aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td')
-rw-r--r--contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td850
1 files changed, 425 insertions, 425 deletions
diff --git a/contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td b/contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td
index 42b2e1ac53..571cc219ff 100644
--- a/contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td
+++ b/contrib/libs/llvm12/lib/Target/PowerPC/PPCScheduleP9.td
@@ -1,430 +1,430 @@
-//===-- PPCScheduleP9.td - PPC P9 Scheduling Definitions ---*- tablegen -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines the itinerary class data for the POWER9 processor.
-//
-//===----------------------------------------------------------------------===//
-include "PPCInstrInfo.td"
-
-def P9Model : SchedMachineModel {
- // The maximum number of instructions to be issued at the same time.
- // While a value of 8 is technically correct since 8 instructions can be
- // fetched from the instruction cache. However, only 6 instructions may be
- // actually dispatched at a time.
- let IssueWidth = 8;
-
- // Load latency is 4 or 5 cycles depending on the load. This latency assumes
- // that we have a cache hit. For a cache miss the load latency will be more.
- // There are two instructions (lxvl, lxvll) that have a latency of 6 cycles.
- // However it is not worth bumping this value up to 6 when the vast majority
- // of instructions are 4 or 5 cycles.
- let LoadLatency = 5;
-
- // A total of 16 cycles to recover from a branch mispredict.
- let MispredictPenalty = 16;
-
- // Try to make sure we have at least 10 dispatch groups in a loop.
- // A dispatch group is 6 instructions.
- let LoopMicroOpBufferSize = 60;
-
- // As iops are dispatched to a slice, they are held in an independent slice
- // issue queue until all register sources and other dependencies have been
- // resolved and they can be issued. Each of four execution slices has an
- // 11-entry iop issue queue.
- let MicroOpBufferSize = 44;
-
- let CompleteModel = 1;
-
+//===-- PPCScheduleP9.td - PPC P9 Scheduling Definitions ---*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the itinerary class data for the POWER9 processor.
+//
+//===----------------------------------------------------------------------===//
+include "PPCInstrInfo.td"
+
+def P9Model : SchedMachineModel {
+ // The maximum number of instructions to be issued at the same time.
+ // While a value of 8 is technically correct since 8 instructions can be
+ // fetched from the instruction cache. However, only 6 instructions may be
+ // actually dispatched at a time.
+ let IssueWidth = 8;
+
+ // Load latency is 4 or 5 cycles depending on the load. This latency assumes
+ // that we have a cache hit. For a cache miss the load latency will be more.
+ // There are two instructions (lxvl, lxvll) that have a latency of 6 cycles.
+ // However it is not worth bumping this value up to 6 when the vast majority
+ // of instructions are 4 or 5 cycles.
+ let LoadLatency = 5;
+
+ // A total of 16 cycles to recover from a branch mispredict.
+ let MispredictPenalty = 16;
+
+ // Try to make sure we have at least 10 dispatch groups in a loop.
+ // A dispatch group is 6 instructions.
+ let LoopMicroOpBufferSize = 60;
+
+ // As iops are dispatched to a slice, they are held in an independent slice
+ // issue queue until all register sources and other dependencies have been
+ // resolved and they can be issued. Each of four execution slices has an
+ // 11-entry iop issue queue.
+ let MicroOpBufferSize = 44;
+
+ let CompleteModel = 1;
+
// Do not support SPE (Signal Processing Engine), prefixed instructions on
// Power 9, paired vector mem ops, MMA, PC relative mem ops, or instructions
// introduced in ISA 3.1.
let UnsupportedFeatures = [HasSPE, PrefixInstrs, PairedVectorMemops, MMA,
PCRelativeMemops, IsISA3_1];
-}
-
-let SchedModel = P9Model in {
-
- // ***************** Processor Resources *****************
-
- // Dispatcher slots:
- // x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each
- // corresponds to one of the four execution slices.
- def DISPx02 : ProcResource<2>;
- def DISPx13 : ProcResource<2>;
- // The xa and xb ports can be used to send an iop to either of the two slices
- // of the superslice, but are restricted to iops with only two primary sources.
- def DISPxab : ProcResource<2>;
- // b0 and b1 are dedicated dispatch ports into the branch slice.
