert
+any number of 0.0 simultaneously. Currently we only use it for simple
+insertions.
+
+See comments in LowerINSERT_VECTOR_ELT_SSE4.
+
+//===---------------------------------------------------------------------===//
+
+On a random note, SSE2 should declare insert/extract of 2 x f64 as legal, not
+Custom. All combinations of insert/extract reg-reg, reg-mem, and mem-reg are
+legal, it'll just take a few extra patterns written in the .td file.
+
+Note: this is not a code quality issue; the custom lowered code happens to be
+right, but we shouldn't have to custom lower anything. This is probably related
+to <2 x i64> ops being so bad.
+
+//===---------------------------------------------------------------------===//
+
+LLVM currently generates stack realignment code, when it is not necessary
+needed. The problem is that we need to know about stack alignment too early,
+before RA runs.
+
+At that point we don't know, whether there will be vector spill, or not.
+Stack realignment logic is overly conservative here, but otherwise we can
+produce unaligned loads/stores.
+
+Fixing this will require some huge RA changes.
+
+Testcase:
#include <emmintrin.h>
-__m128 foo2 (float x) {
- return _mm_set_ps (0, 0, x, 0);
-}
-
-In x86-32 mode, we generate this spiffy code:
-
-_foo2:
- movss 4(%esp), %xmm0
- pshufd $81, %xmm0, %xmm0
- ret
-
-in x86-64 mode, we generate this code, which could be better:
-
-_foo2:
- xorps %xmm1, %xmm1
- movss %xmm0, %xmm1
- pshufd $81, %xmm1, %xmm0
- ret
-
-In sse4 mode, we could use insertps to make both better.
-
-Here's another testcase that could use insertps [mem]:
-
-#include <xmmintrin.h>
-extern float x2, x3;
-__m128 foo1 (float x1, float x4) {
- return _mm_set_ps (x2, x1, x3, x4);
-}
-
-gcc mainline compiles it to:
-
-foo1:
- insertps $0x10, x2(%rip), %xmm0
- insertps $0x10, x3(%rip), %xmm1
- movaps %xmm1, %xmm2
- movlhps %xmm0, %xmm2
- movaps %xmm2, %xmm0
- ret
-
-//===---------------------------------------------------------------------===//
-
-We compile vector multiply-by-constant into poor code:
-
-define <4 x i32> @f(<4 x i32> %i) nounwind {
- %A = mul <4 x i32> %i, < i32 10, i32 10, i32 10, i32 10 >
- ret <4 x i32> %A
-}
-
-On targets without SSE4.1, this compiles into:
-
-LCPI1_0: ## <4 x i32>
- .long 10
- .long 10
- .long 10
- .long 10
- .text
- .align 4,0x90
- .globl _f
-_f:
- pshufd $3, %xmm0, %xmm1
- movd %xmm1, %eax
- imull LCPI1_0+12, %eax
- movd %eax, %xmm1
- pshufd $1, %xmm0, %xmm2
- movd %xmm2, %eax
- imull LCPI1_0+4, %eax
- movd %eax, %xmm2
- punpckldq %xmm1, %xmm2
- movd %xmm0, %eax
- imull LCPI1_0, %eax
- movd %eax, %xmm1
- movhlps %xmm0, %xmm0
- movd %xmm0, %eax
- imull LCPI1_0+8, %eax
- movd %eax, %xmm0
- punpckldq %xmm0, %xmm1
- movaps %xmm1, %xmm0
- punpckldq %xmm2, %xmm0
- ret
-
-It would be better to synthesize integer vector multiplication by constants
-using shifts and adds, pslld and paddd here. And even on targets with SSE4.1,
-simple cases such as multiplication by powers of two would be better as
-vector shifts than as multiplications.
