diff options
| author | orivej <[email protected]> | 2022-02-10 16:44:49 +0300 |
|---|---|---|
| committer | Daniil Cherednik <[email protected]> | 2022-02-10 16:44:49 +0300 |
| commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
| tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/Support/APFloat.cpp | |
| parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
Restoring authorship annotation for <[email protected]>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Support/APFloat.cpp')
| -rw-r--r-- | contrib/libs/llvm12/lib/Support/APFloat.cpp | 9660 |
1 files changed, 4830 insertions, 4830 deletions
diff --git a/contrib/libs/llvm12/lib/Support/APFloat.cpp b/contrib/libs/llvm12/lib/Support/APFloat.cpp index 5dea98ee399..7cc1e28f434 100644 --- a/contrib/libs/llvm12/lib/Support/APFloat.cpp +++ b/contrib/libs/llvm12/lib/Support/APFloat.cpp @@ -1,2248 +1,2248 @@ -//===-- APFloat.cpp - Implement APFloat class -----------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements a class to represent arbitrary precision floating -// point values and provide a variety of arithmetic operations on them. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APSInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/Error.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <cstring> -#include <limits.h> - -#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ - do { \ - if (usesLayout<IEEEFloat>(getSemantics())) \ - return U.IEEE.METHOD_CALL; \ - if (usesLayout<DoubleAPFloat>(getSemantics())) \ - return U.Double.METHOD_CALL; \ - llvm_unreachable("Unexpected semantics"); \ - } while (false) - -using namespace llvm; - -/// A macro used to combine two fcCategory enums into one key which can be used -/// in a switch statement to classify how the interaction of two APFloat's -/// categories affects an operation. -/// -/// TODO: If clang source code is ever allowed to use constexpr in its own -/// codebase, change this into a static inline function. -#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) - -/* Assumed in hexadecimal significand parsing, and conversion to - hexadecimal strings. */ -static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); - -namespace llvm { - /* Represents floating point arithmetic semantics. */ - struct fltSemantics { - /* The largest E such that 2^E is representable; this matches the - definition of IEEE 754. */ - APFloatBase::ExponentType maxExponent; - - /* The smallest E such that 2^E is a normalized number; this - matches the definition of IEEE 754. */ - APFloatBase::ExponentType minExponent; - - /* Number of bits in the significand. This includes the integer - bit. */ - unsigned int precision; - - /* Number of bits actually used in the semantics. */ - unsigned int sizeInBits; - }; - - static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; - static const fltSemantics semBFloat = {127, -126, 8, 16}; - static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; - static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; - static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; - static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; - static const fltSemantics semBogus = {0, 0, 0, 0}; - - /* The IBM double-double semantics. Such a number consists of a pair of IEEE - 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, - (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. - Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent - to each other, and two 11-bit exponents. - - Note: we need to make the value different from semBogus as otherwise - an unsafe optimization may collapse both values to a single address, - and we heavily rely on them having distinct addresses. */ - static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; - - /* These are legacy semantics for the fallback, inaccrurate implementation of - IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the - operation. It's equivalent to having an IEEE number with consecutive 106 - bits of mantissa and 11 bits of exponent. - - It's not equivalent to IBM double-double. For example, a legit IBM - double-double, 1 + epsilon: - - 1 + epsilon = 1 + (1 >> 1076) - - is not representable by a consecutive 106 bits of mantissa. - - Currently, these semantics are used in the following way: - - semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> - (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> - semPPCDoubleDoubleLegacy -> IEEE operations - - We use bitcastToAPInt() to get the bit representation (in APInt) of the - underlying IEEEdouble, then use the APInt constructor to construct the - legacy IEEE float. - - TODO: Implement all operations in semPPCDoubleDouble, and delete these - semantics. */ - static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, - 53 + 53, 128}; - - const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { - switch (S) { - case S_IEEEhalf: - return IEEEhalf(); - case S_BFloat: - return BFloat(); - case S_IEEEsingle: - return IEEEsingle(); - case S_IEEEdouble: - return IEEEdouble(); - case S_x87DoubleExtended: - return x87DoubleExtended(); - case S_IEEEquad: - return IEEEquad(); - case S_PPCDoubleDouble: - return PPCDoubleDouble(); - } - llvm_unreachable("Unrecognised floating semantics"); - } - - APFloatBase::Semantics - APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { - if (&Sem == &llvm::APFloat::IEEEhalf()) - return S_IEEEhalf; - else if (&Sem == &llvm::APFloat::BFloat()) - return S_BFloat; - else if (&Sem == &llvm::APFloat::IEEEsingle()) - return S_IEEEsingle; - else if (&Sem == &llvm::APFloat::IEEEdouble()) - return S_IEEEdouble; - else if (&Sem == &llvm::APFloat::x87DoubleExtended()) - return S_x87DoubleExtended; - else if (&Sem == &llvm::APFloat::IEEEquad()) - return S_IEEEquad; - else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) - return S_PPCDoubleDouble; - else - llvm_unreachable("Unknown floating semantics"); - } - - const fltSemantics &APFloatBase::IEEEhalf() { - return semIEEEhalf; - } - const fltSemantics &APFloatBase::BFloat() { - return semBFloat; - } - const fltSemantics &APFloatBase::IEEEsingle() { - return semIEEEsingle; - } - const fltSemantics &APFloatBase::IEEEdouble() { - return semIEEEdouble; - } - const fltSemantics &APFloatBase::IEEEquad() { - return semIEEEquad; - } - const fltSemantics &APFloatBase::x87DoubleExtended() { - return semX87DoubleExtended; - } - const fltSemantics &APFloatBase::Bogus() { - return semBogus; - } - const fltSemantics &APFloatBase::PPCDoubleDouble() { - return semPPCDoubleDouble; - } - - constexpr RoundingMode APFloatBase::rmNearestTiesToEven; - constexpr RoundingMode APFloatBase::rmTowardPositive; - constexpr RoundingMode APFloatBase::rmTowardNegative; - constexpr RoundingMode APFloatBase::rmTowardZero; - constexpr RoundingMode APFloatBase::rmNearestTiesToAway; - - /* A tight upper bound on number of parts required to hold the value - pow(5, power) is - - power * 815 / (351 * integerPartWidth) + 1 - - However, whilst the result may require only this many parts, - because we are multiplying two values to get it, the - multiplication may require an extra part with the excess part - being zero (consider the trivial case of 1 * 1, tcFullMultiply - requires two parts to hold the single-part result). So we add an - extra one to guarantee enough space whilst multiplying. */ - const unsigned int maxExponent = 16383; - const unsigned int maxPrecision = 113; - const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; - const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); - - unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { - return semantics.precision; - } - APFloatBase::ExponentType - APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { - return semantics.maxExponent; - } - APFloatBase::ExponentType - APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { - return semantics.minExponent; - } - unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { - return semantics.sizeInBits; - } - - unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { - return Sem.sizeInBits; -} - -/* A bunch of private, handy routines. */ - -static inline Error createError(const Twine &Err) { - return make_error<StringError>(Err, inconvertibleErrorCode()); -} - -static inline unsigned int -partCountForBits(unsigned int bits) -{ - return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; -} - -/* Returns 0U-9U. Return values >= 10U are not digits. */ -static inline unsigned int -decDigitValue(unsigned int c) -{ - return c - '0'; -} - -/* Return the value of a decimal exponent of the form - [+-]ddddddd. - - If the exponent overflows, returns a large exponent with the - appropriate sign. */ -static Expected<int> readExponent(StringRef::iterator begin, - StringRef::iterator end) { - bool isNegative; - unsigned int absExponent; - const unsigned int overlargeExponent = 24000; /* FIXME. */ - StringRef::iterator p = begin; - - // Treat no exponent as 0 to match binutils - if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { - return 0; - } - - isNegative = (*p == '-'); - if (*p == '-' || *p == '+') { - p++; - if (p == end) - return createError("Exponent has no digits"); - } - - absExponent = decDigitValue(*p++); - if (absExponent >= 10U) - return createError("Invalid character in exponent"); - - for (; p != end; ++p) { - unsigned int value; - - value = decDigitValue(*p); - if (value >= 10U) - return createError("Invalid character in exponent"); - - absExponent = absExponent * 10U + value; - if (absExponent >= overlargeExponent) { - absExponent = overlargeExponent; - break; - } - } - - if (isNegative) - return -(int) absExponent; - else - return (int) absExponent; -} - -/* This is ugly and needs cleaning up, but I don't immediately see - how whilst remaining safe. */ -static Expected<int> totalExponent(StringRef::iterator p, - StringRef::iterator end, - int exponentAdjustment) { - int unsignedExponent; - bool negative, overflow; - int exponent = 0; - - if (p == end) - return createError("Exponent has no digits"); - - negative = *p == '-'; - if (*p == '-' || *p == '+') { - p++; - if (p == end) - return createError("Exponent has no digits"); - } - - unsignedExponent = 0; - overflow = false; - for (; p != end; ++p) { - unsigned int value; - - value = decDigitValue(*p); - if (value >= 10U) - return createError("Invalid character in exponent"); - - unsignedExponent = unsignedExponent * 10 + value; - if (unsignedExponent > 32767) { - overflow = true; - break; - } - } - - if (exponentAdjustment > 32767 || exponentAdjustment < -32768) - overflow = true; - - if (!overflow) { - exponent = unsignedExponent; - if (negative) - exponent = -exponent; - exponent += exponentAdjustment; - if (exponent > 32767 || exponent < -32768) - overflow = true; - } - - if (overflow) - exponent = negative ? -32768: 32767; - - return exponent; -} - -static Expected<StringRef::iterator> -skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, - StringRef::iterator *dot) { - StringRef::iterator p = begin; - *dot = end; - while (p != end && *p == '0') - p++; - - if (p != end && *p == '.') { - *dot = p++; - - if (end - begin == 1) - return createError("Significand has no digits"); - - while (p != end && *p == '0') - p++; - } - - return p; -} - -/* Given a normal decimal floating point number of the form - - dddd.dddd[eE][+-]ddd - - where the decimal point and exponent are optional, fill out the - structure D. Exponent is appropriate if the significand is - treated as an integer, and normalizedExponent if the significand - is taken to have the decimal point after a single leading - non-zero digit. - - If the value is zero, V->firstSigDigit points to a non-digit, and - the return exponent is zero. -*/ -struct decimalInfo { - const char *firstSigDigit; - const char *lastSigDigit; - int exponent; - int normalizedExponent; -}; - -static Error interpretDecimal(StringRef::iterator begin, - StringRef::iterator end, decimalInfo *D) { - StringRef::iterator dot = end; - - auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); - if (!PtrOrErr) - return PtrOrErr.takeError(); - StringRef::iterator p = *PtrOrErr; - - D->firstSigDigit = p; - D->exponent = 0; - D->normalizedExponent = 0; - - for (; p != end; ++p) { - if (*p == '.') { - if (dot != end) - return createError("String contains multiple dots"); - dot = p++; - if (p == end) - break; - } - if (decDigitValue(*p) >= 10U) - break; - } - - if (p != end) { - if (*p != 'e' && *p != 'E') - return createError("Invalid character in significand"); - if (p == begin) - return createError("Significand has no digits"); - if (dot != end && p - begin == 1) - return createError("Significand has no digits"); - - /* p points to the first non-digit in the string */ - auto ExpOrErr = readExponent(p + 1, end); - if (!ExpOrErr) - return ExpOrErr.takeError(); - D->exponent = *ExpOrErr; - - /* Implied decimal point? */ - if (dot == end) - dot = p; - } - - /* If number is all zeroes accept any exponent. */ - if (p != D->firstSigDigit) { - /* Drop insignificant trailing zeroes. */ - if (p != begin) { - do - do - p--; - while (p != begin && *p == '0'); - while (p != begin && *p == '.'); - } - - /* Adjust the exponents for any decimal point. */ - D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); - D->normalizedExponent = (D->exponent + - static_cast<APFloat::ExponentType>((p - D->firstSigDigit) - - (dot > D->firstSigDigit && dot < p))); - } - - D->lastSigDigit = p; - return Error::success(); -} - -/* Return the trailing fraction of a hexadecimal number. - DIGITVALUE is the first hex digit of the fraction, P points to - the next digit. */ -static Expected<lostFraction> -trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, - unsigned int digitValue) { - unsigned int hexDigit; - - /* If the first trailing digit isn't 0 or 8 we can work out the - fraction immediately. */ - if (digitValue > 8) - return lfMoreThanHalf; - else if (digitValue < 8 && digitValue > 0) - return lfLessThanHalf; - - // Otherwise we need to find the first non-zero digit. - while (p != end && (*p == '0' || *p == '.')) - p++; - - if (p == end) - return createError("Invalid trailing hexadecimal fraction!"); - - hexDigit = hexDigitValue(*p); - - /* If we ran off the end it is exactly zero or one-half, otherwise - a little more. */ - if (hexDigit == -1U) - return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; - else - return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; -} - -/* Return the fraction lost were a bignum truncated losing the least - significant BITS bits. */ -static lostFraction -lostFractionThroughTruncation(const APFloatBase::integerPart *parts, - unsigned int partCount, - unsigned int bits) -{ - unsigned int lsb; - - lsb = APInt::tcLSB(parts, partCount); - - /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ - if (bits <= lsb) - return lfExactlyZero; - if (bits == lsb + 1) - return lfExactlyHalf; - if (bits <= partCount * APFloatBase::integerPartWidth && - APInt::tcExtractBit(parts, bits - 1)) - return lfMoreThanHalf; - - return lfLessThanHalf; -} - -/* Shift DST right BITS bits noting lost fraction. */ -static lostFraction -shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) -{ - lostFraction lost_fraction; - - lost_fraction = lostFractionThroughTruncation(dst, parts, bits); - - APInt::tcShiftRight(dst, parts, bits); - - return lost_fraction; -} - -/* Combine the effect of two lost fractions. */ -static lostFraction -combineLostFractions(lostFraction moreSignificant, - lostFraction lessSignificant) -{ - if (lessSignificant != lfExactlyZero) { - if (moreSignificant == lfExactlyZero) - moreSignificant = lfLessThanHalf; - else if (moreSignificant == lfExactlyHalf) - moreSignificant = lfMoreThanHalf; - } - - return moreSignificant; -} - -/* The error from the true value, in half-ulps, on multiplying two - floating point numbers, which differ from the value they - approximate by at most HUE1 and HUE2 half-ulps, is strictly less - than the returned value. - - See "How to Read Floating Point Numbers Accurately" by William D - Clinger. */ -static unsigned int -HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) -{ - assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); - - if (HUerr1 + HUerr2 == 0) - return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ - else - return inexactMultiply + 2 * (HUerr1 + HUerr2); -} - -/* The number of ulps from the boundary (zero, or half if ISNEAREST) - when the least significant BITS are truncated. BITS cannot be - zero. */ -static APFloatBase::integerPart -ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, - bool isNearest) { - unsigned int count, partBits; - APFloatBase::integerPart part, boundary; - - assert(bits != 0); - - bits--; - count = bits / APFloatBase::integerPartWidth; - partBits = bits % APFloatBase::integerPartWidth + 1; - - part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); - - if (isNearest) - boundary = (APFloatBase::integerPart) 1 << (partBits - 1); - else - boundary = 0; - - if (count == 0) { - if (part - boundary <= boundary - part) - return part - boundary; - else - return boundary - part; - } - - if (part == boundary) { - while (--count) - if (parts[count]) - return ~(APFloatBase::integerPart) 0; /* A lot. */ - - return parts[0]; - } else if (part == boundary - 1) { - while (--count) - if (~parts[count]) - return ~(APFloatBase::integerPart) 0; /* A lot. */ - - return -parts[0]; - } - - return ~(APFloatBase::integerPart) 0; /* A lot. */ -} - -/* Place pow(5, power) in DST, and return the number of parts used. - DST must be at least one part larger than size of the answer. */ -static unsigned int -powerOf5(APFloatBase::integerPart *dst, unsigned int power) { - static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; - APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; - pow5s[0] = 78125 * 5; - - unsigned int partsCount[16] = { 1 }; - APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; - unsigned int result; - assert(power <= maxExponent); - - p1 = dst; - p2 = scratch; - - *p1 = firstEightPowers[power & 7]; - power >>= 3; - - result = 1; - pow5 = pow5s; - - for (unsigned int n = 0; power; power >>= 1, n++) { - unsigned int pc; - - pc = partsCount[n]; - - /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ - if (pc == 0) { - pc = partsCount[n - 1]; - APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); - pc *= 2; - if (pow5[pc - 1] == 0) - pc--; - partsCount[n] = pc; - } - - if (power & 1) { - APFloatBase::integerPart *tmp; - - APInt::tcFullMultiply(p2, p1, pow5, result, pc); - result += pc; - if (p2[result - 1] == 0) - result--; - - /* Now result is in p1 with partsCount parts and p2 is scratch - space. */ - tmp = p1; - p1 = p2; - p2 = tmp; - } - - pow5 += pc; - } - - if (p1 != dst) - APInt::tcAssign(dst, p1, result); - - return result; -} - -/* Zero at the end to avoid modular arithmetic when adding one; used - when rounding up during hexadecimal output. */ -static const char hexDigitsLower[] = "0123456789abcdef0"; -static const char hexDigitsUpper[] = "0123456789ABCDEF0"; -static const char infinityL[] = "infinity"; -static const char infinityU[] = "INFINITY"; -static const char NaNL[] = "nan"; -static const char NaNU[] = "NAN"; - -/* Write out an integerPart in hexadecimal, starting with the most - significant nibble. Write out exactly COUNT hexdigits, return - COUNT. */ -static unsigned int -partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, - const char *hexDigitChars) -{ - unsigned int result = count; - - assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); - - part >>= (APFloatBase::integerPartWidth - 4 * count); - while (count--) { - dst[count] = hexDigitChars[part & 0xf]; - part >>= 4; - } - - return result; -} - -/* Write out an unsigned decimal integer. */ -static char * -writeUnsignedDecimal (char *dst, unsigned int n) -{ - char buff[40], *p; - - p = buff; - do - *p++ = '0' + n % 10; - while (n /= 10); - - do - *dst++ = *--p; - while (p != buff); - - return dst; -} - -/* Write out a signed decimal integer. */ -static char * -writeSignedDecimal (char *dst, int value) -{ - if (value < 0) { - *dst++ = '-'; - dst = writeUnsignedDecimal(dst, -(unsigned) value); - } else - dst = writeUnsignedDecimal(dst, value); - - return dst; -} - -namespace detail { -/* Constructors. */ -void IEEEFloat::initialize(const fltSemantics *ourSemantics) { - unsigned int count; - - semantics = ourSemantics; - count = partCount(); - if (count > 1) - significand.parts = new integerPart[count]; -} - -void IEEEFloat::freeSignificand() { - if (needsCleanup()) - delete [] significand.parts; -} - -void IEEEFloat::assign(const IEEEFloat &rhs) { - assert(semantics == rhs.semantics); - - sign = rhs.sign; - category = rhs.category; - exponent = rhs.exponent; - if (isFiniteNonZero() || category == fcNaN) - copySignificand(rhs); -} - -void IEEEFloat::copySignificand(const IEEEFloat &rhs) { - assert(isFiniteNonZero() || category == fcNaN); - assert(rhs.partCount() >= partCount()); - - APInt::tcAssign(significandParts(), rhs.significandParts(), - partCount()); -} - -/* Make this number a NaN, with an arbitrary but deterministic value - for the significand. If double or longer, this is a signalling NaN, - which may not be ideal. If float, this is QNaN(0). */ -void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { - category = fcNaN; - sign = Negative; +//===-- APFloat.cpp - Implement APFloat class -----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a class to represent arbitrary precision floating +// point values and provide a variety of arithmetic operations on them. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cstring> +#include <limits.h> + +#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ + do { \ + if (usesLayout<IEEEFloat>(getSemantics())) \ + return U.IEEE.METHOD_CALL; \ + if (usesLayout<DoubleAPFloat>(getSemantics())) \ + return U.Double.METHOD_CALL; \ + llvm_unreachable("Unexpected semantics"); \ + } while (false) + +using namespace llvm; + +/// A macro used to combine two fcCategory enums into one key which can be used +/// in a switch statement to classify how the interaction of two APFloat's +/// categories affects an operation. +/// +/// TODO: If clang source code is ever allowed to use constexpr in its own +/// codebase, change this into a static inline function. +#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) + +/* Assumed in hexadecimal significand parsing, and conversion to + hexadecimal strings. */ +static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); + +namespace llvm { + /* Represents floating point arithmetic semantics. */ + struct fltSemantics { + /* The largest E such that 2^E is representable; this matches the + definition of IEEE 754. */ + APFloatBase::ExponentType maxExponent; + + /* The smallest E such that 2^E is a normalized number; this + matches the definition of IEEE 754. */ + APFloatBase::ExponentType minExponent; + + /* Number of bits in the significand. This includes the integer + bit. */ + unsigned int precision; + + /* Number of bits actually used in the semantics. */ + unsigned int sizeInBits; + }; + + static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; + static const fltSemantics semBFloat = {127, -126, 8, 16}; + static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; + static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; + static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; + static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; + static const fltSemantics semBogus = {0, 0, 0, 0}; + + /* The IBM double-double semantics. Such a number consists of a pair of IEEE + 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, + (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. + Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent + to each other, and two 11-bit exponents. + + Note: we need to make the value different from semBogus as otherwise + an unsafe optimization may collapse both values to a single address, + and we heavily rely on them having distinct addresses. */ + static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; + + /* These are legacy semantics for the fallback, inaccrurate implementation of + IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the + operation. It's equivalent to having an IEEE number with consecutive 106 + bits of mantissa and 11 bits of exponent. + + It's not equivalent to IBM double-double. For example, a legit IBM + double-double, 1 + epsilon: + + 1 + epsilon = 1 + (1 >> 1076) + + is not representable by a consecutive 106 bits of mantissa. + + Currently, these semantics are used in the following way: + + semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> + (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> + semPPCDoubleDoubleLegacy -> IEEE operations + + We use bitcastToAPInt() to get the bit representation (in APInt) of the + underlying IEEEdouble, then use the APInt constructor to construct the + legacy IEEE float. + + TODO: Implement all operations in semPPCDoubleDouble, and delete these + semantics. */ + static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, + 53 + 53, 128}; + + const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { + switch (S) { + case S_IEEEhalf: + return IEEEhalf(); + case S_BFloat: + return BFloat(); + case S_IEEEsingle: + return IEEEsingle(); + case S_IEEEdouble: + return IEEEdouble(); + case S_x87DoubleExtended: + return x87DoubleExtended(); + case S_IEEEquad: + return IEEEquad(); + case S_PPCDoubleDouble: + return PPCDoubleDouble(); + } + llvm_unreachable("Unrecognised floating semantics"); + } + + APFloatBase::Semantics + APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { + if (&Sem == &llvm::APFloat::IEEEhalf()) + return S_IEEEhalf; + else if (&Sem == &llvm::APFloat::BFloat()) + return S_BFloat; + else if (&Sem == &llvm::APFloat::IEEEsingle()) + return S_IEEEsingle; + else if (&Sem == &llvm::APFloat::IEEEdouble()) + return S_IEEEdouble; + else if (&Sem == &llvm::APFloat::x87DoubleExtended()) + return S_x87DoubleExtended; + else if (&Sem == &llvm::APFloat::IEEEquad()) + return S_IEEEquad; + else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) + return S_PPCDoubleDouble; + else + llvm_unreachable("Unknown floating semantics"); + } + + const fltSemantics &APFloatBase::IEEEhalf() { + return semIEEEhalf; + } + const fltSemantics &APFloatBase::BFloat() { + return semBFloat; + } + const fltSemantics &APFloatBase::IEEEsingle() { + return semIEEEsingle; + } + const fltSemantics &APFloatBase::IEEEdouble() { + return semIEEEdouble; + } + const fltSemantics &APFloatBase::IEEEquad() { + return semIEEEquad; + } + const fltSemantics &APFloatBase::x87DoubleExtended() { + return semX87DoubleExtended; + } + const fltSemantics &APFloatBase::Bogus() { + return semBogus; + } + const fltSemantics &APFloatBase::PPCDoubleDouble() { + return semPPCDoubleDouble; + } + + constexpr RoundingMode APFloatBase::rmNearestTiesToEven; + constexpr RoundingMode APFloatBase::rmTowardPositive; + constexpr RoundingMode APFloatBase::rmTowardNegative; + constexpr RoundingMode APFloatBase::rmTowardZero; + constexpr RoundingMode APFloatBase::rmNearestTiesToAway; + + /* A tight upper bound on number of parts required to hold the value + pow(5, power) is + + power * 815 / (351 * integerPartWidth) + 1 + + However, whilst the result may require only this many parts, + because we are multiplying two values to get it, the + multiplication may require an extra part with the excess part + being zero (consider the trivial case of 1 * 1, tcFullMultiply + requires two parts to hold the single-part result). So we add an + extra one to guarantee enough space whilst multiplying. */ + const unsigned int maxExponent = 16383; + const unsigned int maxPrecision = 113; + const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; + const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); + + unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { + return semantics.precision; + } + APFloatBase::ExponentType + APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { + return semantics.maxExponent; + } + APFloatBase::ExponentType + APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { + return semantics.minExponent; + } + unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { + return semantics.sizeInBits; + } + + unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { + return Sem.sizeInBits; +} + +/* A bunch of private, handy routines. */ + +static inline Error createError(const Twine &Err) { + return make_error<StringError>(Err, inconvertibleErrorCode()); +} + +static inline unsigned int +partCountForBits(unsigned int bits) +{ + return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; +} + +/* Returns 0U-9U. Return values >= 10U are not digits. */ +static inline unsigned int +decDigitValue(unsigned int c) +{ + return c - '0'; +} + +/* Return the value of a decimal exponent of the form + [+-]ddddddd. + + If the exponent overflows, returns a large exponent with the + appropriate sign. */ +static Expected<int> readExponent(StringRef::iterator begin, + StringRef::iterator end) { + bool isNegative; + unsigned int absExponent; + const unsigned int overlargeExponent = 24000; /* FIXME. */ + StringRef::iterator p = begin; + + // Treat no exponent as 0 to match binutils + if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { + return 0; + } + + isNegative = (*p == '-'); + if (*p == '-' || *p == '+') { + p++; + if (p == end) + return createError("Exponent has no digits"); + } + + absExponent = decDigitValue(*p++); + if (absExponent >= 10U) + return createError("Invalid character in exponent"); + + for (; p != end; ++p) { + unsigned int value; + + value = decDigitValue(*p); + if (value >= 10U) + return createError("Invalid character in exponent"); + + absExponent = absExponent * 10U + value; + if (absExponent >= overlargeExponent) { + absExponent = overlargeExponent; + break; + } + } + + if (isNegative) + return -(int) absExponent; + else + return (int) absExponent; +} + +/* This is ugly and needs cleaning up, but I don't immediately see + how whilst remaining safe. */ +static Expected<int> totalExponent(StringRef::iterator p, + StringRef::iterator end, + int exponentAdjustment) { + int unsignedExponent; + bool negative, overflow; + int exponent = 0; + + if (p == end) + return createError("Exponent has no digits"); + + negative = *p == '-'; + if (*p == '-' || *p == '+') { + p++; + if (p == end) + return createError("Exponent has no digits"); + } + + unsignedExponent = 0; + overflow = false; + for (; p != end; ++p) { + unsigned int value; + + value = decDigitValue(*p); + if (value >= 10U) + return createError("Invalid character in exponent"); + + unsignedExponent = unsignedExponent * 10 + value; + if (unsignedExponent > 32767) { + overflow = true; + break; + } + } + + if (exponentAdjustment > 32767 || exponentAdjustment < -32768) + overflow = true; + + if (!overflow) { + exponent = unsignedExponent; + if (negative) + exponent = -exponent; + exponent += exponentAdjustment; + if (exponent > 32767 || exponent < -32768) + overflow = true; + } + + if (overflow) + exponent = negative ? -32768: 32767; + + return exponent; +} + +static Expected<StringRef::iterator> +skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, + StringRef::iterator *dot) { + StringRef::iterator p = begin; + *dot = end; + while (p != end && *p == '0') + p++; + + if (p != end && *p == '.') { + *dot = p++; + + if (end - begin == 1) + return createError("Significand has no digits"); + + while (p != end && *p == '0') + p++; + } + + return p; +} + +/* Given a normal decimal floating point number of the form + + dddd.dddd[eE][+-]ddd + + where the decimal point and exponent are optional, fill out the + structure D. Exponent is appropriate if the significand is + treated as an integer, and normalizedExponent if the significand + is taken to have the decimal point after a single leading + non-zero digit. + + If the value is zero, V->firstSigDigit points to a non-digit, and + the return exponent is zero. +*/ +struct decimalInfo { + const char *firstSigDigit; + const char *lastSigDigit; + int exponent; + int normalizedExponent; +}; + +static Error interpretDecimal(StringRef::iterator begin, + StringRef::iterator end, decimalInfo *D) { + StringRef::iterator dot = end; + + auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); + if (!PtrOrErr) + return PtrOrErr.takeError(); + StringRef::iterator p = *PtrOrErr; + + D->firstSigDigit = p; + D->exponent = 0; + D->normalizedExponent = 0; + + for (; p != end; ++p) { + if (*p == '.') { + if (dot != end) + return createError("String contains multiple dots"); + dot = p++; + if (p == end) + break; + } + if (decDigitValue(*p) >= 10U) + break; + } + + if (p != end) { + if (*p != 'e' && *p != 'E') + return createError("Invalid character in significand"); + if (p == begin) + return createError("Significand has no digits"); + if (dot != end && p - begin == 1) + return createError("Significand has no digits"); + + /* p points to the first non-digit in the string */ + auto ExpOrErr = readExponent(p + 1, end); + if (!ExpOrErr) + return ExpOrErr.takeError(); + D->exponent = *ExpOrErr; + + /* Implied decimal point? */ + if (dot == end) + dot = p; + } + + /* If number is all zeroes accept any exponent. */ + if (p != D->firstSigDigit) { + /* Drop insignificant trailing zeroes. */ + if (p != begin) { + do + do + p--; + while (p != begin && *p == '0'); + while (p != begin && *p == '.'); + } + + /* Adjust the exponents for any decimal point. */ + D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); + D->normalizedExponent = (D->exponent + + static_cast<APFloat::ExponentType>((p - D->firstSigDigit) + - (dot > D->firstSigDigit && dot < p))); + } + + D->lastSigDigit = p; + return Error::success(); +} + +/* Return the trailing fraction of a hexadecimal number. + DIGITVALUE is the first hex digit of the fraction, P points to + the next digit. */ +static Expected<lostFraction> +trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, + unsigned