diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | |
parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
download | ydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp | 42526 |
1 files changed, 21263 insertions, 21263 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp b/contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp index 7f2add81e8..847feb277b 100644 --- a/contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/SelectionDAG/DAGCombiner.cpp @@ -1,937 +1,937 @@ -//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run -// both before and after the DAG is legalized. -// -// This pass is not a substitute for the LLVM IR instcombine pass. This pass is -// primarily intended to handle simplification opportunities that are implicit -// in the LLVM IR and exposed by the various codegen lowering phases. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/IntervalMap.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" +//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run +// both before and after the DAG is legalized. +// +// This pass is not a substitute for the LLVM IR instcombine pass. This pass is +// primarily intended to handle simplification opportunities that are implicit +// in the LLVM IR and exposed by the various codegen lowering phases. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IntervalMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/CodeGen/DAGCombine.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/RuntimeLibcalls.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/SelectionDAGTargetInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CodeGen.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <functional> -#include <iterator> -#include <string> -#include <tuple> -#include <utility> - -using namespace llvm; - -#define DEBUG_TYPE "dagcombine" - -STATISTIC(NodesCombined , "Number of dag nodes combined"); -STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); -STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); -STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); -STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); -STATISTIC(SlicedLoads, "Number of load sliced"); -STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); - -static cl::opt<bool> -CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, - cl::desc("Enable DAG combiner's use of IR alias analysis")); - -static cl::opt<bool> -UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), - cl::desc("Enable DAG combiner's use of TBAA")); - -#ifndef NDEBUG -static cl::opt<std::string> -CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, - cl::desc("Only use DAG-combiner alias analysis in this" - " function")); -#endif - -/// Hidden option to stress test load slicing, i.e., when this option -/// is enabled, load slicing bypasses most of its profitability guards. -static cl::opt<bool> -StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, - cl::desc("Bypass the profitability model of load slicing"), - cl::init(false)); - -static cl::opt<bool> - MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), - cl::desc("DAG combiner may split indexing from loads")); - -static cl::opt<bool> - EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), - cl::desc("DAG combiner enable merging multiple stores " - "into a wider store")); - -static cl::opt<unsigned> TokenFactorInlineLimit( - "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), - cl::desc("Limit the number of operands to inline for Token Factors")); - -static cl::opt<unsigned> StoreMergeDependenceLimit( - "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), - cl::desc("Limit the number of times for the same StoreNode and RootNode " - "to bail out in store merging dependence check")); - -static cl::opt<bool> EnableReduceLoadOpStoreWidth( - "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), - cl::desc("DAG cominber enable reducing the width of load/op/store " - "sequence")); - -static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( - "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), - cl::desc("DAG cominber enable load/<replace bytes>/store with " - "a narrower store")); - -namespace { - - class DAGCombiner { - SelectionDAG &DAG; - const TargetLowering &TLI; - const SelectionDAGTargetInfo *STI; - CombineLevel Level; - CodeGenOpt::Level OptLevel; - bool LegalDAG = false; - bool LegalOperations = false; - bool LegalTypes = false; - bool ForCodeSize; - bool DisableGenericCombines; - - /// Worklist of all of the nodes that need to be simplified. - /// - /// This must behave as a stack -- new nodes to process are pushed onto the - /// back and when processing we pop off of the back. - /// - /// The worklist will not contain duplicates but may contain null entries - /// due to nodes being deleted from the underlying DAG. - SmallVector<SDNode *, 64> Worklist; - - /// Mapping from an SDNode to its position on the worklist. - /// - /// This is used to find and remove nodes from the worklist (by nulling - /// them) when they are deleted from the underlying DAG. It relies on - /// stable indices of nodes within the worklist. - DenseMap<SDNode *, unsigned> WorklistMap; - /// This records all nodes attempted to add to the worklist since we - /// considered a new worklist entry. As we keep do not add duplicate nodes - /// in the worklist, this is different from the tail of the worklist. - SmallSetVector<SDNode *, 32> PruningList; - - /// Set of nodes which have been combined (at least once). - /// - /// This is used to allow us to reliably add any operands of a DAG node - /// which have not yet been combined to the worklist. - SmallPtrSet<SDNode *, 32> CombinedNodes; - - /// Map from candidate StoreNode to the pair of RootNode and count. - /// The count is used to track how many times we have seen the StoreNode - /// with the same RootNode bail out in dependence check. If we have seen - /// the bail out for the same pair many times over a limit, we won't - /// consider the StoreNode with the same RootNode as store merging - /// candidate again. - DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; - - // AA - Used for DAG load/store alias analysis. - AliasAnalysis *AA; - - /// When an instruction is simplified, add all users of the instruction to - /// the work lists because they might get more simplified now. - void AddUsersToWorklist(SDNode *N) { - for (SDNode *Node : N->uses()) - AddToWorklist(Node); - } - - /// Convenient shorthand to add a node and all of its user to the worklist. - void AddToWorklistWithUsers(SDNode *N) { - AddUsersToWorklist(N); - AddToWorklist(N); - } - - // Prune potentially dangling nodes. This is called after - // any visit to a node, but should also be called during a visit after any - // failed combine which may have created a DAG node. - void clearAddedDanglingWorklistEntries() { - // Check any nodes added to the worklist to see if they are prunable. - while (!PruningList.empty()) { - auto *N = PruningList.pop_back_val(); - if (N->use_empty()) - recursivelyDeleteUnusedNodes(N); - } - } - - SDNode *getNextWorklistEntry() { - // Before we do any work, remove nodes that are not in use. - clearAddedDanglingWorklistEntries(); - SDNode *N = nullptr; - // The Worklist holds the SDNodes in order, but it may contain null - // entries. - while (!N && !Worklist.empty()) { - N = Worklist.pop_back_val(); - } - - if (N) { - bool GoodWorklistEntry = WorklistMap.erase(N); - (void)GoodWorklistEntry; - assert(GoodWorklistEntry && - "Found a worklist entry without a corresponding map entry!"); - } - return N; - } - - /// Call the node-specific routine that folds each particular type of node. - SDValue visit(SDNode *N); - - public: - DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) - : DAG(D), TLI(D.getTargetLoweringInfo()), - STI(D.getSubtarget().getSelectionDAGInfo()), - Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { - ForCodeSize = DAG.shouldOptForSize(); - DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); - - MaximumLegalStoreInBits = 0; - // We use the minimum store size here, since that's all we can guarantee - // for the scalable vector types. - for (MVT VT : MVT::all_valuetypes()) - if (EVT(VT).isSimple() && VT != MVT::Other && - TLI.isTypeLegal(EVT(VT)) && - VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) - MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); - } - - void ConsiderForPruning(SDNode *N) { - // Mark this for potential pruning. - PruningList.insert(N); - } - - /// Add to the worklist making sure its instance is at the back (next to be - /// processed.) - void AddToWorklist(SDNode *N) { - assert(N->getOpcode() != ISD::DELETED_NODE && - "Deleted Node added to Worklist"); - - // Skip handle nodes as they can't usefully be combined and confuse the - // zero-use deletion strategy. - if (N->getOpcode() == ISD::HANDLENODE) - return; - - ConsiderForPruning(N); - - if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) - Worklist.push_back(N); - } - - /// Remove all instances of N from the worklist. - void removeFromWorklist(SDNode *N) { - CombinedNodes.erase(N); - PruningList.remove(N); - StoreRootCountMap.erase(N); - - auto It = WorklistMap.find(N); - if (It == WorklistMap.end()) - return; // Not in the worklist. - - // Null out the entry rather than erasing it to avoid a linear operation. - Worklist[It->second] = nullptr; - WorklistMap.erase(It); - } - - void deleteAndRecombine(SDNode *N); - bool recursivelyDeleteUnusedNodes(SDNode *N); - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, - bool AddTo = true); - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { - return CombineTo(N, &Res, 1, AddTo); - } - - /// Replaces all uses of the results of one DAG node with new values. - SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, - bool AddTo = true) { - SDValue To[] = { Res0, Res1 }; - return CombineTo(N, To, 2, AddTo); - } - - void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); - - private: - unsigned MaximumLegalStoreInBits; - - /// Check the specified integer node value to see if it can be simplified or - /// if things it uses can be simplified by bit propagation. - /// If so, return true. - bool SimplifyDemandedBits(SDValue Op) { - unsigned BitWidth = Op.getScalarValueSizeInBits(); - APInt DemandedBits = APInt::getAllOnesValue(BitWidth); - return SimplifyDemandedBits(Op, DemandedBits); - } - - bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { - TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); - KnownBits Known; - if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) - return false; - - // Revisit the node. - AddToWorklist(Op.getNode()); - - CommitTargetLoweringOpt(TLO); - return true; - } - - /// Check the specified vector node value to see if it can be simplified or - /// if things it uses can be simplified as it only uses some of the - /// elements. If so, return true. - bool SimplifyDemandedVectorElts(SDValue Op) { - // TODO: For now just pretend it cannot be simplified. - if (Op.getValueType().isScalableVector()) - return false; - - unsigned NumElts = Op.getValueType().getVectorNumElements(); - APInt DemandedElts = APInt::getAllOnesValue(NumElts); - return SimplifyDemandedVectorElts(Op, DemandedElts); - } - - bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, - const APInt &DemandedElts, - bool AssumeSingleUse = false); - bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, - bool AssumeSingleUse = false); - - bool CombineToPreIndexedLoadStore(SDNode *N); - bool CombineToPostIndexedLoadStore(SDNode *N); - SDValue SplitIndexingFromLoad(LoadSDNode *LD); - bool SliceUpLoad(SDNode *N); - - // Scalars have size 0 to distinguish from singleton vectors. - SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); - bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); - bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); - - /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed - /// load. - /// - /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. - /// \param InVecVT type of the input vector to EVE with bitcasts resolved. - /// \param EltNo index of the vector element to load. - /// \param OriginalLoad load that EVE came from to be replaced. - /// \returns EVE on success SDValue() on failure. - SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, - SDValue EltNo, - LoadSDNode *OriginalLoad); - void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); - SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); - SDValue SExtPromoteOperand(SDValue Op, EVT PVT); - SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); - SDValue PromoteIntBinOp(SDValue Op); - SDValue PromoteIntShiftOp(SDValue Op); - SDValue PromoteExtend(SDValue Op); - bool PromoteLoad(SDValue Op); - - /// Call the node-specific routine that knows how to fold each - /// particular type of node. If that doesn't do anything, try the - /// target-specific DAG combines. - SDValue combine(SDNode *N); - - // Visitation implementation - Implement dag node combining for different - // node types. The semantics are as follows: - // Return Value: - // SDValue.getNode() == 0 - No change was made - // SDValue.getNode() == N - N was replaced, is dead and has been handled. - // otherwise - N should be replaced by the returned Operand. - // - SDValue visitTokenFactor(SDNode *N); - SDValue visitMERGE_VALUES(SDNode *N); - SDValue visitADD(SDNode *N); - SDValue visitADDLike(SDNode *N); - SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); - SDValue visitSUB(SDNode *N); - SDValue visitADDSAT(SDNode *N); - SDValue visitSUBSAT(SDNode *N); - SDValue visitADDC(SDNode *N); - SDValue visitADDO(SDNode *N); - SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitSUBC(SDNode *N); - SDValue visitSUBO(SDNode *N); - SDValue visitADDE(SDNode *N); - SDValue visitADDCARRY(SDNode *N); +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/CodeGen/DAGCombine.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/RuntimeLibcalls.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/SelectionDAGTargetInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CodeGen.