- def DISPb01 : ProcResource<2>;
-
- // Any non BR dispatch ports
- def DISP_NBR
- : ProcResGroup<[ DISPx02, DISPx13, DISPxab]>;
- def DISP_SS : ProcResGroup<[ DISPx02, DISPx13]>;
-
- // Issue Ports
- // An instruction can go down one of two issue queues.
- // Address Generation (AGEN) mainly for loads and stores.
- // Execution (EXEC) for most other instructions.
- // Some instructions cannot be run on just any issue queue and may require an
- // Even or an Odd queue. The EXECE represents the even queues and the EXECO
- // represents the odd queues.
- def IP_AGEN : ProcResource<4>;
- def IP_EXEC : ProcResource<4>;
- def IP_EXECE : ProcResource<2> {
- //Even Exec Ports
- let Super = IP_EXEC;
- }
- def IP_EXECO : ProcResource<2> {
- //Odd Exec Ports
- let Super = IP_EXEC;
- }
-
- // Pipeline Groups
- // Four ALU (Fixed Point Arithmetic) units in total. Two even, two Odd.
- def ALU : ProcResource<4>;
- def ALUE : ProcResource<2> {
- //Even ALU pipelines
- let Super = ALU;
- }
- def ALUO : ProcResource<2> {
- //Odd ALU pipelines
- let Super = ALU;
- }
-
- // Two DIV (Fixed Point Divide) units.
- def DIV : ProcResource<2>;
-
- // Four DP (Floating Point) units in total. Two even, two Odd.
- def DP : ProcResource<4>;
- def DPE : ProcResource<2> {
- //Even DP pipelines
- let Super = DP;
- }
- def DPO : ProcResource<2> {
- //Odd DP pipelines
- let Super = DP;
- }
-
- // Four LS (Load or Store) units.
- def LS : ProcResource<4>;
-
- // Two PM (Permute) units.
- def PM : ProcResource<2>;
-
- // Only one DFU (Decimal Floating Point and Quad Precision) unit.
- def DFU : ProcResource<1>;
-
- // Only one Branch unit.
- def BR : ProcResource<1> {
- let BufferSize = 16;
- }
-
- // Only one CY (Crypto) unit.
- def CY : ProcResource<1>;
-
- // ***************** SchedWriteRes Definitions *****************
-
- // Dispatcher
- // Dispatch Rules: '-' or 'V'
- // Vector ('V') - vector iops (128-bit operand) take only one decode and
- // dispatch slot but are dispatched to both the even and odd slices of a
- // superslice.
- def DISP_1C : SchedWriteRes<[DISP_NBR]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Dispatch Rules: 'E'
- // Even slice ('E')- certain operations must be sent only to an even slice.
- // Also consumes odd dispatch slice slot of the same superslice at dispatch
- def DISP_EVEN_1C : SchedWriteRes<[ DISPx02, DISPx13 ]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Dispatch Rules: 'P'
- // Paired ('P') - certain cracked and expanded iops are paired such that they
- // must dispatch together to the same superslice.
- def DISP_PAIR_1C : SchedWriteRes<[ DISP_SS, DISP_SS]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Tuple Restricted ('R') - certain iops preclude dispatching more than one
- // operation per slice for the super- slice to which they are dispatched
- def DISP_3SLOTS_1C : SchedWriteRes<[DISPx02, DISPx13, DISPxab]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
- // Each execution and branch slice can receive up to two iops per cycle
- def DISP_BR_1C : SchedWriteRes<[ DISPxab ]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
-
- // Issue Ports
- def IP_AGEN_1C : SchedWriteRes<[IP_AGEN]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
-
- def IP_EXEC_1C : SchedWriteRes<[IP_EXEC]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
-
- def IP_EXECE_1C : SchedWriteRes<[IP_EXECE]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
-
- def IP_EXECO_1C : SchedWriteRes<[IP_EXECO]> {
- let NumMicroOps = 0;
- let Latency = 1;
- }
-
- //Pipeline Groups
-
- // ALU Units
- // An ALU may take either 2 or 3 cycles to complete the operation.
- // However, the ALU unit is only ever busy for 1 cycle at a time and may
- // receive new instructions each cycle.