int digitValue) { + unsigned int hexDigit; + + /* If the first trailing digit isn't 0 or 8 we can work out the + fraction immediately. */ + if (digitValue > 8) + return lfMoreThanHalf; + else if (digitValue < 8 && digitValue > 0) + return lfLessThanHalf; + + // Otherwise we need to find the first non-zero digit. + while (p != end && (*p == '0' || *p == '.')) + p++; + + if (p == end) + return createError("Invalid trailing hexadecimal fraction!"); + + hexDigit = hexDigitValue(*p); + + /* If we ran off the end it is exactly zero or one-half, otherwise + a little more. */ + if (hexDigit == -1U) + return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; + else + return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; +} + +/* Return the fraction lost were a bignum truncated losing the least + significant BITS bits. */ +static lostFraction +lostFractionThroughTruncation(const APFloatBase::integerPart *parts, + unsigned int partCount, + unsigned int bits) +{ + unsigned int lsb; + + lsb = APInt::tcLSB(parts, partCount); + + /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ + if (bits <= lsb) + return lfExactlyZero; + if (bits == lsb + 1) + return lfExactlyHalf; + if (bits <= partCount * APFloatBase::integerPartWidth && + APInt::tcExtractBit(parts, bits - 1)) + return lfMoreThanHalf; + + return lfLessThanHalf; +} + +/* Shift DST right BITS bits noting lost fraction. */ +static lostFraction +shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) +{ + lostFraction lost_fraction; + + lost_fraction = lostFractionThroughTruncation(dst, parts, bits); + + APInt::tcShiftRight(dst, parts, bits); + + return lost_fraction; +} + +/* Combine the effect of two lost fractions. */ +static lostFraction +combineLostFractions(lostFraction moreSignificant, + lostFraction lessSignificant) +{ + if (lessSignificant != lfExactlyZero) { + if (moreSignificant == lfExactlyZero) + moreSignificant = lfLessThanHalf; + else if (moreSignificant == lfExactlyHalf) + moreSignificant = lfMoreThanHalf; + } + + return moreSignificant; +} + +/* The error from the true value, in half-ulps, on multiplying two + floating point numbers, which differ from the value they + approximate by at most HUE1 and HUE2 half-ulps, is strictly less + than the returned value. + + See "How to Read Floating Point Numbers Accurately" by William D + Clinger. */ +static unsigned int +HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) +{ + assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); + + if (HUerr1 + HUerr2 == 0) + return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ + else + return inexactMultiply + 2 * (HUerr1 + HUerr2); +} + +/* The number of ulps from the boundary (zero, or half if ISNEAREST) + when the least significant BITS are truncated. BITS cannot be + zero. */ +static APFloatBase::integerPart +ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, + bool isNearest) { + unsigned int count, partBits; + APFloatBase::integerPart part, boundary; + + assert(bits != 0); + + bits--; + count = bits / APFloatBase::integerPartWidth; + partBits = bits % APFloatBase::integerPartWidth + 1; + + part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); + + if (isNearest) + boundary = (APFloatBase::integerPart) 1 << (partBits - 1); + else + boundary = 0; + + if (count == 0) { + if (part - boundary <= boundary - part) + return part - boundary; + else + return boundary - part; + } + + if (part == boundary) { + while (--count) + if (parts[count]) + return ~(APFloatBase::integerPart) 0; /* A lot. */ + + return parts[0]; + } else if (part == boundary - 1) { + while (--count) + if (~parts[count]) + return ~(APFloatBase::integerPart) 0; /* A lot. */ + + return -parts[0]; + } + + return ~(APFloatBase::integerPart) 0; /* A lot. */ +} + +/* Place pow(5, power) in DST, and return the number of parts used. + DST must be at least one part larger than size of the answer. */ +static unsigned int +powerOf5(APFloatBase::integerPart *dst, unsigned int power) { + static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; + APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; + pow5s[0] = 78125 * 5; + + unsigned int partsCount[16] = { 1 }; + APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; + unsigned int result; + assert(power <= maxExponent); + + p1 = dst; + p2 = scratch; + + *p1 = firstEightPowers[power & 7]; + power >>= 3; + + result = 1; + pow5 = pow5s; + + for (unsigned int n = 0; power; power >>= 1, n++) { + unsigned int pc; + + pc = partsCount[n]; + + /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ + if (pc == 0) { + pc = partsCount[n - 1]; + APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); + pc *= 2; + if (pow5[pc - 1] == 0) + pc--; + partsCount[n] = pc; + } + + if (power & 1) { + APFloatBase::integerPart *tmp; + + APInt::tcFullMultiply(p2, p1, pow5, result, pc); + result += pc; + if (p2[result - 1] == 0) + result--; + + /* Now result is in p1 with partsCount parts and p2 is scratch + space. */ + tmp = p1; + p1 = p2; + p2 = tmp; + } + + pow5 += pc; + } + + if (p1 != dst) + APInt::tcAssign(dst, p1, result); + + return result; +} + +/* Zero at the end to avoid modular arithmetic when adding one; used + when rounding up during hexadecimal output. */ +static const char hexDigitsLower[] = "0123456789abcdef0"; +static const char hexDigitsUpper[] = "0123456789ABCDEF0"; +static const char infinityL[] = "infinity"; +static const char infinityU[] = "INFINITY"; +static const char NaNL[] = "nan"; +static const char NaNU[] = "NAN"; + +/* Write out an integerPart in hexadecimal, starting with the most + significant nibble. Write out exactly COUNT hexdigits, return + COUNT. */ +static unsigned int +partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, + const char *hexDigitChars) +{ + unsigned int result = count; + + assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); + + part >>= (APFloatBase::integerPartWidth - 4 * count); + while (count--) { + dst[count] = hexDigitChars[part & 0xf]; + part >>= 4; + } + + return result; +} + +/* Write out an unsigned decimal integer. */ +static char * +writeUnsignedDecimal (char *dst, unsigned int n) +{ + char buff[40], *p; + + p = buff; + do + *p++ = '0' + n % 10; + while (n /= 10); + + do + *dst++ = *--p; + while (p != buff); + + return dst; +} + +/* Write out a signed decimal integer. */ +static char * +writeSignedDecimal (char *dst, int value) +{ + if (value < 0) { + *dst++ = '-'; + dst = writeUnsignedDecimal(dst, -(unsigned) value); + } else + dst = writeUnsignedDecimal(dst, value); + + return dst; +} + +namespace detail { +/* Constructors. */ +void IEEEFloat::initialize(const fltSemantics *ourSemantics) { + unsigned int count; + + semantics = ourSemantics; + count = partCount(); + if (count > 1) + significand.parts = new integerPart[count]; +} + +void IEEEFloat::freeSignificand() { + if (needsCleanup()) + delete [] significand.parts; +} + +void IEEEFloat::assign(const IEEEFloat &rhs) { + assert(semantics == rhs.semantics); + + sign = rhs.sign; + category = rhs.category; + exponent = rhs.exponent; + if (isFiniteNonZero() || category == fcNaN) + copySignificand(rhs); +} + +void IEEEFloat::copySignificand(const IEEEFloat &rhs) { + assert(isFiniteNonZero() || category == fcNaN); + assert(rhs.partCount() >= partCount()); + + APInt::tcAssign(significandParts(), rhs.significandParts(), + partCount()); +} + +/* Make this number a NaN, with an arbitrary but deterministic value + for the significand. If double or longer, this is a signalling NaN, + which may not be ideal. If float, this is QNaN(0). */ +void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { + category = fcNaN; + sign = Negative; exponent = exponentNaN(); - - integerPart *significand = significandParts(); - unsigned numParts = partCount(); - - // Set the significand bits to the fill. - if (!fill || fill->getNumWords() < numParts) - APInt::tcSet(significand, 0, numParts); - if (fill) { - APInt::tcAssign(significand, fill->getRawData(), - std::min(fill->getNumWords(), numParts)); - - // Zero out the excess bits of the significand. - unsigned bitsToPreserve = semantics->precision - 1; - unsigned part = bitsToPreserve / 64; - bitsToPreserve %= 64; - significand[part] &= ((1ULL << bitsToPreserve) - 1); - for (part++; part != numParts; ++part) - significand[part] = 0; - } - - unsigned QNaNBit = semantics->precision - 2; - - if (SNaN) { - // We always have to clear the QNaN bit to make it an SNaN. - APInt::tcClearBit(significand, QNaNBit); - - // If there are no bits set in the payload, we have to set - // *something* to make it a NaN instead of an infinity; - // conventionally, this is the next bit down from the QNaN bit. - if (APInt::tcIsZero(significand, numParts)) - APInt::tcSetBit(significand, QNaNBit - 1); - } else { - // We always have to set the QNaN bit to make it a QNaN. - APInt::tcSetBit(significand, QNaNBit); - } - - // For x87 extended precision, we want to make a NaN, not a - // pseudo-NaN. Maybe we should expose the ability to make - // pseudo-NaNs? - if (semantics == &semX87DoubleExtended) - APInt::tcSetBit(significand, QNaNBit + 1); -} - -IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { - if (this != &rhs) { - if (semantics != rhs.semantics) { - freeSignificand(); - initialize(rhs.semantics); - } - assign(rhs); - } - - return *this; -} - -IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { - freeSignificand(); - - semantics = rhs.semantics; - significand = rhs.significand; - exponent = rhs.exponent; - category = rhs.category; - sign = rhs.sign; - - rhs.semantics = &semBogus; - return *this; -} - -bool IEEEFloat::isDenormal() const { - return isFiniteNonZero() && (exponent == semantics->minExponent) && - (APInt::tcExtractBit(significandParts(), - semantics->precision - 1) == 0); -} - -bool IEEEFloat::isSmallest() const { - // The smallest number by magnitude in our format will be the smallest - // denormal, i.e. the floating point number with exponent being minimum - // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). - return isFiniteNonZero() && exponent == semantics->minExponent && - significandMSB() == 0; -} - -bool IEEEFloat::isSignificandAllOnes() const { - // Test if the significand excluding the integral bit is all ones. This allows - // us to test for binade boundaries. - const integerPart *Parts = significandParts(); + + integerPart *significand = significandParts(); + unsigned numParts = partCount(); + + // Set the significand bits to the fill. + if (!fill || fill->getNumWords() < numParts) + APInt::tcSet(significand, 0, numParts); + if (fill) { + APInt::tcAssign(significand, fill->getRawData(), + std::min(fill->getNumWords(), numParts)); + + // Zero out the excess bits of the significand. + unsigned bitsToPreserve = semantics->precision - 1; + unsigned part = bitsToPreserve / 64; + bitsToPreserve %= 64; + significand[part] &= ((1ULL << bitsToPreserve) - 1); + for (part++; part != numParts; ++part) + significand[part] = 0; + } + + unsigned QNaNBit = semantics->precision - 2; + + if (SNaN) { + // We always have to clear the QNaN bit to make it an SNaN. + APInt::tcClearBit(significand, QNaNBit); + + // If there are no bits set in the payload, we have to set + // *something* to make it a NaN instead of an infinity; + // conventionally, this is the next bit down from the QNaN bit. + if (APInt::tcIsZero(significand, numParts)) + APInt::tcSetBit(significand, QNaNBit - 1); + } else { + // We always have to set the QNaN bit to make it a QNaN. + APInt::tcSetBit(significand, QNaNBit); + } + + // For x87 extended precision, we want to make a NaN, not a + // pseudo-NaN. Maybe we should expose the ability to make + // pseudo-NaNs? + if (semantics == &semX87DoubleExtended) + APInt::tcSetBit(significand, QNaNBit + 1); +} + +IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { + if (this != &rhs) { + if (semantics != rhs.semantics) { + freeSignificand(); + initialize(rhs.semantics); + } + assign(rhs); + } + + return *this; +} + +IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { + freeSignificand(); + + semantics = rhs.semantics; + significand = rhs.significand; + exponent = rhs.exponent; + category = rhs.category; + sign = rhs.sign; + + rhs.semantics = &semBogus; + return *this; +} + +bool IEEEFloat::isDenormal() const { + return isFiniteNonZero() && (exponent == semantics->minExponent) && + (APInt::tcExtractBit(significandParts(), + semantics->precision - 1) == 0); +} + +bool IEEEFloat::isSmallest() const { + // The smallest number by magnitude in our format will be the smallest + // denormal, i.e. the floating point number with exponent being minimum + // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). + return isFiniteNonZero() && exponent == semantics->minExponent && + significandMSB() == 0; +} + +bool IEEEFloat::isSignificandAllOnes() const { + // Test if the significand excluding the integral bit is all ones. This allows + // us to test for binade boundaries. + const integerPart *Parts = significandParts(); const unsigned PartCount = partCountForBits(semantics->precision); - for (unsigned i = 0; i < PartCount - 1; i++) - if (~Parts[i]) - return false; - - // Set the unused high bits to all ones when we compare. - const unsigned NumHighBits = - PartCount*integerPartWidth - semantics->precision + 1; + for (unsigned i = 0; i < PartCount - 1; i++) + if (~Parts[i]) + return false; + + // Set the unused high bits to all ones when we compare. + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; assert(NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth"); - const integerPart HighBitFill = - ~integerPart(0) << (integerPartWidth - NumHighBits); - if (~(Parts[PartCount - 1] | HighBitFill)) - return false; - - return true; -} - -bool IEEEFloat::isSignificandAllZeros() const { - // Test if the significand excluding the integral bit is all zeros. This - // allows us to test for binade boundaries. - const integerPart *Parts = significandParts(); + const integerPart HighBitFill = + ~integerPart(0) << (integerPartWidth - NumHighBits); + if (~(Parts[PartCount - 1] | HighBitFill)) + return false; + + return true; +} + +bool IEEEFloat::isSignificandAllZeros() const { + // Test if the significand excluding the integral bit is all zeros. This + // allows us to test for binade boundaries. + const integerPart *Parts = significandParts(); const unsigned PartCount = partCountForBits(semantics->precision); - - for (unsigned i = 0; i < PartCount - 1; i++) - if (Parts[i]) - return false; - + + for (unsigned i = 0; i < PartCount - 1; i++) + if (Parts[i]) + return false; + // Compute how many bits are used in the final word. - const unsigned NumHighBits = - PartCount*integerPartWidth - semantics->precision + 1; + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; assert(NumHighBits < integerPartWidth && "Can not have more high bits to " - "clear than integerPartWidth"); - const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; - - if (Parts[PartCount - 1] & HighBitMask) - return false; - - return true; -} - -bool IEEEFloat::isLargest() const { - // The largest number by magnitude in our format will be the floating point - // number with maximum exponent and with significand that is all ones. - return isFiniteNonZero() && exponent == semantics->maxExponent - && isSignificandAllOnes(); -} - -bool IEEEFloat::isInteger() const { - // This could be made more efficient; I'm going for obviously correct. - if (!isFinite()) return false; - IEEEFloat truncated = *this; - truncated.roundToIntegral(rmTowardZero); - return compare(truncated) == cmpEqual; -} - -bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { - if (this == &rhs) - return true; - if (semantics != rhs.semantics || - category != rhs.category || - sign != rhs.sign) - return false; - if (category==fcZero || category==fcInfinity) - return true; - - if (isFiniteNonZero() && exponent != rhs.exponent) - return false; - - return std::equal(significandParts(), significandParts() + partCount(), - rhs.significandParts()); -} - -IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { - initialize(&ourSemantics); - sign = 0; - category = fcNormal; - zeroSignificand(); - exponent = ourSemantics.precision - 1; - significandParts()[0] = value; - normalize(rmNearestTiesToEven, lfExactlyZero); -} - -IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { - initialize(&ourSemantics); + "clear than integerPartWidth"); + const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; + + if (Parts[PartCount - 1] & HighBitMask) + return false; + + return true; +} + +bool IEEEFloat::isLargest() const { + // The largest number by magnitude in our format will be the floating point + // number with maximum exponent and with significand that is all ones. + return isFiniteNonZero() && exponent == semantics->maxExponent + && isSignificandAllOnes(); +} + +bool IEEEFloat::isInteger() const { + // This could be made more efficient; I'm going for obviously correct. + if (!isFinite()) return false; + IEEEFloat truncated = *this; + truncated.roundToIntegral(rmTowardZero); + return compare(truncated) == cmpEqual; +} + +bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { + if (this == &rhs) + return true; + if (semantics != rhs.semantics || + category != rhs.category || + sign != rhs.sign) + return false; + if (category==fcZero || category==fcInfinity) + return true; + + if (isFiniteNonZero() && exponent != rhs.exponent) + return false; + + return std::equal(significandParts(), significandParts() + partCount(), + rhs.significandParts()); +} + +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { + initialize(&ourSemantics); + sign = 0; + category = fcNormal; + zeroSignificand(); + exponent = ourSemantics.precision - 1; + significandParts()[0] = value; + normalize(rmNearestTiesToEven, lfExactlyZero); +} + +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { + initialize(&ourSemantics); makeZero(false); -} - -// Delegate to the previous constructor, because later copy constructor may -// actually inspects category, which can't be garbage. -IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) - : IEEEFloat(ourSemantics) {} - -IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { - initialize(rhs.semantics); - assign(rhs); -} - -IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { - *this = std::move(rhs); -} - -IEEEFloat::~IEEEFloat() { freeSignificand(); } - -unsigned int IEEEFloat::partCount() const { - return partCountForBits(semantics->precision + 1); -} - -const IEEEFloat::integerPart *IEEEFloat::significandParts() const { - return const_cast<IEEEFloat *>(this)->significandParts(); -} - -IEEEFloat::integerPart *IEEEFloat::significandParts() { - if (partCount() > 1) - return significand.parts; - else - return &significand.part; -} - -void IEEEFloat::zeroSignificand() { - APInt::tcSet(significandParts(), 0, partCount()); -} - -/* Increment an fcNormal floating point number's significand. */ -void IEEEFloat::incrementSignificand() { - integerPart carry; - - carry = APInt::tcIncrement(significandParts(), partCount()); - - /* Our callers should never cause us to overflow. */ - assert(carry == 0); - (void)carry; -} - -/* Add the significand of the RHS. Returns the carry flag. */ -IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { - integerPart *parts; - - parts = significandParts(); - - assert(semantics == rhs.semantics); - assert(exponent == rhs.exponent); - - return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); -} - -/* Subtract the significand of the RHS with a borrow flag. Returns - the borrow flag. */ -IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, - integerPart borrow) { - integerPart *parts; - - parts = significandParts(); - - assert(semantics == rhs.semantics); - assert(exponent == rhs.exponent); - - return APInt::tcSubtract(parts, rhs.significandParts(), borrow, - partCount()); -} - -/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it - on to the full-precision result of the multiplication. Returns the - lost fraction. */ -lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, - IEEEFloat addend) { - unsigned int omsb; // One, not zero, based MSB. - unsigned int partsCount, newPartsCount, precision; - integerPart *lhsSignificand; - integerPart scratch[4]; - integerPart *fullSignificand; - lostFraction lost_fraction; - bool ignored; - - assert(semantics == rhs.semantics); - - precision = semantics->precision; - - // Allocate space for twice as many bits as the original significand, plus one - // extra bit for the addition to overflow into. - newPartsCount = partCountForBits(precision * 2 + 1); - - if (newPartsCount > 4) - fullSignificand = new integerPart[newPartsCount]; - else - fullSignificand = scratch; - - lhsSignificand = significandParts(); - partsCount = partCount(); - - APInt::tcFullMultiply(fullSignificand, lhsSignificand, - rhs.significandParts(), partsCount, partsCount); - - lost_fraction = lfExactlyZero; - omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; - exponent += rhs.exponent; - - // Assume the operands involved in the multiplication are single-precision - // FP, and the two multiplicants are: - // *this = a23 . a22 ... a0 * 2^e1 - // rhs = b23 . b22 ... b0 * 2^e2 - // the result of multiplication is: - // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) - // Note that there are three significant bits at the left-hand side of the - // radix point: two for the multiplication, and an overflow bit for the - // addition (that will always be zero at this point). Move the radix point - // toward left by two bits, and adjust exponent accordingly. - exponent += 2; - - if (addend.isNonZero()) { - // The intermediate result of the multiplication has "2 * precision" - // signicant bit; adjust the addend to be consistent with mul result. - // - Significand savedSignificand = significand; - const fltSemantics *savedSemantics = semantics; - fltSemantics extendedSemantics; - opStatus status; - unsigned int extendedPrecision; - - // Normalize our MSB to one below the top bit to allow for overflow. - extendedPrecision = 2 * precision + 1; - if (omsb != extendedPrecision - 1) { - assert(extendedPrecision > omsb); - APInt::tcShiftLeft(fullSignificand, newPartsCount, - (extendedPrecision - 1) - omsb); - exponent -= (extendedPrecision - 1) - omsb; - } - - /* Create new semantics. */ - extendedSemantics = *semantics; - extendedSemantics.precision = extendedPrecision; - - if (newPartsCount == 1) - significand.part = fullSignificand[0]; - else - significand.parts = fullSignificand; - semantics = &extendedSemantics; - - // Make a copy so we can convert it to the extended semantics. - // Note that we cannot convert the addend directly, as the extendedSemantics - // is a local variable (which we take a reference to). - IEEEFloat extendedAddend(addend); - status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); - assert(status == opOK); - (void)status; - - // Shift the significand of the addend right by one bit. This guarantees - // that the high bit of the significand is zero (same as fullSignificand), - // so the addition will overflow (if it does overflow at all) into the top bit. - lost_fraction = extendedAddend.shiftSignificandRight(1); - assert(lost_fraction == lfExactlyZero && - "Lost precision while shifting addend for fused-multiply-add."); - - lost_fraction = addOrSubtractSignificand(extendedAddend, false); - - /* Restore our state. */ - if (newPartsCount == 1) - fullSignificand[0] = significand.part; - significand = savedSignificand; - semantics = savedSemantics; - - omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; - } - - // Convert the result having "2 * precision" significant-bits back to the one - // having "precision" significant-bits. First, move the radix point from - // poision "2*precision - 1" to "precision - 1". The exponent need to be - // adjusted by "2*precision - 1" - "precision - 1" = "precision". - exponent -= precision + 1; - - // In case MSB resides at the left-hand side of radix point, shift the - // mantissa right by some amount to make sure the MSB reside right before - // the radix point (i.e. "MSB . rest-significant-bits"). - // - // Note that the result is not normalized when "omsb < precision". So, the - // caller needs to call IEEEFloat::normalize() if normalized value is - // expected. - if (omsb > precision) { - unsigned int bits, significantParts; - lostFraction lf; - - bits = omsb - precision; - significantParts = partCountForBits(omsb); - lf = shiftRight(fullSignificand, significantParts, bits); - lost_fraction = combineLostFractions(lf, lost_fraction); - exponent += bits; - } - - APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); - - if (newPartsCount > 4) - delete [] fullSignificand; - - return lost_fraction; -} - -lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) { - return multiplySignificand(rhs, IEEEFloat(*semantics)); -} - -/* Multiply the significands of LHS and RHS to DST. */ -lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { - unsigned int bit, i, partsCount; - const integerPart *rhsSignificand; - integerPart *lhsSignificand, *dividend, *divisor; - integerPart scratch[4]; - lostFraction lost_fraction; - - assert(semantics == rhs.semantics); - - lhsSignificand = significandParts(); - rhsSignificand = rhs.significandParts(); - partsCount = partCount(); - - if (partsCount > 2) - dividend = new integerPart[partsCount * 2]; - else - dividend = scratch; - - divisor = dividend + partsCount; - - /* Copy the dividend and divisor as they will be modified in-place. */ - for (i = 0; i < partsCount; i++) { - dividend[i] = lhsSignificand[i]; - divisor[i] = rhsSignificand[i]; - lhsSignificand[i] = 0; - } - - exponent -= rhs.exponent; - - unsigned int precision = semantics->precision; - - /* Normalize the divisor. */ - bit = precision - APInt::tcMSB(divisor, partsCount) - 1; - if (bit) { - exponent += bit; - APInt::tcShiftLeft(divisor, partsCount, bit); - } - - /* Normalize the dividend. */ - bit = precision - APInt::tcMSB(dividend, partsCount) - 1; - if (bit) { - exponent -= bit; - APInt::tcShiftLeft(dividend, partsCount, bit); - } - - /* Ensure the dividend >= divisor initially for the loop below. - Incidentally, this means that the division loop below is - guaranteed to set the integer bit to one. */ - if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { - exponent--; - APInt::tcShiftLeft(dividend, partsCount, 1); - assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); - } - - /* Long division. */ - for (bit = precision; bit; bit -= 1) { - if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { - APInt::tcSubtract(dividend, divisor, 0, partsCount); - APInt::tcSetBit(lhsSignificand, bit - 1); - } - - APInt::tcShiftLeft(dividend, partsCount, 1); - } - - /* Figure out the lost fraction. */ - int cmp = APInt::tcCompare(dividend, divisor, partsCount); - - if (cmp > 0) - lost_fraction = lfMoreThanHalf; - else if (cmp == 0) - lost_fraction = lfExactlyHalf; - else if (APInt::tcIsZero(dividend, partsCount)) - lost_fraction = lfExactlyZero; - else - lost_fraction = lfLessThanHalf; - - if (partsCount > 2) - delete [] dividend; - - return lost_fraction; -} - -unsigned int IEEEFloat::significandMSB() const { - return APInt::tcMSB(significandParts(), partCount()); -} - -unsigned int IEEEFloat::significandLSB() const { - return APInt::tcLSB(significandParts(), partCount()); -} - -/* Note that a zero result is NOT normalized to fcZero. */ -lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { - /* Our exponent should not overflow. */ - assert((ExponentType) (exponent + bits) >= exponent); - - exponent += bits; - - return shiftRight(significandParts(), partCount(), bits); -} - -/* Shift the significand left BITS bits, subtract BITS from its exponent. */ -void IEEEFloat::shiftSignificandLeft(unsigned int bits) { - assert(bits < semantics->precision); - - if (bits) { - unsigned int partsCount = partCount(); - - APInt::tcShiftLeft(significandParts(), partsCount, bits); - exponent -= bits; - - assert(!APInt::tcIsZero(significandParts(), partsCount)); - } -} - -IEEEFloat::cmpResult -IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { - int compare; - - assert(semantics == rhs.semantics); - assert(isFiniteNonZero()); - assert(rhs.isFiniteNonZero()); - - compare = exponent - rhs.exponent; - - /* If exponents are equal, do an unsigned bignum comparison of the - significands. */ - if (compare == 0) - compare = APInt::tcCompare(significandParts(), rhs.significandParts(), - partCount()); - - if (compare > 0) - return cmpGreaterThan; - else if (compare < 0) - return cmpLessThan; - else - return cmpEqual; -} - -/* Handle overflow. Sign is preserved. We either become infinity or - the largest finite number. */ -IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { - /* Infinity? */ - if (rounding_mode == rmNearestTiesToEven || - rounding_mode == rmNearestTiesToAway || - (rounding_mode == rmTowardPositive && !sign) || - (rounding_mode == rmTowardNegative && sign)) { - category = fcInfinity; - return (opStatus) (opOverflow | opInexact); - } - - /* Otherwise we become the largest finite number. */ - category = fcNormal; - exponent = semantics->maxExponent; - APInt::tcSetLeastSignificantBits(significandParts(), partCount(), - semantics->precision); - - return opInexact; -} - -/* Returns TRUE if, when truncating the current number, with BIT the - new LSB, with the given lost fraction and rounding mode, the result - would need to be rounded away from zero (i.e., by increasing the - signficand). This routine must work for fcZero of both signs, and - fcNormal numbers. */ -bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, - lostFraction lost_fraction, - unsigned int bit) const { - /* NaNs and infinities should not have lost fractions. */ - assert(isFiniteNonZero() || category == fcZero); - - /* Current callers never pass this so we don't handle it. */ - assert(lost_fraction != lfExactlyZero); - - switch (rounding_mode) { - case rmNearestTiesToAway: - return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; - - case rmNearestTiesToEven: - if (lost_fraction == lfMoreThanHalf) - return true; - - /* Our zeroes don't have a significand to test. */ - if (lost_fraction == lfExactlyHalf && category != fcZero) - return APInt::tcExtractBit(significandParts(), bit); - - return false; - - case rmTowardZero: - return false; - - case rmTowardPositive: - return !sign; - - case rmTowardNegative: - return sign; - - default: - break; - } - llvm_unreachable("Invalid rounding mode found"); -} - -IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, - lostFraction lost_fraction) { - unsigned int omsb; /* One, not zero, based MSB. */ - int exponentChange; - - if (!isFiniteNonZero()) - return opOK; - - /* Before rounding normalize the exponent of fcNormal numbers. */ - omsb = significandMSB() + 1; - - if (omsb) { - /* OMSB is numbered from 1. We want to place it in the integer - bit numbered PRECISION if possible, with a compensating change in - the exponent. */ - exponentChange = omsb - semantics->precision; - - /* If the resulting exponent is too high, overflow according to - the rounding mode. */ - if (exponent + exponentChange > semantics->maxExponent) - return handleOverflow(rounding_mode); - - /* Subnormal numbers have exponent minExponent, and their MSB - is forced based on that. */ - if (exponent + exponentChange < semantics->minExponent) - exponentChange = semantics->minExponent - exponent; - - /* Shifting left is easy as we don't lose precision. */ - if (exponentChange < 0) { - assert(lost_fraction == lfExactlyZero); - - shiftSignificandLeft(-exponentChange); - - return opOK; - } - - if (exponentChange > 0) { - lostFraction lf; - - /* Shift right and capture any new lost fraction. */ - lf = shiftSignificandRight(exponentChange); - - lost_fraction = combineLostFractions(lf, lost_fraction); - - /* Keep OMSB up-to-date. */ - if (omsb > (unsigned) exponentChange) - omsb -= exponentChange; - else - omsb = 0; - } - } - - /* Now round the number according to rounding_mode given the lost - fraction. */ - - /* As specified in IEEE 754, since we do not trap we do not report - underflow for exact results. */ - if (lost_fraction == lfExactlyZero) { - /* Canonicalize zeroes. */ - if (omsb == 0) - category = fcZero; - - return opOK; - } - - /* Increment the significand if we're rounding away from zero. */ - if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { - if (omsb == 0) - exponent = semantics->minExponent; - - incrementSignificand(); - omsb = significandMSB() + 1; - - /* Did the significand increment overflow? */ - if (omsb == (unsigned) semantics->precision + 1) { - /* Renormalize by incrementing the exponent and shifting our - significand right one. However if we already have the - maximum exponent we overflow to infinity. */ - if (exponent == semantics->maxExponent) { - category = fcInfinity; - - return (opStatus) (opOverflow | opInexact); - } - - shiftSignificandRight(1); - - return opInexact; - } - } - - /* The normal case - we were and are not denormal, and any - significand increment above didn't overflow. */ - if (omsb == semantics->precision) - return opInexact; - - /* We have a non-zero denormal. */ - assert(omsb < semantics->precision); - - /* Canonicalize zeroes. */ - if (omsb == 0) - category = fcZero; - - /* The fcZero case is a denormal that underflowed to zero. */ - return (opStatus) (opUnderflow | opInexact); -} - -IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, - bool subtract) { - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - assign(rhs); - LLVM_FALLTHROUGH; - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - if (isSignaling()) { - makeQuiet(); - return opInvalidOp; - } - return rhs.isSignaling() ? opInvalidOp : opOK; - - case PackCategoriesIntoKey(fcNormal, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcInfinity, fcZero): - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcInfinity): - category = fcInfinity; - sign = rhs.sign ^ subtract; - return opOK; - - case PackCategoriesIntoKey(fcZero, fcNormal): - assign(rhs); - sign = rhs.sign ^ subtract; - return opOK; - - case PackCategoriesIntoKey(fcZero, fcZero): - /* Sign depends on rounding mode; handled by caller. */ - return opOK; - - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - /* Differently signed infinities can only be validly - subtracted. */ - if (((sign ^ rhs.sign)!