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <functional> +#include <iterator> +#include <string> +#include <tuple> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "dagcombine" + +STATISTIC(NodesCombined , "Number of dag nodes combined"); +STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created"); +STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created"); +STATISTIC(OpsNarrowed , "Number of load/op/store narrowed"); +STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int"); +STATISTIC(SlicedLoads, "Number of load sliced"); +STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops"); + +static cl::opt<bool> +CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden, + cl::desc("Enable DAG combiner's use of IR alias analysis")); + +static cl::opt<bool> +UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true), + cl::desc("Enable DAG combiner's use of TBAA")); + +#ifndef NDEBUG +static cl::opt<std::string> +CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden, + cl::desc("Only use DAG-combiner alias analysis in this" + " function")); +#endif + +/// Hidden option to stress test load slicing, i.e., when this option +/// is enabled, load slicing bypasses most of its profitability guards. +static cl::opt<bool> +StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden, + cl::desc("Bypass the profitability model of load slicing"), + cl::init(false)); + +static cl::opt<bool> + MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true), + cl::desc("DAG combiner may split indexing from loads")); + +static cl::opt<bool> + EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true), + cl::desc("DAG combiner enable merging multiple stores " + "into a wider store")); + +static cl::opt<unsigned> TokenFactorInlineLimit( + "combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048), + cl::desc("Limit the number of operands to inline for Token Factors")); + +static cl::opt<unsigned> StoreMergeDependenceLimit( + "combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10), + cl::desc("Limit the number of times for the same StoreNode and RootNode " + "to bail out in store merging dependence check")); + +static cl::opt<bool> EnableReduceLoadOpStoreWidth( + "combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true), + cl::desc("DAG cominber enable reducing the width of load/op/store " + "sequence")); + +static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore( + "combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true), + cl::desc("DAG cominber enable load/<replace bytes>/store with " + "a narrower store")); + +namespace { + + class DAGCombiner { + SelectionDAG &DAG; + const TargetLowering &TLI; + const SelectionDAGTargetInfo *STI; + CombineLevel Level; + CodeGenOpt::Level OptLevel; + bool LegalDAG = false; + bool LegalOperations = false; + bool LegalTypes = false; + bool ForCodeSize; + bool DisableGenericCombines; + + /// Worklist of all of the nodes that need to be simplified. + /// + /// This must behave as a stack -- new nodes to process are pushed onto the + /// back and when processing we pop off of the back. + /// + /// The worklist will not contain duplicates but may contain null entries + /// due to nodes being deleted from the underlying DAG. + SmallVector<SDNode *, 64> Worklist; + + /// Mapping from an SDNode to its position on the worklist. + /// + /// This is used to find and remove nodes from the worklist (by nulling + /// them) when they are deleted from the underlying DAG. It relies on + /// stable indices of nodes within the worklist. + DenseMap<SDNode *, unsigned> WorklistMap; + /// This records all nodes attempted to add to the worklist since we + /// considered a new worklist entry. As we keep do not add duplicate nodes + /// in the worklist, this is different from the tail of the worklist. + SmallSetVector<SDNode *, 32> PruningList; + + /// Set of nodes which have been combined (at least once). + /// + /// This is used to allow us to reliably add any operands of a DAG node + /// which have not yet been combined to the worklist. + SmallPtrSet<SDNode *, 32> CombinedNodes; + + /// Map from candidate StoreNode to the pair of RootNode and count. + /// The count is used to track how many times we have seen the StoreNode + /// with the same RootNode bail out in dependence check. If we have seen + /// the bail out for the same pair many times over a limit, we won't + /// consider the StoreNode with the same RootNode as store merging + /// candidate again. + DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap; + + // AA - Used for DAG load/store alias analysis. + AliasAnalysis *AA; + + /// When an instruction is simplified, add all users of the instruction to + /// the work lists because they might get more simplified now. + void AddUsersToWorklist(SDNode *N) { + for (SDNode *Node : N->uses()) + AddToWorklist(Node); + } + + /// Convenient shorthand to add a node and all of its user to the worklist. + void AddToWorklistWithUsers(SDNode *N) { + AddUsersToWorklist(N); + AddToWorklist(N); + } + + // Prune potentially dangling nodes. This is called after + // any visit to a node, but should also be called during a visit after any + // failed combine which may have created a DAG node. + void clearAddedDanglingWorklistEntries() { + // Check any nodes added to the worklist to see if they are prunable. + while (!PruningList.empty()) { + auto *N = PruningList.pop_back_val(); + if (N->use_empty()) + recursivelyDeleteUnusedNodes(N); + } + } + + SDNode *getNextWorklistEntry() { + // Before we do any work, remove nodes that are not in use. + clearAddedDanglingWorklistEntries(); + SDNode *N = nullptr; + // The Worklist holds the SDNodes in order, but it may contain null + // entries. + while (!N && !Worklist.empty()) { + N = Worklist.pop_back_val(); + } + + if (N) { + bool GoodWorklistEntry = WorklistMap.erase(N); + (void)GoodWorklistEntry; + assert(GoodWorklistEntry && + "Found a worklist entry without a corresponding map entry!"); + } + return N; + } + + /// Call the node-specific routine that folds each particular type of node. + SDValue visit(SDNode *N); + + public: + DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL) + : DAG(D), TLI(D.getTargetLoweringInfo()), + STI(D.getSubtarget().getSelectionDAGInfo()), + Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) { + ForCodeSize = DAG.shouldOptForSize(); + DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel); + + MaximumLegalStoreInBits = 0; + // We use the minimum store size here, since that's all we can guarantee + // for the scalable vector types. + for (MVT VT : MVT::all_valuetypes()) + if (EVT(VT).isSimple() && VT != MVT::Other && + TLI.isTypeLegal(EVT(VT)) && + VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits) + MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize(); + } + + void ConsiderForPruning(SDNode *N) { + // Mark this for potential pruning. + PruningList.insert(N); + } + + /// Add to the worklist making sure its instance is at the back (next to be + /// processed.) + void AddToWorklist(SDNode *N) { + assert(N->getOpcode() != ISD::DELETED_NODE && + "Deleted Node added to Worklist"); + + // Skip handle nodes as they can't usefully be combined and confuse the + // zero-use deletion strategy. + if (N->getOpcode() == ISD::HANDLENODE) + return; + + ConsiderForPruning(N); + + if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second) + Worklist.push_back(N); + } + + /// Remove all instances of N from the worklist. + void removeFromWorklist(SDNode *N) { + CombinedNodes.erase(N); + PruningList.remove(N); + StoreRootCountMap.erase(N); + + auto It = WorklistMap.find(N); + if (It == WorklistMap.end()) + return; // Not in the worklist. + + // Null out the entry rather than erasing it to avoid a linear operation. + Worklist[It->second] = nullptr; + WorklistMap.erase(It); + } + + void deleteAndRecombine(SDNode *N); + bool recursivelyDeleteUnusedNodes(SDNode *N); + + /// Replaces all uses of the results of one DAG node with new values. + SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, + bool AddTo = true); + + /// Replaces all uses of the results of one DAG node with new values. + SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) { + return CombineTo(N, &Res, 1, AddTo); + } + + /// Replaces all uses of the results of one DAG node with new values. + SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, + bool AddTo = true) { + SDValue To[] = { Res0, Res1 }; + return CombineTo(N, To, 2, AddTo); + } + + void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO); + + private: + unsigned MaximumLegalStoreInBits; + + /// Check the specified integer node value to see if it can be simplified or + /// if things it uses can be simplified by bit propagation. + /// If so, return true. + bool SimplifyDemandedBits(SDValue Op) { + unsigned BitWidth = Op.getScalarValueSizeInBits(); + APInt DemandedBits = APInt::getAllOnesValue(BitWidth); + return SimplifyDemandedBits(Op, DemandedBits); + } + + bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) { + TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); + KnownBits Known; + if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false)) + return false; + + // Revisit the node. + AddToWorklist(Op.getNode()); + + CommitTargetLoweringOpt(TLO); + return true; + } + + /// Check the specified vector node value to see if it can be simplified or + /// if things it uses can be simplified as it only uses some of the + /// elements. If so, return true. + bool SimplifyDemandedVectorElts(SDValue Op) { + // TODO: For now just pretend it cannot be simplified. + if (Op.getValueType().isScalableVector()) + return false; + + unsigned NumElts = Op.getValueType().getVectorNumElements(); + APInt DemandedElts = APInt::getAllOnesValue(NumElts); + return SimplifyDemandedVectorElts(Op, DemandedElts); + } + + bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + const APInt &DemandedElts, + bool AssumeSingleUse = false); + bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, + bool AssumeSingleUse = false); + + bool CombineToPreIndexedLoadStore(SDNode *N); + bool CombineToPostIndexedLoadStore(SDNode *N); + SDValue SplitIndexingFromLoad(LoadSDNode *LD); + bool SliceUpLoad(SDNode *N); + + // Scalars have size 0 to distinguish from singleton vectors. + SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD); + bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val); + bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val); + + /// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed + /// load. + /// + /// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced. + /// \param InVecVT type of the input vector to EVE with bitcasts resolved. + /// \param EltNo index of the vector element to load. + /// \param OriginalLoad load that EVE came from to be replaced. + /// \returns EVE on success SDValue() on failure. + SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, + SDValue EltNo, + LoadSDNode *OriginalLoad); + void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad); + SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace); + SDValue SExtPromoteOperand(SDValue Op, EVT PVT); + SDValue ZExtPromoteOperand(SDValue Op, EVT PVT); + SDValue PromoteIntBinOp(SDValue Op); + SDValue PromoteIntShiftOp(SDValue Op); + SDValue PromoteExtend(SDValue Op); + bool PromoteLoad(SDValue Op); + + /// Call the node-specific routine that knows how to fold each + /// particular type of node. If that doesn't do anything, try the + /// target-specific DAG combines. + SDValue combine(SDNode *N); + + // Visitation implementation - Implement dag node combining for different + // node types. The semantics are as follows: + // Return Value: + // SDValue.getNode() == 0 - No change was made + // SDValue.getNode() == N - N was replaced, is dead and has been handled. + // otherwise - N should be replaced by the returned Operand. + // + SDValue visitTokenFactor(SDNode *N); + SDValue visitMERGE_VALUES(SDNode *N); + SDValue visitADD(SDNode *N); + SDValue visitADDLike(SDNode *N); + SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference); + SDValue visitSUB(SDNode *N); + SDValue visitADDSAT(SDNode *N); + SDValue visitSUBSAT(SDNode *N); + SDValue visitADDC(SDNode *N); + SDValue visitADDO(SDNode *N); + SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N); + SDValue visitSUBC(SDNode *N); + SDValue visitSUBO(SDNode *N); + SDValue visitADDE(SDNode *N); + SDValue visitADDCARRY(SDNode *N); SDValue visitSADDO_CARRY(SDNode *N); - SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); - SDValue visitSUBE(SDNode *N); - SDValue visitSUBCARRY(SDNode *N); + SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N); + SDValue visitSUBE(SDNode *N); + SDValue visitSUBCARRY(SDNode *N); SDValue visitSSUBO_CARRY(SDNode *N); - SDValue visitMUL(SDNode *N); - SDValue visitMULFIX(SDNode *N); - SDValue useDivRem(SDNode *N); - SDValue visitSDIV(SDNode *N); - SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitUDIV(SDNode *N); - SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitREM(SDNode *N); - SDValue visitMULHU(SDNode *N); - SDValue visitMULHS(SDNode *N); - SDValue visitSMUL_LOHI(SDNode *N); - SDValue visitUMUL_LOHI(SDNode *N); - SDValue visitMULO(SDNode *N); - SDValue visitIMINMAX(SDNode *N); - SDValue visitAND(SDNode *N); - SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitOR(SDNode *N); - SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); - SDValue visitXOR(SDNode *N); - SDValue SimplifyVBinOp(SDNode *N); - SDValue visitSHL(SDNode *N); - SDValue visitSRA(SDNode *N); - SDValue visitSRL(SDNode *N); - SDValue visitFunnelShift(SDNode *N); - SDValue visitRotate(SDNode *N); - SDValue visitABS(SDNode *N); - SDValue visitBSWAP(SDNode *N); - SDValue visitBITREVERSE(SDNode *N); - SDValue visitCTLZ(SDNode *N); - SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); - SDValue visitCTTZ(SDNode *N); - SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); - SDValue visitCTPOP(SDNode *N); - SDValue visitSELECT(SDNode *N); - SDValue visitVSELECT(SDNode *N); - SDValue visitSELECT_CC(SDNode *N); - SDValue visitSETCC(SDNode *N); - SDValue visitSETCCCARRY(SDNode *N); - SDValue visitSIGN_EXTEND(SDNode *N); - SDValue visitZERO_EXTEND(SDNode *N); - SDValue visitANY_EXTEND(SDNode *N); - SDValue visitAssertExt(SDNode *N); - SDValue visitAssertAlign(SDNode *N); - SDValue visitSIGN_EXTEND_INREG(SDNode *N); - SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); - SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); - SDValue visitTRUNCATE(SDNode *N); - SDValue visitBITCAST(SDNode *N); - SDValue visitFREEZE(SDNode *N); - SDValue visitBUILD_PAIR(SDNode *N); - SDValue visitFADD(SDNode *N); + SDValue visitMUL(SDNode *N); + SDValue visitMULFIX(SDNode *N); + SDValue useDivRem(SDNode *N); + SDValue visitSDIV(SDNode *N); + SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N); + SDValue visitUDIV(SDNode *N); + SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N); + SDValue visitREM(SDNode *N); + SDValue visitMULHU(SDNode *N); + SDValue visitMULHS(SDNode *N); + SDValue visitSMUL_LOHI(SDNode *N); + SDValue visitUMUL_LOHI(SDNode *N); + SDValue visitMULO(SDNode *N); + SDValue visitIMINMAX(SDNode *N); + SDValue visitAND(SDNode *N); + SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N); + SDValue visitOR(SDNode *N); + SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N); + SDValue visitXOR(SDNode *N); + SDValue SimplifyVBinOp(SDNode *N); + SDValue visitSHL(SDNode *N); + SDValue visitSRA(SDNode *N); + SDValue visitSRL(SDNode *N); + SDValue visitFunnelShift(SDNode *N); + SDValue visitRotate(SDNode *N); + SDValue visitABS(SDNode *N); + SDValue visitBSWAP(SDNode *N); + SDValue visitBITREVERSE(SDNode *N); + SDValue visitCTLZ(SDNode *N); + SDValue visitCTLZ_ZERO_UNDEF(SDNode *N); + SDValue visitCTTZ(SDNode *N); + SDValue visitCTTZ_ZERO_UNDEF(SDNode *N); + SDValue visitCTPOP(SDNode *N); + SDValue visitSELECT(SDNode *N); + SDValue visitVSELECT(SDNode *N); + SDValue visitSELECT_CC(SDNode *N); + SDValue visitSETCC(SDNode *N); + SDValue visitSETCCCARRY(SDNode *N); + SDValue visitSIGN_EXTEND(SDNode *N); + SDValue visitZERO_EXTEND(SDNode *N); + SDValue visitANY_EXTEND(SDNode *N); + SDValue visitAssertExt(SDNode *N); + SDValue visitAssertAlign(SDNode *N); + SDValue visitSIGN_EXTEND_INREG(SDNode *N); + SDValue visitSIGN_EXTEND_VECTOR_INREG(SDNode *N); + SDValue visitZERO_EXTEND_VECTOR_INREG(SDNode *N); + SDValue visitTRUNCATE(SDNode *N); + SDValue visitBITCAST(SDNode *N); + SDValue visitFREEZE(SDNode *N); + SDValue visitBUILD_PAIR(SDNode *N); + SDValue visitFADD(SDNode *N); SDValue visitSTRICT_FADD(SDNode *N); - SDValue visitFSUB(SDNode *N); - SDValue visitFMUL(SDNode *N); - SDValue visitFMA(SDNode *N); - SDValue visitFDIV(SDNode *N); - SDValue visitFREM(SDNode *N); - SDValue visitFSQRT(SDNode *N); - SDValue visitFCOPYSIGN(SDNode *N); - SDValue visitFPOW(SDNode *N); - SDValue visitSINT_TO_FP(SDNode *N); - SDValue visitUINT_TO_FP(SDNode *N); - SDValue visitFP_TO_SINT(SDNode *N); - SDValue visitFP_TO_UINT(SDNode *N); - SDValue visitFP_ROUND(SDNode *N); - SDValue visitFP_EXTEND(SDNode *N); - SDValue visitFNEG(SDNode *N); - SDValue visitFABS(SDNode *N); - SDValue visitFCEIL(SDNode *N); - SDValue visitFTRUNC(SDNode *N); - SDValue visitFFLOOR(SDNode *N); - SDValue visitFMINNUM(SDNode *N); - SDValue visitFMAXNUM(SDNode *N); - SDValue visitFMINIMUM(SDNode *N); - SDValue visitFMAXIMUM(SDNode *N); - SDValue visitBRCOND(SDNode *N); - SDValue visitBR_CC(SDNode *N); - SDValue visitLOAD(SDNode *N); - - SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); - SDValue replaceStoreOfFPConstant(StoreSDNode *ST); - - SDValue visitSTORE(SDNode *N); - SDValue visitLIFETIME_END(SDNode *N); - SDValue visitINSERT_VECTOR_ELT(SDNode *N); - SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); - SDValue visitBUILD_VECTOR(SDNode *N); - SDValue visitCONCAT_VECTORS(SDNode *N); - SDValue visitEXTRACT_SUBVECTOR(SDNode *N); - SDValue visitVECTOR_SHUFFLE(SDNode *N); - SDValue visitSCALAR_TO_VECTOR(SDNode *N); - SDValue visitINSERT_SUBVECTOR(SDNode *N); - SDValue visitMLOAD(SDNode *N); - SDValue visitMSTORE(SDNode *N); - SDValue visitMGATHER(SDNode *N); - SDValue visitMSCATTER(SDNode *N); - SDValue visitFP_TO_FP16(SDNode *N); - SDValue visitFP16_TO_FP(SDNode *N); - SDValue visitVECREDUCE(SDNode *N); - - SDValue visitFADDForFMACombine(SDNode *N); - SDValue visitFSUBForFMACombine(SDNode *N); - SDValue visitFMULForFMADistributiveCombine(SDNode *N); - - SDValue XformToShuffleWithZero(SDNode *N); - bool reassociationCanBreakAddressingModePattern(unsigned Opc, - const SDLoc &DL, SDValue N0, - SDValue N1); - SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, - SDValue N1); - SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, - SDValue N1, SDNodeFlags Flags); - - SDValue visitShiftByConstant(SDNode *N); - - SDValue foldSelectOfConstants(SDNode *N); - SDValue foldVSelectOfConstants(SDNode *N); - SDValue foldBinOpIntoSelect(SDNode *BO); - bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); - SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); - SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); - SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC, - bool NotExtCompare = false); - SDValue convertSelectOfFPConstantsToLoadOffset( - const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC); + SDValue visitFSUB(SDNode *N); + SDValue visitFMUL(SDNode *N); + SDValue visitFMA(SDNode *N); + SDValue visitFDIV(SDNode *N); + SDValue visitFREM(SDNode *N); + SDValue visitFSQRT(SDNode *N); + SDValue visitFCOPYSIGN(SDNode *N); + SDValue visitFPOW(SDNode *N); + SDValue visitSINT_TO_FP(SDNode *N); + SDValue visitUINT_TO_FP(SDNode *N); + SDValue visitFP_TO_SINT(SDNode *N); + SDValue visitFP_TO_UINT(SDNode *N); + SDValue visitFP_ROUND(SDNode *N); + SDValue visitFP_EXTEND(SDNode *N); + SDValue visitFNEG(SDNode *N); + SDValue visitFABS(SDNode *N); + SDValue visitFCEIL(SDNode *N); + SDValue visitFTRUNC(SDNode *N); + SDValue visitFFLOOR(SDNode *N); + SDValue visitFMINNUM(SDNode *N); + SDValue visitFMAXNUM(SDNode *N); + SDValue visitFMINIMUM(SDNode *N); + SDValue visitFMAXIMUM(SDNode *N); + SDValue visitBRCOND(SDNode *N); + SDValue visitBR_CC(SDNode *N); + SDValue visitLOAD(SDNode *N); + + SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain); + SDValue replaceStoreOfFPConstant(StoreSDNode *ST); + + SDValue visitSTORE(SDNode *N); + SDValue visitLIFETIME_END(SDNode *N); + SDValue visitINSERT_VECTOR_ELT(SDNode *N); + SDValue visitEXTRACT_VECTOR_ELT(SDNode *N); + SDValue visitBUILD_VECTOR(SDNode *N); + SDValue visitCONCAT_VECTORS(SDNode *N); + SDValue visitEXTRACT_SUBVECTOR(SDNode *N); + SDValue visitVECTOR_SHUFFLE(SDNode *N); + SDValue visitSCALAR_TO_VECTOR(SDNode *N); + SDValue visitINSERT_SUBVECTOR(SDNode *N); + SDValue visitMLOAD(SDNode *N); + SDValue visitMSTORE(SDNode *N); + SDValue visitMGATHER(SDNode *N); + SDValue visitMSCATTER(SDNode *N); + SDValue visitFP_TO_FP16(SDNode *N); + SDValue visitFP16_TO_FP(SDNode *N); + SDValue visitVECREDUCE(SDNode *N); + + SDValue visitFADDForFMACombine(SDNode *N); + SDValue visitFSUBForFMACombine(SDNode *N); + SDValue visitFMULForFMADistributiveCombine(SDNode *N); + + SDValue XformToShuffleWithZero(SDNode *N); + bool reassociationCanBreakAddressingModePattern(unsigned Opc, + const SDLoc &DL, SDValue N0, + SDValue N1); + SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0, + SDValue N1); + SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, + SDValue N1, SDNodeFlags Flags); + + SDValue visitShiftByConstant(SDNode *N); + + SDValue foldSelectOfConstants(SDNode *N); + SDValue foldVSelectOfConstants(SDNode *N); + SDValue foldBinOpIntoSelect(SDNode *BO); + bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS); + SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N); + SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2); + SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, + SDValue N2, SDValue N3, ISD::CondCode CC, + bool NotExtCompare = false); + SDValue convertSelectOfFPConstantsToLoadOffset( + const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, + ISD::CondCode CC); SDValue foldSignChangeInBitcast(SDNode *N); - SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC); - SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, - const SDLoc &DL); - SDValue unfoldMaskedMerge(SDNode *N); - SDValue unfoldExtremeBitClearingToShifts(SDNode *N); - SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, - const SDLoc &DL, bool foldBooleans); - SDValue rebuildSetCC(SDValue N); - - bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, - SDValue &CC, bool MatchStrict = false) const; - bool isOneUseSetCC(SDValue N) const; - - SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, - unsigned HiOp); - SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); - SDValue CombineExtLoad(SDNode *N); - SDValue CombineZExtLogicopShiftLoad(SDNode *N); - SDValue combineRepeatedFPDivisors(SDNode *N); - SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); - SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); - SDValue BuildSDIV(SDNode *N); - SDValue BuildSDIVPow2(SDNode *N); - SDValue BuildUDIV(SDNode *N); - SDValue BuildLogBase2(SDValue V, const SDLoc &DL); - SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); - SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); - SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); - SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); - SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal); - SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal); - SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, - bool DemandHighBits = true); - SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); - SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, - SDValue InnerPos, SDValue InnerNeg, - unsigned PosOpcode, unsigned NegOpcode, - const SDLoc &DL); - SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, - SDValue InnerPos, SDValue InnerNeg, - unsigned PosOpcode, unsigned NegOpcode, - const SDLoc &DL); - SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); - SDValue MatchLoadCombine(SDNode *N); + SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1, + SDValue N2, SDValue N3, ISD::CondCode CC); + SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, + const SDLoc &DL); + SDValue unfoldMaskedMerge(SDNode *N); + SDValue unfoldExtremeBitClearingToShifts(SDNode *N); + SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, + const SDLoc &DL, bool foldBooleans); + SDValue rebuildSetCC(SDValue N); + + bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, + SDValue &CC, bool MatchStrict = false) const; + bool isOneUseSetCC(SDValue N) const; + + SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, + unsigned HiOp); + SDValue CombineConsecutiveLoads(SDNode *N, EVT VT); + SDValue CombineExtLoad(SDNode *N); + SDValue CombineZExtLogicopShiftLoad(SDNode *N); + SDValue combineRepeatedFPDivisors(SDNode *N); + SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex); + SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT); + SDValue BuildSDIV(SDNode *N); + SDValue BuildSDIVPow2(SDNode *N); + SDValue BuildUDIV(SDNode *N); + SDValue BuildLogBase2(SDValue V, const SDLoc &DL); + SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags); + SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags); + SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags); + SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip); + SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations, + SDNodeFlags Flags, bool Reciprocal); + SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations, + SDNodeFlags Flags, bool Reciprocal); + SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, + bool DemandHighBits = true); + SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1); + SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg, + SDValue InnerPos, SDValue InnerNeg, + unsigned PosOpcode, unsigned NegOpcode, + const SDLoc &DL); + SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg, + SDValue InnerPos, SDValue InnerNeg, + unsigned PosOpcode, unsigned NegOpcode, + const SDLoc &DL); + SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL); + SDValue MatchLoadCombine(SDNode *N); SDValue mergeTruncStores(StoreSDNode *N); - SDValue ReduceLoadWidth(SDNode *N); - SDValue ReduceLoadOpStoreWidth(SDNode *N); - SDValue splitMergedValStore(StoreSDNode *ST); - SDValue TransformFPLoadStorePair(SDNode *N); - SDValue convertBuildVecZextToZext(SDNode *N); - SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); - SDValue reduceBuildVecTruncToBitCast(SDNode *N); - SDValue reduceBuildVecToShuffle(SDNode *N); - SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, - ArrayRef<int> VectorMask, SDValue VecIn1, - SDValue VecIn2, unsigned LeftIdx, - bool DidSplitVec); - SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); - - /// Walk up chain skipping non-aliasing memory nodes, - /// looking for aliasing nodes and adding them to the Aliases vector. - void GatherAllAliases(SDNode *N, SDValue OriginalChain, - SmallVectorImpl<SDValue> &Aliases); - - /// Return true if there is any possibility that the two addresses overlap. - bool isAlias(SDNode *Op0, SDNode *Op1) const; - - /// Walk up chain skipping non-aliasing memory nodes, looking for a better - /// chain (aliasing node.) - SDValue FindBetterChain(SDNode *N, SDValue Chain); - - /// Try to replace a store and any possibly adjacent stores on - /// consecutive chains with better chains. Return true only if St is - /// replaced. - /// - /// Notice that other chains may still be replaced even if the function - /// returns false. - bool findBetterNeighborChains(StoreSDNode *St); - - // Helper for findBetterNeighborChains. Walk up store chain add additional - // chained stores that do not overlap and can be parallelized. - bool parallelizeChainedStores(StoreSDNode *St); - - /// Holds a pointer to an LSBaseSDNode as well as information on where it - /// is located in a sequence of memory operations connected by a chain. - struct MemOpLink { - // Ptr to the mem node. - LSBaseSDNode *MemNode; - - // Offset from the base ptr. - int64_t OffsetFromBase; - - MemOpLink(LSBaseSDNode *N, int64_t Offset) - : MemNode(N), OffsetFromBase(Offset) {} - }; - - // Classify the origin of a stored value. - enum class StoreSource { Unknown, Constant, Extract, Load }; - StoreSource getStoreSource(SDValue StoreVal) { + SDValue ReduceLoadWidth(SDNode *N); + SDValue ReduceLoadOpStoreWidth(SDNode *N); + SDValue splitMergedValStore(StoreSDNode *ST); + SDValue TransformFPLoadStorePair(SDNode *N); + SDValue convertBuildVecZextToZext(SDNode *N); + SDValue reduceBuildVecExtToExtBuildVec(SDNode *N); + SDValue reduceBuildVecTruncToBitCast(SDNode *N); + SDValue reduceBuildVecToShuffle(SDNode *N); + SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N, + ArrayRef<int> VectorMask, SDValue VecIn1, + SDValue VecIn2, unsigned LeftIdx, + bool DidSplitVec); + SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast); + + /// Walk up chain skipping non-aliasing memory nodes, + /// looking for aliasing nodes and adding them to the Aliases vector. + void GatherAllAliases(SDNode *N, SDValue OriginalChain, + SmallVectorImpl<SDValue> &Aliases); + + /// Return true if there is any possibility that the two addresses overlap. + bool isAlias(SDNode *Op0, SDNode *Op1) const; + + /// Walk up chain skipping non-aliasing memory nodes, looking for a better + /// chain (aliasing node.) + SDValue FindBetterChain(SDNode *N, SDValue Chain); + + /// Try to replace a store and any possibly adjacent stores on + /// consecutive chains with better chains. Return true only if St is + /// replaced. + /// + /// Notice that other chains may still be replaced even if the function + /// returns false. + bool findBetterNeighborChains(StoreSDNode *St); + + // Helper for findBetterNeighborChains. Walk up store chain add additional + // chained stores that do not overlap and can be parallelized. + bool parallelizeChainedStores(StoreSDNode *St); + + /// Holds a pointer to an LSBaseSDNode as well as information on where it + /// is located in a sequence of memory operations connected by a chain. + struct MemOpLink { + // Ptr to the mem node. + LSBaseSDNode *MemNode; + + // Offset from the base ptr. + int64_t OffsetFromBase; + + MemOpLink(LSBaseSDNode *N, int64_t Offset) + : MemNode(N), OffsetFromBase(Offset) {} + }; + + // Classify the origin of a stored value. + enum class StoreSource { Unknown, Constant, Extract, Load }; + StoreSource getStoreSource(SDValue StoreVal) { switch (StoreVal.getOpcode()) { case ISD::Constant: case ISD::ConstantFP: - return StoreSource::Constant; + return StoreSource::Constant; case ISD::EXTRACT_VECTOR_ELT: case ISD::EXTRACT_SUBVECTOR: - return StoreSource::Extract; + return StoreSource::Extract; case ISD::LOAD: - return StoreSource::Load; + return StoreSource::Load; default: return StoreSource::Unknown; } - } - - /// This is a helper function for visitMUL to check the profitability - /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). - /// MulNode is the original multiply, AddNode is (add x, c1), - /// and ConstNode is c2. - bool isMulAddWithConstProfitable(SDNode *MulNode, - SDValue &AddNode, - SDValue &ConstNode); - - /// This is a helper function for visitAND and visitZERO_EXTEND. Returns - /// true if the (and (load x) c) pattern matches an extload. ExtVT returns - /// the type of the loaded value to be extended. - bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, - EVT LoadResultTy, EVT &ExtVT); - - /// Helper function to calculate whether the given Load/Store can have its - /// width reduced to ExtVT. - bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, - EVT &MemVT, unsigned ShAmt = 0); - - /// Used by BackwardsPropagateMask to find suitable loads. - bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, - SmallPtrSetImpl<SDNode*> &NodesWithConsts, - ConstantSDNode *Mask, SDNode *&NodeToMask); - /// Attempt to propagate a given AND node back to load leaves so that they - /// can be combined into narrow loads. - bool BackwardsPropagateMask(SDNode *N); - - /// Helper function for mergeConsecutiveStores which merges the component - /// store chains. - SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumStores); - - /// This is a helper function for mergeConsecutiveStores. When the source - /// elements of the consecutive stores are all constants or all extracted - /// vector elements, try to merge them into one larger store introducing - /// bitcasts if necessary. \return True if a merged store was created. - bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, - EVT MemVT, unsigned NumStores, - bool IsConstantSrc, bool UseVector, - bool UseTrunc); - - /// This is a helper function for mergeConsecutiveStores. Stores that - /// potentially may be merged with St are placed in StoreNodes. RootNode is - /// a chain predecessor to all store candidates. - void getStoreMergeCandidates(StoreSDNode *St, - SmallVectorImpl<MemOpLink> &StoreNodes, - SDNode *&Root); - - /// Helper function for mergeConsecutiveStores. Checks if candidate stores - /// have indirect dependency through their operands. RootNode is the - /// predecessor to all stores calculated by getStoreMergeCandidates and is - /// used to prune the dependency check. \return True if safe to merge. - bool checkMergeStoreCandidatesForDependencies( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, - SDNode *RootNode); - - /// This is a helper function for mergeConsecutiveStores. Given a list of - /// store candidates, find the first N that are consecutive in memory. - /// Returns 0 if there are not at least 2 consecutive stores to try merging. - unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, - int64_t ElementSizeBytes) const; - - /// This is a helper function for mergeConsecutiveStores. It is used for - /// store chains that are composed entirely of constant values. - bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumConsecutiveStores, - EVT MemVT, SDNode *Root, bool AllowVectors); - - /// This is a helper function for mergeConsecutiveStores. It is used for - /// store chains that are composed entirely of extracted vector elements. - /// When extracting multiple vector elements, try to store them in one - /// vector store rather than a sequence of scalar stores. - bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumConsecutiveStores, EVT MemVT, - SDNode *Root); - - /// This is a helper function for mergeConsecutiveStores. It is used for - /// store chains that are composed entirely of loaded values. - bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumConsecutiveStores, EVT MemVT, - SDNode *Root, bool AllowVectors, - bool IsNonTemporalStore, bool IsNonTemporalLoad); - - /// Merge consecutive store operations into a wide store. - /// This optimization uses wide integers or vectors when possible. - /// \return true if stores were merged. - bool mergeConsecutiveStores(StoreSDNode *St); - - /// Try to transform a truncation where C is a constant: - /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) - /// - /// \p N needs to be a truncation and its first operand an AND. Other - /// requirements are checked by the function (e.g. that trunc is - /// single-use) and if missed an empty SDValue is returned. - SDValue distributeTruncateThroughAnd(SDNode *N); - - /// Helper function to determine whether the target supports operation - /// given by \p