- def P9_ALU_2C : SchedWriteRes<[ALU]> {
- let Latency = 2;
- }
-
- def P9_ALUE_2C : SchedWriteRes<[ALUE]> {
- let Latency = 2;
- }
-
- def P9_ALUO_2C : SchedWriteRes<[ALUO]> {
- let Latency = 2;
- }
-
- def P9_ALU_3C : SchedWriteRes<[ALU]> {
- let Latency = 3;
- }
-
- def P9_ALUE_3C : SchedWriteRes<[ALUE]> {
- let Latency = 3;
- }
-
- def P9_ALUO_3C : SchedWriteRes<[ALUO]> {
- let Latency = 3;
- }
-
- // DIV Unit
- // A DIV unit may take from 5 to 40 cycles to complete.
- // Some DIV operations may keep the unit busy for up to 8 cycles.
- def P9_DIV_5C : SchedWriteRes<[DIV]> {
- let Latency = 5;
- }
-
- def P9_DIV_12C : SchedWriteRes<[DIV]> {
- let Latency = 12;
- }
-
- def P9_DIV_16C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 16;
- }
-
- def P9_DIV_24C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
-
- def P9_DIV_40C_8 : SchedWriteRes<[DIV]> {
- let ResourceCycles = [8];
- let Latency = 40;
- }
-
- // DP Unit
- // A DP unit may take from 2 to 36 cycles to complete.
- // Some DP operations keep the unit busy for up to 10 cycles.
- def P9_DP_5C : SchedWriteRes<[DP]> {
- let Latency = 5;
- }
-
- def P9_DP_7C : SchedWriteRes<[DP]> {
- let Latency = 7;
- }
-
- def P9_DPE_7C : SchedWriteRes<[DPE]> {
- let Latency = 7;
- }
-
- def P9_DPO_7C : SchedWriteRes<[DPO]> {
- let Latency = 7;
- }
-
- def P9_DP_22C_5 : SchedWriteRes<[DP]> {
- let ResourceCycles = [5];
- let Latency = 22;
- }
-
- def P9_DPO_24C_8 : SchedWriteRes<[DPO]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
-
- def P9_DPE_24C_8 : SchedWriteRes<[DPE]> {
- let ResourceCycles = [8];
- let Latency = 24;
- }
-
- def P9_DP_26C_5 : SchedWriteRes<[DP]> {
- let ResourceCycles = [5];
- let Latency = 22;
- }
-
- def P9_DPE_27C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 27;
- }
-
- def P9_DPO_27C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 27;
- }
-
- def P9_DP_33C_8 : SchedWriteRes<[DP]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
-
- def P9_DPE_33C_8 : SchedWriteRes<[DPE]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
-
- def P9_DPO_33C_8 : SchedWriteRes<[DPO]> {
- let ResourceCycles = [8];
- let Latency = 33;
- }
-
- def P9_DP_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
-
- def P9_DPE_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
-
- def P9_DPO_36C_10 : SchedWriteRes<[DP]> {
- let ResourceCycles = [10];
- let Latency = 36;
- }
-
- // PM Unit
- // Three cycle permute operations.
- def P9_PM_3C : SchedWriteRes<[PM]> {
- let Latency = 3;
- }
-
- // Load and Store Units
- // Loads can have 4, 5 or 6 cycles of latency.
- // Stores are listed as having a single cycle of latency. This is not
- // completely accurate since it takes more than 1 cycle to actually store
- // the value. However, since the store does not produce a result it can be
- // considered complete after one cycle.
- def P9_LS_1C : SchedWriteRes<[LS]> {
- let Latency = 1;
- }
-
- def P9_LS_4C : SchedWriteRes<[LS]> {
- let Latency = 4;
- }
-
- def P9_LS_5C : SchedWriteRes<[LS]> {
- let Latency = 5;
- }
-
- def P9_LS_6C : SchedWriteRes<[LS]> {
- let Latency = 6;
- }
-
- // DFU Unit
- // Some of the most expensive ops use the DFU.
- // Can take from 12 cycles to 76 cycles to obtain a result.
- // The unit may be busy for up to 62 cycles.
- def P9_DFU_12C : SchedWriteRes<[DFU]> {
- let Latency = 12;
- }
-
- def P9_DFU_23C : SchedWriteRes<[DFU]> {
- let Latency = 23;
- let ResourceCycles = [11];
- }
-
- def P9_DFU_24C : SchedWriteRes<[DFU]> {
- let Latency = 24;
- let ResourceCycles = [12];
- }
-
- def P9_DFU_37C : SchedWriteRes<[DFU]> {
- let Latency = 37;
- let ResourceCycles = [25];
- }
-
- def P9_DFU_58C : SchedWriteRes<[DFU]> {
- let Latency = 58;
- let ResourceCycles = [44];
- }
-
- def P9_DFU_76C : SchedWriteRes<[DFU]> {
- let Latency = 76;
- let ResourceCycles = [62];
- }
-
- // 2 or 5 cycle latencies for the branch unit.