=0) != subtract) { - makeNaN(); - return opInvalidOp; - } - - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - return opDivByZero; - } -} - -/* Add or subtract two normal numbers. */ -lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, - bool subtract) { - integerPart carry; - lostFraction lost_fraction; - int bits; - - /* Determine if the operation on the absolute values is effectively - an addition or subtraction. */ - subtract ^= static_cast<bool>(sign ^ rhs.sign); - - /* Are we bigger exponent-wise than the RHS? */ - bits = exponent - rhs.exponent; - - /* Subtraction is more subtle than one might naively expect. */ - if (subtract) { - IEEEFloat temp_rhs(rhs); - - if (bits == 0) - lost_fraction = lfExactlyZero; - else if (bits > 0) { - lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); - shiftSignificandLeft(1); - } else { - lost_fraction = shiftSignificandRight(-bits - 1); - temp_rhs.shiftSignificandLeft(1); - } - - // Should we reverse the subtraction. - if (compareAbsoluteValue(temp_rhs) == cmpLessThan) { - carry = temp_rhs.subtractSignificand - (*this, lost_fraction != lfExactlyZero); - copySignificand(temp_rhs); - sign = !sign; - } else { - carry = subtractSignificand - (temp_rhs, lost_fraction != lfExactlyZero); - } - - /* Invert the lost fraction - it was on the RHS and - subtracted. */ - if (lost_fraction == lfLessThanHalf) - lost_fraction = lfMoreThanHalf; - else if (lost_fraction == lfMoreThanHalf) - lost_fraction = lfLessThanHalf; - - /* The code above is intended to ensure that no borrow is - necessary. */ - assert(!carry); - (void)carry; - } else { - if (bits > 0) { - IEEEFloat temp_rhs(rhs); - - lost_fraction = temp_rhs.shiftSignificandRight(bits); - carry = addSignificand(temp_rhs); - } else { - lost_fraction = shiftSignificandRight(-bits); - carry = addSignificand(rhs); - } - - /* We have a guard bit; generating a carry cannot happen. */ - assert(!carry); - (void)carry; - } - - return lost_fraction; -} - -IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - assign(rhs); - sign = false; - LLVM_FALLTHROUGH; - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - sign ^= rhs.sign; // restore the original sign - if (isSignaling()) { - makeQuiet(); - return opInvalidOp; - } - return rhs.isSignaling() ? opInvalidOp : opOK; - - case PackCategoriesIntoKey(fcNormal, fcInfinity): - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - category = fcInfinity; - return opOK; - - case PackCategoriesIntoKey(fcZero, fcNormal): - case PackCategoriesIntoKey(fcNormal, fcZero): - case PackCategoriesIntoKey(fcZero, fcZero): - category = fcZero; - return opOK; - - case PackCategoriesIntoKey(fcZero, fcInfinity): - case PackCategoriesIntoKey(fcInfinity, fcZero): - makeNaN(); - return opInvalidOp; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - return opOK; - } -} - -IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - assign(rhs); - sign = false; - LLVM_FALLTHROUGH; - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - sign ^= rhs.sign; // restore the original sign - if (isSignaling()) { - makeQuiet(); - return opInvalidOp; - } - return rhs.isSignaling() ? opInvalidOp : opOK; - - case PackCategoriesIntoKey(fcInfinity, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcZero, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcNormal): - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcInfinity): - category = fcZero; - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcZero): - category = fcInfinity; - return opDivByZero; - - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcZero): - makeNaN(); - return opInvalidOp; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - return opOK; - } -} - -IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - assign(rhs); - LLVM_FALLTHROUGH; - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - if (isSignaling()) { - makeQuiet(); - return opInvalidOp; - } - return rhs.isSignaling() ? opInvalidOp : opOK; - - case PackCategoriesIntoKey(fcZero, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcNormal): - case PackCategoriesIntoKey(fcNormal, fcInfinity): - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcZero): - makeNaN(); - return opInvalidOp; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - return opOK; - } -} - -IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) { - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - assign(rhs); - LLVM_FALLTHROUGH; - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - if (isSignaling()) { - makeQuiet(); - return opInvalidOp; - } - return rhs.isSignaling() ? opInvalidOp : opOK; - - case PackCategoriesIntoKey(fcZero, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcNormal): - case PackCategoriesIntoKey(fcNormal, fcInfinity): - return opOK; - - case PackCategoriesIntoKey(fcNormal, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcZero): - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcZero): - makeNaN(); - return opInvalidOp; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - return opDivByZero; // fake status, indicating this is not a special case - } -} - -/* Change sign. */ -void IEEEFloat::changeSign() { - /* Look mummy, this one's easy. */ - sign = !sign; -} - -/* Normalized addition or subtraction. */ -IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, - roundingMode rounding_mode, - bool subtract) { - opStatus fs; - - fs = addOrSubtractSpecials(rhs, subtract); - - /* This return code means it was not a simple case. */ - if (fs == opDivByZero) { - lostFraction lost_fraction; - - lost_fraction = addOrSubtractSignificand(rhs, subtract); - fs = normalize(rounding_mode, lost_fraction); - - /* Can only be zero if we lost no fraction. */ - assert(category != fcZero || lost_fraction == lfExactlyZero); - } - - /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a - positive zero unless rounding to minus infinity, except that - adding two like-signed zeroes gives that zero. */ - if (category == fcZero) { - if (rhs.category != fcZero || (sign == rhs.sign) == subtract) - sign = (rounding_mode == rmTowardNegative); - } - - return fs; -} - -/* Normalized addition. */ -IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, - roundingMode rounding_mode) { - return addOrSubtract(rhs, rounding_mode, false); -} - -/* Normalized subtraction. */ -IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, - roundingMode rounding_mode) { - return addOrSubtract(rhs, rounding_mode, true); -} - -/* Normalized multiply. */ -IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, - roundingMode rounding_mode) { - opStatus fs; - - sign ^= rhs.sign; - fs = multiplySpecials(rhs); - - if (isFiniteNonZero()) { - lostFraction lost_fraction = multiplySignificand(rhs); - fs = normalize(rounding_mode, lost_fraction); - if (lost_fraction != lfExactlyZero) - fs = (opStatus) (fs | opInexact); - } - - return fs; -} - -/* Normalized divide. */ -IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, - roundingMode rounding_mode) { - opStatus fs; - - sign ^= rhs.sign; - fs = divideSpecials(rhs); - - if (isFiniteNonZero()) { - lostFraction lost_fraction = divideSignificand(rhs); - fs = normalize(rounding_mode, lost_fraction); - if (lost_fraction != lfExactlyZero) - fs = (opStatus) (fs | opInexact); - } - - return fs; -} - -/* Normalized remainder. */ -IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { - opStatus fs; - unsigned int origSign = sign; - - // First handle the special cases. - fs = remainderSpecials(rhs); - if (fs != opDivByZero) - return fs; - - fs = opOK; - - // Make sure the current value is less than twice the denom. If the addition - // did not succeed (an overflow has happened), which means that the finite - // value we currently posses must be less than twice the denom (as we are - // using the same semantics). - IEEEFloat P2 = rhs; - if (P2.add(rhs, rmNearestTiesToEven) == opOK) { - fs = mod(P2); - assert(fs == opOK); - } - - // Lets work with absolute numbers. - IEEEFloat P = rhs; - P.sign = false; - sign = false; - - // - // To calculate the remainder we use the following scheme. - // - // The remainder is defained as follows: - // - // remainder = numer - rquot * denom = x - r * p - // - // Where r is the result of: x/p, rounded toward the nearest integral value - // (with halfway cases rounded toward the even number). - // - // Currently, (after x mod 2p): - // r is the number of 2p's present inside x, which is inherently, an even - // number of p's. - // - // We may split the remaining calculation into 4 options: - // - if x < 0.5p then we round to the nearest number with is 0, and are done. - // - if x == 0.5p then we round to the nearest even number which is 0, and we - // are done as well. - // - if 0.5p < x < p then we round to nearest number which is 1, and we have - // to subtract 1p at least once. - // - if x >= p then we must subtract p at least once, as x must be a - // remainder. - // - // By now, we were done, or we added 1 to r, which in turn, now an odd number. - // - // We can now split the remaining calculation to the following 3 options: - // - if x < 0.5p then we round to the nearest number with is 0, and are done. - // - if x == 0.5p then we round to the nearest even number. As r is odd, we - // must round up to the next even number. so we must subtract p once more. - // - if x > 0.5p (and inherently x < p) then we must round r up to the next - // integral, and subtract p once more. - // - - // Extend the semantics to prevent an overflow/underflow or inexact result. - bool losesInfo; - fltSemantics extendedSemantics = *semantics; - extendedSemantics.maxExponent++; - extendedSemantics.minExponent--; - extendedSemantics.precision += 2; - - IEEEFloat VEx = *this; - fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - IEEEFloat PEx = P; - fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - - // It is simpler to work with 2x instead of 0.5p, and we do not need to lose - // any fraction. - fs = VEx.add(VEx, rmNearestTiesToEven); - assert(fs == opOK); - - if (VEx.compare(PEx) == cmpGreaterThan) { - fs = subtract(P, rmNearestTiesToEven); - assert(fs == opOK); - - // Make VEx = this.add(this), but because we have different semantics, we do - // not want to `convert` again, so we just subtract PEx twice (which equals - // to the desired value). - fs = VEx.subtract(PEx, rmNearestTiesToEven); - assert(fs == opOK); - fs = VEx.subtract(PEx, rmNearestTiesToEven); - assert(fs == opOK); - - cmpResult result = VEx.compare(PEx); - if (result == cmpGreaterThan || result == cmpEqual) { - fs = subtract(P, rmNearestTiesToEven); - assert(fs == opOK); - } - } - - if (isZero()) - sign = origSign; // IEEE754 requires this - else - sign ^= origSign; - return fs; -} - -/* Normalized llvm frem (C fmod). */ -IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { - opStatus fs; - fs = modSpecials(rhs); - unsigned int origSign = sign; - - while (isFiniteNonZero() && rhs.isFiniteNonZero() && - compareAbsoluteValue(rhs) != cmpLessThan) { - IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); - if (compareAbsoluteValue(V) == cmpLessThan) - V = scalbn(V, -1, rmNearestTiesToEven); - V.sign = sign; - - fs = subtract(V, rmNearestTiesToEven); - assert(fs==opOK); - } - if (isZero()) - sign = origSign; // fmod requires this - return fs; -} - -/* Normalized fused-multiply-add. */ -IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, - const IEEEFloat &addend, - roundingMode rounding_mode) { - opStatus fs; - - /* Post-multiplication sign, before addition. */ - sign ^= multiplicand.sign; - - /* If and only if all arguments are normal do we need to do an - extended-precision calculation. */ - if (isFiniteNonZero() && - multiplicand.isFiniteNonZero() && - addend.isFinite()) { - lostFraction lost_fraction; - - lost_fraction = multiplySignificand(multiplicand, addend); - fs = normalize(rounding_mode, lost_fraction); - if (lost_fraction != lfExactlyZero) - fs = (opStatus) (fs | opInexact); - - /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a - positive zero unless rounding to minus infinity, except that - adding two like-signed zeroes gives that zero. */ - if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) - sign = (rounding_mode == rmTowardNegative); - } else { - fs = multiplySpecials(multiplicand); - - /* FS can only be opOK or opInvalidOp. There is no more work - to do in the latter case. The IEEE-754R standard says it is - implementation-defined in this case whether, if ADDEND is a - quiet NaN, we raise invalid op; this implementation does so. - - If we need to do the addition we can do so with normal - precision. */ - if (fs == opOK) - fs = addOrSubtract(addend, rounding_mode, false); - } - - return fs; -} - -/* Rounding-mode correct round to integral value. */ -IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { - opStatus fs; - - if (isInfinity()) - // [IEEE Std 754-2008 6.1]: - // The behavior of infinity in floating-point arithmetic is derived from the - // limiting cases of real arithmetic with operands of arbitrarily - // large magnitude, when such a limit exists. - // ... - // Operations on infinite operands are usually exact and therefore signal no - // exceptions ... - return opOK; - - if (isNaN()) { - if (isSignaling()) { - // [IEEE Std 754-2008 6.2]: - // Under default exception handling, any operation signaling an invalid - // operation exception and for which a floating-point result is to be - // delivered shall deliver a quiet NaN. - makeQuiet(); - // [IEEE Std 754-2008 6.2]: - // Signaling NaNs shall be reserved operands that, under default exception - // handling, signal the invalid operation exception(see 7.2) for every - // general-computational and signaling-computational operation except for - // the conversions described in 5.12. - return opInvalidOp; - } else { - // [IEEE Std 754-2008 6.2]: - // For an operation with quiet NaN inputs, other than maximum and minimum - // operations, if a floating-point result is to be delivered the result - // shall be a quiet NaN which should be one of the input NaNs. - // ... - // Every general-computational and quiet-computational operation involving - // one or more input NaNs, none of them signaling, shall signal no - // exception, except fusedMultiplyAdd might signal the invalid operation - // exception(see 7.2). - return opOK; - } - } - - if (isZero()) { - // [IEEE Std 754-2008 6.3]: - // ... the sign of the result of conversions, the quantize operation, the - // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is - // the sign of the first or only operand. - return opOK; - } - - // If the exponent is large enough, we know that this value is already - // integral, and the arithmetic below would potentially cause it to saturate - // to +/-Inf. Bail out early instead. - if (exponent+1 >= (int)semanticsPrecision(*semantics)) - return opOK; - - // The algorithm here is quite simple: we add 2^(p-1), where p is the - // precision of our format, and then subtract it back off again. The choice - // of rounding modes for the addition/subtraction determines the rounding mode - // for our integral rounding as well. - // NOTE: When the input value is negative, we do subtraction followed by - // addition instead. - APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); - IntegerConstant <<= semanticsPrecision(*semantics)-1; - IEEEFloat MagicConstant(*semantics); - fs = MagicConstant.convertFromAPInt(IntegerConstant, false, - rmNearestTiesToEven); - assert(fs == opOK); - MagicConstant.sign = sign; - - // Preserve the input sign so that we can handle the case of zero result - // correctly. - bool inputSign = isNegative(); - - fs = add(MagicConstant, rounding_mode); - - // Current value and 'MagicConstant' are both integers, so the result of the - // subtraction is always exact according to Sterbenz' lemma. - subtract(MagicConstant, rounding_mode); - - // Restore the input sign. - if (inputSign != isNegative()) - changeSign(); - - return fs; -} - - -/* Comparison requires normalized numbers. */ -IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { - cmpResult result; - - assert(semantics == rhs.semantics); - - switch (PackCategoriesIntoKey(category, rhs.category)) { - default: - llvm_unreachable(nullptr); - - case PackCategoriesIntoKey(fcNaN, fcZero): - case PackCategoriesIntoKey(fcNaN, fcNormal): - case PackCategoriesIntoKey(fcNaN, fcInfinity): - case PackCategoriesIntoKey(fcNaN, fcNaN): - case PackCategoriesIntoKey(fcZero, fcNaN): - case PackCategoriesIntoKey(fcNormal, fcNaN): - case PackCategoriesIntoKey(fcInfinity, fcNaN): - return cmpUnordered; - - case PackCategoriesIntoKey(fcInfinity, fcNormal): - case PackCategoriesIntoKey(fcInfinity, fcZero): - case PackCategoriesIntoKey(fcNormal, fcZero): - if (sign) - return cmpLessThan; - else - return cmpGreaterThan; - - case PackCategoriesIntoKey(fcNormal, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcInfinity): - case PackCategoriesIntoKey(fcZero, fcNormal): - if (rhs.sign) - return cmpGreaterThan; - else - return cmpLessThan; - - case PackCategoriesIntoKey(fcInfinity, fcInfinity): - if (sign == rhs.sign) - return cmpEqual; - else if (sign) - return cmpLessThan; - else - return cmpGreaterThan; - - case PackCategoriesIntoKey(fcZero, fcZero): - return cmpEqual; - - case PackCategoriesIntoKey(fcNormal, fcNormal): - break; - } - - /* Two normal numbers. Do they have the same sign? */ - if (sign != rhs.sign) { - if (sign) - result = cmpLessThan; - else - result = cmpGreaterThan; - } else { - /* Compare absolute values; invert result if negative. */ - result = compareAbsoluteValue(rhs); - - if (sign) { - if (result == cmpLessThan) - result = cmpGreaterThan; - else if (result == cmpGreaterThan) - result = cmpLessThan; - } - } - - return result; -} - -/// IEEEFloat::convert - convert a value of one floating point type to another. -/// The return value corresponds to the IEEE754 exceptions. *losesInfo -/// records whether the transformation lost information, i.e. whether -/// converting the result back to the original type will produce the -/// original value (this is almost the same as return value==fsOK, but there -/// are edge cases where this is not so). - -IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, - roundingMode rounding_mode, - bool *losesInfo) { - lostFraction lostFraction; - unsigned int newPartCount, oldPartCount; - opStatus fs; - int shift; - const fltSemantics &fromSemantics = *semantics; - - lostFraction = lfExactlyZero; - newPartCount = partCountForBits(toSemantics.precision + 1); - oldPartCount = partCount(); - shift = toSemantics.precision - fromSemantics.precision; - - bool X86SpecialNan = false; - if (&fromSemantics == &semX87DoubleExtended && - &toSemantics != &semX87DoubleExtended && category == fcNaN && - (!(*significandParts() & 0x8000000000000000ULL) || - !(*significandParts() & 0x4000000000000000ULL))) { - // x86 has some unusual NaNs which cannot be represented in any other - // format; note them here. - X86SpecialNan = true; - } - - // If this is a truncation of a denormal number, and the target semantics - // has larger exponent range than the source semantics (this can happen - // when truncating from PowerPC double-double to double format), the - // right shift could lose result mantissa bits. Adjust exponent instead - // of performing excessive shift. - if (shift < 0 && isFiniteNonZero()) { - int exponentChange = significandMSB() + 1 - fromSemantics.precision; - if (exponent + exponentChange < toSemantics.minExponent) - exponentChange = toSemantics.minExponent - exponent; - if (exponentChange < shift) - exponentChange = shift; - if (exponentChange < 0) { - shift -= exponentChange; - exponent += exponentChange; - } - } - - // If this is a truncation, perform the shift before we narrow the storage. - if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) - lostFraction = shiftRight(significandParts(), oldPartCount, -shift); - - // Fix the storage so it can hold to new value. - if (newPartCount > oldPartCount) { - // The new type requires more storage; make it available. - integerPart *newParts; - newParts = new integerPart[newPartCount]; - APInt::tcSet(newParts, 0, newPartCount); - if (isFiniteNonZero() || category==fcNaN) - APInt::tcAssign(newParts, significandParts(), oldPartCount); - freeSignificand(); - significand.parts = newParts; - } else if (newPartCount == 1 && oldPartCount != 1) { - // Switch to built-in storage for a single part. - integerPart newPart = 0; - if (isFiniteNonZero() || category==fcNaN) - newPart = significandParts()[0]; - freeSignificand(); - significand.part = newPart; - } - - // Now that we have the right storage, switch the semantics. - semantics = &toSemantics; - - // If this is an extension, perform the shift now that the storage is - // available. - if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) - APInt::tcShiftLeft(significandParts(), newPartCount, shift); - - if (isFiniteNonZero()) { - fs = normalize(rounding_mode, lostFraction); - *losesInfo = (fs != opOK); - } else if (category == fcNaN) { - *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; - - // For x87 extended precision, we want to make a NaN, not a special NaN if - // the input wasn't special either. - if (!X86SpecialNan && semantics == &semX87DoubleExtended) - APInt::tcSetBit(significandParts(), semantics->precision - 1); - +} + +// Delegate to the previous constructor, because later copy constructor may +// actually inspects category, which can't be garbage. +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) + : IEEEFloat(ourSemantics) {} + +IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { + initialize(rhs.semantics); + assign(rhs); +} + +IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { + *this = std::move(rhs); +} + +IEEEFloat::~IEEEFloat() { freeSignificand(); } + +unsigned int IEEEFloat::partCount() const { + return partCountForBits(semantics->precision + 1); +} + +const IEEEFloat::integerPart *IEEEFloat::significandParts() const { + return const_cast<IEEEFloat *>(this)->significandParts(); +} + +IEEEFloat::integerPart *IEEEFloat::significandParts() { + if (partCount() > 1) + return significand.parts; + else + return &significand.part; +} + +void IEEEFloat::zeroSignificand() { + APInt::tcSet(significandParts(), 0, partCount()); +} + +/* Increment an fcNormal floating point number's significand. */ +void IEEEFloat::incrementSignificand() { + integerPart carry; + + carry = APInt::tcIncrement(significandParts(), partCount()); + + /* Our callers should never cause us to overflow. */ + assert(carry == 0); + (void)carry; +} + +/* Add the significand of the RHS. Returns the carry flag. */ +IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { + integerPart *parts; + + parts = significandParts(); + + assert(semantics == rhs.semantics); + assert(exponent == rhs.exponent); + + return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); +} + +/* Subtract the significand of the RHS with a borrow flag. Returns + the borrow flag. */ +IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, + integerPart borrow) { + integerPart *parts; + + parts = significandParts(); + + assert(semantics == rhs.semantics); + assert(exponent == rhs.exponent); + + return APInt::tcSubtract(parts, rhs.significandParts(), borrow, + partCount()); +} + +/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it + on to the full-precision result of the multiplication. Returns the + lost fraction. */ +lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, + IEEEFloat addend) { + unsigned int omsb; // One, not zero, based MSB. + unsigned int partsCount, newPartsCount, precision; + integerPart *lhsSignificand; + integerPart scratch[4]; + integerPart *fullSignificand; + lostFraction lost_fraction; + bool ignored; + + assert(semantics == rhs.semantics); + + precision = semantics->precision; + + // Allocate space for twice as many bits as the original significand, plus one + // extra bit for the addition to overflow into. + newPartsCount = partCountForBits(precision * 2 + 1); + + if (newPartsCount > 4) + fullSignificand = new integerPart[newPartsCount]; + else + fullSignificand = scratch; + + lhsSignificand = significandParts(); + partsCount = partCount(); + + APInt::tcFullMultiply(fullSignificand, lhsSignificand, + rhs.significandParts(), partsCount, partsCount); + + lost_fraction = lfExactlyZero; + omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; + exponent += rhs.exponent; + + // Assume the operands involved in the multiplication are single-precision + // FP, and the two multiplicants are: + // *this = a23 . a22 ... a0 * 2^e1 + // rhs = b23 . b22 ... b0 * 2^e2 + // the result of multiplication is: + // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) + // Note that there are three significant bits at the left-hand side of the + // radix point: two for the multiplication, and an overflow bit for the + // addition (that will always be zero at this point). Move the radix point + // toward left by two bits, and adjust exponent accordingly. + exponent += 2; + + if (addend.isNonZero()) { + // The intermediate result of the multiplication has "2 * precision" + // signicant bit; adjust the addend to be consistent with mul result. + // + Significand savedSignificand = significand; + const fltSemantics *savedSemantics = semantics; + fltSemantics extendedSemantics; + opStatus status; + unsigned int extendedPrecision; + + // Normalize our MSB to one below the top bit to allow for overflow. + extendedPrecision = 2 * precision + 1; + if (omsb != extendedPrecision - 1) { + assert(extendedPrecision > omsb); + APInt::tcShiftLeft(fullSignificand, newPartsCount, + (extendedPrecision - 1) - omsb); + exponent -= (extendedPrecision - 1) - omsb; + } + + /* Create new semantics. */ + extendedSemantics = *semantics; + extendedSemantics.precision = extendedPrecision; + + if (newPartsCount == 1) + significand.part = fullSignificand[0]; + else + significand.parts = fullSignificand; + semantics = &extendedSemantics; + + // Make a copy so we can convert it to the extended semantics. + // Note that we cannot convert the addend directly, as the extendedSemantics + // is a local variable (which we take a reference to). + IEEEFloat extendedAddend(addend); + status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); + assert(status == opOK); + (void)status; + + // Shift the significand of the addend right by one bit. This guarantees + // that the high bit of the significand is zero (same as fullSignificand), + // so the addition will overflow (if it does overflow at all) into the top bit. + lost_fraction = extendedAddend.shiftSignificandRight(1); + assert(lost_fraction == lfExactlyZero && + "Lost precision while shifting addend for fused-multiply-add."); + + lost_fraction = addOrSubtractSignificand(extendedAddend, false); + + /* Restore our state. */ + if (newPartsCount == 1) + fullSignificand[0] = significand.part; + significand = savedSignificand; + semantics = savedSemantics; + + omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; + } + + // Convert the result having "2 * precision" significant-bits back to the one + // having "precision" significant-bits. First, move the radix point from + // poision "2*precision - 1" to "precision - 1". The exponent need to be + // adjusted by "2*precision - 1" - "precision - 1" = "precision". + exponent -= precision + 1; + + // In case MSB resides at the left-hand side of radix point, shift the + // mantissa right by some amount to make sure the MSB reside right before + // the radix point (i.e. "MSB . rest-significant-bits"). + // + // Note that the result is not normalized when "omsb < precision". So, the + // caller needs to call IEEEFloat::normalize() if normalized value is + // expected. + if (omsb > precision) { + unsigned int bits, significantParts; + lostFraction lf; + + bits = omsb - precision; + significantParts = partCountForBits(omsb); + lf = shiftRight(fullSignificand, significantParts, bits); + lost_fraction = combineLostFractions(lf, lost_fraction); + exponent += bits; + } + + APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); + + if (newPartsCount > 4) + delete [] fullSignificand; + + return lost_fraction; +} + +lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) { + return multiplySignificand(rhs, IEEEFloat(*semantics)); +} + +/* Multiply the significands of LHS and RHS to DST. */ +lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { + unsigned int bit, i, partsCount; + const integerPart *rhsSignificand; + integerPart *lhsSignificand, *dividend, *divisor; + integerPart scratch[4]; + lostFraction lost_fraction; + + assert(semantics == rhs.semantics); + + lhsSignificand = significandParts(); + rhsSignificand = rhs.significandParts(); + partsCount = partCount(); + + if (partsCount > 2) + dividend = new integerPart[partsCount * 2]; + else + dividend = scratch; + + divisor = dividend + partsCount; + + /* Copy the dividend and divisor as they will be modified in-place. */ + for (i = 0; i < partsCount; i++) { + dividend[i] = lhsSignificand[i]; + divisor[i] = rhsSignificand[i]; + lhsSignificand[i] = 0; + } + + exponent -= rhs.exponent; + + unsigned int precision = semantics->precision; + + /* Normalize the divisor. */ + bit = precision - APInt::tcMSB(divisor, partsCount) - 1; + if (bit) { + exponent += bit; + APInt::tcShiftLeft(divisor, partsCount, bit); + } + + /* Normalize the dividend. */ + bit = precision - APInt::tcMSB(dividend, partsCount) - 1; + if (bit) { + exponent -= bit; + APInt::tcShiftLeft(dividend, partsCount, bit); + } + + /* Ensure the dividend >= divisor initially for the loop below. + Incidentally, this means that the division loop below is + guaranteed to set the integer bit to one. */ + if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { + exponent--; + APInt::tcShiftLeft(dividend, partsCount, 1); + assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); + } + + /* Long division. */ + for (bit = precision; bit; bit -= 1) { + if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { + APInt::tcSubtract(dividend, divisor, 0, partsCount); + APInt::tcSetBit(lhsSignificand, bit - 1); + } + + APInt::tcShiftLeft(dividend, partsCount, 1); + } + + /* Figure out the lost fraction. */ + int cmp = APInt::tcCompare(dividend, divisor, partsCount); + + if (cmp > 0) + lost_fraction = lfMoreThanHalf; + else if (cmp == 0) + lost_fraction = lfExactlyHalf; + else if (APInt::tcIsZero(dividend, partsCount)) + lost_fraction = lfExactlyZero; + else + lost_fraction = lfLessThanHalf; + + if (partsCount > 2) + delete [] dividend; + + return lost_fraction; +} + +unsigned int IEEEFloat::significandMSB() const { + return APInt::tcMSB(significandParts(), partCount()); +} + +unsigned int IEEEFloat::significandLSB() const { + return APInt::tcLSB(significandParts(), partCount()); +} + +/* Note that a zero result is NOT normalized to fcZero. */ +lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { + /* Our exponent should not overflow. */ + assert((ExponentType) (exponent + bits) >= exponent); + + exponent += bits; + + return shiftRight(significandParts(), partCount(), bits); +} + +/* Shift the significand left BITS bits, subtract BITS from its exponent. */ +void IEEEFloat::shiftSignificandLeft(unsigned int bits) { + assert(bits < semantics->precision); + + if (bits) { + unsigned int partsCount = partCount(); + + APInt::tcShiftLeft(significandParts(), partsCount, bits); + exponent -= bits; + + assert(!APInt::tcIsZero(significandParts(), partsCount)); + } +} + +IEEEFloat::cmpResult +IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { + int compare; + + assert(semantics == rhs.semantics); + assert(isFiniteNonZero()); + assert(rhs.isFiniteNonZero()); + + compare = exponent - rhs.exponent; + + /* If exponents are equal, do an unsigned bignum comparison of the + significands. */ + if (compare == 0) + compare = APInt::tcCompare(significandParts(), rhs.significandParts(), + partCount()); + + if (compare > 0) + return cmpGreaterThan; + else if (compare < 0) + return cmpLessThan; + else + return cmpEqual; +} + +/* Handle overflow. Sign is preserved. We either become infinity or + the largest finite number. */ +IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { + /* Infinity? */ + if (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway || + (rounding_mode == rmTowardPositive && !sign) || + (rounding_mode == rmTowardNegative && sign)) { + category = fcInfinity; + return (opStatus) (opOverflow | opInexact); + } + + /* Otherwise we become the largest finite number. */ + category = fcNormal; + exponent = semantics->maxExponent; + APInt::tcSetLeastSignificantBits(significandParts(), partCount(), + semantics->precision); + + return opInexact; +} + +/* Returns TRUE if, when truncating the current number, with BIT the + new LSB, with the given lost fraction and rounding mode, the result + would need to be rounded away from zero (i.e., by increasing the + signficand). This routine must work for fcZero of both signs, and + fcNormal numbers. */ +bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, + lostFraction lost_fraction, + unsigned int bit) const { + /* NaNs and infinities should not have lost fractions. */ + assert(isFiniteNonZero() || category == fcZero); + + /* Current callers never pass this so we don't handle it. */ + assert(lost_fraction != lfExactlyZero); + + switch (rounding_mode) { + case rmNearestTiesToAway: + return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; + + case rmNearestTiesToEven: + if (lost_fraction == lfMoreThanHalf) + return true; + + /* Our zeroes don't have a significand to test. */ + if (lost_fraction == lfExactlyHalf && category != fcZero) + return APInt::tcExtractBit(significandParts(), bit); + + return false; + + case rmTowardZero: + return false; + + case rmTowardPositive: + return !sign; + + case rmTowardNegative: + return sign; + + default: + break; + } + llvm_unreachable("Invalid rounding mode found"); +} + +IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, + lostFraction lost_fraction) { + unsigned int omsb; /* One, not zero, based MSB. */ + int exponentChange; + + if (!isFiniteNonZero()) + return opOK; + + /* Before rounding normalize the exponent of fcNormal numbers. */ + omsb = significandMSB() + 1; + + if (omsb) { + /* OMSB is numbered from 1. We want to place it in the integer + bit numbered PRECISION if possible, with a compensating change in + the exponent. */ + exponentChange = omsb - semantics->precision; + + /* If the resulting exponent is too high, overflow according to + the rounding mode. */ + if (exponent + exponentChange > semantics->maxExponent) + return handleOverflow(rounding_mode); + + /* Subnormal numbers have exponent minExponent, and their MSB + is forced based on that. */ + if (exponent + exponentChange < semantics->minExponent) + exponentChange = semantics->minExponent - exponent; + + /* Shifting left is easy as we don't lose precision. */ + if (exponentChange < 0) { + assert(lost_fraction == lfExactlyZero); + + shiftSignificandLeft(-exponentChange); + + return opOK; + } + + if (exponentChange > 0) { + lostFraction lf; + + /* Shift right and capture any new lost fraction. */ + lf = shiftSignificandRight(exponentChange); + + lost_fraction = combineLostFractions(lf, lost_fraction); + + /* Keep OMSB up-to-date. */ + if (omsb > (unsigned) exponentChange) + omsb -= exponentChange; + else + omsb = 0; + } + } + + /* Now round the number according to rounding_mode given the lost + fraction. */ + + /* As specified in IEEE 754, since we do not trap we do not report + underflow for exact results. */ + if (lost_fraction == lfExactlyZero) { + /* Canonicalize zeroes. */ + if (omsb == 0) + category = fcZero; + + return opOK; + } + + /* Increment the significand if we're rounding away from zero. */ + if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { + if (omsb == 0) + exponent = semantics->minExponent; + + incrementSignificand(); + omsb = significandMSB() + 1; + + /* Did the significand increment overflow? */ + if (omsb == (unsigned) semantics->precision + 1) { + /* Renormalize by incrementing the exponent and shifting our + significand right one. However if we already have the + maximum exponent we overflow to infinity. */ + if (exponent == semantics->maxExponent) { + category = fcInfinity; + + return (opStatus) (opOverflow | opInexact); + } + + shiftSignificandRight(1); + + return opInexact; + } + } + + /* The normal case - we were and are not denormal, and any + significand increment above didn't overflow. */ + if (omsb == semantics->precision) + return opInexact; + + /* We have a non-zero denormal. */ + assert(omsb < semantics->precision); + + /* Canonicalize zeroes. */ + if (omsb == 0) + category = fcZero; + + /* The fcZero case is a denormal that underflowed to zero. */ + return (opStatus) (opUnderflow | opInexact); +} + +IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, + bool subtract) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + assign(rhs); + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + if (isSignaling()) { + makeQuiet(); + return opInvalidOp; + } + return rhs.isSignaling() ? opInvalidOp : opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcZero): + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcInfinity): + category = fcInfinity; + sign = rhs.sign ^ subtract; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNormal): + assign(rhs); + sign = rhs.sign ^ subtract; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcZero): + /* Sign depends on rounding mode; handled by caller. */ + return opOK; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + /* Differently signed infinities can only be validly + subtracted. */ + if (((sign ^ rhs.sign)!