Opcode for type \p VT, that is, whether the operation - /// is legal or custom before legalizing operations, and whether is - /// legal (but not custom) after legalization. - bool hasOperation(unsigned Opcode, EVT VT) { + } + + /// This is a helper function for visitMUL to check the profitability + /// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). + /// MulNode is the original multiply, AddNode is (add x, c1), + /// and ConstNode is c2. + bool isMulAddWithConstProfitable(SDNode *MulNode, + SDValue &AddNode, + SDValue &ConstNode); + + /// This is a helper function for visitAND and visitZERO_EXTEND. Returns + /// true if the (and (load x) c) pattern matches an extload. ExtVT returns + /// the type of the loaded value to be extended. + bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, + EVT LoadResultTy, EVT &ExtVT); + + /// Helper function to calculate whether the given Load/Store can have its + /// width reduced to ExtVT. + bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType, + EVT &MemVT, unsigned ShAmt = 0); + + /// Used by BackwardsPropagateMask to find suitable loads. + bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads, + SmallPtrSetImpl<SDNode*> &NodesWithConsts, + ConstantSDNode *Mask, SDNode *&NodeToMask); + /// Attempt to propagate a given AND node back to load leaves so that they + /// can be combined into narrow loads. + bool BackwardsPropagateMask(SDNode *N); + + /// Helper function for mergeConsecutiveStores which merges the component + /// store chains. + SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumStores); + + /// This is a helper function for mergeConsecutiveStores. When the source + /// elements of the consecutive stores are all constants or all extracted + /// vector elements, try to merge them into one larger store introducing + /// bitcasts if necessary. \return True if a merged store was created. + bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes, + EVT MemVT, unsigned NumStores, + bool IsConstantSrc, bool UseVector, + bool UseTrunc); + + /// This is a helper function for mergeConsecutiveStores. Stores that + /// potentially may be merged with St are placed in StoreNodes. RootNode is + /// a chain predecessor to all store candidates. + void getStoreMergeCandidates(StoreSDNode *St, + SmallVectorImpl<MemOpLink> &StoreNodes, + SDNode *&Root); + + /// Helper function for mergeConsecutiveStores. Checks if candidate stores + /// have indirect dependency through their operands. RootNode is the + /// predecessor to all stores calculated by getStoreMergeCandidates and is + /// used to prune the dependency check. \return True if safe to merge. + bool checkMergeStoreCandidatesForDependencies( + SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, + SDNode *RootNode); + + /// This is a helper function for mergeConsecutiveStores. Given a list of + /// store candidates, find the first N that are consecutive in memory. + /// Returns 0 if there are not at least 2 consecutive stores to try merging. + unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, + int64_t ElementSizeBytes) const; + + /// This is a helper function for mergeConsecutiveStores. It is used for + /// store chains that are composed entirely of constant values. + bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumConsecutiveStores, + EVT MemVT, SDNode *Root, bool AllowVectors); + + /// This is a helper function for mergeConsecutiveStores. It is used for + /// store chains that are composed entirely of extracted vector elements. + /// When extracting multiple vector elements, try to store them in one + /// vector store rather than a sequence of scalar stores. + bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumConsecutiveStores, EVT MemVT, + SDNode *Root); + + /// This is a helper function for mergeConsecutiveStores. It is used for + /// store chains that are composed entirely of loaded values. + bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumConsecutiveStores, EVT MemVT, + SDNode *Root, bool AllowVectors, + bool IsNonTemporalStore, bool IsNonTemporalLoad); + + /// Merge consecutive store operations into a wide store. + /// This optimization uses wide integers or vectors when possible. + /// \return true if stores were merged. + bool mergeConsecutiveStores(StoreSDNode *St); + + /// Try to transform a truncation where C is a constant: + /// (trunc (and X, C)) -> (and (trunc X), (trunc C)) + /// + /// \p N needs to be a truncation and its first operand an AND. Other + /// requirements are checked by the function (e.g. that trunc is + /// single-use) and if missed an empty SDValue is returned. + SDValue distributeTruncateThroughAnd(SDNode *N); + + /// Helper function to determine whether the target supports operation + /// given by \p Opcode for type \p VT, that is, whether the operation + /// is legal or custom before legalizing operations, and whether is + /// legal (but not custom) after legalization. + bool hasOperation(unsigned Opcode, EVT VT) { return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations); - } - - public: - /// Runs the dag combiner on all nodes in the work list - void Run(CombineLevel AtLevel); - - SelectionDAG &getDAG() const { return DAG; } - - /// Returns a type large enough to hold any valid shift amount - before type - /// legalization these can be huge. - EVT getShiftAmountTy(EVT LHSTy) { - assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); - return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); - } - - /// This method returns true if we are running before type legalization or - /// if the specified VT is legal. - bool isTypeLegal(const EVT &VT) { - if (!LegalTypes) return true; - return TLI.isTypeLegal(VT); - } - - /// Convenience wrapper around TargetLowering::getSetCCResultType - EVT getSetCCResultType(EVT VT) const { - return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - } - - void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, - SDValue OrigLoad, SDValue ExtLoad, - ISD::NodeType ExtType); - }; - -/// This class is a DAGUpdateListener that removes any deleted -/// nodes from the worklist. -class WorklistRemover : public SelectionDAG::DAGUpdateListener { - DAGCombiner &DC; - -public: - explicit WorklistRemover(DAGCombiner &dc) - : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} - - void NodeDeleted(SDNode *N, SDNode *E) override { - DC.removeFromWorklist(N); - } -}; - -class WorklistInserter : public SelectionDAG::DAGUpdateListener { - DAGCombiner &DC; - -public: - explicit WorklistInserter(DAGCombiner &dc) - : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} - - // FIXME: Ideally we could add N to the worklist, but this causes exponential - // compile time costs in large DAGs, e.g. Halide. - void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// TargetLowering::DAGCombinerInfo implementation -//===----------------------------------------------------------------------===// - -void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { - ((DAGCombiner*)DC)->AddToWorklist(N); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, SDValue Res, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); -} - -SDValue TargetLowering::DAGCombinerInfo:: -CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { - return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); -} - -bool TargetLowering::DAGCombinerInfo:: -recursivelyDeleteUnusedNodes(SDNode *N) { - return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); -} - -void TargetLowering::DAGCombinerInfo:: -CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { - return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); -} - -//===----------------------------------------------------------------------===// -// Helper Functions -//===----------------------------------------------------------------------===// - -void DAGCombiner::deleteAndRecombine(SDNode *N) { - removeFromWorklist(N); - - // If the operands of this node are only used by the node, they will now be - // dead. Make sure to re-visit them and recursively delete dead nodes. - for (const SDValue &Op : N->ops()) - // For an operand generating multiple values, one of the values may - // become dead allowing further simplification (e.g. split index - // arithmetic from an indexed load). - if (Op->hasOneUse() || Op->getNumValues() > 1) - AddToWorklist(Op.getNode()); - - DAG.DeleteNode(N); -} - -// APInts must be the same size for most operations, this helper -// function zero extends the shorter of the pair so that they match. -// We provide an Offset so that we can create bitwidths that won't overflow. -static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { - unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); - LHS = LHS.zextOrSelf(Bits); - RHS = RHS.zextOrSelf(Bits); -} - -// Return true if this node is a setcc, or is a select_cc -// that selects between the target values used for true and false, making it -// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to -// the appropriate nodes based on the type of node we are checking. This -// simplifies life a bit for the callers. -bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, - SDValue &CC, bool MatchStrict) const { - if (N.getOpcode() == ISD::SETCC) { - LHS = N.getOperand(0); - RHS = N.getOperand(1); - CC = N.getOperand(2); - return true; - } - - if (MatchStrict && - (N.getOpcode() == ISD::STRICT_FSETCC || - N.getOpcode() == ISD::STRICT_FSETCCS)) { - LHS = N.getOperand(1); - RHS = N.getOperand(2); - CC = N.getOperand(3); - return true; - } - - if (N.getOpcode() != ISD::SELECT_CC || - !TLI.isConstTrueVal(N.getOperand(2).getNode()) || - !TLI.isConstFalseVal(N.getOperand(3).getNode())) - return false; - - if (TLI.getBooleanContents(N.getValueType()) == - TargetLowering::UndefinedBooleanContent) - return false; - - LHS = N.getOperand(0); - RHS = N.getOperand(1); - CC = N.getOperand(4); - return true; -} - -/// Return true if this is a SetCC-equivalent operation with only one use. -/// If this is true, it allows the users to invert the operation for free when -/// it is profitable to do so. -bool DAGCombiner::isOneUseSetCC(SDValue N) const { - SDValue N0, N1, N2; - if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) - return true; - return false; -} - + } + + public: + /// Runs the dag combiner on all nodes in the work list + void Run(CombineLevel AtLevel); + + SelectionDAG &getDAG() const { return DAG; } + + /// Returns a type large enough to hold any valid shift amount - before type + /// legalization these can be huge. + EVT getShiftAmountTy(EVT LHSTy) { + assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); + return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes); + } + + /// This method returns true if we are running before type legalization or + /// if the specified VT is legal. + bool isTypeLegal(const EVT &VT) { + if (!LegalTypes) return true; + return TLI.isTypeLegal(VT); + } + + /// Convenience wrapper around TargetLowering::getSetCCResultType + EVT getSetCCResultType(EVT VT) const { + return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + } + + void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, + SDValue OrigLoad, SDValue ExtLoad, + ISD::NodeType ExtType); + }; + +/// This class is a DAGUpdateListener that removes any deleted +/// nodes from the worklist. +class WorklistRemover : public SelectionDAG::DAGUpdateListener { + DAGCombiner &DC; + +public: + explicit WorklistRemover(DAGCombiner &dc) + : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} + + void NodeDeleted(SDNode *N, SDNode *E) override { + DC.removeFromWorklist(N); + } +}; + +class WorklistInserter : public SelectionDAG::DAGUpdateListener { + DAGCombiner &DC; + +public: + explicit WorklistInserter(DAGCombiner &dc) + : SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {} + + // FIXME: Ideally we could add N to the worklist, but this causes exponential + // compile time costs in large DAGs, e.g. Halide. + void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// TargetLowering::DAGCombinerInfo implementation +//===----------------------------------------------------------------------===// + +void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) { + ((DAGCombiner*)DC)->AddToWorklist(N); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) { + return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res, bool AddTo) { + return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo); +} + +SDValue TargetLowering::DAGCombinerInfo:: +CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) { + return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo); +} + +bool TargetLowering::DAGCombinerInfo:: +recursivelyDeleteUnusedNodes(SDNode *N) { + return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N); +} + +void TargetLowering::DAGCombinerInfo:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { + return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO); +} + +//===----------------------------------------------------------------------===// +// Helper Functions +//===----------------------------------------------------------------------===// + +void DAGCombiner::deleteAndRecombine(SDNode *N) { + removeFromWorklist(N); + + // If the operands of this node are only used by the node, they will now be + // dead. Make sure to re-visit them and recursively delete dead nodes. + for (const SDValue &Op : N->ops()) + // For an operand generating multiple values, one of the values may + // become dead allowing further simplification (e.g. split index + // arithmetic from an indexed load). + if (Op->hasOneUse() || Op->getNumValues() > 1) + AddToWorklist(Op.getNode()); + + DAG.DeleteNode(N); +} + +// APInts must be the same size for most operations, this helper +// function zero extends the shorter of the pair so that they match. +// We provide an Offset so that we can create bitwidths that won't overflow. +static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) { + unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth()); + LHS = LHS.zextOrSelf(Bits); + RHS = RHS.zextOrSelf(Bits); +} + +// Return true if this node is a setcc, or is a select_cc +// that selects between the target values used for true and false, making it +// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to +// the appropriate nodes based on the type of node we are checking. This +// simplifies life a bit for the callers. +bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS, + SDValue &CC, bool MatchStrict) const { + if (N.getOpcode() == ISD::SETCC) { + LHS = N.getOperand(0); + RHS = N.getOperand(1); + CC = N.getOperand(2); + return true; + } + + if (MatchStrict && + (N.getOpcode() == ISD::STRICT_FSETCC || + N.getOpcode() == ISD::STRICT_FSETCCS)) { + LHS = N.getOperand(1); + RHS = N.getOperand(2); + CC = N.getOperand(3); + return true; + } + + if (N.getOpcode() != ISD::SELECT_CC || + !TLI.isConstTrueVal(N.getOperand(2).getNode()) || + !TLI.isConstFalseVal(N.getOperand(3).getNode())) + return false; + + if (TLI.getBooleanContents(N.getValueType()) == + TargetLowering::UndefinedBooleanContent) + return false; + + LHS = N.getOperand(0); + RHS = N.getOperand(1); + CC = N.getOperand(4); + return true; +} + +/// Return true if this is a SetCC-equivalent operation with only one use. +/// If this is true, it allows the users to invert the operation for free when +/// it is profitable to do so. +bool DAGCombiner::isOneUseSetCC(SDValue N) const { + SDValue N0, N1, N2; + if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse()) + return true; + return false; +} + static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { if (!ScalarTy.isSimple()) return false; @@ -957,628 +957,628 @@ static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) { return Val.getLimitedValue() == MaskForTy; return false; -} - +} + // Determines if it is a constant integer or a splat/build vector of constant -// integers (and undefs). -// Do not permit build vector implicit truncation. -static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { - if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) - return !(Const->isOpaque() && NoOpaques); +// integers (and undefs). +// Do not permit build vector implicit truncation. +static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) { + if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N)) + return !