- def P9_BR_2C : SchedWriteRes<[BR]> {
- let Latency = 2;
- }
-
- def P9_BR_5C : SchedWriteRes<[BR]> {
- let Latency = 5;
- }
-
- // 6 cycle latency for the crypto unit
- def P9_CY_6C : SchedWriteRes<[CY]> {
- let Latency = 6;
- }
-
- // ***************** WriteSeq Definitions *****************
-
- // These are combinations of the resources listed above.
- // The idea is that some cracked instructions cannot be done in parallel and
- // so the latencies for their resources must be added.
- def P9_LoadAndALUOp_6C : WriteSequence<[P9_LS_4C, P9_ALU_2C]>;
- def P9_LoadAndALUOp_7C : WriteSequence<[P9_LS_5C, P9_ALU_2C]>;
- def P9_LoadAndALU2Op_7C : WriteSequence<[P9_LS_4C, P9_ALU_3C]>;
- def P9_LoadAndALU2Op_8C : WriteSequence<[P9_LS_5C, P9_ALU_3C]>;
- def P9_LoadAndPMOp_8C : WriteSequence<[P9_LS_5C, P9_PM_3C]>;
- def P9_LoadAndLoadOp_8C : WriteSequence<[P9_LS_4C, P9_LS_4C]>;
- def P9_IntDivAndALUOp_18C_8 : WriteSequence<[P9_DIV_16C_8, P9_ALU_2C]>;
- def P9_IntDivAndALUOp_26C_8 : WriteSequence<[P9_DIV_24C_8, P9_ALU_2C]>;
- def P9_IntDivAndALUOp_42C_8 : WriteSequence<[P9_DIV_40C_8, P9_ALU_2C]>;
- def P9_StoreAndALUOp_3C : WriteSequence<[P9_LS_1C, P9_ALU_2C]>;
- def P9_ALUOpAndALUOp_4C : WriteSequence<[P9_ALU_2C, P9_ALU_2C]>;
- def P9_ALU2OpAndALU2Op_6C : WriteSequence<[P9_ALU_3C, P9_ALU_3C]>;
- def P9_ALUOpAndALUOpAndALUOp_6C :
- WriteSequence<[P9_ALU_2C, P9_ALU_2C, P9_ALU_2C]>;
- def P9_DPOpAndALUOp_7C : WriteSequence<[P9_DP_5C, P9_ALU_2C]>;
- def P9_DPOpAndALU2Op_10C : WriteSequence<[P9_DP_7C, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_25C_5 : WriteSequence<[P9_DP_22C_5, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_29C_5 : WriteSequence<[P9_DP_26C_5, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_36C_8 : WriteSequence<[P9_DP_33C_8, P9_ALU_3C]>;
- def P9_DPOpAndALU2Op_39C_10 : WriteSequence<[P9_DP_36C_10, P9_ALU_3C]>;
- def P9_BROpAndALUOp_7C : WriteSequence<[P9_BR_5C, P9_ALU_2C]>;
-
- // Include the resource requirements of individual instructions.
- include "P9InstrResources.td"
-
-}
-
+}
+
+let SchedModel = P9Model in {
+
+ // ***************** Processor Resources *****************
+
+ // Dispatcher slots:
+ // x0, x1, x2, and x3 are the dedicated slice dispatch ports, where each
+ // corresponds to one of the four execution slices.
+ def DISPx02 : ProcResource<2>;
+ def DISPx13 : ProcResource<2>;
+ // The xa and xb ports can be used to send an iop to either of the two slices
+ // of the superslice, but are restricted to iops with only two primary sources.
+ def DISPxab : ProcResource<2>;
+ // b0 and b1 are dedicated dispatch ports into the branch slice.
+ def DISPb01 : ProcResource<2>;
+
+ // Any non BR dispatch ports
+ def DISP_NBR
+ : ProcResGroup<[ DISPx02, DISPx13, DISPxab]>;
+ def DISP_SS : ProcResGroup<[ DISPx02, DISPx13]>;
+
+ // Issue Ports
+ // An instruction can go down one of two issue queues.
+ // Address Generation (AGEN) mainly for loads and stores.