=0) != subtract) { + makeNaN(); + return opInvalidOp; + } + + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opDivByZero; + } +} + +/* Add or subtract two normal numbers. */ +lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, + bool subtract) { + integerPart carry; + lostFraction lost_fraction; + int bits; + + /* Determine if the operation on the absolute values is effectively + an addition or subtraction. */ + subtract ^= static_cast<bool>(sign ^ rhs.sign); + + /* Are we bigger exponent-wise than the RHS? */ + bits = exponent - rhs.exponent; + + /* Subtraction is more subtle than one might naively expect. */ + if (subtract) { + IEEEFloat temp_rhs(rhs); + + if (bits == 0) + lost_fraction = lfExactlyZero; + else if (bits > 0) { + lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); + shiftSignificandLeft(1); + } else { + lost_fraction = shiftSignificandRight(-bits - 1); + temp_rhs.shiftSignificandLeft(1); + } + + // Should we reverse the subtraction. + if (compareAbsoluteValue(temp_rhs) == cmpLessThan) { + carry = temp_rhs.subtractSignificand + (*this, lost_fraction != lfExactlyZero); + copySignificand(temp_rhs); + sign = !sign; + } else { + carry = subtractSignificand + (temp_rhs, lost_fraction != lfExactlyZero); + } + + /* Invert the lost fraction - it was on the RHS and + subtracted. */ + if (lost_fraction == lfLessThanHalf) + lost_fraction = lfMoreThanHalf; + else if (lost_fraction == lfMoreThanHalf) + lost_fraction = lfLessThanHalf; + + /* The code above is intended to ensure that no borrow is + necessary. */ + assert(!carry); + (void)carry; + } else { + if (bits > 0) { + IEEEFloat temp_rhs(rhs); + + lost_fraction = temp_rhs.shiftSignificandRight(bits); + carry = addSignificand(temp_rhs); + } else { + lost_fraction = shiftSignificandRight(-bits); + carry = addSignificand(rhs); + } + + /* We have a guard bit; generating a carry cannot happen. */ + assert(!carry); + (void)carry; + } + + return lost_fraction; +} + +IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + assign(rhs); + sign = false; + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + sign ^= rhs.sign; // restore the original sign + if (isSignaling()) { + makeQuiet(); + return opInvalidOp; + } + return rhs.isSignaling() ? opInvalidOp : opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + category = fcInfinity; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNormal): + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcZero, fcZero): + category = fcZero; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcInfinity, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + assign(rhs); + sign = false; + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + sign ^= rhs.sign; // restore the original sign + if (isSignaling()) { + makeQuiet(); + return opInvalidOp; + } + return rhs.isSignaling() ? opInvalidOp : opOK; + + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + category = fcZero; + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + category = fcInfinity; + return opDivByZero; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + assign(rhs); + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + if (isSignaling()) { + makeQuiet(); + return opInvalidOp; + } + return rhs.isSignaling() ? opInvalidOp : opOK; + + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + case PackCategoriesIntoKey(fcNormal, fcInfinity): + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + assign(rhs); + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + if (isSignaling()) { + makeQuiet(); + return opInvalidOp; + } + return rhs.isSignaling() ? opInvalidOp : opOK; + + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + case PackCategoriesIntoKey(fcNormal, fcInfinity): + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opDivByZero; // fake status, indicating this is not a special case + } +} + +/* Change sign. */ +void IEEEFloat::changeSign() { + /* Look mummy, this one's easy. */ + sign = !sign; +} + +/* Normalized addition or subtraction. */ +IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, + roundingMode rounding_mode, + bool subtract) { + opStatus fs; + + fs = addOrSubtractSpecials(rhs, subtract); + + /* This return code means it was not a simple case. */ + if (fs == opDivByZero) { + lostFraction lost_fraction; + + lost_fraction = addOrSubtractSignificand(rhs, subtract); + fs = normalize(rounding_mode, lost_fraction); + + /* Can only be zero if we lost no fraction. */ + assert(category != fcZero || lost_fraction == lfExactlyZero); + } + + /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a + positive zero unless rounding to minus infinity, except that + adding two like-signed zeroes gives that zero. */ + if (category == fcZero) { + if (rhs.category != fcZero || (sign == rhs.sign) == subtract) + sign = (rounding_mode == rmTowardNegative); + } + + return fs; +} + +/* Normalized addition. */ +IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, + roundingMode rounding_mode) { + return addOrSubtract(rhs, rounding_mode, false); +} + +/* Normalized subtraction. */ +IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, + roundingMode rounding_mode) { + return addOrSubtract(rhs, rounding_mode, true); +} + +/* Normalized multiply. */ +IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, + roundingMode rounding_mode) { + opStatus fs; + + sign ^= rhs.sign; + fs = multiplySpecials(rhs); + + if (isFiniteNonZero()) { + lostFraction lost_fraction = multiplySignificand(rhs); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + } + + return fs; +} + +/* Normalized divide. */ +IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, + roundingMode rounding_mode) { + opStatus fs; + + sign ^= rhs.sign; + fs = divideSpecials(rhs); + + if (isFiniteNonZero()) { + lostFraction lost_fraction = divideSignificand(rhs); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + } + + return fs; +} + +/* Normalized remainder. */ +IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { + opStatus fs; + unsigned int origSign = sign; + + // First handle the special cases. + fs = remainderSpecials(rhs); + if (fs != opDivByZero) + return fs; + + fs = opOK; + + // Make sure the current value is less than twice the denom. If the addition + // did not succeed (an overflow has happened), which means that the finite + // value we currently posses must be less than twice the denom (as we are + // using the same semantics). + IEEEFloat P2 = rhs; + if (P2.add(rhs, rmNearestTiesToEven) == opOK) { + fs = mod(P2); + assert(fs == opOK); + } + + // Lets work with absolute numbers. + IEEEFloat P = rhs; + P.sign = false; + sign = false; + + // + // To calculate the remainder we use the following scheme. + // + // The remainder is defained as follows: + // + // remainder = numer - rquot * denom = x - r * p + // + // Where r is the result of: x/p, rounded toward the nearest integral value + // (with halfway cases rounded toward the even number). + // + // Currently, (after x mod 2p): + // r is the number of 2p's present inside x, which is inherently, an even + // number of p's. + // + // We may split the remaining calculation into 4 options: + // - if x < 0.5p then we round to the nearest number with is 0, and are done. + // - if x == 0.5p then we round to the nearest even number which is 0, and we + // are done as well. + // - if 0.5p < x < p then we round to nearest number which is 1, and we have + // to subtract 1p at least once. + // - if x >= p then we must subtract p at least once, as x must be a + // remainder. + // + // By now, we were done, or we added 1 to r, which in turn, now an odd number. + // + // We can now split the remaining calculation to the following 3 options: + // - if x < 0.5p then we round to the nearest number with is 0, and are done. + // - if x == 0.5p then we round to the nearest even number. As r is odd, we + // must round up to the next even number. so we must subtract p once more. + // - if x > 0.5p (and inherently x < p) then we must round r up to the next + // integral, and subtract p once more. + // + + // Extend the semantics to prevent an overflow/underflow or inexact result. + bool losesInfo; + fltSemantics extendedSemantics = *semantics; + extendedSemantics.maxExponent++; + extendedSemantics.minExponent--; + extendedSemantics.precision += 2; + + IEEEFloat VEx = *this; + fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + IEEEFloat PEx = P; + fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + + // It is simpler to work with 2x instead of 0.5p, and we do not need to lose + // any fraction. + fs = VEx.add(VEx, rmNearestTiesToEven); + assert(fs == opOK); + + if (VEx.compare(PEx) == cmpGreaterThan) { + fs = subtract(P, rmNearestTiesToEven); + assert(fs == opOK); + + // Make VEx = this.add(this), but because we have different semantics, we do + // not want to `convert` again, so we just subtract PEx twice (which equals + // to the desired value). + fs = VEx.subtract(PEx, rmNearestTiesToEven); + assert(fs == opOK); + fs = VEx.subtract(PEx, rmNearestTiesToEven); + assert(fs == opOK); + + cmpResult result = VEx.compare(PEx); + if (result == cmpGreaterThan || result == cmpEqual) { + fs = subtract(P, rmNearestTiesToEven); + assert(fs == opOK); + } + } + + if (isZero()) + sign = origSign; // IEEE754 requires this + else + sign ^= origSign; + return fs; +} + +/* Normalized llvm frem (C fmod). */ +IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { + opStatus fs; + fs = modSpecials(rhs); + unsigned int origSign = sign; + + while (isFiniteNonZero() && rhs.isFiniteNonZero() && + compareAbsoluteValue(rhs) != cmpLessThan) { + IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); + if (compareAbsoluteValue(V) == cmpLessThan) + V = scalbn(V, -1, rmNearestTiesToEven); + V.sign = sign; + + fs = subtract(V, rmNearestTiesToEven); + assert(fs==opOK); + } + if (isZero()) + sign = origSign; // fmod requires this + return fs; +} + +/* Normalized fused-multiply-add. */ +IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, + const IEEEFloat &addend, + roundingMode rounding_mode) { + opStatus fs; + + /* Post-multiplication sign, before addition. */ + sign ^= multiplicand.sign; + + /* If and only if all arguments are normal do we need to do an + extended-precision calculation. */ + if (isFiniteNonZero() && + multiplicand.isFiniteNonZero() && + addend.isFinite()) { + lostFraction lost_fraction; + + lost_fraction = multiplySignificand(multiplicand, addend); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + + /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a + positive zero unless rounding to minus infinity, except that + adding two like-signed zeroes gives that zero. */ + if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) + sign = (rounding_mode == rmTowardNegative); + } else { + fs = multiplySpecials(multiplicand); + + /* FS can only be opOK or opInvalidOp. There is no more work + to do in the latter case. The IEEE-754R standard says it is + implementation-defined in this case whether, if ADDEND is a + quiet NaN, we raise invalid op; this implementation does so. + + If we need to do the addition we can do so with normal + precision. */ + if (fs == opOK) + fs = addOrSubtract(addend, rounding_mode, false); + } + + return fs; +} + +/* Rounding-mode correct round to integral value. */ +IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { + opStatus fs; + + if (isInfinity()) + // [IEEE Std 754-2008 6.1]: + // The behavior of infinity in floating-point arithmetic is derived from the + // limiting cases of real arithmetic with operands of arbitrarily + // large magnitude, when such a limit exists. + // ... + // Operations on infinite operands are usually exact and therefore signal no + // exceptions ... + return opOK; + + if (isNaN()) { + if (isSignaling()) { + // [IEEE Std 754-2008 6.2]: + // Under default exception handling, any operation signaling an invalid + // operation exception and for which a floating-point result is to be + // delivered shall deliver a quiet NaN. + makeQuiet(); + // [IEEE Std 754-2008 6.2]: + // Signaling NaNs shall be reserved operands that, under default exception + // handling, signal the invalid operation exception(see 7.2) for every + // general-computational and signaling-computational operation except for + // the conversions described in 5.12. + return opInvalidOp; + } else { + // [IEEE Std 754-2008 6.2]: + // For an operation with quiet NaN inputs, other than maximum and minimum + // operations, if a floating-point result is to be delivered the result + // shall be a quiet NaN which should be one of the input NaNs. + // ... + // Every general-computational and quiet-computational operation involving + // one or more input NaNs, none of them signaling, shall signal no + // exception, except fusedMultiplyAdd might signal the invalid operation + // exception(see 7.2). + return opOK; + } + } + + if (isZero()) { + // [IEEE Std 754-2008 6.3]: + // ... the sign of the result of conversions, the quantize operation, the + // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is + // the sign of the first or only operand. + return opOK; + } + + // If the exponent is large enough, we know that this value is already + // integral, and the arithmetic below would potentially cause it to saturate + // to +/-Inf. Bail out early instead. + if (exponent+1 >= (int)semanticsPrecision(*semantics)) + return opOK; + + // The algorithm here is quite simple: we add 2^(p-1), where p is the + // precision of our format, and then subtract it back off again. The choice + // of rounding modes for the addition/subtraction determines the rounding mode + // for our integral rounding as well. + // NOTE: When the input value is negative, we do subtraction followed by + // addition instead. + APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); + IntegerConstant <<= semanticsPrecision(*semantics)-1; + IEEEFloat MagicConstant(*semantics); + fs = MagicConstant.convertFromAPInt(IntegerConstant, false, + rmNearestTiesToEven); + assert(fs == opOK); + MagicConstant.sign = sign; + + // Preserve the input sign so that we can handle the case of zero result + // correctly. + bool inputSign = isNegative(); + + fs = add(MagicConstant, rounding_mode); + + // Current value and 'MagicConstant' are both integers, so the result of the + // subtraction is always exact according to Sterbenz' lemma. + subtract(MagicConstant, rounding_mode); + + // Restore the input sign. + if (inputSign != isNegative()) + changeSign(); + + return fs; +} + + +/* Comparison requires normalized numbers. */ +IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { + cmpResult result; + + assert(semantics == rhs.semantics); + + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + return cmpUnordered; + + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcNormal, fcZero): + if (sign) + return cmpLessThan; + else + return cmpGreaterThan; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + if (rhs.sign) + return cmpGreaterThan; + else + return cmpLessThan; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + if (sign == rhs.sign) + return cmpEqual; + else if (sign) + return cmpLessThan; + else + return cmpGreaterThan; + + case PackCategoriesIntoKey(fcZero, fcZero): + return cmpEqual; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + break; + } + + /* Two normal numbers. Do they have the same sign? */ + if (sign != rhs.sign) { + if (sign) + result = cmpLessThan; + else + result = cmpGreaterThan; + } else { + /* Compare absolute values; invert result if negative. */ + result = compareAbsoluteValue(rhs); + + if (sign) { + if (result == cmpLessThan) + result = cmpGreaterThan; + else if (result == cmpGreaterThan) + result = cmpLessThan; + } + } + + return result; +} + +/// IEEEFloat::convert - convert a value of one floating point type to another. +/// The return value corresponds to the IEEE754 exceptions. *losesInfo +/// records whether the transformation lost information, i.e. whether +/// converting the result back to the original type will produce the +/// original value (this is almost the same as return value==fsOK, but there +/// are edge cases where this is not so). + +IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, + roundingMode rounding_mode, + bool *losesInfo) { + lostFraction lostFraction; + unsigned int newPartCount, oldPartCount; + opStatus fs; + int shift; + const fltSemantics &fromSemantics = *semantics; + + lostFraction = lfExactlyZero; + newPartCount = partCountForBits(toSemantics.precision + 1); + oldPartCount = partCount(); + shift = toSemantics.precision - fromSemantics.precision; + + bool X86SpecialNan = false; + if (&fromSemantics == &semX87DoubleExtended && + &toSemantics != &semX87DoubleExtended && category == fcNaN && + (!(*significandParts() & 0x8000000000000000ULL) || + !(*significandParts() & 0x4000000000000000ULL))) { + // x86 has some unusual NaNs which cannot be represented in any other + // format; note them here. + X86SpecialNan = true; + } + + // If this is a truncation of a denormal number, and the target semantics + // has larger exponent range than the source semantics (this can happen + // when truncating from PowerPC double-double to double format), the + // right shift could lose result mantissa bits. Adjust exponent instead + // of performing excessive shift. + if (shift < 0 && isFiniteNonZero()) { + int exponentChange = significandMSB() + 1 - fromSemantics.precision; + if (exponent + exponentChange < toSemantics.minExponent) + exponentChange = toSemantics.minExponent - exponent; + if (exponentChange < shift) + exponentChange = shift; + if (exponentChange < 0) { + shift -= exponentChange; + exponent += exponentChange; + } + } + + // If this is a truncation, perform the shift before we narrow the storage. + if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) + lostFraction = shiftRight(significandParts(), oldPartCount, -shift); + + // Fix the storage so it can hold to new value. + if (newPartCount > oldPartCount) { + // The new type requires more storage; make it available. + integerPart *newParts; + newParts = new integerPart[newPartCount]; + APInt::tcSet(newParts, 0, newPartCount); + if (isFiniteNonZero() || category==fcNaN) + APInt::tcAssign(newParts, significandParts(), oldPartCount); + freeSignificand(); + significand.parts = newParts; + } else if (newPartCount == 1 && oldPartCount != 1) { + // Switch to built-in storage for a single part. + integerPart newPart = 0; + if (isFiniteNonZero() || category==fcNaN) + newPart = significandParts()[0]; + freeSignificand(); + significand.part = newPart; + } + + // Now that we have the right storage, switch the semantics. + semantics = &toSemantics; + + // If this is an extension, perform the shift now that the storage is + // available. + if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) + APInt::tcShiftLeft(significandParts(), newPartCount, shift); + + if (isFiniteNonZero()) { + fs = normalize(rounding_mode, lostFraction); + *losesInfo = (fs != opOK); + } else if (category == fcNaN) { + *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; + + // For x87 extended precision, we want to make a NaN, not a special NaN if + // the input wasn't special either. + if (!X86SpecialNan && semantics == &semX87DoubleExtended) + APInt::tcSetBit(significandParts(), semantics->precision - 1); + // Convert of sNaN creates qNaN and raises an exception (invalid op). // This also guarantees that a sNaN does not become Inf on a truncation // that loses all payload bits. @@ -2251,1879 +2251,1879 @@ IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, fs = opInvalidOp; } else { fs = opOK; - } - } else { - *losesInfo = false; - fs = opOK; - } - - return fs; -} - -/* Convert a floating point number to an integer according to the - rounding mode. If the rounded integer value is out of range this - returns an invalid operation exception and the contents of the - destination parts are unspecified. If the rounded value is in - range but the floating point number is not the exact integer, the C - standard doesn't require an inexact exception to be raised. IEEE - 854 does require it so we do that. - - Note that for conversions to integer type the C standard requires - round-to-zero to always be used. */ -IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( - MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, - roundingMode rounding_mode, bool *isExact) const { - lostFraction lost_fraction; - const integerPart *src; - unsigned int dstPartsCount, truncatedBits; - - *isExact = false; - - /* Handle the three special cases first. */ - if (category == fcInfinity || category == fcNaN) - return opInvalidOp; - - dstPartsCount = partCountForBits(width); - assert(dstPartsCount <= parts.size() && "Integer too big"); - - if (category == fcZero) { - APInt::tcSet(parts.data(), 0, dstPartsCount); - // Negative zero can't be represented as an int. - *isExact = !sign; - return opOK; - } - - src = significandParts(); - - /* Step 1: place our absolute value, with any fraction truncated, in - the destination. */ - if (exponent < 0) { - /* Our absolute value is less than one; truncate everything. */ - APInt::tcSet(parts.data(), 0, dstPartsCount); - /* For exponent -1 the integer bit represents .5, look at that. - For smaller exponents leftmost truncated bit is 0. */ - truncatedBits = semantics->precision -1U - exponent; - } else { - /* We want the most significant (exponent + 1) bits; the rest are - truncated. */ - unsigned int bits = exponent + 1U; - - /* Hopelessly large in magnitude? */ - if (bits > width) - return opInvalidOp; - - if (bits < semantics->precision) { - /* We truncate (semantics->precision - bits) bits. */ - truncatedBits = semantics->precision - bits; - APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); - } else { - /* We want at least as many bits as are available. */ - APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, - 0); - APInt::tcShiftLeft(parts.data(), dstPartsCount, - bits - semantics->precision); - truncatedBits = 0; - } - } - - /* Step 2: work out any lost fraction, and increment the absolute - value if we would round away from zero. */ - if (truncatedBits) { - lost_fraction = lostFractionThroughTruncation(src, partCount(), - truncatedBits); - if (lost_fraction != lfExactlyZero && - roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { - if (APInt::tcIncrement(parts.data(), dstPartsCount)) - return opInvalidOp; /* Overflow. */ - } - } else { - lost_fraction = lfExactlyZero; - } - - /* Step 3: check if we fit in the destination. */ - unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; - - if (sign) { - if (!isSigned) { - /* Negative numbers cannot be represented as unsigned. */ - if (omsb != 0) - return opInvalidOp; - } else { - /* It takes omsb bits to represent the unsigned integer value. - We lose a bit for the sign, but care is needed as the - maximally negative integer is a special case. */ - if (omsb == width && - APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) - return opInvalidOp; - - /* This case can happen because of rounding. */ - if (omsb > width) - return opInvalidOp; - } - - APInt::tcNegate (parts.data(), dstPartsCount); - } else { - if (omsb >= width + !isSigned) - return opInvalidOp; - } - - if (lost_fraction == lfExactlyZero) { - *isExact = true; - return opOK; - } else - return opInexact; -} - -/* Same as convertToSignExtendedInteger, except we provide - deterministic values in case of an invalid operation exception, - namely zero for NaNs and the minimal or maximal value respectively - for underflow or overflow. - The *isExact output tells whether the result is exact, in the sense - that converting it back to the original floating point type produces - the original value. This is almost equivalent to result==opOK, - except for negative zeroes. -*/ -IEEEFloat::opStatus -IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, - unsigned int width, bool isSigned, - roundingMode rounding_mode, bool *isExact) const { - opStatus fs; - - fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, - isExact); - - if (fs == opInvalidOp) { - unsigned int bits, dstPartsCount; - - dstPartsCount = partCountForBits(width); - assert(dstPartsCount <= parts.size() && "Integer too big"); - - if (category == fcNaN) - bits = 0; - else if (sign) - bits = isSigned; - else - bits = width - isSigned; - - APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); - if (sign && isSigned) - APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); - } - - return fs; -} - -/* Convert an unsigned integer SRC to a floating point number, - rounding according to ROUNDING_MODE. The sign of the floating - point number is not modified. */ -IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( - const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { - unsigned int omsb, precision, dstCount; - integerPart *dst; - lostFraction lost_fraction; - - category = fcNormal; - omsb = APInt::tcMSB(src, srcCount) + 1; - dst = significandParts(); - dstCount = partCount(); - precision = semantics->precision; - - /* We want the most significant PRECISION bits of SRC. There may not - be that many; extract what we can. */ - if (precision <= omsb) { - exponent = omsb - 1; - lost_fraction = lostFractionThroughTruncation(src, srcCount, - omsb - precision); - APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); - } else { - exponent = precision - 1; - lost_fraction = lfExactlyZero; - APInt::tcExtract(dst, dstCount, src, omsb, 0); - } - - return normalize(rounding_mode, lost_fraction); -} - -IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, - roundingMode rounding_mode) { - unsigned int partCount = Val.getNumWords(); - APInt api = Val; - - sign = false; - if (isSigned && api.isNegative()) { - sign = true; - api = -api; - } - - return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); -} - -/* Convert a two's complement integer SRC to a floating point number, - rounding according to ROUNDING_MODE. ISSIGNED is true if the - integer is signed, in which case it must be sign-extended. */ -IEEEFloat::opStatus -IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, - unsigned int srcCount, bool isSigned, - roundingMode rounding_mode) { - opStatus status; - - if (isSigned && - APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { - integerPart *copy; - - /* If we're signed and negative negate a copy. */ - sign = true; - copy = new integerPart[srcCount]; - APInt::tcAssign(copy, src, srcCount); - APInt::tcNegate(copy, srcCount); - status = convertFromUnsignedParts(copy, srcCount, rounding_mode); - delete [] copy; - } else { - sign = false; - status = convertFromUnsignedParts(src, srcCount, rounding_mode); - } - - return status; -} - -/* FIXME: should this just take a const APInt reference? */ -IEEEFloat::opStatus -IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, - unsigned int width, bool isSigned, - roundingMode rounding_mode) { - unsigned int partCount = partCountForBits(width); - APInt api = APInt(width, makeArrayRef(parts, partCount)); - - sign = false; - if (isSigned && APInt::tcExtractBit(parts, width - 1)) { - sign = true; - api = -api; - } - - return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); -} - -Expected<IEEEFloat::opStatus> -IEEEFloat::convertFromHexadecimalString(StringRef s, - roundingMode rounding_mode) { - lostFraction lost_fraction = lfExactlyZero; - - category = fcNormal; - zeroSignificand(); - exponent = 0; - - integerPart *significand = significandParts(); - unsigned partsCount = partCount(); - unsigned bitPos = partsCount * integerPartWidth; - bool computedTrailingFraction = false; - - // Skip leading zeroes and any (hexa)decimal point. - StringRef::iterator begin = s.begin(); - StringRef::iterator end = s.end(); - StringRef::iterator dot; - auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); - if (!PtrOrErr) - return PtrOrErr.takeError(); - StringRef::iterator p = *PtrOrErr; - StringRef::iterator firstSignificantDigit = p; - - while (p != end) { - integerPart hex_value; - - if (*p == '.') { - if (dot != end) - return createError("String contains multiple dots"); - dot = p++; - continue; - } - - hex_value = hexDigitValue(*p); - if (hex_value == -1U) - break; - - p++; - - // Store the number while we have space. - if (bitPos) { - bitPos -= 4; - hex_value <<= bitPos % integerPartWidth; - significand[bitPos / integerPartWidth] |= hex_value; - } else if (!computedTrailingFraction) { - auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value); - if (!FractOrErr) - return FractOrErr.takeError(); - lost_fraction = *FractOrErr; - computedTrailingFraction = true; - } - } - - /* Hex floats require an exponent but not a hexadecimal point. */ - if (p == end) - return createError("Hex strings require an exponent"); - if (*p != 'p' && *p != 'P') - return createError("Invalid character in significand"); - if (p == begin) - return createError("Significand has no digits"); - if (dot != end && p - begin == 1) - return createError("Significand has no digits"); - - /* Ignore the exponent if we are zero. */ - if (p != firstSignificantDigit) { - int expAdjustment; - - /* Implicit hexadecimal point? */ - if (dot == end) - dot = p; - - /* Calculate the exponent adjustment implicit in the number of - significant digits. */ - expAdjustment = static_cast<int>(dot - firstSignificantDigit); - if (expAdjustment < 0) - expAdjustment++; - expAdjustment = expAdjustment * 4 - 1; - - /* Adjust for writing the significand starting at the most - significant nibble. */ - expAdjustment += semantics->precision; - expAdjustment -= partsCount * integerPartWidth; - - /* Adjust for the given exponent. */ - auto ExpOrErr = totalExponent(p + 1, end, expAdjustment); - if (!ExpOrErr) - return ExpOrErr.takeError(); - exponent = *ExpOrErr; - } - - return normalize(rounding_mode, lost_fraction); -} - -IEEEFloat::opStatus -IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, - unsigned sigPartCount, int exp, - roundingMode rounding_mode) { - unsigned int parts, pow5PartCount; - fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; - integerPart