-
-//===---------------------------------------------------------------------===//
-
-We compile this:
-
-__m128i
-foo2 (char x)
-{
- return _mm_set_epi8 (1, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 1, 0, 0, 0, 0);
-}
-
-into:
- movl $1, %eax
- xorps %xmm0, %xmm0
- pinsrw $2, %eax, %xmm0
- movzbl 4(%esp), %eax
- pinsrw $3, %eax, %xmm0
- movl $256, %eax
- pinsrw $7, %eax, %xmm0
- ret
-
-
-gcc-4.2:
- subl $12, %esp
- movzbl 16(%esp), %eax
- movdqa LC0, %xmm0
- pinsrw $3, %eax, %xmm0
- addl $12, %esp
- ret
- .const
- .align 4
-LC0:
- .word 0
- .word 0
- .word 1
- .word 0
- .word 0
- .word 0
- .word 0
- .word 256
-
-With SSE4, it should be
- movdqa .LC0(%rip), %xmm0
- pinsrb $6, %edi, %xmm0
-
-//===---------------------------------------------------------------------===//
-
-We should transform a shuffle of two vectors of constants into a single vector
-of constants. Also, insertelement of a constant into a vector of constants
-should also result in a vector of constants. e.g. 2008-06-25-VecISelBug.ll.
-
-We compiled it to something horrible:
-
- .align 4
-LCPI1_1: ## float
- .long 1065353216 ## float 1
- .const
-
- .align 4
-LCPI1_0: ## <4 x float>
- .space 4
- .long 1065353216 ## float 1
- .space 4
- .long 1065353216 ## float 1
- .text
- .align 4,0x90
- .globl _t
-_t:
- xorps %xmm0, %xmm0
- movhps LCPI1_0, %xmm0
- movss LCPI1_1, %xmm1
- movaps %xmm0, %xmm2
- shufps $2, %xmm1, %xmm2
- shufps $132, %xmm2, %xmm0
- movaps %xmm0, 0
-
-//===---------------------------------------------------------------------===//
-rdar://5907648
-
-This function:
-
-float foo(unsigned char x) {
- return x;
-}
-
-compiles to (x86-32):
-
-define float @foo(i8 zeroext %x) nounwind {
- %tmp12 = uitofp i8 %x to float ; <float> [#uses=1]
- ret float %tmp12
-}
-
-compiles to:
-
-_foo:
- subl $4, %esp
- movzbl 8(%esp), %eax
- cvtsi2ss %eax, %xmm0
- movss %xmm0, (%esp)
- flds (%esp)
- addl $4, %esp
- ret
-
-We should be able to use:
- cvtsi2ss 8($esp), %xmm0
-since we know the stack slot is already zext'd.
-
-//===---------------------------------------------------------------------===//
-
-Consider using movlps instead of movsd to implement (scalar_to_vector (loadf64))
-when code size is critical. movlps is slower than movsd on core2 but it's one
-byte shorter.
-
-//===---------------------------------------------------------------------===//
-
-We should use a dynamic programming based approach to tell when using FPStack
-operations is cheaper than SSE. SciMark montecarlo contains code like this
-for example:
-
-double MonteCarlo_num_flops(int Num_samples) {
- return ((double) Num_samples)* 4.0;
-}
-
-In fpstack mode, this compiles into:
-
-LCPI1_0:
- .long 1082130432 ## float 4.000000e+00
-_MonteCarlo_num_flops:
- subl $4, %esp
- movl 8(%esp), %eax
- movl %eax, (%esp)
- fildl (%esp)
- fmuls LCPI1_0
- addl $4, %esp
- ret
-
-in SSE mode, it compiles into significantly slower code:
-
-_MonteCarlo_num_flops:
- subl $12, %esp
- cvtsi2sd 16(%esp), %xmm0
- mulsd LCPI1_0, %xmm0
- movsd %xmm0, (%esp)
- fldl (%esp)
- addl $12, %esp
- ret
-
-There are also other cases in scimark where using fpstack is better, it is
-cheaper to do fld1 than load from a constant pool for example, so
-"load, add 1.0, store" is better done in the fp stack, etc.
-
-//===---------------------------------------------------------------------===//
-
-These should compile into the same code (PR6214): Perhaps instcombine should
-canonicalize the former into the later?