(Const->isOpaque() && NoOpaques); if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR) - return false; - unsigned BitWidth = N.getScalarValueSizeInBits(); - for (const SDValue &Op : N->op_values()) { - if (Op.isUndef()) - continue; - ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); - if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || - (Const->isOpaque() && NoOpaques)) - return false; - } - return true; -} - -// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with -// undef's. -static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { - if (V.getOpcode() != ISD::BUILD_VECTOR) - return false; - return isConstantOrConstantVector(V, NoOpaques) || - ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); -} - -// Determine if this an indexed load with an opaque target constant index. -static bool canSplitIdx(LoadSDNode *LD) { - return MaySplitLoadIndex && - (LD->getOperand(2).getOpcode() != ISD::TargetConstant || - !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); -} - -bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, - const SDLoc &DL, - SDValue N0, - SDValue N1) { - // Currently this only tries to ensure we don't undo the GEP splits done by - // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, - // we check if the following transformation would be problematic: - // (load/store (add, (add, x, offset1), offset2)) -> - // (load/store (add, x, offset1+offset2)). - - if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) - return false; - - if (N0.hasOneUse()) - return false; - - auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - auto *C2 = dyn_cast<ConstantSDNode>(N1); - if (!C1 || !C2) - return false; - - const APInt &C1APIntVal = C1->getAPIntValue(); - const APInt &C2APIntVal = C2->getAPIntValue(); - if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) - return false; - - const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; - if (CombinedValueIntVal.getBitWidth() > 64) - return false; - const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); - - for (SDNode *Node : N0->uses()) { - auto LoadStore = dyn_cast<MemSDNode>(Node); - if (LoadStore) { - // Is x[offset2] already not a legal addressing mode? If so then - // reassociating the constants breaks nothing (we test offset2 because - // that's the one we hope to fold into the load or store). - TargetLoweringBase::AddrMode AM; - AM.HasBaseReg = true; - AM.BaseOffs = C2APIntVal.getSExtValue(); - EVT VT = LoadStore->getMemoryVT(); - unsigned AS = LoadStore->getAddressSpace(); - Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); - if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) - continue; - - // Would x[offset1+offset2] still be a legal addressing mode? - AM.BaseOffs = CombinedValue; - if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) - return true; - } - } - - return false; -} - -// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression -// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. -SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, - SDValue N0, SDValue N1) { - EVT VT = N0.getValueType(); - - if (N0.getOpcode() != Opc) - return SDValue(); - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { - if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { - // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) - if (SDValue OpNode = - DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) - return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); - return SDValue(); - } - if (N0.hasOneUse()) { - // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) - // iff (op x, c1) has one use - SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); - if (!OpNode.getNode()) - return SDValue(); - return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); - } - } - return SDValue(); -} - -// Try to reassociate commutative binops. -SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, - SDValue N1, SDNodeFlags Flags) { - assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); - - // Floating-point reassociation is not allowed without loose FP math. - if (N0.getValueType().isFloatingPoint() || - N1.getValueType().isFloatingPoint()) - if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) - return SDValue(); - - if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) - return Combined; - if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) - return Combined; - return SDValue(); -} - -SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, - bool AddTo) { - assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; - To[0].getNode()->dump(&DAG); - dbgs() << " and " << NumTo - 1 << " other values\n"); - for (unsigned i = 0, e = NumTo; i != e; ++i) - assert((!To[i].getNode() || - N->getValueType(i) == To[i].getValueType()) && - "Cannot combine value to value of different type!"); - - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesWith(N, To); - if (AddTo) { - // Push the new nodes and any users onto the worklist - for (unsigned i = 0, e = NumTo; i != e; ++i) { - if (To[i].getNode()) { - AddToWorklist(To[i].getNode()); - AddUsersToWorklist(To[i].getNode()); - } - } - } - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. - if (N->use_empty()) - deleteAndRecombine(N); - return SDValue(N, 0); -} - -void DAGCombiner:: -CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { - // Replace the old value with the new one. - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); - dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); - dbgs() << '\n'); - - // Replace all uses. If any nodes become isomorphic to other nodes and - // are deleted, make sure to remove them from our worklist. - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); - - // Push the new node and any (possibly new) users onto the worklist. - AddToWorklistWithUsers(TLO.New.getNode()); - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. - if (TLO.Old.getNode()->use_empty()) - deleteAndRecombine(TLO.Old.getNode()); -} - -/// Check the specified integer node value to see if it can be simplified or if -/// things it uses can be simplified by bit propagation. If so, return true. -bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, - const APInt &DemandedElts, - bool AssumeSingleUse) { - TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); - KnownBits Known; - if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, - AssumeSingleUse)) - return false; - - // Revisit the node. - AddToWorklist(Op.getNode()); - - CommitTargetLoweringOpt(TLO); - return true; -} - -/// Check the specified vector node value to see if it can be simplified or -/// if things it uses can be simplified as it only uses some of the elements. -/// If so, return true. -bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, - const APInt &DemandedElts, - bool AssumeSingleUse) { - TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); - APInt KnownUndef, KnownZero; - if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, - TLO, 0, AssumeSingleUse)) - return false; - - // Revisit the node. - AddToWorklist(Op.getNode()); - - CommitTargetLoweringOpt(TLO); - return true; -} - -void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { - SDLoc DL(Load); - EVT VT = Load->getValueType(0); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); - - LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; - Trunc.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); - deleteAndRecombine(Load); - AddToWorklist(Trunc.getNode()); -} - -SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { - Replace = false; - SDLoc DL(Op); - if (ISD::isUNINDEXEDLoad(Op.getNode())) { - LoadSDNode *LD = cast<LoadSDNode>(Op); - EVT MemVT = LD->getMemoryVT(); - ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD - : LD->getExtensionType(); - Replace = true; - return DAG.getExtLoad(ExtType, DL, PVT, - LD->getChain(), LD->getBasePtr(), - MemVT, LD->getMemOperand()); - } - - unsigned Opc = Op.getOpcode(); - switch (Opc) { - default: break; - case ISD::AssertSext: - if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) - return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); - break; - case ISD::AssertZext: - if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) - return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); - break; - case ISD::Constant: { - unsigned ExtOpc = - Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - return DAG.getNode(ExtOpc, DL, PVT, Op); - } - } - - if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) - return SDValue(); - return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); -} - -SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { - if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) - return SDValue(); - EVT OldVT = Op.getValueType(); - SDLoc DL(Op); - bool Replace = false; - SDValue NewOp = PromoteOperand(Op, PVT, Replace); - if (!NewOp.getNode()) - return SDValue(); - AddToWorklist(NewOp.getNode()); - - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); - return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, - DAG.getValueType(OldVT)); -} - -SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { - EVT OldVT = Op.getValueType(); - SDLoc DL(Op); - bool Replace = false; - SDValue NewOp = PromoteOperand(Op, PVT, Replace); - if (!NewOp.getNode()) - return SDValue(); - AddToWorklist(NewOp.getNode()); - - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); - return DAG.getZeroExtendInReg(NewOp, DL, OldVT); -} - -/// Promote the specified integer binary operation if the target indicates it is -/// beneficial. e.g. On x86, it's usually better to promote i16 operations to -/// i32 since i16 instructions are longer. -SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - - bool Replace0 = false; - SDValue N0 = Op.getOperand(0); - SDValue NN0 = PromoteOperand(N0, PVT, Replace0); - - bool Replace1 = false; - SDValue N1 = Op.getOperand(1); - SDValue NN1 = PromoteOperand(N1, PVT, Replace1); - SDLoc DL(Op); - - SDValue RV = - DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); - - // We are always replacing N0/N1's use in N and only need additional - // replacements if there are additional uses. - // Note: We are checking uses of the *nodes* (SDNode) rather than values - // (SDValue) here because the node may reference multiple values - // (for example, the chain value of a load node). - Replace0 &= !N0->hasOneUse(); - Replace1 &= (N0 != N1) && !N1->hasOneUse(); - - // Combine Op here so it is preserved past replacements. - CombineTo(Op.getNode(), RV); - - // If operands have a use ordering, make sure we deal with - // predecessor first. - if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { - std::swap(N0, N1); - std::swap(NN0, NN1); - } - - if (Replace0) { - AddToWorklist(NN0.getNode()); - ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); - } - if (Replace1) { - AddToWorklist(NN1.getNode()); - ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); - } - return Op; - } - return SDValue(); -} - -/// Promote the specified integer shift operation if the target indicates it is -/// beneficial. e.g. On x86, it's usually better to promote i16 operations to -/// i32 since i16 instructions are longer. -SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - - bool Replace = false; - SDValue N0 = Op.getOperand(0); - SDValue N1 = Op.getOperand(1); - if (Opc == ISD::SRA) - N0 = SExtPromoteOperand(N0, PVT); - else if (Opc == ISD::SRL) - N0 = ZExtPromoteOperand(N0, PVT); - else - N0 = PromoteOperand(N0, PVT, Replace); - - if (!N0.getNode()) - return SDValue(); - - SDLoc DL(Op); - SDValue RV = - DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); - - if (Replace) - ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); - - // Deal with Op being deleted. - if (Op && Op.getOpcode() != ISD::DELETED_NODE) - return RV; - } - return SDValue(); -} - -SDValue DAGCombiner::PromoteExtend(SDValue Op) { - if (!LegalOperations) - return SDValue(); - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return SDValue(); - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - // fold (aext (aext x)) -> (aext x) - // fold (aext (zext x)) -> (zext x) - // fold (aext (sext x)) -> (sext x) - LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); - return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); - } - return SDValue(); -} - -bool DAGCombiner::PromoteLoad(SDValue Op) { - if (!LegalOperations) - return false; - - if (!ISD::isUNINDEXEDLoad(Op.getNode())) - return false; - - EVT VT = Op.getValueType(); - if (VT.isVector() || !VT.isInteger()) - return false; - - // If operation type is 'undesirable', e.g. i16 on x86, consider - // promoting it. - unsigned Opc = Op.getOpcode(); - if (TLI.isTypeDesirableForOp(Opc, VT)) - return false; - - EVT PVT = VT; - // Consult target whether it is a good idea to promote this operation and - // what's the right type to promote it to. - if (TLI.IsDesirableToPromoteOp(Op, PVT)) { - assert(PVT != VT && "Don't know what type to promote to!"); - - SDLoc DL(Op); - SDNode *N = Op.getNode(); - LoadSDNode *LD = cast<LoadSDNode>(N); - EVT MemVT = LD->getMemoryVT(); - ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD - : LD->getExtensionType(); - SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, - LD->getChain(), LD->getBasePtr(), - MemVT, LD->getMemOperand()); - SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); - - LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; - Result.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); - deleteAndRecombine(N); - AddToWorklist(Result.getNode()); - return true; - } - return false; -} - -/// Recursively delete a node which has no uses and any operands for -/// which it is the only use. -/// -/// Note that this both deletes the nodes and removes them from the worklist. -/// It also adds any nodes who have had a user deleted to the worklist as they -/// may now have only one use and subject to other combines. -bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { - if (!N->use_empty()) - return false; - - SmallSetVector<SDNode *, 16> Nodes; - Nodes.insert(N); - do { - N = Nodes.pop_back_val(); - if (!N) - continue; - - if (N->use_empty()) { - for (const SDValue &ChildN : N->op_values()) - Nodes.insert(ChildN.getNode()); - - removeFromWorklist(N); - DAG.DeleteNode(N); - } else { - AddToWorklist(N); - } - } while (!Nodes.empty()); - return true; -} - -//===----------------------------------------------------------------------===// -// Main DAG Combiner implementation -//===----------------------------------------------------------------------===// - -void DAGCombiner::Run(CombineLevel AtLevel) { - // set the instance variables, so that the various visit routines may use it. - Level = AtLevel; - LegalDAG = Level >= AfterLegalizeDAG; - LegalOperations = Level >= AfterLegalizeVectorOps; - LegalTypes = Level >= AfterLegalizeTypes; - - WorklistInserter AddNodes(*this); - - // Add all the dag nodes to the worklist. - for (SDNode &Node : DAG.allnodes()) - AddToWorklist(&Node); - - // Create a dummy node (which is not added to allnodes), that adds a reference - // to the root node, preventing it from being deleted, and tracking any - // changes of the root. - HandleSDNode Dummy(DAG.getRoot()); - - // While we have a valid worklist entry node, try to combine it. - while (SDNode *N = getNextWorklistEntry()) { - // If N has no uses, it is dead. Make sure to revisit all N's operands once - // N is deleted from the DAG, since they too may now be dead or may have a - // reduced number of uses, allowing other xforms. - if (recursivelyDeleteUnusedNodes(N)) - continue; - - WorklistRemover DeadNodes(*this); - - // If this combine is running after legalizing the DAG, re-legalize any - // nodes pulled off the worklist. - if (LegalDAG) { - SmallSetVector<SDNode *, 16> UpdatedNodes; - bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); - - for (SDNode *LN : UpdatedNodes) - AddToWorklistWithUsers(LN); - - if (!NIsValid) - continue; - } - - LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); - - // Add any operands of the new node which have not yet been combined to the - // worklist as well. Because the worklist uniques things already, this - // won't repeatedly process the same operand. - CombinedNodes.insert(N); - for (const SDValue &ChildN : N->op_values()) - if (!CombinedNodes.count(ChildN.getNode())) - AddToWorklist(ChildN.getNode()); - - SDValue RV = combine(N); - - if (!RV.getNode()) - continue; - - ++NodesCombined; - - // If we get back the same node we passed in, rather than a new node or - // zero, we know that the node must have defined multiple values and - // CombineTo was used. Since CombineTo takes care of the worklist - // mechanics for us, we have no work to do in this case. - if (RV.getNode() == N) - continue; - - assert(N->getOpcode() != ISD::DELETED_NODE && - RV.getOpcode() != ISD::DELETED_NODE && - "Node was deleted but visit returned new node!"); - - LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); - - if (N->getNumValues() == RV.getNode()->getNumValues()) - DAG.ReplaceAllUsesWith(N, RV.getNode()); - else { - assert(N->getValueType(0) == RV.getValueType() && - N->getNumValues() == 1 && "Type mismatch"); - DAG.ReplaceAllUsesWith(N, &RV); - } - + return false; + unsigned BitWidth = N.getScalarValueSizeInBits(); + for (const SDValue &Op : N->op_values()) { + if (Op.isUndef()) + continue; + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op); + if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth || + (Const->isOpaque() && NoOpaques)) + return false; + } + return true; +} + +// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with +// undef's. +static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) { + if (V.getOpcode() != ISD::BUILD_VECTOR) + return false; + return isConstantOrConstantVector(V, NoOpaques) || + ISD::isBuildVectorOfConstantFPSDNodes(V.getNode()); +} + +// Determine if this an indexed load with an opaque target constant index. +static bool canSplitIdx(LoadSDNode *LD) { + return MaySplitLoadIndex && + (LD->getOperand(2).getOpcode() != ISD::TargetConstant || + !cast<ConstantSDNode>(LD->getOperand(2))->isOpaque()); +} + +bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc, + const SDLoc &DL, + SDValue N0, + SDValue N1) { + // Currently this only tries to ensure we don't undo the GEP splits done by + // CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this, + // we check if the following transformation would be problematic: + // (load/store (add, (add, x, offset1), offset2)) -> + // (load/store (add, x, offset1+offset2)). + + if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD) + return false; + + if (N0.hasOneUse()) + return false; + + auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + auto *C2 = dyn_cast<ConstantSDNode>(N1); + if (!C1 || !C2) + return false; + + const APInt &C1APIntVal = C1->getAPIntValue(); + const APInt &C2APIntVal = C2->getAPIntValue(); + if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64) + return false; + + const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal; + if (CombinedValueIntVal.getBitWidth() > 64) + return false; + const int64_t CombinedValue = CombinedValueIntVal.getSExtValue(); + + for (SDNode *Node : N0->uses()) { + auto LoadStore = dyn_cast<MemSDNode>(Node); + if (LoadStore) { + // Is x[offset2] already not a legal addressing mode? If so then + // reassociating the constants breaks nothing (we test offset2 because + // that's the one we hope to fold into the load or store). + TargetLoweringBase::AddrMode AM; + AM.HasBaseReg = true; + AM.BaseOffs = C2APIntVal.getSExtValue(); + EVT VT = LoadStore->getMemoryVT(); + unsigned AS = LoadStore->getAddressSpace(); + Type *AccessTy = VT.getTypeForEVT(*DAG.getContext()); + if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) + continue; + + // Would x[offset1+offset2] still be a legal addressing mode? + AM.BaseOffs = CombinedValue; + if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS)) + return true; + } + } + + return false; +} + +// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression +// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc. +SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, + SDValue N0, SDValue N1) { + EVT VT = N0.getValueType(); + + if (N0.getOpcode() != Opc) + return SDValue(); + + if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) { + if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) { + // Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2)) + if (SDValue OpNode = + DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1})) + return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode); + return SDValue(); + } + if (N0.hasOneUse()) { + // Reassociate: (op (op x, c1), y) -> (op (op x, y), c1) + // iff (op x, c1) has one use + SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1); + if (!OpNode.getNode()) + return SDValue(); + return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1)); + } + } + return SDValue(); +} + +// Try to reassociate commutative binops. +SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0, + SDValue N1, SDNodeFlags Flags) { + assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative."); + + // Floating-point reassociation is not allowed without loose FP math. + if (N0.getValueType().isFloatingPoint() || + N1.getValueType().isFloatingPoint()) + if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros()) + return SDValue(); + + if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1)) + return Combined; + if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0)) + return Combined; + return SDValue(); +} + +SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo, + bool AddTo) { + assert(N->getNumValues() == NumTo && "Broken CombineTo call!"); + ++NodesCombined; + LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: "; + To[0].getNode()->dump(&DAG); + dbgs() << " and " << NumTo - 1 << " other values\n"); + for (unsigned i = 0, e = NumTo; i != e; ++i) + assert((!To[i].getNode() || + N->getValueType(i) == To[i].getValueType()) && + "Cannot combine value to value of different type!"); + + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesWith(N, To); + if (AddTo) { + // Push the new nodes and any users onto the worklist + for (unsigned i = 0, e = NumTo; i != e; ++i) { + if (To[i].getNode()) { + AddToWorklist(To[i].getNode()); + AddUsersToWorklist(To[i].getNode()); + } + } + } + + // Finally, if the node is now dead, remove it from the graph. The node + // may not be dead if the replacement process recursively simplified to + // something else needing this node. + if (N->use_empty()) + deleteAndRecombine(N); + return SDValue(N, 0); +} + +void DAGCombiner:: +CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) { + // Replace the old value with the new one. + ++NodesCombined; + LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG); + dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG); + dbgs() << '\n'); + + // Replace all uses. If any nodes become isomorphic to other nodes and + // are deleted, make sure to remove them from our worklist. + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New); + + // Push the new node and any (possibly new) users onto the worklist. + AddToWorklistWithUsers(TLO.New.getNode()); + + // Finally, if the node is now dead, remove it from the graph. The node + // may not be dead if the replacement process recursively simplified to + // something else needing this node. + if (TLO.Old.getNode()->use_empty()) + deleteAndRecombine(TLO.Old.getNode()); +} + +/// Check the specified integer node value to see if it can be simplified or if +/// things it uses can be simplified by bit propagation. If so, return true. +bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, + const APInt &DemandedElts, + bool AssumeSingleUse) { + TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); + KnownBits Known; + if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0, + AssumeSingleUse)) + return false; + + // Revisit the node. + AddToWorklist(Op.getNode()); + + CommitTargetLoweringOpt(TLO); + return true; +} + +/// Check the specified vector node value to see if it can be simplified or +/// if things it uses can be simplified as it only uses some of the elements. +/// If so, return true. +bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op, + const APInt &DemandedElts, + bool AssumeSingleUse) { + TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations); + APInt KnownUndef, KnownZero; + if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, + TLO, 0, AssumeSingleUse)) + return false; + + // Revisit the node. + AddToWorklist(Op.getNode()); + + CommitTargetLoweringOpt(TLO); + return true; +} + +void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) { + SDLoc DL(Load); + EVT VT = Load->getValueType(0); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0)); + + LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: "; + Trunc.getNode()->dump(&DAG); dbgs() << '\n'); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc); + DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1)); + deleteAndRecombine(Load); + AddToWorklist(Trunc.getNode()); +} + +SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) { + Replace = false; + SDLoc DL(Op); + if (ISD::isUNINDEXEDLoad(Op.getNode())) { + LoadSDNode *LD = cast<LoadSDNode>(Op); + EVT MemVT = LD->getMemoryVT(); + ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD + : LD->getExtensionType(); + Replace = true; + return DAG.getExtLoad(ExtType, DL, PVT, + LD->getChain(), LD->getBasePtr(), + MemVT, LD->getMemOperand()); + } + + unsigned Opc = Op.getOpcode(); + switch (Opc) { + default: break; + case ISD::AssertSext: + if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT)) + return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1)); + break; + case ISD::AssertZext: + if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT)) + return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1)); + break; + case ISD::Constant: { + unsigned ExtOpc = + Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + return DAG.getNode(ExtOpc, DL, PVT, Op); + } + } + + if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT)) + return SDValue(); + return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op); +} + +SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) { + if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT)) + return SDValue(); + EVT OldVT = Op.getValueType(); + SDLoc DL(Op); + bool Replace = false; + SDValue NewOp = PromoteOperand(Op, PVT, Replace); + if (!NewOp.getNode()) + return SDValue(); + AddToWorklist(NewOp.getNode()); + + if (Replace) + ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp, + DAG.getValueType(OldVT)); +} + +SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) { + EVT OldVT = Op.getValueType(); + SDLoc DL(Op); + bool Replace = false; + SDValue NewOp = PromoteOperand(Op, PVT, Replace); + if (!NewOp.getNode()) + return SDValue(); + AddToWorklist(NewOp.getNode()); + + if (Replace) + ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode()); + return DAG.getZeroExtendInReg(NewOp, DL, OldVT); +} + +/// Promote the specified integer binary operation if the target indicates it is +/// beneficial. e.g. On x86, it's usually better to promote i16 operations to +/// i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) { + if (!LegalOperations) + return SDValue(); + + EVT VT = Op.getValueType(); + if (VT.isVector() || !VT.isInteger()) + return SDValue(); + + // If operation type is 'undesirable', e.g. i16 on x86, consider + // promoting it. + unsigned Opc = Op.getOpcode(); + if (TLI.isTypeDesirableForOp(Opc, VT)) + return SDValue(); + + EVT PVT = VT; + // Consult target whether it is a good idea to promote this operation and + // what's the right type to promote it to. + if (TLI.IsDesirableToPromoteOp(Op, PVT)) { + assert(PVT != VT && "Don't know what type to promote to!"); + + LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); + + bool Replace0 = false; + SDValue N0 = Op.getOperand(0); + SDValue NN0 = PromoteOperand(N0, PVT, Replace0); + + bool Replace1 = false; + SDValue N1 = Op.getOperand(1); + SDValue NN1 = PromoteOperand(N1, PVT, Replace1); + SDLoc DL(Op); + + SDValue RV = + DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1)); + + // We are always replacing N0/N1's use in N and only need additional + // replacements if there are additional uses. + // Note: We are checking uses of the *nodes* (SDNode) rather than values + // (SDValue) here because the node may reference multiple values + // (for example, the chain value of a load node). + Replace0 &= !N0->hasOneUse(); + Replace1 &= (N0 != N1) && !N1->hasOneUse(); + + // Combine Op here so it is preserved past replacements. + CombineTo(Op.getNode(), RV); + + // If operands have a use ordering, make sure we deal with + // predecessor first. + if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) { + std::swap(N0, N1); + std::swap(NN0, NN1); + } + + if (Replace0) { + AddToWorklist(NN0.getNode()); + ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode()); + } + if (Replace1) { + AddToWorklist(NN1.getNode()); + ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode()); + } + return Op; + } + return SDValue(); +} + +/// Promote the specified integer shift operation if the target indicates it is +/// beneficial. e.g. On x86, it's usually better to promote i16 operations to +/// i32 since i16 instructions are longer. +SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) { + if (!LegalOperations) + return SDValue(); + + EVT VT = Op.getValueType(); + if (VT.isVector() || !VT.isInteger()) + return SDValue(); + + // If operation type is 'undesirable', e.g. i16 on x86, consider + // promoting it. + unsigned Opc = Op.getOpcode(); + if (TLI.isTypeDesirableForOp(Opc, VT)) + return SDValue(); + + EVT PVT = VT; + // Consult target whether it is a good idea to promote this operation and + // what's the right type to promote it to. + if (TLI.IsDesirableToPromoteOp(Op, PVT)) { + assert(PVT != VT && "Don't know what type to promote to!"); + + LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); + + bool Replace = false; + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + if (Opc == ISD::SRA) + N0 = SExtPromoteOperand(N0, PVT); + else if (Opc == ISD::SRL) + N0 = ZExtPromoteOperand(N0, PVT); + else + N0 = PromoteOperand(N0, PVT, Replace); + + if (!N0.getNode()) + return SDValue(); + + SDLoc DL(Op); + SDValue RV = + DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1)); + + if (Replace) + ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode()); + + // Deal with Op being deleted. + if (Op && Op.getOpcode() != ISD::DELETED_NODE) + return RV; + } + return SDValue(); +} + +SDValue DAGCombiner::PromoteExtend(SDValue Op) { + if (!LegalOperations) + return SDValue(); + + EVT VT = Op.getValueType(); + if (VT.isVector() || !VT.isInteger()) + return SDValue(); + + // If operation type is 'undesirable', e.g. i16 on x86, consider + // promoting it. + unsigned Opc = Op.getOpcode(); + if (TLI.isTypeDesirableForOp(Opc, VT)) + return SDValue(); + + EVT PVT = VT; + // Consult target whether it is a good idea to promote this operation and + // what's the right type to promote it to. + if (TLI.IsDesirableToPromoteOp(Op, PVT)) { + assert(PVT != VT && "Don't know what type to promote to!"); + // fold (aext (aext x)) -> (aext x) + // fold (aext (zext x)) -> (zext x) + // fold (aext (sext x)) -> (sext x) + LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG)); + return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0)); + } + return SDValue(); +} + +bool DAGCombiner::PromoteLoad(SDValue Op) { + if (!LegalOperations) + return false; + + if (!ISD::isUNINDEXEDLoad(Op.getNode())) + return false; + + EVT VT = Op.getValueType(); + if (VT.isVector() || !VT.isInteger()) + return false; + + // If operation type is 'undesirable', e.g. i16 on x86, consider + // promoting it. + unsigned Opc = Op.getOpcode(); + if (TLI.isTypeDesirableForOp(Opc, VT)) + return false; + + EVT PVT = VT; + // Consult target whether it is a good idea to promote this operation and + // what's the right type to promote it to. + if (TLI.IsDesirableToPromoteOp(Op, PVT)) { + assert(PVT != VT && "Don't know what type to promote to!"); + + SDLoc DL(Op); + SDNode *N = Op.getNode(); + LoadSDNode *LD = cast<LoadSDNode>(N); + EVT MemVT = LD->getMemoryVT(); + ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD + : LD->getExtensionType(); + SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT, + LD->getChain(), LD->getBasePtr(), + MemVT, LD->getMemOperand()); + SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD); + + LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: "; + Result.getNode()->dump(&DAG); dbgs() << '\n'); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1)); + deleteAndRecombine(N); + AddToWorklist(Result.getNode()); + return true; + } + return false; +} + +/// Recursively delete a node which has no uses and any operands for +/// which it is the only use. +/// +/// Note that this both deletes the nodes and removes them from the worklist. +/// It also adds any nodes who have had a user deleted to the worklist as they +/// may now have only one use and subject to other combines. +bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) { + if (!N->use_empty()) + return false; + + SmallSetVector<SDNode *, 16> Nodes; + Nodes.insert(N); + do { + N = Nodes.pop_back_val(); + if (!N) + continue; + + if (N->use_empty()) { + for (const SDValue &ChildN : N->op_values()) + Nodes.insert(ChildN.getNode()); + + removeFromWorklist(N); + DAG.DeleteNode(N); + } else { + AddToWorklist(N); + } + } while (!Nodes.empty()); + return true; +} + +//===----------------------------------------------------------------------===// +// Main DAG Combiner implementation +//===----------------------------------------------------------------------===// + +void DAGCombiner::Run(CombineLevel AtLevel) { + // set the instance variables, so that the various visit routines may use it. + Level = AtLevel; + LegalDAG = Level >= AfterLegalizeDAG; + LegalOperations = Level >= AfterLegalizeVectorOps; + LegalTypes = Level >= AfterLegalizeTypes; + + WorklistInserter AddNodes(*this); + + // Add all the dag nodes to the worklist. + for (SDNode &Node : DAG.allnodes()) + AddToWorklist(&Node); + + // Create a dummy node (which is not added to allnodes), that adds a reference + // to the root node, preventing it from being deleted, and tracking any + // changes of the root. + HandleSDNode Dummy(DAG.getRoot()); + + // While we have a valid worklist entry node, try to combine it. + while (SDNode *N = getNextWorklistEntry()) { + // If N has no uses, it is dead. Make sure to revisit all N's operands once + // N is deleted from the DAG, since they too may now be dead or may have a + // reduced number of uses, allowing other xforms. + if (recursivelyDeleteUnusedNodes(N)) + continue; + + WorklistRemover DeadNodes(*this); + + // If this combine is running after legalizing the DAG, re-legalize any + // nodes pulled off the worklist. + if (LegalDAG) { + SmallSetVector<SDNode *, 16> UpdatedNodes; + bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes); + + for (SDNode *LN : UpdatedNodes) + AddToWorklistWithUsers(LN); + + if (!NIsValid) + continue; + } + + LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG)); + + // Add any operands of the new node which have not yet been combined to the + // worklist as well. Because the worklist uniques things already, this + // won't repeatedly process the same operand. + CombinedNodes.insert(N); + for (const SDValue &ChildN : N->op_values()) + if (!CombinedNodes.count(ChildN.getNode())) + AddToWorklist(ChildN.getNode()); + + SDValue RV = combine(N); + + if (!RV.getNode()) + continue; + + ++NodesCombined; + + // If we get back the same node we passed in, rather than a new node or + // zero, we know that the node must have defined multiple values and + // CombineTo was used. Since CombineTo takes care of the worklist + // mechanics for us, we have no work to do in this case. + if (RV.getNode() == N) + continue; + + assert(N->getOpcode() != ISD::DELETED_NODE && + RV.getOpcode() != ISD::DELETED_NODE && + "Node was deleted but visit returned new node!"); + + LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG)); + + if (N->getNumValues() == RV.getNode()->getNumValues()) + DAG.ReplaceAllUsesWith(N, RV.getNode()); + else { + assert(N->getValueType(0) == RV.getValueType() && + N->getNumValues() == 1 && "Type mismatch"); + DAG.ReplaceAllUsesWith(N, &RV); + } + // Push the new node and any users onto the worklist. Omit this if the // new node is the EntryToken (e.g. if a store managed to get optimized // out), because re-visiting the EntryToken and its users will not uncover @@ -1588,458 +1588,458 @@ void DAGCombiner::Run(CombineLevel AtLevel) { AddToWorklist(RV.getNode()); AddUsersToWorklist(RV.getNode()); } - - // Finally, if the node is now dead, remove it from the graph. The node - // may not be dead if the replacement process recursively simplified to - // something else needing this node. This will also take care of adding any - // operands which have lost a user to the worklist. - recursivelyDeleteUnusedNodes(N); - } - - // If the root changed (e.g. it was a dead load, update the root). - DAG.setRoot(Dummy.getValue()); - DAG.RemoveDeadNodes(); -} - -SDValue DAGCombiner::visit(SDNode *N) { - switch (N->getOpcode()) { - default: break; - case ISD::TokenFactor: return visitTokenFactor(N); - case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); - case ISD::ADD: return visitADD(N); - case ISD::SUB: return visitSUB(N); - case ISD::SADDSAT: - case ISD::UADDSAT: return visitADDSAT(N); - case ISD::SSUBSAT: - case ISD::USUBSAT: return visitSUBSAT(N); - case ISD::ADDC: return visitADDC(N); - case ISD::SADDO: - case ISD::UADDO: return visitADDO(N); - case ISD::SUBC: return visitSUBC(N); - case ISD::SSUBO: - case ISD::USUBO: return visitSUBO(N); - case ISD::ADDE: return visitADDE(N); - case ISD::ADDCARRY: return visitADDCARRY(N); + + // Finally, if the node is now dead, remove it from the graph. The node + // may not be dead if the replacement process recursively simplified to + // something else needing this node. This will also take care of adding any + // operands which have lost a user to the worklist. + recursivelyDeleteUnusedNodes(N); + } + + // If the root changed (e.g. it was a dead load, update the root). + DAG.setRoot(Dummy.getValue()); + DAG.RemoveDeadNodes(); +} + +SDValue DAGCombiner::visit(SDNode *N) { + switch (N->getOpcode()) { + default: break; + case ISD::TokenFactor: return visitTokenFactor(N); + case ISD::MERGE_VALUES: return visitMERGE_VALUES(N); + case ISD::ADD: return visitADD(N); + case ISD::SUB: return visitSUB(N); + case ISD::SADDSAT: + case ISD::UADDSAT: return visitADDSAT(N); + case ISD::SSUBSAT: + case ISD::USUBSAT: return visitSUBSAT(N); + case ISD::ADDC: return visitADDC(N); + case ISD::SADDO: + case ISD::UADDO: return visitADDO(N); + case ISD::SUBC: return visitSUBC(N); + case ISD::SSUBO: + case ISD::USUBO: return visitSUBO(N); + case ISD::ADDE: return visitADDE(N); + case ISD::ADDCARRY: return visitADDCARRY(N); case ISD::SADDO_CARRY: return visitSADDO_CARRY(N); - case ISD::SUBE: return visitSUBE(N); - case ISD::SUBCARRY: return visitSUBCARRY(N); + case ISD::SUBE: return visitSUBE(N); + case ISD::SUBCARRY: return visitSUBCARRY(N); case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N); - case ISD::SMULFIX: - case ISD::SMULFIXSAT: - case ISD::UMULFIX: - case ISD::UMULFIXSAT: return visitMULFIX(N); - case ISD::MUL: return visitMUL(N); - case ISD::SDIV: return visitSDIV(N); - case ISD::UDIV: return visitUDIV(N); - case ISD::SREM: - case ISD::UREM: return visitREM(N); - case ISD::MULHU: return visitMULHU(N); - case ISD::MULHS: return visitMULHS(N); - case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); - case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); - case ISD::SMULO: - case ISD::UMULO: return visitMULO(N); - case ISD::SMIN: - case ISD::SMAX: - case ISD::UMIN: - case ISD::UMAX: return visitIMINMAX(N); - case ISD::AND: return visitAND(N); - case ISD::OR: return visitOR(N); - case ISD::XOR: return visitXOR(N); - case ISD::SHL: return visitSHL(N); - case ISD::SRA: return visitSRA(N); - case ISD::SRL: return visitSRL(N); - case ISD::ROTR: - case ISD::ROTL: return visitRotate(N); - case ISD::FSHL: - case ISD::FSHR: return visitFunnelShift(N); - case ISD::ABS: return visitABS(N); - case ISD::BSWAP: return visitBSWAP(N); - case ISD::BITREVERSE: return visitBITREVERSE(N); - case ISD::CTLZ: return visitCTLZ(N); - case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); - case ISD::CTTZ: return visitCTTZ(N); - case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); - case ISD::CTPOP: return visitCTPOP(N); - case ISD::SELECT: return visitSELECT(N); - case ISD::VSELECT: return visitVSELECT(N); - case ISD::SELECT_CC: return visitSELECT_CC(N); - case ISD::SETCC: return visitSETCC(N); - case ISD::SETCCCARRY: return visitSETCCCARRY(N); - case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); - case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); - case ISD::ANY_EXTEND: return visitANY_EXTEND(N); - case ISD::AssertSext: - case ISD::AssertZext: return visitAssertExt(N); - case ISD::AssertAlign: return visitAssertAlign(N); - case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); - case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); - case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); - case ISD::TRUNCATE: return visitTRUNCATE(N); - case ISD::BITCAST: return visitBITCAST(N); - case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); - case ISD::FADD: return visitFADD(N); + case ISD::SMULFIX: + case ISD::SMULFIXSAT: + case ISD::UMULFIX: + case ISD::UMULFIXSAT: return visitMULFIX(N); + case ISD::MUL: return visitMUL(N); + case ISD::SDIV: return visitSDIV(N); + case ISD::UDIV: return visitUDIV(N); + case ISD::SREM: + case ISD::UREM: return visitREM(N); + case ISD::MULHU: return visitMULHU(N); + case ISD::MULHS: return visitMULHS(N); + case ISD::SMUL_LOHI: return visitSMUL_LOHI(N); + case ISD::UMUL_LOHI: return visitUMUL_LOHI(N); + case ISD::SMULO: + case ISD::UMULO: return visitMULO(N); + case ISD::SMIN: + case ISD::SMAX: + case ISD::UMIN: + case ISD::UMAX: return visitIMINMAX(N); + case ISD::AND: return visitAND(N); + case ISD::OR: return visitOR(N); + case ISD::XOR: return visitXOR(N); + case ISD::SHL: return visitSHL(N); + case ISD::SRA: return visitSRA(N); + case ISD::SRL: return visitSRL(N); + case ISD::ROTR: + case ISD::ROTL: return visitRotate(N); + case ISD::FSHL: + case ISD::FSHR: return visitFunnelShift(N); + case ISD::ABS: return visitABS(N); + case ISD::BSWAP: return visitBSWAP(N); + case ISD::BITREVERSE: return visitBITREVERSE(N); + case ISD::CTLZ: return visitCTLZ(N); + case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N); + case ISD::CTTZ: return visitCTTZ(N); + case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N); + case ISD::CTPOP: return visitCTPOP(N); + case ISD::SELECT: return visitSELECT(N); + case ISD::VSELECT: return visitVSELECT(N); + case ISD::SELECT_CC: return visitSELECT_CC(N); + case ISD::SETCC: return visitSETCC(N); + case ISD::SETCCCARRY: return visitSETCCCARRY(N); + case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); + case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); + case ISD::ANY_EXTEND: return visitANY_EXTEND(N); + case ISD::AssertSext: + case ISD::AssertZext: return visitAssertExt(N); + case ISD::AssertAlign: return visitAssertAlign(N); + case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); + case ISD::SIGN_EXTEND_VECTOR_INREG: return visitSIGN_EXTEND_VECTOR_INREG(N); + case ISD::ZERO_EXTEND_VECTOR_INREG: return visitZERO_EXTEND_VECTOR_INREG(N); + case ISD::TRUNCATE: return visitTRUNCATE(N); + case ISD::BITCAST: return visitBITCAST(N); + case ISD::BUILD_PAIR: return visitBUILD_PAIR(N); + case ISD::FADD: return visitFADD(N); case ISD::STRICT_FADD: return visitSTRICT_FADD(N); - case ISD::FSUB: return visitFSUB(N); - case ISD::FMUL: return visitFMUL(N); - case ISD::FMA: return visitFMA(N); - case ISD::FDIV: return visitFDIV(N); - case ISD::FREM: return visitFREM(N); - case ISD::FSQRT: return visitFSQRT(N); - case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); - case ISD::FPOW: return visitFPOW(N); - case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); - case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); - case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); - case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); - case ISD::FP_ROUND: return visitFP_ROUND(N); - case ISD::FP_EXTEND: return visitFP_EXTEND(N); - case ISD::FNEG: return visitFNEG(N); - case ISD::FABS: return visitFABS(N); - case ISD::FFLOOR: return visitFFLOOR(N); - case ISD::FMINNUM: return visitFMINNUM(N); - case ISD::FMAXNUM: return visitFMAXNUM(N); - case ISD::FMINIMUM: return visitFMINIMUM(N); - case ISD::FMAXIMUM: return visitFMAXIMUM(N); - case ISD::FCEIL: return visitFCEIL(N); - case ISD::FTRUNC: return visitFTRUNC(N); - case ISD::BRCOND: return visitBRCOND(N); - case ISD::BR_CC: return visitBR_CC(N); - case ISD::LOAD: return visitLOAD(N); - case ISD::STORE: return visitSTORE(N); - case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); - case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); - case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); - case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); - case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); - case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); - case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); - case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); - case ISD::MGATHER: return visitMGATHER(N); - case ISD::MLOAD: return visitMLOAD(N); - case ISD::MSCATTER: return visitMSCATTER(N); - case ISD::MSTORE: return visitMSTORE(N); - case ISD::LIFETIME_END: return visitLIFETIME_END(N); - case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); - case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); - case ISD::FREEZE: return visitFREEZE(N); - case ISD::VECREDUCE_FADD: - case ISD::VECREDUCE_FMUL: - case ISD::VECREDUCE_ADD: - case ISD::VECREDUCE_MUL: - case ISD::VECREDUCE_AND: - case ISD::VECREDUCE_OR: - case ISD::VECREDUCE_XOR: - case ISD::VECREDUCE_SMAX: - case ISD::VECREDUCE_SMIN: - case ISD::VECREDUCE_UMAX: - case ISD::VECREDUCE_UMIN: - case ISD::VECREDUCE_FMAX: - case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); - } - return SDValue(); -} - -SDValue DAGCombiner::combine(SDNode *N) { - SDValue RV; - if (!DisableGenericCombines) - RV = visit(N); - - // If nothing happened, try a target-specific DAG combine. - if (!RV.getNode()) { - assert(N->getOpcode() != ISD::DELETED_NODE && - "Node was deleted but visit returned NULL!"); - - if (N->getOpcode() >= ISD::BUILTIN_OP_END || - TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { - - // Expose the DAG combiner to the target combiner impls. - TargetLowering::DAGCombinerInfo - DagCombineInfo(DAG, Level, false, this); - - RV = TLI.PerformDAGCombine(N, DagCombineInfo); - } - } - - // If nothing happened still, try promoting the operation. - if (!RV.getNode()) { - switch (N->getOpcode()) { - default: break; - case ISD::ADD: - case ISD::SUB: - case ISD::MUL: - case ISD::AND: - case ISD::OR: - case ISD::XOR: - RV = PromoteIntBinOp(SDValue(N, 0)); - break; - case ISD::SHL: - case ISD::SRA: - case ISD::SRL: - RV = PromoteIntShiftOp(SDValue(N, 0)); - break; - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: - case ISD::ANY_EXTEND: - RV = PromoteExtend(SDValue(N, 0)); - break; - case ISD::LOAD: - if (PromoteLoad(SDValue(N, 0))) - RV = SDValue(N, 0); - break; - } - } - - // If N is a commutative binary node, try to eliminate it if the commuted - // version is already present in the DAG. - if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && - N->getNumValues() == 1) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Constant operands are canonicalized to RHS. - if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { - SDValue Ops[] = {N1, N0}; - SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, - N->getFlags()); - if (CSENode) - return SDValue(CSENode, 0); - } - } - - return RV; -} - -/// Given a node, return its input chain if it has one, otherwise return a null -/// sd operand. -static SDValue getInputChainForNode(SDNode *N) { - if (unsigned NumOps = N->getNumOperands()) { - if (N->getOperand(0).getValueType() == MVT::Other) - return N->getOperand(0); - if (N->getOperand(NumOps-1).getValueType() == MVT::Other) - return N->getOperand(NumOps-1); - for (unsigned i = 1; i < NumOps-1; ++i) - if (N->getOperand(i).getValueType() == MVT::Other) - return N->getOperand(i); - } - return SDValue(); -} - -SDValue DAGCombiner::visitTokenFactor(SDNode *N) { - // If N has two operands, where one has an input chain equal to the other, - // the 'other' chain is redundant. - if (N->getNumOperands() == 2) { - if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) - return N->getOperand(0); - if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) - return N->getOperand(1); - } - - // Don't simplify token factors if optnone. - if (OptLevel == CodeGenOpt::None) - return SDValue(); - + case ISD::FSUB: return visitFSUB(N); + case ISD::FMUL: return visitFMUL(N); + case ISD::FMA: return visitFMA(N); + case ISD::FDIV: return visitFDIV(N); + case ISD::FREM: return visitFREM(N); + case ISD::FSQRT: return visitFSQRT(N); + case ISD::FCOPYSIGN: return visitFCOPYSIGN(N); + case ISD::FPOW: return visitFPOW(N); + case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); + case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); + case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); + case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); + case