pow5Parts[maxPowerOfFiveParts]; - bool isNearest; - - isNearest = (rounding_mode == rmNearestTiesToEven || - rounding_mode == rmNearestTiesToAway); - - parts = partCountForBits(semantics->precision + 11); - - /* Calculate pow(5, abs(exp)). */ - pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); - - for (;; parts *= 2) { - opStatus sigStatus, powStatus; - unsigned int excessPrecision, truncatedBits; - - calcSemantics.precision = parts * integerPartWidth - 1; - excessPrecision = calcSemantics.precision - semantics->precision; - truncatedBits = excessPrecision; - - IEEEFloat decSig(calcSemantics, uninitialized); - decSig.makeZero(sign); - IEEEFloat pow5(calcSemantics); - - sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, - rmNearestTiesToEven); - powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, - rmNearestTiesToEven); - /* Add exp, as 10^n = 5^n * 2^n. */ - decSig.exponent += exp; - - lostFraction calcLostFraction; - integerPart HUerr, HUdistance; - unsigned int powHUerr; - - if (exp >= 0) { - /* multiplySignificand leaves the precision-th bit set to 1. */ - calcLostFraction = decSig.multiplySignificand(pow5); - powHUerr = powStatus != opOK; - } else { - calcLostFraction = decSig.divideSignificand(pow5); - /* Denormal numbers have less precision. */ - if (decSig.exponent < semantics->minExponent) { - excessPrecision += (semantics->minExponent - decSig.exponent); - truncatedBits = excessPrecision; - if (excessPrecision > calcSemantics.precision) - excessPrecision = calcSemantics.precision; - } - /* Extra half-ulp lost in reciprocal of exponent. */ - powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; - } - - /* Both multiplySignificand and divideSignificand return the - result with the integer bit set. */ - assert(APInt::tcExtractBit - (decSig.significandParts(), calcSemantics.precision - 1) == 1); - - HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, - powHUerr); - HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), - excessPrecision, isNearest); - - /* Are we guaranteed to round correctly if we truncate? */ - if (HUdistance >= HUerr) { - APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), - calcSemantics.precision - excessPrecision, - excessPrecision); - /* Take the exponent of decSig. If we tcExtract-ed less bits - above we must adjust our exponent to compensate for the - implicit right shift. */ - exponent = (decSig.exponent + semantics->precision - - (calcSemantics.precision - excessPrecision)); - calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), - decSig.partCount(), - truncatedBits); - return normalize(rounding_mode, calcLostFraction); - } - } -} - -Expected<IEEEFloat::opStatus> -IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { - decimalInfo D; - opStatus fs; - - /* Scan the text. */ - StringRef::iterator p = str.begin(); - if (Error Err = interpretDecimal(p, str.end(), &D)) - return std::move(Err); - - /* Handle the quick cases. First the case of no significant digits, - i.e. zero, and then exponents that are obviously too large or too - small. Writing L for log 10 / log 2, a number d.ddddd*10^exp - definitely overflows if - - (exp - 1) * L >= maxExponent - - and definitely underflows to zero where - - (exp + 1) * L <= minExponent - precision - - With integer arithmetic the tightest bounds for L are - - 93/28 < L < 196/59 [ numerator <= 256 ] - 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] - */ - - // Test if we have a zero number allowing for strings with no null terminators - // and zero decimals with non-zero exponents. - // - // We computed firstSigDigit by ignoring all zeros and dots. Thus if - // D->firstSigDigit equals str.end(), every digit must be a zero and there can - // be at most one dot. On the other hand, if we have a zero with a non-zero - // exponent, then we know that D.firstSigDigit will be non-numeric. - if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { - category = fcZero; - fs = opOK; - - /* Check whether the normalized exponent is high enough to overflow - max during the log-rebasing in the max-exponent check below. */ - } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { - fs = handleOverflow(rounding_mode); - - /* If it wasn't, then it also wasn't high enough to overflow max - during the log-rebasing in the min-exponent check. Check that it - won't overflow min in either check, then perform the min-exponent - check. */ - } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || - (D.normalizedExponent + 1) * 28738 <= - 8651 * (semantics->minExponent - (int) semantics->precision)) { - /* Underflow to zero and round. */ - category = fcNormal; - zeroSignificand(); - fs = normalize(rounding_mode, lfLessThanHalf); - - /* We can finally safely perform the max-exponent check. */ - } else if ((D.normalizedExponent - 1) * 42039 - >= 12655 * semantics->maxExponent) { - /* Overflow and round. */ - fs = handleOverflow(rounding_mode); - } else { - integerPart *decSignificand; - unsigned int partCount; - - /* A tight upper bound on number of bits required to hold an - N-digit decimal integer is N * 196 / 59. Allocate enough space - to hold the full significand, and an extra part required by - tcMultiplyPart. */ - partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; - partCount = partCountForBits(1 + 196 * partCount / 59); - decSignificand = new integerPart[partCount + 1]; - partCount = 0; - - /* Convert to binary efficiently - we do almost all multiplication - in an integerPart. When this would overflow do we do a single - bignum multiplication, and then revert again to multiplication - in an integerPart. */ - do { - integerPart decValue, val, multiplier; - - val = 0; - multiplier = 1; - - do { - if (*p == '.') { - p++; - if (p == str.end()) { - break; - } - } - decValue = decDigitValue(*p++); - if (decValue >= 10U) { - delete[] decSignificand; - return createError("Invalid character in significand"); - } - multiplier *= 10; - val = val * 10 + decValue; - /* The maximum number that can be multiplied by ten with any - digit added without overflowing an integerPart. */ - } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); - - /* Multiply out the current part. */ - APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, - partCount, partCount + 1, false); - - /* If we used another part (likely but not guaranteed), increase - the count. */ - if (decSignificand[partCount]) - partCount++; - } while (p <= D.lastSigDigit); - - category = fcNormal; - fs = roundSignificandWithExponent(decSignificand, partCount, - D.exponent, rounding_mode); - - delete [] decSignificand; - } - - return fs; -} - -bool IEEEFloat::convertFromStringSpecials(StringRef str) { - const size_t MIN_NAME_SIZE = 3; - - if (str.size() < MIN_NAME_SIZE) - return false; - - if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { - makeInf(false); - return true; - } - - bool IsNegative = str.front() == '-'; - if (IsNegative) { - str = str.drop_front(); - if (str.size() < MIN_NAME_SIZE) - return false; - - if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) { - makeInf(true); - return true; - } - } - - // If we have a 's' (or 'S') prefix, then this is a Signaling NaN. - bool IsSignaling = str.front() == 's' || str.front() == 'S'; - if (IsSignaling) { - str = str.drop_front(); - if (str.size() < MIN_NAME_SIZE) - return false; - } - - if (str.startswith("nan") || str.startswith("NaN")) { - str = str.drop_front(3); - - // A NaN without payload. - if (str.empty()) { - makeNaN(IsSignaling, IsNegative); - return true; - } - - // Allow the payload to be inside parentheses. - if (str.front() == '(') { - // Parentheses should be balanced (and not empty). - if (str.size() <= 2 || str.back() != ')') - return false; - - str = str.slice(1, str.size() - 1); - } - - // Determine the payload number's radix. - unsigned Radix = 10; - if (str[0] == '0') { - if (str.size() > 1 && tolower(str[1]) == 'x') { - str = str.drop_front(2); - Radix = 16; - } else - Radix = 8; - } - - // Parse the payload and make the NaN. - APInt Payload; - if (!str.getAsInteger(Radix, Payload)) { - makeNaN(IsSignaling, IsNegative, &Payload); - return true; - } - } - - return false; -} - -Expected<IEEEFloat::opStatus> -IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) { - if (str.empty()) - return createError("Invalid string length"); - - // Handle special cases. - if (convertFromStringSpecials(str)) - return opOK; - - /* Handle a leading minus sign. */ - StringRef::iterator p = str.begin(); - size_t slen = str.size(); - sign = *p == '-' ? 1 : 0; - if (*p == '-' || *p == '+') { - p++; - slen--; - if (!slen) - return createError("String has no digits"); - } - - if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { - if (slen == 2) - return createError("Invalid string"); - return convertFromHexadecimalString(StringRef(p + 2, slen - 2), - rounding_mode); - } - - return convertFromDecimalString(StringRef(p, slen), rounding_mode); -} - -/* Write out a hexadecimal representation of the floating point value - to DST, which must be of sufficient size, in the C99 form - [-]0xh.hhhhp[+-]d. Return the number of characters written, - excluding the terminating NUL. - - If UPPERCASE, the output is in upper case, otherwise in lower case. - - HEXDIGITS digits appear altogether, rounding the value if - necessary. If HEXDIGITS is 0, the minimal precision to display the - number precisely is used instead. If nothing would appear after - the decimal point it is suppressed. - - The decimal exponent is always printed and has at least one digit. - Zero values display an exponent of zero. Infinities and NaNs - appear as "infinity" or "nan" respectively. - - The above rules are as specified by C99. There is ambiguity about - what the leading hexadecimal digit should be. This implementation - uses whatever is necessary so that the exponent is displayed as - stored. This implies the exponent will fall within the IEEE format - range, and the leading hexadecimal digit will be 0 (for denormals), - 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with - any other digits zero). -*/ -unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, - bool upperCase, - roundingMode rounding_mode) const { - char *p; - - p = dst; - if (sign) - *dst++ = '-'; - - switch (category) { - case fcInfinity: - memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); - dst += sizeof infinityL - 1; - break; - - case fcNaN: - memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); - dst += sizeof NaNU - 1; - break; - - case fcZero: - *dst++ = '0'; - *dst++ = upperCase ? 'X': 'x'; - *dst++ = '0'; - if (hexDigits > 1) { - *dst++ = '.'; - memset (dst, '0', hexDigits - 1); - dst += hexDigits - 1; - } - *dst++ = upperCase ? 'P': 'p'; - *dst++ = '0'; - break; - - case fcNormal: - dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); - break; - } - - *dst = 0; - - return static_cast<unsigned int>(dst - p); -} - -/* Does the hard work of outputting the correctly rounded hexadecimal - form of a normal floating point number with the specified number of - hexadecimal digits. If HEXDIGITS is zero the minimum number of - digits necessary to print the value precisely is output. */ -char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, - bool upperCase, - roundingMode rounding_mode) const { - unsigned int count, valueBits, shift, partsCount, outputDigits; - const char *hexDigitChars; - const integerPart *significand; - char *p; - bool roundUp; - - *dst++ = '0'; - *dst++ = upperCase ? 'X': 'x'; - - roundUp = false; - hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; - - significand = significandParts(); - partsCount = partCount(); - - /* +3 because the first digit only uses the single integer bit, so - we have 3 virtual zero most-significant-bits. */ - valueBits = semantics->precision + 3; - shift = integerPartWidth - valueBits % integerPartWidth; - - /* The natural number of digits required ignoring trailing - insignificant zeroes. */ - outputDigits = (valueBits - significandLSB () + 3) / 4; - - /* hexDigits of zero means use the required number for the - precision. Otherwise, see if we are truncating. If we are, - find out if we need to round away from zero. */ - if (hexDigits) { - if (hexDigits < outputDigits) { - /* We are dropping non-zero bits, so need to check how to round. - "bits" is the number of dropped bits. */ - unsigned int bits; - lostFraction fraction; - - bits = valueBits - hexDigits * 4; - fraction = lostFractionThroughTruncation (significand, partsCount, bits); - roundUp = roundAwayFromZero(rounding_mode, fraction, bits); - } - outputDigits = hexDigits; - } - - /* Write the digits consecutively, and start writing in the location - of the hexadecimal point. We move the most significant digit - left and add the hexadecimal point later. */ - p = ++dst; - - count = (valueBits + integerPartWidth - 1) / integerPartWidth; - - while (outputDigits && count) { - integerPart part; - - /* Put the most significant integerPartWidth bits in "part". */ - if (--count == partsCount) - part = 0; /* An imaginary higher zero part. */ - else - part = significand[count] << shift; - - if (count && shift) - part |= significand[count - 1] >> (integerPartWidth - shift); - - /* Convert as much of "part" to hexdigits as we can. */ - unsigned int curDigits = integerPartWidth / 4; - - if (curDigits > outputDigits) - curDigits = outputDigits; - dst += partAsHex (dst, part, curDigits, hexDigitChars); - outputDigits -= curDigits; - } - - if (roundUp) { - char *q = dst; - - /* Note that hexDigitChars has a trailing '0'. */ - do { - q--; - *q = hexDigitChars[hexDigitValue (*q) + 1]; - } while (*q == '0'); - assert(q >= p); - } else { - /* Add trailing zeroes. */ - memset (dst, '0', outputDigits); - dst += outputDigits; - } - - /* Move the most significant digit to before the point, and if there - is something after the decimal point add it. This must come - after rounding above. */ - p[-1] = p[0]; - if (dst -1 == p) - dst--; - else - p[0] = '.'; - - /* Finally output the exponent. */ - *dst++ = upperCase ? 'P': 'p'; - - return writeSignedDecimal (dst, exponent); -} - -hash_code hash_value(const IEEEFloat &Arg) { - if (!Arg.isFiniteNonZero()) - return hash_combine((uint8_t)Arg.category, - // NaN has no sign, fix it at zero. - Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, - Arg.semantics->precision); - - // Normal floats need their exponent and significand hashed. - return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, - Arg.semantics->precision, Arg.exponent, - hash_combine_range( - Arg.significandParts(), - Arg.significandParts() + Arg.partCount())); -} - -// Conversion from APFloat to/from host float/double. It may eventually be -// possible to eliminate these and have everybody deal with APFloats, but that -// will take a while. This approach will not easily extend to long double. -// Current implementation requires integerPartWidth==64, which is correct at -// the moment but could be made more general. - -// Denormals have exponent minExponent in APFloat, but minExponent-1 in -// the actual IEEE respresentations. We compensate for that here. - -APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); - assert(partCount()==2); - - uint64_t myexponent, mysignificand; - - if (isFiniteNonZero()) { - myexponent = exponent+16383; //bias - mysignificand = significandParts()[0]; - if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) - myexponent = 0; // denormal - } else if (category==fcZero) { - myexponent = 0; - mysignificand = 0; - } else if (category==fcInfinity) { - myexponent = 0x7fff; - mysignificand = 0x8000000000000000ULL; - } else { - assert(category == fcNaN && "Unknown category"); - myexponent = 0x7fff; - mysignificand = significandParts()[0]; - } - - uint64_t words[2]; - words[0] = mysignificand; - words[1] = ((uint64_t)(sign & 1) << 15) | - (myexponent & 0x7fffLL); - return APInt(80, words); -} - -APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); - assert(partCount()==2); - - uint64_t words[2]; - opStatus fs; - bool losesInfo; - - // Convert number to double. To avoid spurious underflows, we re- - // normalize against the "double" minExponent first, and only *then* - // truncate the mantissa. The result of that second conversion - // may be inexact, but should never underflow. - // Declare fltSemantics before APFloat that uses it (and - // saves pointer to it) to ensure correct destruction order. - fltSemantics extendedSemantics = *semantics; - extendedSemantics.minExponent = semIEEEdouble.minExponent; - IEEEFloat extended(*this); - fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - (void)fs; - - IEEEFloat u(extended); - fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK || fs == opInexact); - (void)fs; - words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); - - // If conversion was exact or resulted in a special case, we're done; - // just set the second double to zero. Otherwise, re-convert back to - // the extended format and compute the difference. This now should - // convert exactly to double. - if (u.isFiniteNonZero() && losesInfo) { - fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - (void)fs; - - IEEEFloat v(extended); - v.subtract(u, rmNearestTiesToEven); - fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - (void)fs; - words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); - } else { - words[1] = 0; - } - - return APInt(128, words); -} - -APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); - assert(partCount()==2); - - uint64_t myexponent, mysignificand, mysignificand2; - - if (isFiniteNonZero()) { - myexponent = exponent+16383; //bias - mysignificand = significandParts()[0]; - mysignificand2 = significandParts()[1]; - if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) - myexponent = 0; // denormal - } else if (category==fcZero) { - myexponent = 0; - mysignificand = mysignificand2 = 0; - } else if (category==fcInfinity) { - myexponent = 0x7fff; - mysignificand = mysignificand2 = 0; - } else { - assert(category == fcNaN && "Unknown category!"); - myexponent = 0x7fff; - mysignificand = significandParts()[0]; - mysignificand2 = significandParts()[1]; - } - - uint64_t words[2]; - words[0] = mysignificand; - words[1] = ((uint64_t)(sign & 1) << 63) | - ((myexponent & 0x7fff) << 48) | - (mysignificand2 & 0xffffffffffffLL); - - return APInt(128, words); -} - -APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); - assert(partCount()==1); - - uint64_t myexponent, mysignificand; - - if (isFiniteNonZero()) { - myexponent = exponent+1023; //bias - mysignificand = *significandParts(); - if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) - myexponent = 0; // denormal - } else if (category==fcZero) { - myexponent = 0; - mysignificand = 0; - } else if (category==fcInfinity) { - myexponent = 0x7ff; - mysignificand = 0; - } else { - assert(category == fcNaN && "Unknown category!"); - myexponent = 0x7ff; - mysignificand = *significandParts(); - } - - return APInt(64, ((((uint64_t)(sign & 1) << 63) | - ((myexponent & 0x7ff) << 52) | - (mysignificand & 0xfffffffffffffLL)))); -} - -APInt IEEEFloat::convertFloatAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); - assert(partCount()==1); - - uint32_t myexponent, mysignificand; - - if (isFiniteNonZero()) { - myexponent = exponent+127; //bias - mysignificand = (uint32_t)*significandParts(); - if (myexponent == 1 && !(mysignificand & 0x800000)) - myexponent = 0; // denormal - } else if (category==fcZero) { - myexponent = 0; - mysignificand = 0; - } else if (category==fcInfinity) { - myexponent = 0xff; - mysignificand = 0; - } else { - assert(category == fcNaN && "Unknown category!"); - myexponent = 0xff; - mysignificand = (uint32_t)*significandParts(); - } - - return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | - (mysignificand & 0x7fffff))); -} - -APInt IEEEFloat::convertBFloatAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics *)&semBFloat); - assert(partCount() == 1); - - uint32_t myexponent, mysignificand; - - if (isFiniteNonZero()) { - myexponent = exponent + 127; // bias - mysignificand = (uint32_t)*significandParts(); - if (myexponent == 1 && !(mysignificand & 0x80)) - myexponent = 0; // denormal - } else if (category == fcZero) { - myexponent = 0; - mysignificand = 0; - } else if (category == fcInfinity) { - myexponent = 0xff; - mysignificand = 0; - } else { - assert(category == fcNaN && "Unknown category!"); - myexponent = 0xff; - mysignificand = (uint32_t)*significandParts(); - } - - return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) | - (mysignificand & 0x7f))); -} - -APInt IEEEFloat::convertHalfAPFloatToAPInt() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); - assert(partCount()==1); - - uint32_t myexponent, mysignificand; - - if (isFiniteNonZero()) { - myexponent = exponent+15; //bias - mysignificand = (uint32_t)*significandParts(); - if (myexponent == 1 && !(mysignificand & 0x400)) - myexponent = 0; // denormal - } else if (category==fcZero) { - myexponent = 0; - mysignificand = 0; - } else if (category==fcInfinity) { - myexponent = 0x1f; - mysignificand = 0; - } else { - assert(category == fcNaN && "Unknown category!"); - myexponent = 0x1f; - mysignificand = (uint32_t)*significandParts(); - } - - return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | - (mysignificand & 0x3ff))); -} - -// This function creates an APInt that is just a bit map of the floating -// point constant as it would appear in memory. It is not a conversion, -// and treating the result as a normal integer is unlikely to be useful. - -APInt IEEEFloat::bitcastToAPInt() const { - if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) - return convertHalfAPFloatToAPInt(); - - if (semantics == (const llvm::fltSemantics *)&semBFloat) - return convertBFloatAPFloatToAPInt(); - - if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) - return convertFloatAPFloatToAPInt(); - - if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) - return convertDoubleAPFloatToAPInt(); - - if (semantics == (const llvm::fltSemantics*)&semIEEEquad) - return convertQuadrupleAPFloatToAPInt(); - - if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) - return convertPPCDoubleDoubleAPFloatToAPInt(); - - assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && - "unknown format!"); - return convertF80LongDoubleAPFloatToAPInt(); -} - -float IEEEFloat::convertToFloat() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && - "Float semantics are not IEEEsingle"); - APInt api = bitcastToAPInt(); - return api.bitsToFloat(); -} - -double IEEEFloat::convertToDouble() const { - assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && - "Float semantics are not IEEEdouble"); - APInt api = bitcastToAPInt(); - return api.bitsToDouble(); -} - -/// Integer bit is explicit in this format. Intel hardware (387 and later) -/// does not support these bit patterns: -/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") -/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") -/// exponent!=0 nor all 1's, integer bit 0 ("unnormal") -/// exponent = 0, integer bit 1 ("pseudodenormal") -/// At the moment, the first three are treated as NaNs, the last one as Normal. -void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { - assert(api.getBitWidth()==80); - uint64_t i1 = api.getRawData()[0]; - uint64_t i2 = api.getRawData()[1]; - uint64_t myexponent = (i2 & 0x7fff); - uint64_t mysignificand = i1; - uint8_t myintegerbit = mysignificand >> 63; - - initialize(&semX87DoubleExtended); - assert(partCount()==2); - - sign = static_cast<unsigned int>(i2>>15); - if (myexponent == 0 && mysignificand == 0) { + } + } else { + *losesInfo = false; + fs = opOK; + } + + return fs; +} + +/* Convert a floating point number to an integer according to the + rounding mode. If the rounded integer value is out of range this + returns an invalid operation exception and the contents of the + destination parts are unspecified. If the rounded value is in + range but the floating point number is not the exact integer, the C + standard doesn't require an inexact exception to be raised. IEEE + 854 does require it so we do that. + + Note that for conversions to integer type the C standard requires + round-to-zero to always be used. */ +IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( + MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, + roundingMode rounding_mode, bool *isExact) const { + lostFraction lost_fraction; + const integerPart *src; + unsigned int dstPartsCount, truncatedBits; + + *isExact = false; + + /* Handle the three special cases first. */ + if (category == fcInfinity || category == fcNaN) + return opInvalidOp; + + dstPartsCount = partCountForBits(width); + assert(dstPartsCount <= parts.size() && "Integer too big"); + + if (category == fcZero) { + APInt::tcSet(parts.data(), 0, dstPartsCount); + // Negative zero can't be represented as an int. + *isExact = !sign; + return opOK; + } + + src = significandParts(); + + /* Step 1: place our absolute value, with any fraction truncated, in + the destination. */ + if (exponent < 0) { + /* Our absolute value is less than one; truncate everything. */ + APInt::tcSet(parts.data(), 0, dstPartsCount); + /* For exponent -1 the integer bit represents .5, look at that. + For smaller exponents leftmost truncated bit is 0. */ + truncatedBits = semantics->precision -1U - exponent; + } else { + /* We want the most significant (exponent + 1) bits; the rest are + truncated. */ + unsigned int bits = exponent + 1U; + + /* Hopelessly large in magnitude? */ + if (bits > width) + return opInvalidOp; + + if (bits < semantics->precision) { + /* We truncate (semantics->precision - bits) bits. */ + truncatedBits = semantics->precision - bits; + APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); + } else { + /* We want at least as many bits as are available. */ + APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, + 0); + APInt::tcShiftLeft(parts.data(), dstPartsCount, + bits - semantics->precision); + truncatedBits = 0; + } + } + + /* Step 2: work out any lost fraction, and increment the absolute + value if we would round away from zero. */ + if (truncatedBits) { + lost_fraction = lostFractionThroughTruncation(src, partCount(), + truncatedBits); + if (lost_fraction != lfExactlyZero && + roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { + if (APInt::tcIncrement(parts.data(), dstPartsCount)) + return opInvalidOp; /* Overflow. */ + } + } else { + lost_fraction = lfExactlyZero; + } + + /* Step 3: check if we fit in the destination. */ + unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; + + if (sign) { + if (!isSigned) { + /* Negative numbers cannot be represented as unsigned. */ + if (omsb != 0) + return opInvalidOp; + } else { + /* It takes omsb bits to represent the unsigned integer value. + We lose a bit for the sign, but care is needed as the + maximally negative integer is a special case. */ + if (omsb == width && + APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) + return opInvalidOp; + + /* This case can happen because of rounding. */ + if (omsb > width) + return opInvalidOp; + } + + APInt::tcNegate (parts.data(), dstPartsCount); + } else { + if (omsb >= width + !isSigned) + return opInvalidOp; + } + + if (lost_fraction == lfExactlyZero) { + *isExact = true; + return opOK; + } else + return opInexact; +} + +/* Same as convertToSignExtendedInteger, except we provide + deterministic values in case of an invalid operation exception, + namely zero for NaNs and the minimal or maximal value respectively + for underflow or overflow. + The *isExact output tells whether the result is exact, in the sense + that converting it back to the original floating point type produces + the original value. This is almost equivalent to result==opOK, + except for negative zeroes. +*/ +IEEEFloat::opStatus +IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, + unsigned int width, bool isSigned, + roundingMode rounding_mode, bool *isExact) const { + opStatus fs; + + fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, + isExact); + + if (fs == opInvalidOp) { + unsigned int bits, dstPartsCount; + + dstPartsCount = partCountForBits(width); + assert(dstPartsCount <= parts.size() && "Integer too big"); + + if (category == fcNaN) + bits = 0; + else if (sign) + bits = isSigned; + else + bits = width - isSigned; + + APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); + if (sign && isSigned) + APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); + } + + return fs; +} + +/* Convert an unsigned integer SRC to a floating point number, + rounding according to ROUNDING_MODE. The sign of the floating + point number is not modified. */ +IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( + const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { + unsigned int omsb, precision, dstCount; + integerPart *dst; + lostFraction lost_fraction; + + category = fcNormal; + omsb = APInt::tcMSB(src, srcCount) + 1; + dst = significandParts(); + dstCount = partCount(); + precision = semantics->precision; + + /* We want the most significant PRECISION bits of SRC. There may not + be that many; extract what we can. */ + if (precision <= omsb) { + exponent = omsb - 1; + lost_fraction = lostFractionThroughTruncation(src, srcCount, + omsb - precision); + APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); + } else { + exponent = precision - 1; + lost_fraction = lfExactlyZero; + APInt::tcExtract(dst, dstCount, src, omsb, 0); + } + + return normalize(rounding_mode, lost_fraction); +} + +IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, + roundingMode rounding_mode) { + unsigned int partCount = Val.getNumWords(); + APInt api = Val; + + sign = false; + if (isSigned && api.isNegative()) { + sign = true; + api = -api; + } + + return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); +} + +/* Convert a two's complement integer SRC to a floating point number, + rounding according to ROUNDING_MODE. ISSIGNED is true if the + integer is signed, in which case it must be sign-extended. */ +IEEEFloat::opStatus +IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, + unsigned int srcCount, bool isSigned, + roundingMode rounding_mode) { + opStatus status; + + if (isSigned && + APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { + integerPart *copy; + + /* If we're signed and negative negate a copy. */ + sign = true; + copy = new integerPart[srcCount]; + APInt::tcAssign(copy, src, srcCount); + APInt::tcNegate(copy, srcCount); + status = convertFromUnsignedParts(copy, srcCount, rounding_mode); + delete [] copy; + } else { + sign = false; + status = convertFromUnsignedParts(src, srcCount, rounding_mode); + } + + return status; +} + +/* FIXME: should this just take a const APInt reference? */ +IEEEFloat::opStatus +IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, + unsigned int width, bool isSigned, + roundingMode rounding_mode) { + unsigned int partCount = partCountForBits(width); + APInt api = APInt(width, makeArrayRef(parts, partCount)); + + sign = false; + if (isSigned && APInt::tcExtractBit(parts, width - 1)) { + sign = true; + api = -api; + } + + return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); +} + +Expected<IEEEFloat::opStatus> +IEEEFloat::convertFromHexadecimalString(StringRef s, + roundingMode rounding_mode) { + lostFraction lost_fraction = lfExactlyZero; + + category = fcNormal; + zeroSignificand(); + exponent = 0; + + integerPart *significand = significandParts(); + unsigned partsCount = partCount(); + unsigned bitPos = partsCount * integerPartWidth; + bool computedTrailingFraction = false; + + // Skip leading zeroes and any (hexa)decimal point. + StringRef::iterator begin = s.begin(); + StringRef::iterator end = s.end(); + StringRef::iterator dot; + auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); + if (!PtrOrErr) + return PtrOrErr.takeError(); + StringRef::iterator p = *PtrOrErr; + StringRef::iterator firstSignificantDigit = p; + + while (p != end) { + integerPart hex_value; + + if (*p == '.') { + if (dot != end) + return createError("String contains multiple dots"); + dot = p++; + continue; + } + + hex_value = hexDigitValue(*p); + if (hex_value == -1U) + break; + + p++; + + // Store the number while we have space. + if (bitPos) { + bitPos -= 4; + hex_value <<= bitPos % integerPartWidth; + significand[bitPos / integerPartWidth] |= hex_value; + } else if (!computedTrailingFraction) { + auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value); + if (!FractOrErr) + return FractOrErr.takeError(); + lost_fraction = *FractOrErr; + computedTrailingFraction = true; + } + } + + /* Hex floats require an exponent but not a hexadecimal point. */ + if (p == end) + return createError("Hex strings require an exponent"); + if (*p != 'p' && *p != 'P') + return createError("Invalid character in significand"); + if (p == begin) + return createError("Significand has no digits"); + if (dot != end && p - begin == 1) + return createError("Significand has no digits"); + + /* Ignore the exponent if we are zero. */ + if (p != firstSignificantDigit) { + int expAdjustment; + + /* Implicit hexadecimal point? */ + if (dot == end) + dot = p; + + /* Calculate the exponent adjustment implicit in the number of + significant digits. */ + expAdjustment = static_cast<int>(dot - firstSignificantDigit); + if (expAdjustment < 0) + expAdjustment++; + expAdjustment = expAdjustment * 4 - 1; + + /* Adjust for writing the significand starting at the most + significant nibble. */ + expAdjustment += semantics->precision; + expAdjustment -= partsCount * integerPartWidth; + + /* Adjust for the given exponent. */ + auto ExpOrErr = totalExponent(p + 1, end, expAdjustment); + if (!ExpOrErr) + return ExpOrErr.takeError(); + exponent = *ExpOrErr; + } + + return normalize(rounding_mode, lost_fraction); +} + +IEEEFloat::opStatus +IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, + unsigned sigPartCount, int exp, + roundingMode rounding_mode) { + unsigned int