-
-define float @foo(float %x) nounwind {
- %t = bitcast float %x to i32
- %s = and i32 %t, 2147483647
- %d = bitcast i32 %s to float
- ret float %d
-}
-
-declare float @fabsf(float %n)
-define float @bar(float %x) nounwind {
- %d = call float @fabsf(float %x)
- ret float %d
-}
-
-//===---------------------------------------------------------------------===//
-
-This IR (from PR6194):
-
-target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
-target triple = "x86_64-apple-darwin10.0.0"
-
-%0 = type { double, double }
-%struct.float3 = type { float, float, float }
-
-define void @test(%0, %struct.float3* nocapture %res) nounwind noinline ssp {
-entry:
- %tmp18 = extractvalue %0 %0, 0 ; <double> [#uses=1]
- %tmp19 = bitcast double %tmp18 to i64 ; <i64> [#uses=1]
- %tmp20 = zext i64 %tmp19 to i128 ; <i128> [#uses=1]
- %tmp10 = lshr i128 %tmp20, 32 ; <i128> [#uses=1]
- %tmp11 = trunc i128 %tmp10 to i32 ; <i32> [#uses=1]
- %tmp12 = bitcast i32 %tmp11 to float ; <float> [#uses=1]
- %tmp5 = getelementptr inbounds %struct.float3* %res, i64 0, i32 1 ; <float*> [#uses=1]
- store float %tmp12, float* %tmp5
- ret void
-}
-
-Compiles to:
-
-_test: ## @test
- movd %xmm0, %rax
- shrq $32, %rax
- movl %eax, 4(%rdi)
- ret
-
-This would be better kept in the SSE unit by treating XMM0 as a 4xfloat and
-doing a shuffle from v[1] to v[0] then a float store.
-
-//===---------------------------------------------------------------------===//
-
-[UNSAFE FP]
-
-void foo(double, double, double);
-void norm(double x, double y, double z) {
- double scale = __builtin_sqrt(x*x + y*y + z*z);
- foo(x/scale, y/scale, z/scale);
-}
-
-We currently generate an sqrtsd and 3 divsd instructions. This is bad, fp div is
-slow and not pipelined. In -ffast-math mode we could compute "1.0/scale" first
-and emit 3 mulsd in place of the divs. This can be done as a target-independent
-transform.
-
-If we're dealing with floats instead of doubles we could even replace the sqrtss
-and inversion with an rsqrtss instruction, which computes 1/sqrt faster at the
-cost of reduced accuracy.
-
-//===---------------------------------------------------------------------===//
+
+typedef short vSInt16 __attribute__ ((__vector_size__ (16)));
+
+static const vSInt16 a = {- 22725, - 12873, - 22725, - 12873, - 22725, - 12873,
+- 22725, - 12873};;
+
+vSInt16 madd(vSInt16 b)
+{
+ return _mm_madd_epi16(a, b);
+}
+
+Generated code (x86-32, linux):
+madd:
+ pushl %ebp
+ movl %esp, %ebp
+ andl $-16, %esp
+ movaps .LCPI1_0, %xmm1
+ pmaddwd %xmm1, %xmm0
+ movl %ebp, %esp
+ popl %ebp
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Consider:
+#include <emmintrin.h>
+__m128 foo2 (float x) {
+ return _mm_set_ps (0, 0, x, 0);
+}
+
+In x86-32 mode, we generate this spiffy code:
+
+_foo2:
+ movss 4(%esp), %xmm0
+ pshufd $81, %xmm0, %xmm0
+ ret
+
+in x86-64 mode, we generate this code, which could be better:
+
+_foo2:
+ xorps %xmm1, %xmm1
+ movss %xmm0, %xmm1
+ pshufd $81, %xmm1, %xmm0
+ ret
+
+In sse4 mode, we could use insertps to make both better.