+ // Execution (EXEC) for most other instructions.
+ // Some instructions cannot be run on just any issue queue and may require an
+ // Even or an Odd queue. The EXECE represents the even queues and the EXECO
+ // represents the odd queues.
+ def IP_AGEN : ProcResource<4>;
+ def IP_EXEC : ProcResource<4>;
+ def IP_EXECE : ProcResource<2> {
+ //Even Exec Ports
+ let Super = IP_EXEC;
+ }
+ def IP_EXECO : ProcResource<2> {
+ //Odd Exec Ports
+ let Super = IP_EXEC;
+ }
+
+ // Pipeline Groups
+ // Four ALU (Fixed Point Arithmetic) units in total. Two even, two Odd.
+ def ALU : ProcResource<4>;
+ def ALUE : ProcResource<2> {
+ //Even ALU pipelines
+ let Super = ALU;
+ }
+ def ALUO : ProcResource<2> {
+ //Odd ALU pipelines
+ let Super = ALU;
+ }
+
+ // Two DIV (Fixed Point Divide) units.
+ def DIV : ProcResource<2>;
+
+ // Four DP (Floating Point) units in total. Two even, two Odd.
+ def DP : ProcResource<4>;
+ def DPE : ProcResource<2> {
+ //Even DP pipelines
+ let Super = DP;
+ }
+ def DPO : ProcResource<2> {
+ //Odd DP pipelines
+ let Super = DP;
+ }
+
+ // Four LS (Load or Store) units.
+ def LS : ProcResource<4>;
+
+ // Two PM (Permute) units.
+ def PM : ProcResource<2>;
+
+ // Only one DFU (Decimal Floating Point and Quad Precision) unit.
+ def DFU : ProcResource<1>;
+
+ // Only one Branch unit.
+ def BR : ProcResource<1> {
+ let BufferSize = 16;
+ }
+
+ // Only one CY (Crypto) unit.
+ def CY : ProcResource<1>;
+
+ // ***************** SchedWriteRes Definitions *****************
+
+ // Dispatcher
+ // Dispatch Rules: '-' or 'V'
+ // Vector ('V') - vector iops (128-bit operand) take only one decode and
+ // dispatch slot but are dispatched to both the even and odd slices of a
+ // superslice.
+ def DISP_1C : SchedWriteRes<[DISP_NBR]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+ // Dispatch Rules: 'E'
+ // Even slice ('E')- certain operations must be sent only to an even slice.
+ // Also consumes odd dispatch slice slot of the same superslice at dispatch
+ def DISP_EVEN_1C : SchedWriteRes<[ DISPx02, DISPx13 ]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+ // Dispatch Rules: 'P'
+ // Paired ('P') - certain cracked and expanded iops are paired such that they
+ // must dispatch together to the same superslice.
+ def DISP_PAIR_1C : SchedWriteRes<[ DISP_SS, DISP_SS]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+ // Tuple Restricted ('R') - certain iops preclude dispatching more than one
+ // operation per slice for the super- slice to which they are dispatched
+ def DISP_3SLOTS_1C : SchedWriteRes<[DISPx02, DISPx13, DISPxab]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+ // Each execution and branch slice can receive up to two iops per cycle
+ def DISP_BR_1C : SchedWriteRes<[ DISPxab ]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+
+ // Issue Ports
+ def IP_AGEN_1C : SchedWriteRes<[IP_AGEN]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+
+ def IP_EXEC_1C : SchedWriteRes<[IP_EXEC]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+
+ def IP_EXECE_1C : SchedWriteRes<[IP_EXECE]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+
+ def IP_EXECO_1C : SchedWriteRes<[IP_EXECO]> {
+ let NumMicroOps = 0;
+ let Latency = 1;
+ }
+
+ //Pipeline Groups
+
+ // ALU Units
+ // An ALU may take either 2 or 3 cycles to complete the operation.
+ // However, the ALU unit is only ever busy for 1 cycle at a time and may
+ // receive new instructions each cycle.