parts, pow5PartCount; + fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; + integerPart pow5Parts[maxPowerOfFiveParts]; + bool isNearest; + + isNearest = (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway); + + parts = partCountForBits(semantics->precision + 11); + + /* Calculate pow(5, abs(exp)). */ + pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); + + for (;; parts *= 2) { + opStatus sigStatus, powStatus; + unsigned int excessPrecision, truncatedBits; + + calcSemantics.precision = parts * integerPartWidth - 1; + excessPrecision = calcSemantics.precision - semantics->precision; + truncatedBits = excessPrecision; + + IEEEFloat decSig(calcSemantics, uninitialized); + decSig.makeZero(sign); + IEEEFloat pow5(calcSemantics); + + sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, + rmNearestTiesToEven); + powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, + rmNearestTiesToEven); + /* Add exp, as 10^n = 5^n * 2^n. */ + decSig.exponent += exp; + + lostFraction calcLostFraction; + integerPart HUerr, HUdistance; + unsigned int powHUerr; + + if (exp >= 0) { + /* multiplySignificand leaves the precision-th bit set to 1. */ + calcLostFraction = decSig.multiplySignificand(pow5); + powHUerr = powStatus != opOK; + } else { + calcLostFraction = decSig.divideSignificand(pow5); + /* Denormal numbers have less precision. */ + if (decSig.exponent < semantics->minExponent) { + excessPrecision += (semantics->minExponent - decSig.exponent); + truncatedBits = excessPrecision; + if (excessPrecision > calcSemantics.precision) + excessPrecision = calcSemantics.precision; + } + /* Extra half-ulp lost in reciprocal of exponent. */ + powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; + } + + /* Both multiplySignificand and divideSignificand return the + result with the integer bit set. */ + assert(APInt::tcExtractBit + (decSig.significandParts(), calcSemantics.precision - 1) == 1); + + HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, + powHUerr); + HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), + excessPrecision, isNearest); + + /* Are we guaranteed to round correctly if we truncate? */ + if (HUdistance >= HUerr) { + APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), + calcSemantics.precision - excessPrecision, + excessPrecision); + /* Take the exponent of decSig. If we tcExtract-ed less bits + above we must adjust our exponent to compensate for the + implicit right shift. */ + exponent = (decSig.exponent + semantics->precision + - (calcSemantics.precision - excessPrecision)); + calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), + decSig.partCount(), + truncatedBits); + return normalize(rounding_mode, calcLostFraction); + } + } +} + +Expected<IEEEFloat::opStatus> +IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { + decimalInfo D; + opStatus fs; + + /* Scan the text. */ + StringRef::iterator p = str.begin(); + if (Error Err = interpretDecimal(p, str.end(), &D)) + return std::move(Err); + + /* Handle the quick cases. First the case of no significant digits, + i.e. zero, and then exponents that are obviously too large or too + small. Writing L for log 10 / log 2, a number d.ddddd*10^exp + definitely overflows if + + (exp - 1) * L >= maxExponent + + and definitely underflows to zero where + + (exp + 1) * L <= minExponent - precision + + With integer arithmetic the tightest bounds for L are + + 93/28 < L < 196/59 [ numerator <= 256 ] + 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] + */ + + // Test if we have a zero number allowing for strings with no null terminators + // and zero decimals with non-zero exponents. + // + // We computed firstSigDigit by ignoring all zeros and dots. Thus if + // D->firstSigDigit equals str.end(), every digit must be a zero and there can + // be at most one dot. On the other hand, if we have a zero with a non-zero + // exponent, then we know that D.firstSigDigit will be non-numeric. + if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { + category = fcZero; + fs = opOK; + + /* Check whether the normalized exponent is high enough to overflow + max during the log-rebasing in the max-exponent check below. */ + } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { + fs = handleOverflow(rounding_mode); + + /* If it wasn't, then it also wasn't high enough to overflow max + during the log-rebasing in the min-exponent check. Check that it + won't overflow min in either check, then perform the min-exponent + check. */ + } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || + (D.normalizedExponent + 1) * 28738 <= + 8651 * (semantics->minExponent - (int) semantics->precision)) { + /* Underflow to zero and round. */ + category = fcNormal; + zeroSignificand(); + fs = normalize(rounding_mode, lfLessThanHalf); + + /* We can finally safely perform the max-exponent check. */ + } else if ((D.normalizedExponent - 1) * 42039 + >= 12655 * semantics->maxExponent) { + /* Overflow and round. */ + fs = handleOverflow(rounding_mode); + } else { + integerPart *decSignificand; + unsigned int partCount; + + /* A tight upper bound on number of bits required to hold an + N-digit decimal integer is N * 196 / 59. Allocate enough space + to hold the full significand, and an extra part required by + tcMultiplyPart. */ + partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; + partCount = partCountForBits(1 + 196 * partCount / 59); + decSignificand = new integerPart[partCount + 1]; + partCount = 0; + + /* Convert to binary efficiently - we do almost all multiplication + in an integerPart. When this would overflow do we do a single + bignum multiplication, and then revert again to multiplication + in an integerPart. */ + do { + integerPart decValue, val, multiplier; + + val = 0; + multiplier = 1; + + do { + if (*p == '.') { + p++; + if (p == str.end()) { + break; + } + } + decValue = decDigitValue(*p++); + if (decValue >= 10U) { + delete[] decSignificand; + return createError("Invalid character in significand"); + } + multiplier *= 10; + val = val * 10 + decValue; + /* The maximum number that can be multiplied by ten with any + digit added without overflowing an integerPart. */ + } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); + + /* Multiply out the current part. */ + APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, + partCount, partCount + 1, false); + + /* If we used another part (likely but not guaranteed), increase + the count. */ + if (decSignificand[partCount]) + partCount++; + } while (p <= D.lastSigDigit); + + category = fcNormal; + fs = roundSignificandWithExponent(decSignificand, partCount, + D.exponent, rounding_mode); + + delete [] decSignificand; + } + + return fs; +} + +bool IEEEFloat::convertFromStringSpecials(StringRef str) { + const size_t MIN_NAME_SIZE = 3; + + if (str.size() < MIN_NAME_SIZE) + return false; + + if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { + makeInf(false); + return true; + } + + bool IsNegative = str.front() == '-'; + if (IsNegative) { + str = str.drop_front(); + if (str.size() < MIN_NAME_SIZE) + return false; + + if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) { + makeInf(true); + return true; + } + } + + // If we have a 's' (or 'S') prefix, then this is a Signaling NaN. + bool IsSignaling = str.front() == 's' || str.front() == 'S'; + if (IsSignaling) { + str = str.drop_front(); + if (str.size() < MIN_NAME_SIZE) + return false; + } + + if (str.startswith("nan") || str.startswith("NaN")) { + str = str.drop_front(3); + + // A NaN without payload. + if (str.empty()) { + makeNaN(IsSignaling, IsNegative); + return true; + } + + // Allow the payload to be inside parentheses. + if (str.front() == '(') { + // Parentheses should be balanced (and not empty). + if (str.size() <= 2 || str.back() != ')') + return false; + + str = str.slice(1, str.size() - 1); + } + + // Determine the payload number's radix. + unsigned Radix = 10; + if (str[0] == '0') { + if (str.size() > 1 && tolower(str[1]) == 'x') { + str = str.drop_front(2); + Radix = 16; + } else + Radix = 8; + } + + // Parse the payload and make the NaN. + APInt Payload; + if (!str.getAsInteger(Radix, Payload)) { + makeNaN(IsSignaling, IsNegative, &Payload); + return true; + } + } + + return false; +} + +Expected<IEEEFloat::opStatus> +IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) { + if (str.empty()) + return createError("Invalid string length"); + + // Handle special cases. + if (convertFromStringSpecials(str)) + return opOK; + + /* Handle a leading minus sign. */ + StringRef::iterator p = str.begin(); + size_t slen = str.size(); + sign = *p == '-' ? 1 : 0; + if (*p == '-' || *p == '+') { + p++; + slen--; + if (!slen) + return createError("String has no digits"); + } + + if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { + if (slen == 2) + return createError("Invalid string"); + return convertFromHexadecimalString(StringRef(p + 2, slen - 2), + rounding_mode); + } + + return convertFromDecimalString(StringRef(p, slen), rounding_mode); +} + +/* Write out a hexadecimal representation of the floating point value + to DST, which must be of sufficient size, in the C99 form + [-]0xh.hhhhp[+-]d. Return the number of characters written, + excluding the terminating NUL. + + If UPPERCASE, the output is in upper case, otherwise in lower case. + + HEXDIGITS digits appear altogether, rounding the value if + necessary. If HEXDIGITS is 0, the minimal precision to display the + number precisely is used instead. If nothing would appear after + the decimal point it is suppressed. + + The decimal exponent is always printed and has at least one digit. + Zero values display an exponent of zero. Infinities and NaNs + appear as "infinity" or "nan" respectively. + + The above rules are as specified by C99. There is ambiguity about + what the leading hexadecimal digit should be. This implementation + uses whatever is necessary so that the exponent is displayed as + stored. This implies the exponent will fall within the IEEE format + range, and the leading hexadecimal digit will be 0 (for denormals), + 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with + any other digits zero). +*/ +unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, + bool upperCase, + roundingMode rounding_mode) const { + char *p; + + p = dst; + if (sign) + *dst++ = '-'; + + switch (category) { + case fcInfinity: + memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); + dst += sizeof infinityL - 1; + break; + + case fcNaN: + memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); + dst += sizeof NaNU - 1; + break; + + case fcZero: + *dst++ = '0'; + *dst++ = upperCase ? 'X': 'x'; + *dst++ = '0'; + if (hexDigits > 1) { + *dst++ = '.'; + memset (dst, '0', hexDigits - 1); + dst += hexDigits - 1; + } + *dst++ = upperCase ? 'P': 'p'; + *dst++ = '0'; + break; + + case fcNormal: + dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); + break; + } + + *dst = 0; + + return static_cast<unsigned int>(dst - p); +} + +/* Does the hard work of outputting the correctly rounded hexadecimal + form of a normal floating point number with the specified number of + hexadecimal digits. If HEXDIGITS is zero the minimum number of + digits necessary to print the value precisely is output. */ +char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, + bool upperCase, + roundingMode rounding_mode) const { + unsigned int count, valueBits, shift, partsCount, outputDigits; + const char *hexDigitChars; + const integerPart *significand; + char *p; + bool roundUp; + + *dst++ = '0'; + *dst++ = upperCase ? 'X': 'x'; + + roundUp = false; + hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; + + significand = significandParts(); + partsCount = partCount(); + + /* +3 because the first digit only uses the single integer bit, so + we have 3 virtual zero most-significant-bits. */ + valueBits = semantics->precision + 3; + shift = integerPartWidth - valueBits % integerPartWidth; + + /* The natural number of digits required ignoring trailing + insignificant zeroes. */ + outputDigits = (valueBits - significandLSB () + 3) / 4; + + /* hexDigits of zero means use the required number for the + precision. Otherwise, see if we are truncating. If we are, + find out if we need to round away from zero. */ + if (hexDigits) { + if (hexDigits < outputDigits) { + /* We are dropping non-zero bits, so need to check how to round. + "bits" is the number of dropped bits. */ + unsigned int bits; + lostFraction fraction; + + bits = valueBits - hexDigits * 4; + fraction = lostFractionThroughTruncation (significand, partsCount, bits); + roundUp = roundAwayFromZero(rounding_mode, fraction, bits); + } + outputDigits = hexDigits; + } + + /* Write the digits consecutively, and start writing in the location + of the hexadecimal point. We move the most significant digit + left and add the hexadecimal point later. */ + p = ++dst; + + count = (valueBits + integerPartWidth - 1) / integerPartWidth; + + while (outputDigits && count) { + integerPart part; + + /* Put the most significant integerPartWidth bits in "part". */ + if (--count == partsCount) + part = 0; /* An imaginary higher zero part. */ + else + part = significand[count] << shift; + + if (count && shift) + part |= significand[count - 1] >> (integerPartWidth - shift); + + /* Convert as much of "part" to hexdigits as we can. */ + unsigned int curDigits = integerPartWidth / 4; + + if (curDigits > outputDigits) + curDigits = outputDigits; + dst += partAsHex (dst, part, curDigits, hexDigitChars); + outputDigits -= curDigits; + } + + if (roundUp) { + char *q = dst; + + /* Note that hexDigitChars has a trailing '0'. */ + do { + q--; + *q = hexDigitChars[hexDigitValue (*q) + 1]; + } while (*q == '0'); + assert(q >= p); + } else { + /* Add trailing zeroes. */ + memset (dst, '0', outputDigits); + dst += outputDigits; + } + + /* Move the most significant digit to before the point, and if there + is something after the decimal point add it. This must come + after rounding above. */ + p[-1] = p[0]; + if (dst -1 == p) + dst--; + else + p[0] = '.'; + + /* Finally output the exponent. */ + *dst++ = upperCase ? 'P': 'p'; + + return writeSignedDecimal (dst, exponent); +} + +hash_code hash_value(const IEEEFloat &Arg) { + if (!Arg.isFiniteNonZero()) + return hash_combine((uint8_t)Arg.category, + // NaN has no sign, fix it at zero. + Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, + Arg.semantics->precision); + + // Normal floats need their exponent and significand hashed. + return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, + Arg.semantics->precision, Arg.exponent, + hash_combine_range( + Arg.significandParts(), + Arg.significandParts() + Arg.partCount())); +} + +// Conversion from APFloat to/from host float/double. It may eventually be +// possible to eliminate these and have everybody deal with APFloats, but that +// will take a while. This approach will not easily extend to long double. +// Current implementation requires integerPartWidth==64, which is correct at +// the moment but could be made more general. + +// Denormals have exponent minExponent in APFloat, but minExponent-1 in +// the actual IEEE respresentations. We compensate for that here. + +APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); + assert(partCount()==2); + + uint64_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+16383; //bias + mysignificand = significandParts()[0]; + if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x7fff; + mysignificand = 0x8000000000000000ULL; + } else { + assert(category == fcNaN && "Unknown category"); + myexponent = 0x7fff; + mysignificand = significandParts()[0]; + } + + uint64_t words[2]; + words[0] = mysignificand; + words[1] = ((uint64_t)(sign & 1) << 15) | + (myexponent & 0x7fffLL); + return APInt(80, words); +} + +APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); + assert(partCount()==2); + + uint64_t words[2]; + opStatus fs; + bool losesInfo; + + // Convert number to double. To avoid spurious underflows, we re- + // normalize against the "double" minExponent first, and only *then* + // truncate the mantissa. The result of that second conversion + // may be inexact, but should never underflow. + // Declare fltSemantics before APFloat that uses it (and + // saves pointer to it) to ensure correct destruction order. + fltSemantics extendedSemantics = *semantics; + extendedSemantics.minExponent = semIEEEdouble.minExponent; + IEEEFloat extended(*this); + fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + IEEEFloat u(extended); + fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK || fs == opInexact); + (void)fs; + words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); + + // If conversion was exact or resulted in a special case, we're done; + // just set the second double to zero. Otherwise, re-convert back to + // the extended format and compute the difference. This now should + // convert exactly to double. + if (u.isFiniteNonZero() && losesInfo) { + fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + IEEEFloat v(extended); + v.subtract(u, rmNearestTiesToEven); + fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); + } else { + words[1] = 0; + } + + return APInt(128, words); +} + +APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); + assert(partCount()==2); + + uint64_t myexponent, mysignificand, mysignificand2; + + if (isFiniteNonZero()) { + myexponent = exponent+16383; //bias + mysignificand = significandParts()[0]; + mysignificand2 = significandParts()[1]; + if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = mysignificand2 = 0; + } else if (category==fcInfinity) { + myexponent = 0x7fff; + mysignificand = mysignificand2 = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x7fff; + mysignificand = significandParts()[0]; + mysignificand2 = significandParts()[1]; + } + + uint64_t words[2]; + words[0] = mysignificand; + words[1] = ((uint64_t)(sign & 1) << 63) | + ((myexponent & 0x7fff) << 48) | + (mysignificand2 & 0xffffffffffffLL); + + return APInt(128, words); +} + +APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); + assert(partCount()==1); + + uint64_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+1023; //bias + mysignificand = *significandParts(); + if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x7ff; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x7ff; + mysignificand = *significandParts(); + } + + return APInt(64, ((((uint64_t)(sign & 1) << 63) | + ((myexponent & 0x7ff) << 52) | + (mysignificand & 0xfffffffffffffLL)))); +} + +APInt IEEEFloat::convertFloatAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); + assert(partCount()==1); + + uint32_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+127; //bias + mysignificand = (uint32_t)*significandParts(); + if (myexponent == 1 && !(mysignificand & 0x800000)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0xff; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0xff; + mysignificand = (uint32_t)*significandParts(); + } + + return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | + (mysignificand & 0x7fffff))); +} + +APInt IEEEFloat::convertBFloatAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics *)&semBFloat); + assert(partCount() == 1); + + uint32_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent + 127; // bias + mysignificand = (uint32_t)*significandParts(); + if (myexponent == 1 && !(mysignificand & 0x80)) + myexponent = 0; // denormal + } else if (category == fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category == fcInfinity) { + myexponent = 0xff; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0xff; + mysignificand = (uint32_t)*significandParts(); + } + + return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) | + (mysignificand & 0x7f))); +} + +APInt IEEEFloat::convertHalfAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); + assert(partCount()==1); + + uint32_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+15; //bias + mysignificand = (uint32_t)*significandParts(); + if (myexponent == 1 && !(mysignificand & 0x400)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x1f; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x1f; + mysignificand = (uint32_t)*significandParts(); + } + + return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | + (mysignificand & 0x3ff))); +} + +// This function creates an APInt that is just a bit map of the floating +// point constant as it would appear in memory. It is not a conversion, +// and treating the result as a normal integer is unlikely to be useful. + +APInt IEEEFloat::bitcastToAPInt() const { + if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) + return convertHalfAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics *)&semBFloat) + return convertBFloatAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) + return convertFloatAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) + return convertDoubleAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEquad) + return convertQuadrupleAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) + return convertPPCDoubleDoubleAPFloatToAPInt(); + + assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && + "unknown format!"); + return convertF80LongDoubleAPFloatToAPInt(); +} + +float IEEEFloat::convertToFloat() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && + "Float semantics are not IEEEsingle"); + APInt api = bitcastToAPInt(); + return api.bitsToFloat(); +} + +double IEEEFloat::convertToDouble() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && + "Float semantics are not IEEEdouble"); + APInt api = bitcastToAPInt(); + return api.bitsToDouble(); +} + +/// Integer bit is explicit in this format. Intel hardware (387 and later) +/// does not support these bit patterns: +/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") +/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") +/// exponent!=0 nor all 1's, integer bit 0 ("unnormal") +/// exponent = 0, integer bit 1 ("pseudodenormal") +/// At the moment, the first three are treated as NaNs, the last one as Normal. +void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==80); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + uint64_t myexponent = (i2 & 0x7fff); + uint64_t mysignificand = i1; + uint8_t myintegerbit = mysignificand >> 63; + + initialize(&semX87DoubleExtended); + assert(partCount()==2); + + sign = static_cast<unsigned int>(i2>>15); + if (myexponent == 0 && mysignificand == 0) { makeZero(sign); - } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { + } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { makeInf(sign); - } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || - (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { - category = fcNaN; + } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || + (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { + category = fcNaN; exponent = exponentNaN(); - significandParts()[0] = mysignificand; - significandParts()[1] = 0; - } else { - category = fcNormal; - exponent = myexponent - 16383; - significandParts()[0] = mysignificand; - significandParts()[1] = 0; - if (myexponent==0) // denormal - exponent = -16382; - } -} - -void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { - assert(api.getBitWidth()==128); - uint64_t i1 = api.getRawData()[0]; - uint64_t i2 = api.getRawData()[1]; - opStatus fs; - bool losesInfo; - - // Get the first double and convert to our format. - initFromDoubleAPInt(APInt(64, i1)); - fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - (void)fs; - - // Unless we have a special case, add in second double. - if (isFiniteNonZero()) { - IEEEFloat v(semIEEEdouble, APInt(64, i2)); - fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); - assert(fs == opOK && !losesInfo); - (void)fs; - - add(v, rmNearestTiesToEven); - } -} - -void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { - assert(api.getBitWidth()==128); - uint64_t i1 = api.getRawData()[0]; - uint64_t i2 = api.getRawData()[1]; - uint64_t myexponent = (i2 >> 48) & 0x7fff; - uint64_t mysignificand = i1; - uint64_t mysignificand2 = i2 & 0xffffffffffffLL; - - initialize(&semIEEEquad); - assert(partCount()==2); - - sign = static_cast<unsigned int>(i2>>63); - if (myexponent==0 && - (mysignificand==0 && mysignificand2==0)) { + significandParts()[0] = mysignificand; + significandParts()[1] = 0; + } else { + category = fcNormal; + exponent = myexponent - 16383; + significandParts()[0] = mysignificand; + significandParts()[1] = 0; + if (myexponent==0) // denormal + exponent = -16382; + } +} + +void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==128); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + opStatus fs; + bool losesInfo; + + // Get the first double and convert to our format. + initFromDoubleAPInt(APInt(64, i1)); + fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + // Unless we have a special case, add in second double. + if (isFiniteNonZero()) { + IEEEFloat v(semIEEEdouble, APInt(64, i2)); + fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + add(v, rmNearestTiesToEven); + } +} + +void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { + assert(api.getBitWidth()==128); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + uint64_t myexponent = (i2 >> 48) & 0x7fff; + uint64_t mysignificand = i1; + uint64_t mysignificand2 = i2 & 0xffffffffffffLL; + + initialize(&semIEEEquad); + assert(partCount()==2); + + sign = static_cast<unsigned int>(i2>>63); + if (myexponent==0 && + (mysignificand==0 && mysignificand2==0)) { makeZero(sign); - } else if (myexponent==0x7fff && - (mysignificand==0 && mysignificand2==0)) { + } else if (myexponent==0x7fff && + (mysignificand==0 && mysignificand2==0)) { makeInf(sign); - } else if (myexponent==0x7fff && - (mysignificand!=0 || mysignificand2 !=0)) { - category = fcNaN; + } else if (myexponent==0x7fff && + (mysignificand!=0 || mysignificand2 !=0)) { + category = fcNaN; exponent = exponentNaN(); - significandParts()[0] = mysignificand; - significandParts()[1] = mysignificand2; - } else { - category = fcNormal; - exponent = myexponent - 16383; - significandParts()[0] = mysignificand; - significandParts()[1] = mysignificand2; - if (myexponent==0) // denormal - exponent = -16382; - else - significandParts()[1] |= 0x1000000000000LL; // integer bit - } -} - -void IEEEFloat::initFromDoubleAPInt(const APInt &api) { - assert(api.getBitWidth()==64); - uint64_t i = *api.getRawData(); - uint64_t myexponent = (i >> 52) & 0x7ff; - uint64_t mysignificand = i & 0xfffffffffffffLL; - - initialize(&semIEEEdouble); - assert(partCount()==1); - - sign = static_cast<unsigned int>(i>>63); - if (myexponent==0 && mysignificand==0) { + significandParts()[0] = mysignificand; + significandParts()[1] = mysignificand2; + } else { + category = fcNormal; + exponent = myexponent - 16383; + significandParts()[0] = mysignificand; + significandParts()[1] = mysignificand2; + if (myexponent==0) // denormal + exponent = -16382; + else + significandParts()[1] |= 0x1000000000000LL; // integer bit + } +} + +void IEEEFloat::initFromDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==64); + uint64_t i = *api.getRawData(); + uint64_t myexponent = (i >> 52) & 0x7ff; + uint64_t mysignificand = i & 0xfffffffffffffLL; + + initialize(&semIEEEdouble); + assert(partCount()==1); + + sign = static_cast<unsigned int>(i>>63); + if (myexponent==0 && mysignificand==0) { makeZero(sign); - } else if (myexponent==0x7ff && mysignificand==0) { + } else if (myexponent==0x7ff && mysignificand==0) { makeInf(sign); - } else if (myexponent==0x7ff && mysignificand!=0) { - category = fcNaN; + } else if (myexponent==0x7ff && mysignificand!=0) { + category = fcNaN; exponent = exponentNaN(); - *significandParts() = mysignificand; - } else { - category = fcNormal; - exponent = myexponent - 1023; - *significandParts() = mysignificand; - if (myexponent==0) // denormal - exponent = -1022; - else - *significandParts() |= 0x10000000000000LL; // integer bit - } -} - -void IEEEFloat::initFromFloatAPInt(const APInt &api) { - assert(api.getBitWidth()==32); - uint32_t i = (uint32_t)*api.getRawData(); - uint32_t myexponent = (i >> 23) & 0xff; - uint32_t mysignificand = i & 0x7fffff; - - initialize(&semIEEEsingle); - assert(partCount()==1); - - sign = i >> 31; - if (myexponent==0 && mysignificand==0) { + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 1023; + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -1022; + else + *significandParts() |= 0x10000000000000LL; // integer bit + } +} + +void IEEEFloat::initFromFloatAPInt(const APInt &api) { + assert(api.getBitWidth()==32); + uint32_t i = (uint32_t)*api.getRawData(); + uint32_t myexponent = (i >> 23) & 0xff; + uint32_t mysignificand = i & 0x7fffff; + + initialize(&semIEEEsingle); + assert(partCount()==1); + + sign = i >> 31; + if (myexponent==0 && mysignificand==0) { makeZero(sign); - } else if (myexponent==0xff && mysignificand==0) { + } else if (myexponent==0xff && mysignificand==0) { makeInf(sign); - } else if (myexponent==0xff && mysignificand!=0) { - category = fcNaN; + } else if (myexponent==0xff && mysignificand!=0) { + category = fcNaN; exponent = exponentNaN(); - *significandParts() = mysignificand; - } else { - category = fcNormal; - exponent = myexponent - 127; //bias - *significandParts() = mysignificand; - if (myexponent==0) // denormal - exponent = -126; - else - *significandParts() |= 0x800000; // integer bit - } -} - -void IEEEFloat::initFromBFloatAPInt(const APInt &api) { - assert(api.getBitWidth() == 16); - uint32_t i = (uint32_t)*api.getRawData(); - uint32_t myexponent = (i >> 7) & 0xff; - uint32_t mysignificand = i & 0x7f; - - initialize(&semBFloat); - assert(partCount() == 1); - - sign = i >> 15; - if (myexponent == 0 && mysignificand == 0) { + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 127; //bias + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -126; + else + *significandParts() |= 0x800000; // integer bit + } +} + +void IEEEFloat::initFromBFloatAPInt(const APInt &api) { + assert(api.getBitWidth() == 16); + uint32_t i = (uint32_t)*api.getRawData(); + uint32_t myexponent = (i >> 7) & 0xff; + uint32_t mysignificand = i & 0x7f; + + initialize(&semBFloat); + assert(partCount() == 1); + + sign = i >> 15; + if (myexponent == 0 && mysignificand == 0) { makeZero(sign); - } else if (myexponent == 0xff && mysignificand == 0) { + } else if (myexponent == 0xff && mysignificand == 0) { makeInf(sign); - } else if (myexponent == 0xff && mysignificand != 0) { - category = fcNaN; + } else if (myexponent == 0xff && mysignificand != 0) { + category = fcNaN; exponent = exponentNaN(); - *significandParts() = mysignificand; - } else { - category = fcNormal; - exponent = myexponent - 127; // bias - *significandParts() = mysignificand; - if (myexponent == 0) // denormal - exponent = -126; - else - *significandParts() |= 0x80; // integer bit - } -} - -void IEEEFloat::initFromHalfAPInt(const APInt &api) { - assert(api.getBitWidth()==16); - uint32_t i = (uint32_t)*api.getRawData(); - uint32_t myexponent = (i >> 10) & 0x1f; - uint32_t mysignificand = i & 0x3ff; - - initialize(&semIEEEhalf); - assert(partCount()==1); - - sign = i >> 15; - if (myexponent==0 && mysignificand==0) { + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 127; // bias + *significandParts() = mysignificand; + if (myexponent == 0) // denormal + exponent = -126; + else + *significandParts() |= 0x80; // integer bit + } +} + +void IEEEFloat::initFromHalfAPInt(const APInt &api) { + assert(api.getBitWidth()==16); + uint32_t i = (uint32_t)*api.getRawData(); + uint32_t myexponent = (i >> 10) & 0x1f; + uint32_t mysignificand = i & 0x3ff; + + initialize(&semIEEEhalf); + assert(partCount()==1); + + sign = i >> 15; + if (myexponent==0 && mysignificand==0) { makeZero(sign); - } else if (myexponent==0x1f && mysignificand==0) { + } else if (myexponent==0x1f && mysignificand==0) { makeInf(sign); - } else if (myexponent==0x1f && mysignificand!=0) { - category = fcNaN; + } else if (myexponent==0x1f && mysignificand!