+
+Here's another testcase that could use insertps [mem]:
+
+#include <xmmintrin.h>
+extern float x2, x3;
+__m128 foo1 (float x1, float x4) {
+ return _mm_set_ps (x2, x1, x3, x4);
+}
+
+gcc mainline compiles it to:
+
+foo1:
+ insertps $0x10, x2(%rip), %xmm0
+ insertps $0x10, x3(%rip), %xmm1
+ movaps %xmm1, %xmm2
+ movlhps %xmm0, %xmm2
+ movaps %xmm2, %xmm0
+ ret
+
+//===---------------------------------------------------------------------===//
+
+We compile vector multiply-by-constant into poor code:
+
+define <4 x i32> @f(<4 x i32> %i) nounwind {
+ %A = mul <4 x i32> %i, < i32 10, i32 10, i32 10, i32 10 >
+ ret <4 x i32> %A
+}
+
+On targets without SSE4.1, this compiles into:
+
+LCPI1_0: ## <4 x i32>
+ .long 10
+ .long 10
+ .long 10
+ .long 10
+ .text
+ .align 4,0x90
+ .globl _f
+_f:
+ pshufd $3, %xmm0, %xmm1
+ movd %xmm1, %eax
+ imull LCPI1_0+12, %eax
+ movd %eax, %xmm1
+ pshufd $1, %xmm0, %xmm2
+ movd %xmm2, %eax
+ imull LCPI1_0+4, %eax
+ movd %eax, %xmm2
+ punpckldq %xmm1, %xmm2
+ movd %xmm0, %eax
+ imull LCPI1_0, %eax
+ movd %eax, %xmm1
+ movhlps %xmm0, %xmm0
+ movd %xmm0, %eax
+ imull LCPI1_0+8, %eax
+ movd %eax, %xmm0
+ punpckldq %xmm0, %xmm1
+ movaps %xmm1, %xmm0
+ punpckldq %xmm2, %xmm0
+ ret
+
+It would be better to synthesize integer vector multiplication by constants
+using shifts and adds, pslld and paddd here. And even on targets with SSE4.1,
+simple cases such as multiplication by powers of two would be better as
+vector shifts than as multiplications.
+
+//===---------------------------------------------------------------------===//
+
+We compile this:
+
+__m128i
+foo2 (char x)
+{
+ return _mm_set_epi8 (1, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 1, 0, 0, 0, 0);
+}
+
+into:
+ movl $1, %eax
+ xorps %xmm0, %xmm0
+ pinsrw $2, %eax, %xmm0
+ movzbl 4(%esp), %eax
+ pinsrw $3, %eax, %xmm0
+ movl $256, %eax
+ pinsrw $7, %eax, %xmm0
+ ret
+
+
+gcc-4.2:
+ subl $12, %esp
+ movzbl 16(%esp), %eax
+ movdqa LC0, %xmm0
+ pinsrw $3, %eax, %xmm0
+ addl $12, %esp
+ ret
+ .const
+ .align 4
+LC0:
+ .word 0
+ .word 0
+ .word 1
+ .word 0
+ .word 0
+ .word 0
+ .word 0
+ .word 256
+
+With SSE4, it should be
+ movdqa .LC0(%rip), %xmm0
+ pinsrb $6, %edi, %xmm0
+
+//===---------------------------------------------------------------------===//
+
+We should transform a shuffle of two vectors of constants into a single vector
+of constants. Also, insertelement of a constant into a vector of constants
+should also result in a vector of constants. e.g. 2008-06-25-VecISelBug.ll.
+
+We compiled it to something horrible:
+
+ .align 4
+LCPI1_1: ## float
+ .long 1065353216 ## float 1
+ .const
+
+ .align 4
+LCPI1_0: ## <4 x float>
+ .space 4
+ .long 1065353216 ## float 1
+ .space 4
+ .long 1065353216 ## float 1
+ .text
+ .align 4,0x90
+ .globl _t
+_t:
+ xorps %xmm0, %xmm0
+ movhps LCPI1_0, %xmm0
+ movss LCPI1_1, %xmm1
+ movaps %xmm0, %xmm2
+ shufps $2, %xmm1, %xmm2
+ shufps $132, %xmm2, %xmm0
+ movaps %xmm0, 0
+
+//===---------------------------------------------------------------------===//
+rdar://5907648
+
+This function:
+
+float foo(unsigned char x) {
+ return x;
+}
+
+compiles to (x86-32):
+
+define float @foo(i8 zeroext %x) nounwind {
+ %tmp12 = uitofp i8 %x to float ; <float> [#uses=1]
+ ret float %tmp12
+}
+
+compiles to:
+
+_foo:
+ subl $4, %esp
+ movzbl 8(%esp), %eax
+ cvtsi2ss %eax, %xmm0
+ movss %xmm0, (%esp)
+ flds (%esp)
+ addl $4, %esp
+ ret
+
+We should be able to use:
+ cvtsi2ss 8($esp), %xmm0
+since we know the stack slot is already zext'd.