+ def P9_ALU_2C : SchedWriteRes<[ALU]> {
+ let Latency = 2;
+ }
+
+ def P9_ALUE_2C : SchedWriteRes<[ALUE]> {
+ let Latency = 2;
+ }
+
+ def P9_ALUO_2C : SchedWriteRes<[ALUO]> {
+ let Latency = 2;
+ }
+
+ def P9_ALU_3C : SchedWriteRes<[ALU]> {
+ let Latency = 3;
+ }
+
+ def P9_ALUE_3C : SchedWriteRes<[ALUE]> {
+ let Latency = 3;
+ }
+
+ def P9_ALUO_3C : SchedWriteRes<[ALUO]> {
+ let Latency = 3;
+ }
+
+ // DIV Unit
+ // A DIV unit may take from 5 to 40 cycles to complete.
+ // Some DIV operations may keep the unit busy for up to 8 cycles.
+ def P9_DIV_5C : SchedWriteRes<[DIV]> {
+ let Latency = 5;
+ }
+
+ def P9_DIV_12C : SchedWriteRes<[DIV]> {
+ let Latency = 12;
+ }
+
+ def P9_DIV_16C_8 : SchedWriteRes<[DIV]> {
+ let ResourceCycles = [8];
+ let Latency = 16;
+ }
+
+ def P9_DIV_24C_8 : SchedWriteRes<[DIV]> {
+ let ResourceCycles = [8];
+ let Latency = 24;
+ }
+
+ def P9_DIV_40C_8 : SchedWriteRes<[DIV]> {
+ let ResourceCycles = [8];
+ let Latency = 40;
+ }
+
+ // DP Unit
+ // A DP unit may take from 2 to 36 cycles to complete.
+ // Some DP operations keep the unit busy for up to 10 cycles.
+ def P9_DP_5C : SchedWriteRes<[DP]> {
+ let Latency = 5;
+ }
+
+ def P9_DP_7C : SchedWriteRes<[DP]> {
+ let Latency = 7;
+ }
+
+ def P9_DPE_7C : SchedWriteRes<[DPE]> {
+ let Latency = 7;
+ }
+
+ def P9_DPO_7C : SchedWriteRes<[DPO]> {
+ let Latency = 7;
+ }
+
+ def P9_DP_22C_5 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [5];
+ let Latency = 22;
+ }
+
+ def P9_DPO_24C_8 : SchedWriteRes<[DPO]> {
+ let ResourceCycles = [8];
+ let Latency = 24;
+ }
+
+ def P9_DPE_24C_8 : SchedWriteRes<[DPE]> {
+ let ResourceCycles = [8];
+ let Latency = 24;
+ }
+
+ def P9_DP_26C_5 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [5];
+ let Latency = 22;
+ }
+
+ def P9_DPE_27C_10 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [10];
+ let Latency = 27;
+ }
+
+ def P9_DPO_27C_10 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [10];
+ let Latency = 27;
+ }
+
+ def P9_DP_33C_8 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [8];
+ let Latency = 33;
+ }
+
+ def P9_DPE_33C_8 : SchedWriteRes<[DPE]> {
+ let ResourceCycles = [8];
+ let Latency = 33;
+ }
+
+ def P9_DPO_33C_8 : SchedWriteRes<[DPO]> {
+ let ResourceCycles = [8];
+ let Latency = 33;
+ }
+
+ def P9_DP_36C_10 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [10];
+ let Latency = 36;
+ }
+
+ def P9_DPE_36C_10 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [10];
+ let Latency = 36;
+ }
+
+ def P9_DPO_36C_10 : SchedWriteRes<[DP]> {
+ let ResourceCycles = [10];
+ let Latency = 36;
+ }
+
+ // PM Unit
+ // Three cycle permute operations.
+ def P9_PM_3C : SchedWriteRes<[PM]> {
+ let Latency = 3;
+ }
+
+ // Load and Store Units
+ // Loads can have 4, 5 or 6 cycles of latency.
+ // Stores are listed as having a single cycle of latency. This is not
+ // completely accurate since it takes more than 1 cycle to actually store
+ // the value. However, since the store does not produce a result it can be
+ // considered complete after one cycle.
+ def P9_LS_1C : SchedWriteRes<[LS]> {
+ let Latency = 1;
+ }
+
+ def P9_LS_4C : SchedWriteRes<[LS]> {
+ let Latency = 4;
+ }
+
+ def P9_LS_5C : SchedWriteRes<[LS]> {
+ let Latency = 5;
+ }
+
+ def P9_LS_6C : SchedWriteRes<[LS]> {
+ let Latency = 6;
+ }
+
+ // DFU Unit
+ // Some of the most expensive ops use the DFU.
+ // Can take from 12 cycles to 76 cycles to obtain a result.