=0) { + category = fcNaN; exponent = exponentNaN(); - *significandParts() = mysignificand; - } else { - category = fcNormal; - exponent = myexponent - 15; //bias - *significandParts() = mysignificand; - if (myexponent==0) // denormal - exponent = -14; - else - *significandParts() |= 0x400; // integer bit - } -} - -/// Treat api as containing the bits of a floating point number. Currently -/// we infer the floating point type from the size of the APInt. The -/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful -/// when the size is anything else). -void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { - if (Sem == &semIEEEhalf) - return initFromHalfAPInt(api); - if (Sem == &semBFloat) - return initFromBFloatAPInt(api); - if (Sem == &semIEEEsingle) - return initFromFloatAPInt(api); - if (Sem == &semIEEEdouble) - return initFromDoubleAPInt(api); - if (Sem == &semX87DoubleExtended) - return initFromF80LongDoubleAPInt(api); - if (Sem == &semIEEEquad) - return initFromQuadrupleAPInt(api); - if (Sem == &semPPCDoubleDoubleLegacy) - return initFromPPCDoubleDoubleAPInt(api); - - llvm_unreachable(nullptr); -} - -/// Make this number the largest magnitude normal number in the given -/// semantics. -void IEEEFloat::makeLargest(bool Negative) { - // We want (in interchange format): - // sign = {Negative} - // exponent = 1..10 - // significand = 1..1 - category = fcNormal; - sign = Negative; - exponent = semantics->maxExponent; - - // Use memset to set all but the highest integerPart to all ones. - integerPart *significand = significandParts(); - unsigned PartCount = partCount(); - memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); - - // Set the high integerPart especially setting all unused top bits for - // internal consistency. - const unsigned NumUnusedHighBits = - PartCount*integerPartWidth - semantics->precision; - significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) - ? (~integerPart(0) >> NumUnusedHighBits) - : 0; -} - -/// Make this number the smallest magnitude denormal number in the given -/// semantics. -void IEEEFloat::makeSmallest(bool Negative) { - // We want (in interchange format): - // sign = {Negative} - // exponent = 0..0 - // significand = 0..01 - category = fcNormal; - sign = Negative; - exponent = semantics->minExponent; - APInt::tcSet(significandParts(), 1, partCount()); -} - -void IEEEFloat::makeSmallestNormalized(bool Negative) { - // We want (in interchange format): - // sign = {Negative} - // exponent = 0..0 - // significand = 10..0 - - category = fcNormal; - zeroSignificand(); - sign = Negative; - exponent = semantics->minExponent; - significandParts()[partCountForBits(semantics->precision) - 1] |= - (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); -} - -IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { - initFromAPInt(&Sem, API); -} - -IEEEFloat::IEEEFloat(float f) { - initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); -} - -IEEEFloat::IEEEFloat(double d) { - initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); -} - -namespace { - void append(SmallVectorImpl<char> &Buffer, StringRef Str) { - Buffer.append(Str.begin(), Str.end()); - } - - /// Removes data from the given significand until it is no more - /// precise than is required for the desired precision. - void AdjustToPrecision(APInt &significand, - int &exp, unsigned FormatPrecision) { - unsigned bits = significand.getActiveBits(); - - // 196/59 is a very slight overestimate of lg_2(10). - unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; - - if (bits <= bitsRequired) return; - - unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; - if (!tensRemovable) return; - - exp += tensRemovable; - - APInt divisor(significand.getBitWidth(), 1); - APInt powten(significand.getBitWidth(), 10); - while (true) { - if (tensRemovable & 1) - divisor *= powten; - tensRemovable >>= 1; - if (!tensRemovable) break; - powten *= powten; - } - - significand = significand.udiv(divisor); - - // Truncate the significand down to its active bit count. - significand = significand.trunc(significand.getActiveBits()); - } - - - void AdjustToPrecision(SmallVectorImpl<char> &buffer, - int &exp, unsigned FormatPrecision) { - unsigned N = buffer.size(); - if (N <= FormatPrecision) return; - - // The most significant figures are the last ones in the buffer. - unsigned FirstSignificant = N - FormatPrecision; - - // Round. - // FIXME: this probably shouldn't use 'round half up'. - - // Rounding down is just a truncation, except we also want to drop - // trailing zeros from the new result. - if (buffer[FirstSignificant - 1] < '5') { - while (FirstSignificant < N && buffer[FirstSignificant] == '0') - FirstSignificant++; - - exp += FirstSignificant; - buffer.erase(&buffer[0], &buffer[FirstSignificant]); - return; - } - - // Rounding up requires a decimal add-with-carry. If we continue - // the carry, the newly-introduced zeros will just be truncated. - for (unsigned I = FirstSignificant; I != N; ++I) { - if (buffer[I] == '9') { - FirstSignificant++; - } else { - buffer[I]++; - break; - } - } - - // If we carried through, we have exactly one digit of precision. - if (FirstSignificant == N) { - exp += FirstSignificant; - buffer.clear(); - buffer.push_back('1'); - return; - } - - exp += FirstSignificant; - buffer.erase(&buffer[0], &buffer[FirstSignificant]); - } -} - -void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, - unsigned FormatMaxPadding, bool TruncateZero) const { - switch (category) { - case fcInfinity: - if (isNegative()) - return append(Str, "-Inf"); - else - return append(Str, "+Inf"); - - case fcNaN: return append(Str, "NaN"); - - case fcZero: - if (isNegative()) - Str.push_back('-'); - - if (!FormatMaxPadding) { - if (TruncateZero) - append(Str, "0.0E+0"); - else { - append(Str, "0.0"); - if (FormatPrecision > 1) - Str.append(FormatPrecision - 1, '0'); - append(Str, "e+00"); - } - } else - Str.push_back('0'); - return; - - case fcNormal: - break; - } - - if (isNegative()) - Str.push_back('-'); - - // Decompose the number into an APInt and an exponent. - int exp = exponent - ((int) semantics->precision - 1); - APInt significand(semantics->precision, - makeArrayRef(significandParts(), - partCountForBits(semantics->precision))); - - // Set FormatPrecision if zero. We want to do this before we - // truncate trailing zeros, as those are part of the precision. - if (!FormatPrecision) { - // We use enough digits so the number can be round-tripped back to an - // APFloat. The formula comes from "How to Print Floating-Point Numbers - // Accurately" by Steele and White. - // FIXME: Using a formula based purely on the precision is conservative; - // we can print fewer digits depending on the actual value being printed. - - // FormatPrecision = 2 + floor(significandBits / lg_2(10)) - FormatPrecision = 2 + semantics->precision * 59 / 196; - } - - // Ignore trailing binary zeros. - int trailingZeros = significand.countTrailingZeros(); - exp += trailingZeros; - significand.lshrInPlace(trailingZeros); - - // Change the exponent from 2^e to 10^e. - if (exp == 0) { - // Nothing to do. - } else if (exp > 0) { - // Just shift left. - significand = significand.zext(semantics->precision + exp); - significand <<= exp; - exp = 0; - } else { /* exp < 0 */ - int texp = -exp; - - // We transform this using the identity: - // (N)(2^-e) == (N)(5^e)(10^-e) - // This means we have to multiply N (the significand) by 5^e. - // To avoid overflow, we have to operate on numbers large - // enough to store N * 5^e: - // log2(N * 5^e) == log2(N) + e * log2(5) - // <= semantics->precision + e * 137 / 59 - // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) - - unsigned precision = semantics->precision + (137 * texp + 136) / 59; - - // Multiply significand by 5^e. - // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) - significand = significand.zext(precision); - APInt five_to_the_i(precision, 5); - while (true) { - if (texp & 1) significand *= five_to_the_i; - - texp >>= 1; - if (!texp) break; - five_to_the_i *= five_to_the_i; - } - } - - AdjustToPrecision(significand, exp, FormatPrecision); - - SmallVector<char, 256> buffer; - - // Fill the buffer. - unsigned precision = significand.getBitWidth(); - APInt ten(precision, 10); - APInt digit(precision, 0); - - bool inTrail = true; - while (significand != 0) { - // digit <- significand % 10 - // significand <- significand / 10 - APInt::udivrem(significand, ten, significand, digit); - - unsigned d = digit.getZExtValue(); - - // Drop trailing zeros. - if (inTrail && !d) exp++; - else { - buffer.push_back((char) ('0' + d)); - inTrail = false; - } - } - - assert(!buffer.empty() && "no characters in buffer!"); - - // Drop down to FormatPrecision. - // TODO: don't do more precise calculations above than are required. - AdjustToPrecision(buffer, exp, FormatPrecision); - - unsigned NDigits = buffer.size(); - - // Check whether we should use scientific notation. - bool FormatScientific; - if (!FormatMaxPadding) - FormatScientific = true; - else { - if (exp >= 0) { - // 765e3 --> 765000 - // ^^^ - // But we shouldn't make the number look more precise than it is. - FormatScientific = ((unsigned) exp > FormatMaxPadding || - NDigits + (unsigned) exp > FormatPrecision); - } else { - // Power of the most significant digit. - int MSD = exp + (int) (NDigits - 1); - if (MSD >= 0) { - // 765e-2 == 7.65 - FormatScientific = false; - } else { - // 765e-5 == 0.00765 - // ^ ^^ - FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; - } - } - } - - // Scientific formatting is pretty straightforward. - if (FormatScientific) { - exp += (NDigits - 1); - - Str.push_back(buffer[NDigits-1]); - Str.push_back('.'); - if (NDigits == 1 && TruncateZero) - Str.push_back('0'); - else - for (unsigned I = 1; I != NDigits; ++I) - Str.push_back(buffer[NDigits-1-I]); - // Fill with zeros up to FormatPrecision. - if (!TruncateZero && FormatPrecision > NDigits - 1) - Str.append(FormatPrecision - NDigits + 1, '0'); - // For !TruncateZero we use lower 'e'. - Str.push_back(TruncateZero ? 'E' : 'e'); - - Str.push_back(exp >= 0 ? '+' : '-'); - if (exp < 0) exp = -exp; - SmallVector<char, 6> expbuf; - do { - expbuf.push_back((char) ('0' + (exp % 10))); - exp /= 10; - } while (exp); - // Exponent always at least two digits if we do not truncate zeros. - if (!TruncateZero && expbuf.size() < 2) - expbuf.push_back('0'); - for (unsigned I = 0, E = expbuf.size(); I != E; ++I) - Str.push_back(expbuf[E-1-I]); - return; - } - - // Non-scientific, positive exponents. - if (exp >= 0) { - for (unsigned I = 0; I != NDigits; ++I) - Str.push_back(buffer[NDigits-1-I]); - for (unsigned I = 0; I != (unsigned) exp; ++I) - Str.push_back('0'); - return; - } - - // Non-scientific, negative exponents. - - // The number of digits to the left of the decimal point. - int NWholeDigits = exp + (int) NDigits; - - unsigned I = 0; - if (NWholeDigits > 0) { - for (; I != (unsigned) NWholeDigits; ++I) - Str.push_back(buffer[NDigits-I-1]); - Str.push_back('.'); - } else { - unsigned NZeros = 1 + (unsigned) -NWholeDigits; - - Str.push_back('0'); - Str.push_back('.'); - for (unsigned Z = 1; Z != NZeros; ++Z) - Str.push_back('0'); - } - - for (; I != NDigits; ++I) - Str.push_back(buffer[NDigits-I-1]); -} - -bool IEEEFloat::getExactInverse(APFloat *inv) const { - // Special floats and denormals have no exact inverse. - if (!isFiniteNonZero()) - return false; - - // Check that the number is a power of two by making sure that only the - // integer bit is set in the significand. - if (significandLSB() != semantics->precision - 1) - return false; - - // Get the inverse. - IEEEFloat reciprocal(*semantics, 1ULL); - if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) - return false; - - // Avoid multiplication with a denormal, it is not safe on all platforms and - // may be slower than a normal division. - if (reciprocal.isDenormal()) - return false; - - assert(reciprocal.isFiniteNonZero() && - reciprocal.significandLSB() == reciprocal.semantics->precision - 1); - - if (inv) - *inv = APFloat(reciprocal, *semantics); - - return true; -} - -bool IEEEFloat::isSignaling() const { - if (!isNaN()) - return false; - - // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the - // first bit of the trailing significand being 0. - return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); -} - -/// IEEE-754R 2008 5.3.1: nextUp/nextDown. -/// -/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with -/// appropriate sign switching before/after the computation. -IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { - // If we are performing nextDown, swap sign so we have -x. - if (nextDown) - changeSign(); - - // Compute nextUp(x) - opStatus result = opOK; - - // Handle each float category separately. - switch (category) { - case fcInfinity: - // nextUp(+inf) = +inf - if (!isNegative()) - break; - // nextUp(-inf) = -getLargest() - makeLargest(true); - break; - case fcNaN: - // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. - // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not - // change the payload. - if (isSignaling()) { - result = opInvalidOp; - // For consistency, propagate the sign of the sNaN to the qNaN. - makeNaN(false, isNegative(), nullptr); - } - break; - case fcZero: - // nextUp(pm 0) = +getSmallest() - makeSmallest(false); - break; - case fcNormal: - // nextUp(-getSmallest()) = -0 - if (isSmallest() && isNegative()) { - APInt::tcSet(significandParts(), 0, partCount()); - category = fcZero; - exponent = 0; - break; - } - - // nextUp(getLargest()) == INFINITY - if (isLargest() && !isNegative()) { - APInt::tcSet(significandParts(), 0, partCount()); - category = fcInfinity; - exponent = semantics->maxExponent + 1; - break; - } - - // nextUp(normal) == normal + inc. - if (isNegative()) { - // If we are negative, we need to decrement the significand. - - // We only cross a binade boundary that requires adjusting the exponent - // if: - // 1. exponent != semantics->minExponent. This implies we are not in the - // smallest binade or are dealing with denormals. - // 2. Our significand excluding the integral bit is all zeros. - bool WillCrossBinadeBoundary = - exponent != semantics->minExponent && isSignificandAllZeros(); - - // Decrement the significand. - // - // We always do this since: - // 1. If we are dealing with a non-binade decrement, by definition we - // just decrement the significand. - // 2. If we are dealing with a normal -> normal binade decrement, since - // we have an explicit integral bit the fact that all bits but the - // integral bit are zero implies that subtracting one will yield a - // significand with 0 integral bit and 1 in all other spots. Thus we - // must just adjust the exponent and set the integral bit to 1. - // 3. If we are dealing with a normal -> denormal binade decrement, - // since we set the integral bit to 0 when we represent denormals, we - // just decrement the significand. - integerPart *Parts = significandParts(); - APInt::tcDecrement(Parts, partCount()); - - if (WillCrossBinadeBoundary) { - // Our result is a normal number. Do the following: - // 1. Set the integral bit to 1. - // 2. Decrement the exponent. - APInt::tcSetBit(Parts, semantics->precision - 1); - exponent--; - } - } else { - // If we are positive, we need to increment the significand. - - // We only cross a binade boundary that requires adjusting the exponent if - // the input is not a denormal and all of said input's significand bits - // are set. If all of said conditions are true: clear the significand, set - // the integral bit to 1, and increment the exponent. If we have a - // denormal always increment since moving denormals and the numbers in the - // smallest normal binade have the same exponent in our representation. - bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); - - if (WillCrossBinadeBoundary) { - integerPart *Parts = significandParts(); - APInt::tcSet(Parts, 0, partCount()); - APInt::tcSetBit(Parts, semantics->precision - 1); - assert(exponent != semantics->maxExponent && - "We can not increment an exponent beyond the maxExponent allowed" - " by the given floating point semantics."); - exponent++; - } else { - incrementSignificand(); - } - } - break; - } - - // If we are performing nextDown, swap sign so we have -nextUp(-x) - if (nextDown) - changeSign(); - - return result; -} - + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 15; //bias + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -14; + else + *significandParts() |= 0x400; // integer bit + } +} + +/// Treat api as containing the bits of a floating point number. Currently +/// we infer the floating point type from the size of the APInt. The +/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful +/// when the size is anything else). +void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { + if (Sem == &semIEEEhalf) + return initFromHalfAPInt(api); + if (Sem == &semBFloat) + return initFromBFloatAPInt(api); + if (Sem == &semIEEEsingle) + return initFromFloatAPInt(api); + if (Sem == &semIEEEdouble) + return initFromDoubleAPInt(api); + if (Sem == &semX87DoubleExtended) + return initFromF80LongDoubleAPInt(api); + if (Sem == &semIEEEquad) + return initFromQuadrupleAPInt(api); + if (Sem == &semPPCDoubleDoubleLegacy) + return initFromPPCDoubleDoubleAPInt(api); + + llvm_unreachable(nullptr); +} + +/// Make this number the largest magnitude normal number in the given +/// semantics. +void IEEEFloat::makeLargest(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 1..10 + // significand = 1..1 + category = fcNormal; + sign = Negative; + exponent = semantics->maxExponent; + + // Use memset to set all but the highest integerPart to all ones. + integerPart *significand = significandParts(); + unsigned PartCount = partCount(); + memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); + + // Set the high integerPart especially setting all unused top bits for + // internal consistency. + const unsigned NumUnusedHighBits = + PartCount*integerPartWidth - semantics->precision; + significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) + ? (~integerPart(0) >> NumUnusedHighBits) + : 0; +} + +/// Make this number the smallest magnitude denormal number in the given +/// semantics. +void IEEEFloat::makeSmallest(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 0..01 + category = fcNormal; + sign = Negative; + exponent = semantics->minExponent; + APInt::tcSet(significandParts(), 1, partCount()); +} + +void IEEEFloat::makeSmallestNormalized(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 10..0 + + category = fcNormal; + zeroSignificand(); + sign = Negative; + exponent = semantics->minExponent; + significandParts()[partCountForBits(semantics->precision) - 1] |= + (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); +} + +IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { + initFromAPInt(&Sem, API); +} + +IEEEFloat::IEEEFloat(float f) { + initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); +} + +IEEEFloat::IEEEFloat(double d) { + initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); +} + +namespace { + void append(SmallVectorImpl<char> &Buffer, StringRef Str) { + Buffer.append(Str.begin(), Str.end()); + } + + /// Removes data from the given significand until it is no more + /// precise than is required for the desired precision. + void AdjustToPrecision(APInt &significand, + int &exp, unsigned FormatPrecision) { + unsigned bits = significand.getActiveBits(); + + // 196/59 is a very slight overestimate of lg_2(10). + unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; + + if (bits <= bitsRequired) return; + + unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; + if (!tensRemovable) return; + + exp += tensRemovable; + + APInt divisor(significand.getBitWidth(), 1); + APInt powten(significand.getBitWidth(), 10); + while (true) { + if (tensRemovable & 1) + divisor *= powten; + tensRemovable >>= 1; + if (!tensRemovable) break; + powten *= powten; + } + + significand = significand.udiv(divisor); + + // Truncate the significand down to its active bit count. + significand = significand.trunc(significand.getActiveBits()); + } + + + void AdjustToPrecision(SmallVectorImpl<char> &buffer, + int &exp, unsigned FormatPrecision) { + unsigned N = buffer.size(); + if (N <= FormatPrecision) return; + + // The most significant figures are the last ones in the buffer. + unsigned FirstSignificant = N - FormatPrecision; + + // Round. + // FIXME: this probably shouldn't use 'round half up'. + + // Rounding down is just a truncation, except we also want to drop + // trailing zeros from the new result. + if (buffer[FirstSignificant - 1] < '5') { + while (FirstSignificant < N && buffer[FirstSignificant] == '0') + FirstSignificant++; + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + return; + } + + // Rounding up requires a decimal add-with-carry. If we continue + // the carry, the newly-introduced zeros will just be truncated. + for (unsigned I = FirstSignificant; I != N; ++I) { + if (buffer[I] == '9') { + FirstSignificant++; + } else { + buffer[I]++; + break; + } + } + + // If we carried through, we have exactly one digit of precision. + if (FirstSignificant == N) { + exp += FirstSignificant; + buffer.clear(); + buffer.push_back('1'); + return; + } + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + } +} + +void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, + unsigned FormatMaxPadding, bool TruncateZero) const { + switch (category) { + case fcInfinity: + if (isNegative()) + return append(Str, "-Inf"); + else + return append(Str, "+Inf"); + + case fcNaN: return append(Str, "NaN"); + + case fcZero: + if (isNegative()) + Str.push_back('-'); + + if (!FormatMaxPadding) { + if (TruncateZero) + append(Str, "0.0E+0"); + else { + append(Str, "0.0"); + if (FormatPrecision > 1) + Str.append(FormatPrecision - 1, '0'); + append(Str, "e+00"); + } + } else + Str.push_back('0'); + return; + + case fcNormal: + break; + } + + if (isNegative()) + Str.push_back('-'); + + // Decompose the number into an APInt and an exponent. + int exp = exponent - ((int) semantics->precision - 1); + APInt significand(semantics->precision, + makeArrayRef(significandParts(), + partCountForBits(semantics->precision))); + + // Set FormatPrecision if zero. We want to do this before we + // truncate trailing zeros, as those are part of the precision. + if (!FormatPrecision) { + // We use enough digits so the number can be round-tripped back to an + // APFloat. The formula comes from "How to Print Floating-Point Numbers + // Accurately" by Steele and White. + // FIXME: Using a formula based purely on the precision is conservative; + // we can print fewer digits depending on the actual value being printed. + + // FormatPrecision = 2 + floor(significandBits / lg_2(10)) + FormatPrecision = 2 + semantics->precision * 59 / 196; + } + + // Ignore trailing binary zeros. + int trailingZeros = significand.countTrailingZeros(); + exp += trailingZeros; + significand.lshrInPlace(trailingZeros); + + // Change the exponent from 2^e to 10^e. + if (exp == 0) { + // Nothing to do. + } else if (exp > 0) { + // Just shift left. + significand = significand.zext(semantics->precision + exp); + significand <<= exp; + exp = 0; + } else { /* exp < 0 */ + int texp = -exp; + + // We transform this using the identity: + // (N)(2^-e) == (N)(5^e)(10^-e) + // This means we have to multiply N (the significand) by 5^e. + // To avoid overflow, we have to operate on numbers large + // enough to store N * 5^e: + // log2(N * 5^e) == log2(N) + e * log2(5) + // <= semantics->precision + e * 137 / 59 + // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) + + unsigned precision = semantics->precision + (137 * texp + 136) / 59; + + // Multiply significand by 5^e. + // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) + significand = significand.zext(precision); + APInt five_to_the_i(precision, 5); + while (true) { + if (texp & 1) significand *= five_to_the_i; + + texp >>= 1; + if (!texp) break; + five_to_the_i *= five_to_the_i; + } + } + + AdjustToPrecision(significand, exp, FormatPrecision); + + SmallVector<char, 256> buffer; + + // Fill the buffer. + unsigned precision = significand.getBitWidth(); + APInt ten(precision, 10); + APInt digit(precision, 0); + + bool inTrail = true; + while (significand != 0) { + // digit <- significand % 10 + // significand <- significand / 10 + APInt::udivrem(significand, ten, significand, digit); + + unsigned d = digit.getZExtValue(); + + // Drop trailing zeros. + if (inTrail && !d) exp++; + else { + buffer.push_back((char) ('0' + d)); + inTrail = false; + } + } + + assert(!buffer.empty() && "no characters in buffer!"); + + // Drop down to FormatPrecision. + // TODO: don't do more precise calculations above than are required. + AdjustToPrecision(buffer, exp, FormatPrecision); + + unsigned NDigits = buffer.size(); + + // Check whether we should use scientific notation. + bool FormatScientific; + if (!FormatMaxPadding) + FormatScientific = true; + else { + if (exp >= 0) { + // 765e3 --> 765000 + // ^^^ + // But we shouldn't make the number look more precise than it is. + FormatScientific = ((unsigned) exp > FormatMaxPadding || + NDigits + (unsigned) exp > FormatPrecision); + } else { + // Power of the most significant digit. + int MSD = exp + (int) (NDigits - 1); + if (MSD >= 0) { + // 765e-2 == 7.65 + FormatScientific = false; + } else { + // 765e-5 == 0.00765 + // ^ ^^ + FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; + } + } + } + + // Scientific formatting is pretty straightforward. + if (FormatScientific) { + exp += (NDigits - 1); + + Str.push_back(buffer[NDigits-1]); + Str.push_back('.'); + if (NDigits == 1 && TruncateZero) + Str.push_back('0'); + else + for (unsigned I = 1; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + // Fill with zeros up to FormatPrecision. + if (!TruncateZero && FormatPrecision > NDigits - 1) + Str.append(FormatPrecision - NDigits + 1, '0'); + // For !TruncateZero we use lower 'e'. + Str.push_back(TruncateZero ? 'E' : 'e'); + + Str.push_back(exp >= 0 ? '+' : '-'); + if (exp < 0) exp = -exp; + SmallVector<char, 6> expbuf; + do { + expbuf.push_back((char) ('0' + (exp % 10))); + exp /= 10; + } while (exp); + // Exponent always at least two digits if we do not truncate zeros. + if (!TruncateZero && expbuf.size() < 2) + expbuf.push_back('0'); + for (unsigned I = 0, E = expbuf.size(); I != E; ++I) + Str.push_back(expbuf[E-1-I]); + return; + } + + // Non-scientific, positive exponents. + if (exp >= 0) { + for (unsigned I = 0; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + for (unsigned I = 0; I != (unsigned) exp; ++I) + Str.push_back('0'); + return; + } + + // Non-scientific, negative exponents. + + // The number of digits to the left of the decimal point. + int NWholeDigits = exp + (int) NDigits; + + unsigned I = 0; + if (NWholeDigits > 0) { + for (; I != (unsigned) NWholeDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); + Str.push_back('.'); + } else { + unsigned NZeros = 1 + (unsigned) -NWholeDigits; + + Str.push_back('0'); + Str.push_back('.'); + for (unsigned Z = 1; Z != NZeros; ++Z) + Str.push_back('0'); + } + + for (; I != NDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); +} + +bool IEEEFloat::getExactInverse(APFloat *inv) const { + // Special floats and denormals have no exact inverse. + if (!isFiniteNonZero()) + return false; + + // Check that the number is a power of two by making sure that only the + // integer bit is set in the significand. + if (significandLSB() != semantics->precision - 1) + return false; + + // Get the inverse. + IEEEFloat reciprocal(*semantics, 1ULL); + if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) + return false; + + // Avoid multiplication with a denormal, it is not safe on all platforms and + // may be slower than a normal division. + if (reciprocal.isDenormal()) + return false; + + assert(reciprocal.isFiniteNonZero() && + reciprocal.significandLSB() == reciprocal.semantics->precision - 1); + + if (inv) + *inv = APFloat(reciprocal, *semantics); + + return true; +} + +bool IEEEFloat::isSignaling() const { + if (!isNaN()) + return false; + + // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the + // first bit of the trailing significand being 0. + return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); +} + +/// IEEE-754R 2008 5.3.1: nextUp/nextDown. +/// +/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with +/// appropriate sign switching before/after the computation. +IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { + // If we are performing nextDown, swap sign so we have -x. + if (nextDown) + changeSign(); + + // Compute nextUp(x) + opStatus result = opOK; + + // Handle each float category separately. + switch (category) { + case fcInfinity: + // nextUp(+inf) = +inf + if (!isNegative()) + break; + // nextUp(-inf) = -getLargest() + makeLargest(true); + break; + case fcNaN: + // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. + // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not + // change the payload. + if (isSignaling()) { + result = opInvalidOp; + // For consistency, propagate the sign of the sNaN to the qNaN. + makeNaN(false, isNegative(), nullptr); + } + break; + case fcZero: + // nextUp(pm 0) = +getSmallest() + makeSmallest(false); + break; + case fcNormal: + // nextUp(-getSmallest()) = -0 + if (isSmallest() && isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcZero; + exponent = 0; + break; + } + + // nextUp(getLargest()) == INFINITY + if (isLargest() && !isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcInfinity; + exponent = semantics->maxExponent + 1; + break; + } + + // nextUp(normal) == normal + inc. + if (isNegative()) { + // If we are negative, we need to decrement the significand. + + // We only cross a binade boundary that requires adjusting the exponent + // if: + // 1. exponent != semantics->minExponent. This implies we are not in the + // smallest binade or are dealing with denormals. + // 2. Our significand excluding the integral bit is all zeros. + bool WillCrossBinadeBoundary = + exponent != semantics->minExponent && isSignificandAllZeros(); + + // Decrement the significand. + // + // We always do this since: + // 1. If we are dealing with a non-binade decrement, by definition we + // just decrement the significand. + // 2. If we are dealing with a normal -> normal binade decrement, since + // we have an explicit integral bit the fact that all bits but the + // integral bit are zero implies that subtracting one will yield a + // significand with 0 integral bit and 1 in all other spots. Thus we + // must just adjust the exponent and set the integral bit to 1. + // 3. If we are dealing with a normal -> denormal binade decrement, + // since we set the integral bit to 0 when we represent denormals, we + // just decrement the significand. + integerPart *Parts = significandParts(); + APInt::tcDecrement(Parts, partCount()); + + if (WillCrossBinadeBoundary) { + // Our result is a normal number. Do the following: + // 1. Set the integral bit to 1. + // 2. Decrement the exponent. + APInt::tcSetBit(Parts, semantics->precision - 1); + exponent--; + } + } else { + // If we are positive, we need to increment the significand. + + // We only cross a binade boundary that requires adjusting the exponent if + // the input is not a denormal and all of said input's significand bits + // are set. If all of said conditions are true: clear the significand, set + // the integral bit to 1, and increment the exponent. If we have a + // denormal always increment since moving denormals and the numbers in the + // smallest normal binade have the same exponent in our representation. + bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); + + if (WillCrossBinadeBoundary) { + integerPart *Parts = significandParts(); + APInt::tcSet(Parts, 0, partCount()); + APInt::tcSetBit(Parts, semantics->precision - 1); + assert(exponent != semantics->maxExponent && + "We can not increment an exponent beyond the maxExponent allowed" + " by the given floating point semantics."); + exponent++; + } else { + incrementSignificand(); + } + } + break; + } + + // If we are performing nextDown, swap sign so we have -nextUp(-x) + if (nextDown) + changeSign(); + + return result; +} + APFloatBase::ExponentType IEEEFloat::exponentNaN() const { return semantics->maxExponent + 1; } @@ -4136,744 +4136,744 @@ APFloatBase::ExponentType IEEEFloat::exponentZero() const { return semantics->minExponent - 1; } -void IEEEFloat::makeInf(bool Negative) { - category = fcInfinity; - sign = Negative; +void IEEEFloat::makeInf(bool Negative) { + category = fcInfinity; + sign = Negative; exponent = exponentInf(); - APInt::tcSet(significandParts(), 0, partCount()); -} - -void IEEEFloat::makeZero(bool Negative) { - category = fcZero; - sign = Negative; + APInt::tcSet(significandParts(), 0, partCount()); +} + +void IEEEFloat::makeZero(bool Negative) { + category = fcZero; + sign = Negative; exponent = exponentZero(); - APInt::tcSet(significandParts(), 0, partCount()); -} - -void IEEEFloat::makeQuiet() { - assert(isNaN()); - APInt::tcSetBit(significandParts(), semantics->precision - 2); -} - -int ilogb(const IEEEFloat &Arg) { - if (Arg.isNaN()) - return IEEEFloat::IEK_NaN; - if (Arg.isZero()) - return IEEEFloat::IEK_Zero; - if (Arg.isInfinity()) - return IEEEFloat::IEK_Inf; - if (!Arg.isDenormal()) - return Arg.exponent; - - IEEEFloat Normalized(Arg); - int SignificandBits = Arg.getSemantics().precision - 1; - - Normalized.exponent += SignificandBits; - Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); - return Normalized.exponent - SignificandBits; -} - -IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { - auto MaxExp = X.getSemantics().maxExponent; - auto MinExp = X.getSemantics().minExponent; - - // If Exp is wildly out-of-scale, simply adding it to X.exponent will - // overflow; clamp it to a safe range before adding, but ensure that the range - // is large enough that the clamp does not change the result. The range we - // need to support is the difference between the largest possible exponent and - // the normalized exponent of half the smallest denormal. - - int SignificandBits = X.getSemantics().precision - 1; - int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; - - // Clamp to one past the range ends to let normalize handle overlflow. - X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); - X.normalize(RoundingMode, lfExactlyZero); - if (X.isNaN()) - X.makeQuiet(); - return X; -} - -IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { - Exp = ilogb(Val); - - // Quiet signalling nans. - if (Exp == IEEEFloat::IEK_NaN) { - IEEEFloat Quiet(Val); - Quiet.makeQuiet(); - return Quiet; - } - - if (Exp == IEEEFloat::IEK_Inf) - return Val; - - // 1 is added because frexp is defined to return a normalized fraction in - // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). - Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; - return scalbn(Val, -Exp, RM); -} - -DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) - : Semantics(&S), - Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) - : Semantics(&S), - Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), - APFloat(semIEEEdouble, uninitialized)}) { - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) - : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), - APFloat(semIEEEdouble)}) { - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) - : Semantics(&S), - Floats(new APFloat[2]{ - APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), - APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, - APFloat &&Second) - : Semantics(&S), - Floats(new APFloat[2]{std::move(First), std::move(Second)}) { - assert(Semantics == &semPPCDoubleDouble); - assert(&Floats[0].getSemantics() == &semIEEEdouble); - assert(&Floats[1].getSemantics() == &semIEEEdouble); -} - -DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) - : Semantics(RHS.Semantics), - Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), - APFloat(RHS.Floats[1])} - : nullptr) { - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) - : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { - RHS.Semantics = &semBogus; - assert(Semantics == &semPPCDoubleDouble); -} - -DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { - if (Semantics == RHS.Semantics && RHS.Floats) { - Floats[0] = RHS.Floats[0]; - Floats[1] = RHS.Floats[1]; - } else if (this != &RHS) { - this->~DoubleAPFloat(); - new (this) DoubleAPFloat(RHS); - } - return *this; -} - -// Implement addition, subtraction, multiplication and division based on: -// "Software for Doubled-Precision Floating-Point Computations", -// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. -APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, - const APFloat &c, const APFloat &cc, - roundingMode RM) { - int Status = opOK; - APFloat z = a; - Status |= z.add(c, RM); - if (!z.isFinite()) { - if (!z.isInfinity()) { - Floats[0] = std::move(z); - Floats[1].makeZero(/* Neg = */ false); - return (opStatus)Status; - } - Status = opOK; - auto AComparedToC = a.compareAbsoluteValue(c); - z = cc; - Status |= z.add(aa, RM); - if (AComparedToC == APFloat::cmpGreaterThan) { - // z = cc + aa + c + a; - Status |= z.add(c, RM); - Status |= z.add(a, RM); - } else { - // z = cc + aa + a + c; - Status |= z.add(a, RM); - Status |= z.add(c, RM); - } - if (!z.isFinite()) { - Floats[0] = std::move(z); - Floats[1].makeZero(/* Neg = */ false); - return (opStatus)Status; - } - Floats[0] = z; - APFloat zz = aa; - Status |= zz.add(cc, RM); - if (AComparedToC == APFloat::cmpGreaterThan) { - // Floats[1] = a - z + c + zz; - Floats[1] = a; - Status |= Floats[1].subtract(z, RM); - Status |= Floats[1].add(c, RM); - Status |= Floats[1].add(zz, RM); - } else { - // Floats[1] = c - z + a + zz; - Floats[1] = c; - Status |= Floats[1].subtract(z, RM); - Status |= Floats[1].add(a, RM); - Status |= Floats[1].add(zz, RM); - } - } else { - // q = a - z; - APFloat q = a; - Status |= q.subtract(z, RM); - - // zz = q + c + (a - (q + z)) + aa + cc; - // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. - auto zz = q; - Status |= zz.add(c, RM); - Status |= q.add(z, RM); - Status |= q.subtract(a, RM); - q.changeSign(); - Status |= zz.add(q, RM); - Status |= zz.add(aa, RM); - Status |= zz.add(cc, RM); - if (zz.isZero() && !zz.isNegative()) { - Floats[0] = std::move(z); - Floats[1].makeZero(/* Neg = */ false); - return opOK; - } - Floats[0] = z; - Status |= Floats[0].add(zz, RM); - if (!Floats[0].isFinite()) { - Floats[1].makeZero(/* Neg = */ false); - return (opStatus)Status; - } - Floats[1] = std::move(z); - Status |= Floats[1].subtract(Floats[0], RM); - Status |= Floats[1].add(zz, RM); - } - return (opStatus)Status; -} - -APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, - const DoubleAPFloat &RHS, - DoubleAPFloat &Out, - roundingMode RM) { - if (LHS.getCategory() == fcNaN) { - Out = LHS; - return opOK; - } - if (RHS.getCategory() == fcNaN) { - Out = RHS; - return opOK; - } - if (LHS.getCategory() == fcZero) { - Out = RHS; - return opOK; - } - if (RHS.getCategory() == fcZero) { - Out = LHS; - return opOK; - } - if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && - LHS.isNegative() != RHS.isNegative()) { - Out.makeNaN(false, Out.isNegative(), nullptr); - return opInvalidOp; - } - if (LHS.getCategory() == fcInfinity) { - Out = LHS; - return opOK; - } - if (RHS.getCategory() == fcInfinity) { - Out = RHS; - return opOK; - } - assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); - - APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), - CC(RHS.Floats[1]); - assert(&A.getSemantics() == &semIEEEdouble); - assert(&AA.getSemantics() == &semIEEEdouble); - assert(&C.getSemantics() == &semIEEEdouble); - assert(&CC.getSemantics() == &semIEEEdouble); - assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); - assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); - return Out.addImpl(A, AA, C, CC, RM); -} - -APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, - roundingMode RM) { - return addWithSpecial(*this, RHS, *this, RM); -} - -APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, - roundingMode RM) { - changeSign(); - auto Ret = add(RHS, RM); - changeSign(); - return Ret; -} - -APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, - APFloat::roundingMode RM) { - const auto &LHS = *this; - auto &Out = *this; - /* Interesting observation: For special categories, finding the lowest - common ancestor of the following layered graph gives the correct - return category: - - NaN - / \ - Zero Inf - \ / - Normal - - e.g. NaN * NaN = NaN - Zero * Inf = NaN - Normal * Zero = Zero - Normal * Inf = Inf - */ - if (LHS.getCategory() == fcNaN) { - Out = LHS; - return opOK; - } - if (RHS.getCategory() == fcNaN) { - Out = RHS; - return opOK; - } - if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || - (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { - Out.makeNaN(false, false, nullptr); - return opOK; - } - if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { - Out = LHS; - return opOK; - } - if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { - Out = RHS; - return opOK; - } - assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && - "Special cases not handled exhaustively"); - - int Status = opOK; - APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; - // t = a * c - APFloat T = A; - Status |= T.multiply(C, RM); - if (!T.isFiniteNonZero()) { - Floats[0] = T; - Floats[1].makeZero(/* Neg = */ false); - return (opStatus)Status; - } - - // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). - APFloat Tau = A; - T.changeSign(); - Status |= Tau.fusedMultiplyAdd(C, T, RM); - T.changeSign(); - { - // v = a * d - APFloat V = A; - Status |= V.multiply(D, RM); - // w = b * c - APFloat W = B; - Status |= W.multiply(C, RM); - Status |= V.add(W, RM); - // tau += v + w - Status |= Tau.add(V, RM); - } - // u = t + tau - APFloat U = T; - Status |= U.add(Tau, RM); - - Floats[0] = U; - if (!U.isFinite()) { - Floats[1].makeZero(/* Neg = */ false); - } else { - // Floats[1] = (t - u) + tau - Status |= T.subtract(U, RM); - Status |= T.add(Tau, RM); - Floats[1] = T; - } - return (opStatus)Status; -} - -APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, - APFloat::roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = - Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = - Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus -DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, - const DoubleAPFloat &Addend, - APFloat::roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = Tmp.fusedMultiplyAdd( - APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), - APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = Tmp.roundToIntegral(RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -void DoubleAPFloat::changeSign() { - Floats[0].changeSign(); - Floats[1].changeSign(); -} - -APFloat::cmpResult -DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { - auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); - if (Result != cmpEqual) - return Result; - Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); - if (Result == cmpLessThan || Result == cmpGreaterThan) { - auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); - auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); - if (Against && !RHSAgainst) - return cmpLessThan; - if (!Against && RHSAgainst) - return cmpGreaterThan; - if (!Against && !RHSAgainst) - return Result; - if (Against && RHSAgainst) - return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); - } - return Result; -} - -APFloat::fltCategory DoubleAPFloat::getCategory() const { - return Floats[0].getCategory(); -} - -bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } - -void DoubleAPFloat::makeInf(bool Neg) { - Floats[0].makeInf(Neg); - Floats[1].makeZero(/* Neg = */ false); -} - -void DoubleAPFloat::makeZero(bool Neg) { - Floats[0].makeZero(Neg); - Floats[1].makeZero(/* Neg = */ false); -} - -void DoubleAPFloat::makeLargest(bool Neg) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); - Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); - if (Neg) - changeSign(); -} - -void DoubleAPFloat::makeSmallest(bool Neg) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - Floats[0].makeSmallest(Neg); - Floats[1].makeZero(/* Neg = */ false); -} - -void DoubleAPFloat::makeSmallestNormalized(bool Neg) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); - if (Neg) - Floats[0].changeSign(); - Floats[1].makeZero(/* Neg = */ false); -} - -void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { - Floats[0].makeNaN(SNaN, Neg, fill); - Floats[1].makeZero(/* Neg = */ false); -} - -APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { - auto Result = Floats[0].compare(RHS.Floats[0]); - // |Float[0]| > |Float[1]| - if (Result == APFloat::cmpEqual) - return Floats[1].compare(RHS.Floats[1]); - return Result; -} - -bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { - return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && - Floats[1].bitwiseIsEqual(RHS.Floats[1]); -} - -hash_code hash_value(const DoubleAPFloat &Arg) { - if (Arg.Floats) - return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); - return hash_combine(Arg.Semantics); -} - -APInt DoubleAPFloat::bitcastToAPInt() const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - uint64_t Data[] = { - Floats[0].bitcastToAPInt().getRawData()[0], - Floats[1].bitcastToAPInt().getRawData()[0], - }; - return APInt(128, 2, Data); -} - -Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S, - roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy); - auto Ret = Tmp.convertFromString(S, RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus DoubleAPFloat::next(bool nextDown) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - auto Ret = Tmp.next(nextDown); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus -DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, - unsigned int Width, bool IsSigned, - roundingMode RM, bool *IsExact) const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) - .convertToInteger(Input, Width, IsSigned, RM, IsExact); -} - -APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, - bool IsSigned, - roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy); - auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus -DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, - unsigned int InputSize, - bool IsSigned, roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy); - auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -APFloat::opStatus -DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, - unsigned int InputSize, - bool IsSigned, roundingMode RM) { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy); - auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); - *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); - return Ret; -} - -unsigned int DoubleAPFloat::convertToHexString(char *DST, - unsigned int HexDigits, - bool UpperCase, - roundingMode RM) const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) - .convertToHexString(DST, HexDigits, UpperCase, RM); -} - -bool DoubleAPFloat::isDenormal() const { - return getCategory() == fcNormal && - (Floats[0].isDenormal() || Floats[1].isDenormal() || - // (double)(Hi + Lo) == Hi defines a normal number. - Floats[0] != Floats[0] + Floats[1]); -} - -bool DoubleAPFloat::isSmallest() const { - if (getCategory() != fcNormal) - return false; - DoubleAPFloat Tmp(*this); - Tmp.makeSmallest(this->isNegative()); - return Tmp.compare(*this) == cmpEqual; -} - -bool DoubleAPFloat::isLargest() const { - if (getCategory() != fcNormal) - return false; - DoubleAPFloat Tmp(*this); - Tmp.makeLargest(this->isNegative()); - return Tmp.compare(*this) == cmpEqual; -} - -bool DoubleAPFloat::isInteger() const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - return Floats[0].isInteger() && Floats[1].isInteger(); -} - -void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, - unsigned FormatPrecision, - unsigned FormatMaxPadding, - bool TruncateZero) const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) - .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); -} - -bool DoubleAPFloat::getExactInverse(APFloat *inv) const { - assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); - if (!inv) - return Tmp.getExactInverse(nullptr); - APFloat Inv(semPPCDoubleDoubleLegacy); - auto Ret = Tmp.getExactInverse(&Inv); - *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); - return Ret; -} - -DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) { - assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), - scalbn(Arg.Floats[1], Exp, RM)); -} - -DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, - APFloat::roundingMode RM) { - assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); - APFloat First = frexp(Arg.Floats[0], Exp, RM); - APFloat Second = Arg.Floats[1]; - if (Arg.getCategory() == APFloat::fcNormal) - Second = scalbn(Second, -Exp, RM); - return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); -} - -} // End detail namespace - -APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { - if (usesLayout<IEEEFloat>(Semantics)) { - new (&IEEE) IEEEFloat(std::move(F)); - return; - } - if (usesLayout<DoubleAPFloat>(Semantics)) { - const fltSemantics& S = F.getSemantics(); - new (&Double) - DoubleAPFloat(Semantics, APFloat(std::move(F), S), - APFloat(semIEEEdouble)); - return; - } - llvm_unreachable("Unexpected semantics"); -} - -Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str, - roundingMode RM) { - APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); -} - -hash_code hash_value(const APFloat &Arg) { - if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) - return hash_value(Arg.U.IEEE); - if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) - return hash_value(Arg.U.Double); - llvm_unreachable("Unexpected semantics"); -} - -APFloat::APFloat(const fltSemantics &Semantics, StringRef S) - : APFloat(Semantics) { - auto StatusOrErr = convertFromString(S, rmNearestTiesToEven); - assert(StatusOrErr && "Invalid floating point representation"); - consumeError(StatusOrErr.takeError()); -} - -APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, - roundingMode RM, bool *losesInfo) { - if (&getSemantics() == &ToSemantics) { - *losesInfo = false; - return opOK; - } - if (usesLayout<IEEEFloat>(getSemantics()) && - usesLayout<IEEEFloat>(ToSemantics)) - return U.IEEE.convert(ToSemantics, RM, losesInfo); - if (usesLayout<IEEEFloat>(getSemantics()) && - usesLayout<DoubleAPFloat>(ToSemantics)) { - assert(&ToSemantics == &semPPCDoubleDouble); - auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); - *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); - return Ret; - } - if (usesLayout<DoubleAPFloat>(getSemantics()) && - usesLayout<IEEEFloat>(ToSemantics)) { - auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); - *this = APFloat(std::move(getIEEE()), ToSemantics); - return Ret; - } - llvm_unreachable("Unexpected semantics"); -} - -APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics, - unsigned BitWidth) { - return APFloat(Semantics, APInt::getAllOnesValue(BitWidth)); -} - -void APFloat::print(raw_ostream &OS) const { - SmallVector<char, 16> Buffer; - toString(Buffer); - OS << Buffer << "\n"; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } -#endif - -void APFloat::Profile(FoldingSetNodeID &NID) const { - NID.Add(bitcastToAPInt()); -} - -/* Same as convertToInteger(integerPart*, ...), except the result is returned in - an APSInt, whose initial bit-width and signed-ness are used to determine the - precision of the conversion. - */ -APFloat::opStatus APFloat::convertToInteger(APSInt &result, - roundingMode rounding_mode, - bool *isExact) const { - unsigned bitWidth = result.getBitWidth(); - SmallVector<uint64_t, 4> parts(result.getNumWords()); - opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), - rounding_mode, isExact); - // Keeps the original signed-ness. - result = APInt(bitWidth, parts); - return status; -} - + APInt::tcSet(significandParts(), 0, partCount()); +} + +void IEEEFloat::makeQuiet() { + assert(isNaN()); + APInt::tcSetBit(significandParts(), semantics->precision - 2); +} + +int ilogb(const IEEEFloat &Arg) { + if (Arg.isNaN()) + return IEEEFloat::IEK_NaN; + if (Arg.isZero()) + return IEEEFloat::IEK_Zero; + if (Arg.isInfinity()) + return IEEEFloat::IEK_Inf; + if (!Arg.isDenormal()) + return Arg.exponent; + + IEEEFloat Normalized(Arg); + int SignificandBits = Arg.getSemantics().precision - 1; + + Normalized.exponent += SignificandBits; + Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); + return Normalized.exponent - SignificandBits; +} + +IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { + auto MaxExp = X.getSemantics().maxExponent; + auto MinExp = X.getSemantics().minExponent; + + // If Exp is wildly out-of-scale, simply adding it to X.exponent will + // overflow; clamp it to a safe range before adding, but ensure that the range + // is large enough that the clamp does not change the result. The range we + // need to support is the difference between the largest possible exponent and + // the normalized exponent of half the smallest denormal. + + int SignificandBits = X.getSemantics().precision - 1; + int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; + + // Clamp to one past the range ends to let normalize handle overlflow. + X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); + X.normalize(RoundingMode, lfExactlyZero); + if (X.isNaN()) + X.makeQuiet(); + return X; +} + +IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { + Exp = ilogb(Val); + + // Quiet signalling nans. + if (Exp == IEEEFloat::IEK_NaN) { + IEEEFloat Quiet(Val); + Quiet.makeQuiet(); + return Quiet; + } + + if (Exp == IEEEFloat::IEK_Inf) + return Val; + + // 1 is added because frexp is defined to return a normalized fraction in + // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). + Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; + return scalbn(Val, -Exp, RM); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) + : Semantics(&S), + Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) + : Semantics(&S), + Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), + APFloat(semIEEEdouble, uninitialized)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) + : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), + APFloat(semIEEEdouble)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) + : Semantics(&S), + Floats(new APFloat[2]{ + APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), + APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, + APFloat &&Second) + : Semantics(&S), + Floats(new APFloat[2]{std::move(First), std::move(Second)}) { + assert(Semantics == &semPPCDoubleDouble); + assert(&Floats[0].getSemantics() == &semIEEEdouble); + assert(&Floats[1].getSemantics() == &semIEEEdouble); +} + +DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) + : Semantics(RHS.Semantics), + Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), + APFloat(RHS.Floats[1])} + : nullptr) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) + : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { + RHS.Semantics = &semBogus; + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { + if (Semantics == RHS.Semantics && RHS.Floats) { + Floats[0] = RHS.Floats[0]; + Floats[1] = RHS.Floats[1]; + } else if (this != &RHS) { + this->~DoubleAPFloat(); + new (this) DoubleAPFloat(RHS); + } + return *this; +} + +// Implement addition, subtraction, multiplication and division based on: +// "Software for Doubled-Precision Floating-Point Computations", +// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. +APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, + const APFloat &c, const APFloat &cc, + roundingMode RM) { + int Status = opOK; + APFloat z = a; + Status |= z.add(c, RM); + if (!z.isFinite()) { + if (!z.isInfinity()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Status = opOK; + auto AComparedToC = a.compareAbsoluteValue(c); + z = cc; + Status |= z.add(aa, RM); + if (AComparedToC == APFloat::cmpGreaterThan) { + // z = cc + aa + c + a; + Status |= z.add(c, RM); + Status |= z.add(a, RM); + } else { + // z = cc + aa + a + c; + Status |= z.add(a, RM); + Status |= z.add(c, RM); + } + if (!z.isFinite()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Floats[0] = z; + APFloat zz = aa; + Status |= zz.add(cc, RM); + if (AComparedToC == APFloat::cmpGreaterThan) { + // Floats[1] = a - z + c + zz; + Floats[1] = a; + Status |= Floats[1].subtract(z, RM); + Status |= Floats[1].add(c, RM); + Status |= Floats[1].add(zz, RM); + } else { + // Floats[1] = c - z + a + zz; + Floats[1] = c; + Status |= Floats[1].subtract(z, RM); + Status |= Floats[1].add(a, RM); + Status |= Floats[1].add(zz, RM); + } + } else { + // q = a - z; + APFloat q = a; + Status |= q.subtract(z, RM); + + // zz = q + c + (a - (q + z)) + aa + cc; + // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. + auto zz = q; + Status |= zz.add(c, RM); + Status |= q.add(z, RM); + Status |= q.subtract(a, RM); + q.changeSign(); + Status |= zz.add(q, RM); + Status |= zz.add(aa, RM); + Status |= zz.add(cc, RM); + if (zz.isZero() && !zz.isNegative()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return opOK; + } + Floats[0] = z; + Status |= Floats[0].add(zz, RM); + if (!Floats[0].isFinite()) { + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Floats[1] = std::move(z); + Status |= Floats[1].subtract(Floats[0], RM); + Status |= Floats[1].add(zz, RM); + } + return (opStatus)Status; +} + +APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, + const DoubleAPFloat &RHS, + DoubleAPFloat &Out, + roundingMode RM) { + if (LHS.getCategory() == fcNaN) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcNaN) { + Out = RHS; + return opOK; + } + if (LHS.getCategory() == fcZero) { + Out = RHS; + return opOK; + } + if (RHS.getCategory() == fcZero) { + Out = LHS; + return opOK; + } + if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && + LHS.isNegative() != RHS.isNegative()) { + Out.makeNaN(false, Out.isNegative(), nullptr); + return opInvalidOp; + } + if (LHS.getCategory() == fcInfinity) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcInfinity) { + Out = RHS; + return opOK; + } + assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); + + APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), + CC(RHS.Floats[1]); + assert(&A.getSemantics() == &semIEEEdouble); + assert(&AA.getSemantics() == &semIEEEdouble); + assert(&C.getSemantics() == &semIEEEdouble); + assert(&CC.getSemantics() == &semIEEEdouble); + assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); + assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); + return Out.addImpl(A, AA, C, CC, RM); +} + +APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, + roundingMode RM) { + return addWithSpecial(*this, RHS, *this, RM); +} + +APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, + roundingMode RM) { + changeSign(); + auto Ret = add(RHS, RM); + changeSign(); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, + APFloat::roundingMode RM) { + const auto &LHS = *this; + auto &Out = *this; + /* Interesting observation: For special categories, finding the lowest + common ancestor of the following layered graph gives the correct + return category: + + NaN + / \ + Zero Inf + \ / + Normal + + e.g. NaN * NaN = NaN + Zero * Inf = NaN + Normal * Zero = Zero + Normal * Inf = Inf + */ + if (LHS.getCategory() == fcNaN) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcNaN) { + Out = RHS; + return opOK; + } + if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || + (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { + Out.makeNaN(false, false, nullptr); + return opOK; + } + if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { + Out = RHS; + return opOK; + } + assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && + "Special cases not handled exhaustively"); + + int Status = opOK; + APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; + // t = a * c + APFloat T = A; + Status |= T.multiply(C, RM); + if (!T.isFiniteNonZero()) { + Floats[0] = T; + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + + // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). + APFloat Tau = A; + T.changeSign(); + Status |= Tau.fusedMultiplyAdd(C, T, RM); + T.changeSign(); + { + // v = a * d + APFloat V = A; + Status |= V.multiply(D, RM); + // w = b * c + APFloat W = B; + Status |= W.multiply(C, RM); + Status |= V.add(W, RM); + // tau += v + w + Status |= Tau.add(V, RM); + } + // u = t + tau + APFloat U = T; + Status |= U.add(Tau, RM); + + Floats[0] = U; + if (!U.isFinite()) { + Floats[1].makeZero(/* Neg = */ false); + } else { + // Floats[1] = (t - u) + tau + Status |= T.subtract(U, RM); + Status |= T.add(Tau, RM); + Floats[1] = T; + } + return (opStatus)Status; +} + +APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, + APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = + Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = + Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, + const DoubleAPFloat &Addend, + APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.fusedMultiplyAdd( + APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), + APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.roundToIntegral(RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +void DoubleAPFloat::changeSign() { + Floats[0].changeSign(); + Floats[1].changeSign(); +} + +APFloat::cmpResult +DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { + auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); + if (Result != cmpEqual) + return Result; + Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); + if (Result == cmpLessThan || Result == cmpGreaterThan) { + auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); + auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); + if (Against && !RHSAgainst) + return cmpLessThan; + if (!Against && RHSAgainst) + return cmpGreaterThan; + if (!Against && !RHSAgainst) + return Result; + if (Against && RHSAgainst) + return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); + } + return Result; +} + +APFloat::fltCategory DoubleAPFloat::getCategory() const { + return Floats[0].getCategory(); +} + +bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } + +void DoubleAPFloat::makeInf(bool Neg) { + Floats[0].makeInf(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeZero(bool Neg) { + Floats[0].makeZero(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeLargest(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); + Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); + if (Neg) + changeSign(); +} + +void DoubleAPFloat::makeSmallest(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0].makeSmallest(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeSmallestNormalized(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); + if (Neg) + Floats[0].changeSign(); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { + Floats[0].makeNaN(SNaN, Neg, fill); + Floats[1].makeZero(/* Neg = */ false); +} + +APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { + auto Result = Floats[0].compare(RHS.Floats[0]); + // |Float[0]| > |Float[1]| + if (Result == APFloat::cmpEqual) + return Floats[1].compare(RHS.Floats[1]); + return Result; +} + +bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { + return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && + Floats[1].bitwiseIsEqual(RHS.Floats[1]); +} + +hash_code hash_value(const DoubleAPFloat &Arg) { + if (Arg.Floats) + return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); + return hash_combine(Arg.Semantics); +} + +APInt DoubleAPFloat::bitcastToAPInt() const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + uint64_t Data[] = { + Floats[0].bitcastToAPInt().getRawData()[0], + Floats[1].bitcastToAPInt().getRawData()[0], + }; + return APInt(128, 2, Data); +} + +Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S, + roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromString(S, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::next(bool nextDown) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.next(nextDown); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, + unsigned int Width, bool IsSigned, + roundingMode RM, bool *IsExact) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .convertToInteger(Input, Width, IsSigned, RM, IsExact); +} + +APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, + bool IsSigned, + roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, + unsigned int InputSize, + bool IsSigned, roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, + unsigned int InputSize, + bool IsSigned, roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +unsigned int DoubleAPFloat::convertToHexString(char *DST, + unsigned int HexDigits, + bool UpperCase, + roundingMode RM) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .convertToHexString(DST, HexDigits, UpperCase, RM); +} + +bool DoubleAPFloat::isDenormal() const { + return getCategory() == fcNormal && + (Floats[0].isDenormal() || Floats[1].isDenormal() || + // (double)(Hi + Lo) == Hi defines a normal number. + Floats[0] != Floats[0] + Floats[1]); +} + +bool DoubleAPFloat::isSmallest() const { + if (getCategory() != fcNormal) + return false; + DoubleAPFloat Tmp(*this); + Tmp.makeSmallest(this->isNegative()); + return Tmp.compare(*this) == cmpEqual; +} + +bool DoubleAPFloat::isLargest() const { + if (getCategory() != fcNormal) + return false; + DoubleAPFloat Tmp(*this); + Tmp.makeLargest(this->isNegative()); + return Tmp.compare(*this) == cmpEqual; +} + +bool DoubleAPFloat::isInteger() const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return Floats[0].isInteger() && Floats[1].isInteger(); +} + +void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, + unsigned FormatPrecision, + unsigned FormatMaxPadding, + bool TruncateZero) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); +} + +bool DoubleAPFloat::getExactInverse(APFloat *inv) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + if (!inv) + return Tmp.getExactInverse(nullptr); + APFloat Inv(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.getExactInverse(&Inv); + *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); + return Ret; +} + +DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) { + assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), + scalbn(Arg.Floats[1], Exp, RM)); +} + +DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, + APFloat::roundingMode RM) { + assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat First = frexp(Arg.Floats[0], Exp, RM); + APFloat Second = Arg.Floats[1]; + if (Arg.getCategory() == APFloat::fcNormal) + Second = scalbn(Second, -Exp, RM); + return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); +} + +} // End detail namespace + +APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { + if (usesLayout<IEEEFloat>(Semantics)) { + new (&IEEE) IEEEFloat(std::move(F)); + return; + } + if (usesLayout<DoubleAPFloat>(Semantics)) { + const fltSemantics& S = F.getSemantics(); + new (&Double) + DoubleAPFloat(Semantics, APFloat(std::move(F), S), + APFloat(semIEEEdouble)); + return; + } + llvm_unreachable("Unexpected semantics"); +} + +Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str, + roundingMode RM) { + APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); +} + +hash_code hash_value(const APFloat &Arg) { + if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) + return hash_value(Arg.U.IEEE); + if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) + return hash_value(Arg.U.Double); + llvm_unreachable("Unexpected semantics"); +} + +APFloat::APFloat(const fltSemantics &Semantics, StringRef S) + : APFloat(Semantics) { + auto StatusOrErr = convertFromString(S, rmNearestTiesToEven); + assert(StatusOrErr && "Invalid floating point representation"); + consumeError(StatusOrErr.takeError()); +} + +APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, + roundingMode RM, bool *losesInfo) { + if (&getSemantics() == &ToSemantics) { + *losesInfo = false; + return opOK; + } + if (usesLayout<IEEEFloat>(getSemantics()) && + usesLayout<IEEEFloat>(ToSemantics)) + return U.IEEE.convert(ToSemantics, RM, losesInfo); + if (usesLayout<IEEEFloat>(getSemantics()) && + usesLayout<DoubleAPFloat>(ToSemantics)) { + assert(&ToSemantics == &semPPCDoubleDouble); + auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); + *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); + return Ret; + } + if (usesLayout<DoubleAPFloat>(getSemantics()) && + usesLayout<IEEEFloat>(ToSemantics)) { + auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); + *this = APFloat(std::move(getIEEE()), ToSemantics); + return Ret; + } + llvm_unreachable("Unexpected semantics"); +} + +APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics, + unsigned BitWidth) { + return APFloat(Semantics, APInt::getAllOnesValue(BitWidth)); +} + +void APFloat::print(raw_ostream &OS) const { + SmallVector<char, 16> Buffer; + toString(Buffer); + OS << Buffer << "\n"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } +#endif + +void APFloat::Profile(FoldingSetNodeID &NID) const { + NID.Add(bitcastToAPInt()); +} + +/* Same as convertToInteger(integerPart*, ...), except the result is returned in + an APSInt, whose initial bit-width and signed-ness are used to determine the + precision of the conversion. + */ +APFloat::opStatus APFloat::convertToInteger(APSInt &result, + roundingMode rounding_mode, + bool *isExact) const { + unsigned bitWidth = result.getBitWidth(); + SmallVector<uint64_t, 4> parts(result.getNumWords()); + opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), + rounding_mode, isExact); + // Keeps the original signed-ness. + result = APInt(bitWidth, parts); + return status; +} + } // namespace llvm - -#undef APFLOAT_DISPATCH_ON_SEMANTICS + +#undef APFLOAT_DISPATCH_ON_SEMANTICS |