+
+//===---------------------------------------------------------------------===//
+
+Consider using movlps instead of movsd to implement (scalar_to_vector (loadf64))
+when code size is critical. movlps is slower than movsd on core2 but it's one
+byte shorter.
+
+//===---------------------------------------------------------------------===//
+
+We should use a dynamic programming based approach to tell when using FPStack
+operations is cheaper than SSE. SciMark montecarlo contains code like this
+for example:
+
+double MonteCarlo_num_flops(int Num_samples) {
+ return ((double) Num_samples)* 4.0;
+}
+
+In fpstack mode, this compiles into:
+
+LCPI1_0:
+ .long 1082130432 ## float 4.000000e+00
+_MonteCarlo_num_flops:
+ subl $4, %esp
+ movl 8(%esp), %eax
+ movl %eax, (%esp)
+ fildl (%esp)
+ fmuls LCPI1_0
+ addl $4, %esp
+ ret
+
+in SSE mode, it compiles into significantly slower code:
+
+_MonteCarlo_num_flops:
+ subl $12, %esp
+ cvtsi2sd 16(%esp), %xmm0
+ mulsd LCPI1_0, %xmm0
+ movsd %xmm0, (%esp)
+ fldl (%esp)
+ addl $12, %esp
+ ret
+
+There are also other cases in scimark where using fpstack is better, it is
+cheaper to do fld1 than load from a constant pool for example, so
+"load, add 1.0, store" is better done in the fp stack, etc.
+
+//===---------------------------------------------------------------------===//
+
+These should compile into the same code (PR6214): Perhaps instcombine should
+canonicalize the former into the later?
+
+define float @foo(float %x) nounwind {
+ %t = bitcast float %x to i32
+ %s = and i32 %t, 2147483647
+ %d = bitcast i32 %s to float
+ ret float %d
+}
+
+declare float @fabsf(float %n)
+define float @bar(float %x) nounwind {
+ %d = call float @fabsf(float %x)
+ ret float %d
+}
+
+//===---------------------------------------------------------------------===//
+
+This IR (from PR6194):
+
+target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
+target triple = "x86_64-apple-darwin10.0.0"
+
+%0 = type { double, double }
+%struct.float3 = type { float, float, float }
+
+define void @test(%0, %struct.float3* nocapture %res) nounwind noinline ssp {
+entry:
+ %tmp18 = extractvalue %0 %0, 0 ; <double> [#uses=1]
+ %tmp19 = bitcast double %tmp18 to i64 ; <i64> [#uses=1]
+ %tmp20 = zext i64 %tmp19 to i128 ; <i128> [#uses=1]
+ %tmp10 = lshr i128 %tmp20, 32 ; <i128> [#uses=1]
+ %tmp11 = trunc i128 %tmp10 to i32 ; <i32> [#uses=1]
+ %tmp12 = bitcast i32 %tmp11 to float ; <float> [#uses=1]
+ %tmp5 = getelementptr inbounds %struct.float3* %res, i64 0, i32 1 ; <float*> [#uses=1]
+ store float %tmp12, float* %tmp5
+ ret void
+}
+
+Compiles to:
+
+_test: ## @test
+ movd %xmm0, %rax
+ shrq $32, %rax
+ movl %eax, 4(%rdi)
+ ret
+
+This would be better kept in the SSE unit by treating XMM0 as a 4xfloat and
+doing a shuffle from v[1] to v[0] then a float store.
+
+//===---------------------------------------------------------------------===//
+
+[UNSAFE FP]
+
+void foo(double, double, double);
+void norm(double x, double y, double z) {
+ double scale = __builtin_sqrt(x*x + y*y + z*z);
+ foo(x/scale, y/scale, z/scale);
+}
+
+We currently generate an sqrtsd and 3 divsd instructions. This is bad, fp div is
+slow and not pipelined. In -ffast-math mode we could compute "1.0/scale" first
+and emit 3 mulsd in place of the divs. This can be done as a target-independent
+transform.
+
+If we're dealing with floats instead of doubles we could even replace the sqrtss
+and inversion with an rsqrtss instruction, which computes 1/sqrt faster at the
+cost of reduced accuracy.
+
+//===---------------------------------------------------------------------===//