+ // The unit may be busy for up to 62 cycles.
+ def P9_DFU_12C : SchedWriteRes<[DFU]> {
+ let Latency = 12;
+ }
+
+ def P9_DFU_23C : SchedWriteRes<[DFU]> {
+ let Latency = 23;
+ let ResourceCycles = [11];
+ }
+
+ def P9_DFU_24C : SchedWriteRes<[DFU]> {
+ let Latency = 24;
+ let ResourceCycles = [12];
+ }
+
+ def P9_DFU_37C : SchedWriteRes<[DFU]> {
+ let Latency = 37;
+ let ResourceCycles = [25];
+ }
+
+ def P9_DFU_58C : SchedWriteRes<[DFU]> {
+ let Latency = 58;
+ let ResourceCycles = [44];
+ }
+
+ def P9_DFU_76C : SchedWriteRes<[DFU]> {
+ let Latency = 76;
+ let ResourceCycles = [62];
+ }
+
+ // 2 or 5 cycle latencies for the branch unit.
+ def P9_BR_2C : SchedWriteRes<[BR]> {
+ let Latency = 2;
+ }
+
+ def P9_BR_5C : SchedWriteRes<[BR]> {
+ let Latency = 5;
+ }
+
+ // 6 cycle latency for the crypto unit
+ def P9_CY_6C : SchedWriteRes<[CY]> {
+ let Latency = 6;
+ }
+
+ // ***************** WriteSeq Definitions *****************
+
+ // These are combinations of the resources listed above.
+ // The idea is that some cracked instructions cannot be done in parallel and
+ // so the latencies for their resources must be added.
+ def P9_LoadAndALUOp_6C : WriteSequence<[P9_LS_4C, P9_ALU_2C]>;
+ def P9_LoadAndALUOp_7C : WriteSequence<[P9_LS_5C, P9_ALU_2C]>;
+ def P9_LoadAndALU2Op_7C : WriteSequence<[P9_LS_4C, P9_ALU_3C]>;
+ def P9_LoadAndALU2Op_8C : WriteSequence<[P9_LS_5C, P9_ALU_3C]>;
+ def P9_LoadAndPMOp_8C : WriteSequence<[P9_LS_5C, P9_PM_3C]>;
+ def P9_LoadAndLoadOp_8C : WriteSequence<[P9_LS_4C, P9_LS_4C]>;
+ def P9_IntDivAndALUOp_18C_8 : WriteSequence<[P9_DIV_16C_8, P9_ALU_2C]>;
+ def P9_IntDivAndALUOp_26C_8 : WriteSequence<[P9_DIV_24C_8, P9_ALU_2C]>;
+ def P9_IntDivAndALUOp_42C_8 : WriteSequence<[P9_DIV_40C_8, P9_ALU_2C]>;
+ def P9_StoreAndALUOp_3C : WriteSequence<[P9_LS_1C, P9_ALU_2C]>;
+ def P9_ALUOpAndALUOp_4C : WriteSequence<[P9_ALU_2C, P9_ALU_2C]>;
+ def P9_ALU2OpAndALU2Op_6C : WriteSequence<[P9_ALU_3C, P9_ALU_3C]>;
+ def P9_ALUOpAndALUOpAndALUOp_6C :
+ WriteSequence<[P9_ALU_2C, P9_ALU_2C, P9_ALU_2C]>;
+ def P9_DPOpAndALUOp_7C : WriteSequence<[P9_DP_5C, P9_ALU_2C]>;
+ def P9_DPOpAndALU2Op_10C : WriteSequence<[P9_DP_7C, P9_ALU_3C]>;
+ def P9_DPOpAndALU2Op_25C_5 : WriteSequence<[P9_DP_22C_5, P9_ALU_3C]>;
+ def P9_DPOpAndALU2Op_29C_5 : WriteSequence<[P9_DP_26C_5, P9_ALU_3C]>;
+ def P9_DPOpAndALU2Op_36C_8 : WriteSequence<[P9_DP_33C_8, P9_ALU_3C]>;
+ def P9_DPOpAndALU2Op_39C_10 : WriteSequence<[P9_DP_36C_10, P9_ALU_3C]>;
+ def P9_BROpAndALUOp_7C : WriteSequence<[P9_BR_5C, P9_ALU_2C]>;
+
+ // Include the resource requirements of individual instructions.
+ include "P9InstrResources.td"
+
+}
+