ISD::FP_ROUND: return visitFP_ROUND(N); + case ISD::FP_EXTEND: return visitFP_EXTEND(N); + case ISD::FNEG: return visitFNEG(N); + case ISD::FABS: return visitFABS(N); + case ISD::FFLOOR: return visitFFLOOR(N); + case ISD::FMINNUM: return visitFMINNUM(N); + case ISD::FMAXNUM: return visitFMAXNUM(N); + case ISD::FMINIMUM: return visitFMINIMUM(N); + case ISD::FMAXIMUM: return visitFMAXIMUM(N); + case ISD::FCEIL: return visitFCEIL(N); + case ISD::FTRUNC: return visitFTRUNC(N); + case ISD::BRCOND: return visitBRCOND(N); + case ISD::BR_CC: return visitBR_CC(N); + case ISD::LOAD: return visitLOAD(N); + case ISD::STORE: return visitSTORE(N); + case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N); + case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N); + case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N); + case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N); + case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N); + case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N); + case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N); + case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N); + case ISD::MGATHER: return visitMGATHER(N); + case ISD::MLOAD: return visitMLOAD(N); + case ISD::MSCATTER: return visitMSCATTER(N); + case ISD::MSTORE: return visitMSTORE(N); + case ISD::LIFETIME_END: return visitLIFETIME_END(N); + case ISD::FP_TO_FP16: return visitFP_TO_FP16(N); + case ISD::FP16_TO_FP: return visitFP16_TO_FP(N); + case ISD::FREEZE: return visitFREEZE(N); + case ISD::VECREDUCE_FADD: + case ISD::VECREDUCE_FMUL: + case ISD::VECREDUCE_ADD: + case ISD::VECREDUCE_MUL: + case ISD::VECREDUCE_AND: + case ISD::VECREDUCE_OR: + case ISD::VECREDUCE_XOR: + case ISD::VECREDUCE_SMAX: + case ISD::VECREDUCE_SMIN: + case ISD::VECREDUCE_UMAX: + case ISD::VECREDUCE_UMIN: + case ISD::VECREDUCE_FMAX: + case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N); + } + return SDValue(); +} + +SDValue DAGCombiner::combine(SDNode *N) { + SDValue RV; + if (!DisableGenericCombines) + RV = visit(N); + + // If nothing happened, try a target-specific DAG combine. + if (!RV.getNode()) { + assert(N->getOpcode() != ISD::DELETED_NODE && + "Node was deleted but visit returned NULL!"); + + if (N->getOpcode() >= ISD::BUILTIN_OP_END || + TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) { + + // Expose the DAG combiner to the target combiner impls. + TargetLowering::DAGCombinerInfo + DagCombineInfo(DAG, Level, false, this); + + RV = TLI.PerformDAGCombine(N, DagCombineInfo); + } + } + + // If nothing happened still, try promoting the operation. + if (!RV.getNode()) { + switch (N->getOpcode()) { + default: break; + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + RV = PromoteIntBinOp(SDValue(N, 0)); + break; + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: + RV = PromoteIntShiftOp(SDValue(N, 0)); + break; + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + RV = PromoteExtend(SDValue(N, 0)); + break; + case ISD::LOAD: + if (PromoteLoad(SDValue(N, 0))) + RV = SDValue(N, 0); + break; + } + } + + // If N is a commutative binary node, try to eliminate it if the commuted + // version is already present in the DAG. + if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) && + N->getNumValues() == 1) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Constant operands are canonicalized to RHS. + if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) { + SDValue Ops[] = {N1, N0}; + SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops, + N->getFlags()); + if (CSENode) + return SDValue(CSENode, 0); + } + } + + return RV; +} + +/// Given a node, return its input chain if it has one, otherwise return a null +/// sd operand. +static SDValue getInputChainForNode(SDNode *N) { + if (unsigned NumOps = N->getNumOperands()) { + if (N->getOperand(0).getValueType() == MVT::Other) + return N->getOperand(0); + if (N->getOperand(NumOps-1).getValueType() == MVT::Other) + return N->getOperand(NumOps-1); + for (unsigned i = 1; i < NumOps-1; ++i) + if (N->getOperand(i).getValueType() == MVT::Other) + return N->getOperand(i); + } + return SDValue(); +} + +SDValue DAGCombiner::visitTokenFactor(SDNode *N) { + // If N has two operands, where one has an input chain equal to the other, + // the 'other' chain is redundant. + if (N->getNumOperands() == 2) { + if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1)) + return N->getOperand(0); + if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0)) + return N->getOperand(1); + } + + // Don't simplify token factors if optnone. + if (OptLevel == CodeGenOpt::None) + return SDValue(); + // Don't simplify the token factor if the node itself has too many operands. if (N->getNumOperands() > TokenFactorInlineLimit) return SDValue(); - // If the sole user is a token factor, we should make sure we have a - // chance to merge them together. This prevents TF chains from inhibiting - // optimizations. - if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) - AddToWorklist(*(N->use_begin())); - - SmallVector<SDNode *, 8> TFs; // List of token factors to visit. - SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. - SmallPtrSet<SDNode*, 16> SeenOps; - bool Changed = false; // If we should replace this token factor. - - // Start out with this token factor. - TFs.push_back(N); - - // Iterate through token factors. The TFs grows when new token factors are - // encountered. - for (unsigned i = 0; i < TFs.size(); ++i) { - // Limit number of nodes to inline, to avoid quadratic compile times. - // We have to add the outstanding Token Factors to Ops, otherwise we might - // drop Ops from the resulting Token Factors. - if (Ops.size() > TokenFactorInlineLimit) { - for (unsigned j = i; j < TFs.size(); j++) - Ops.emplace_back(TFs[j], 0); - // Drop unprocessed Token Factors from TFs, so we do not add them to the - // combiner worklist later. - TFs.resize(i); - break; - } - - SDNode *TF = TFs[i]; - // Check each of the operands. - for (const SDValue &Op : TF->op_values()) { - switch (Op.getOpcode()) { - case ISD::EntryToken: - // Entry tokens don't need to be added to the list. They are - // redundant. - Changed = true; - break; - - case ISD::TokenFactor: - if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { - // Queue up for processing. - TFs.push_back(Op.getNode()); - Changed = true; - break; - } - LLVM_FALLTHROUGH; - - default: - // Only add if it isn't already in the list. - if (SeenOps.insert(Op.getNode()).second) - Ops.push_back(Op); - else - Changed = true; - break; - } - } - } - - // Re-visit inlined Token Factors, to clean them up in case they have been - // removed. Skip the first Token Factor, as this is the current node. - for (unsigned i = 1, e = TFs.size(); i < e; i++) - AddToWorklist(TFs[i]); - - // Remove Nodes that are chained to another node in the list. Do so - // by walking up chains breath-first stopping when we've seen - // another operand. In general we must climb to the EntryNode, but we can exit - // early if we find all remaining work is associated with just one operand as - // no further pruning is possible. - - // List of nodes to search through and original Ops from which they originate. - SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; - SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. - SmallPtrSet<SDNode *, 16> SeenChains; - bool DidPruneOps = false; - - unsigned NumLeftToConsider = 0; - for (const SDValue &Op : Ops) { - Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); - OpWorkCount.push_back(1); - } - - auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { - // If this is an Op, we can remove the op from the list. Remark any - // search associated with it as from the current OpNumber. + // If the sole user is a token factor, we should make sure we have a + // chance to merge them together. This prevents TF chains from inhibiting + // optimizations. + if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor) + AddToWorklist(*(N->use_begin())); + + SmallVector<SDNode *, 8> TFs; // List of token factors to visit. + SmallVector<SDValue, 8> Ops; // Ops for replacing token factor. + SmallPtrSet<SDNode*, 16> SeenOps; + bool Changed = false; // If we should replace this token factor. + + // Start out with this token factor. + TFs.push_back(N); + + // Iterate through token factors. The TFs grows when new token factors are + // encountered. + for (unsigned i = 0; i < TFs.size(); ++i) { + // Limit number of nodes to inline, to avoid quadratic compile times. + // We have to add the outstanding Token Factors to Ops, otherwise we might + // drop Ops from the resulting Token Factors. + if (Ops.size() > TokenFactorInlineLimit) { + for (unsigned j = i; j < TFs.size(); j++) + Ops.emplace_back(TFs[j], 0); + // Drop unprocessed Token Factors from TFs, so we do not add them to the + // combiner worklist later. + TFs.resize(i); + break; + } + + SDNode *TF = TFs[i]; + // Check each of the operands. + for (const SDValue &Op : TF->op_values()) { + switch (Op.getOpcode()) { + case ISD::EntryToken: + // Entry tokens don't need to be added to the list. They are + // redundant. + Changed = true; + break; + + case ISD::TokenFactor: + if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) { + // Queue up for processing. + TFs.push_back(Op.getNode()); + Changed = true; + break; + } + LLVM_FALLTHROUGH; + + default: + // Only add if it isn't already in the list. + if (SeenOps.insert(Op.getNode()).second) + Ops.push_back(Op); + else + Changed = true; + break; + } + } + } + + // Re-visit inlined Token Factors, to clean them up in case they have been + // removed. Skip the first Token Factor, as this is the current node. + for (unsigned i = 1, e = TFs.size(); i < e; i++) + AddToWorklist(TFs[i]); + + // Remove Nodes that are chained to another node in the list. Do so + // by walking up chains breath-first stopping when we've seen + // another operand. In general we must climb to the EntryNode, but we can exit + // early if we find all remaining work is associated with just one operand as + // no further pruning is possible. + + // List of nodes to search through and original Ops from which they originate. + SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist; + SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op. + SmallPtrSet<SDNode *, 16> SeenChains; + bool DidPruneOps = false; + + unsigned NumLeftToConsider = 0; + for (const SDValue &Op : Ops) { + Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++)); + OpWorkCount.push_back(1); + } + + auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) { + // If this is an Op, we can remove the op from the list. Remark any + // search associated with it as from the current OpNumber. if (SeenOps.contains(Op)) { - Changed = true; - DidPruneOps = true; - unsigned OrigOpNumber = 0; - while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) - OrigOpNumber++; - assert((OrigOpNumber != Ops.size()) && - "expected to find TokenFactor Operand"); - // Re-mark worklist from OrigOpNumber to OpNumber - for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { - if (Worklist[i].second == OrigOpNumber) { - Worklist[i].second = OpNumber; - } - } - OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; - OpWorkCount[OrigOpNumber] = 0; - NumLeftToConsider--; - } - // Add if it's a new chain - if (SeenChains.insert(Op).second) { - OpWorkCount[OpNumber]++; - Worklist.push_back(std::make_pair(Op, OpNumber)); - } - }; - - for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { - // We need at least be consider at least 2 Ops to prune. - if (NumLeftToConsider <= 1) - break; - auto CurNode = Worklist[i].first; - auto CurOpNumber = Worklist[i].second; - assert((OpWorkCount[CurOpNumber] > 0) && - "Node should not appear in worklist"); - switch (CurNode->getOpcode()) { - case ISD::EntryToken: - // Hitting EntryToken is the only way for the search to terminate without - // hitting - // another operand's search. Prevent us from marking this operand - // considered. - NumLeftToConsider++; - break; - case ISD::TokenFactor: - for (const SDValue &Op : CurNode->op_values()) - AddToWorklist(i, Op.getNode(), CurOpNumber); - break; - case ISD::LIFETIME_START: - case ISD::LIFETIME_END: - case ISD::CopyFromReg: - case ISD::CopyToReg: - AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); - break; - default: - if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) - AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); - break; - } - OpWorkCount[CurOpNumber]--; - if (OpWorkCount[CurOpNumber] == 0) - NumLeftToConsider--; - } - - // If we've changed things around then replace token factor. - if (Changed) { - SDValue Result; - if (Ops.empty()) { - // The entry token is the only possible outcome. - Result = DAG.getEntryNode(); - } else { - if (DidPruneOps) { - SmallVector<SDValue, 8> PrunedOps; - // - for (const SDValue &Op : Ops) { - if (SeenChains.count(Op.getNode()) == 0) - PrunedOps.push_back(Op); - } - Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); - } else { - Result = DAG.getTokenFactor(SDLoc(N), Ops); - } - } - return Result; - } - return SDValue(); -} - -/// MERGE_VALUES can always be eliminated. -SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { - WorklistRemover DeadNodes(*this); - // Replacing results may cause a different MERGE_VALUES to suddenly - // be CSE'd with N, and carry its uses with it. Iterate until no - // uses remain, to ensure that the node can be safely deleted. - // First add the users of this node to the work list so that they - // can be tried again once they have new operands. - AddUsersToWorklist(N); - do { - // Do as a single replacement to avoid rewalking use lists. - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) - Ops.push_back(N->getOperand(i)); - DAG.ReplaceAllUsesWith(N, Ops.data()); - } while (!N->use_empty()); - deleteAndRecombine(N); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a -/// ConstantSDNode pointer else nullptr. -static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { - ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); - return Const != nullptr && !Const->isOpaque() ? Const : nullptr; -} - + Changed = true; + DidPruneOps = true; + unsigned OrigOpNumber = 0; + while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op) + OrigOpNumber++; + assert((OrigOpNumber != Ops.size()) && + "expected to find TokenFactor Operand"); + // Re-mark worklist from OrigOpNumber to OpNumber + for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) { + if (Worklist[i].second == OrigOpNumber) { + Worklist[i].second = OpNumber; + } + } + OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber]; + OpWorkCount[OrigOpNumber] = 0; + NumLeftToConsider--; + } + // Add if it's a new chain + if (SeenChains.insert(Op).second) { + OpWorkCount[OpNumber]++; + Worklist.push_back(std::make_pair(Op, OpNumber)); + } + }; + + for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) { + // We need at least be consider at least 2 Ops to prune. + if (NumLeftToConsider <= 1) + break; + auto CurNode = Worklist[i].first; + auto CurOpNumber = Worklist[i].second; + assert((OpWorkCount[CurOpNumber] > 0) && + "Node should not appear in worklist"); + switch (CurNode->getOpcode()) { + case ISD::EntryToken: + // Hitting EntryToken is the only way for the search to terminate without + // hitting + // another operand's search. Prevent us from marking this operand + // considered. + NumLeftToConsider++; + break; + case ISD::TokenFactor: + for (const SDValue &Op : CurNode->op_values()) + AddToWorklist(i, Op.getNode(), CurOpNumber); + break; + case ISD::LIFETIME_START: + case ISD::LIFETIME_END: + case ISD::CopyFromReg: + case ISD::CopyToReg: + AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber); + break; + default: + if (auto *MemNode = dyn_cast<MemSDNode>(CurNode)) + AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber); + break; + } + OpWorkCount[CurOpNumber]--; + if (OpWorkCount[CurOpNumber] == 0) + NumLeftToConsider--; + } + + // If we've changed things around then replace token factor. + if (Changed) { + SDValue Result; + if (Ops.empty()) { + // The entry token is the only possible outcome. + Result = DAG.getEntryNode(); + } else { + if (DidPruneOps) { + SmallVector<SDValue, 8> PrunedOps; + // + for (const SDValue &Op : Ops) { + if (SeenChains.count(Op.getNode()) == 0) + PrunedOps.push_back(Op); + } + Result = DAG.getTokenFactor(SDLoc(N), PrunedOps); + } else { + Result = DAG.getTokenFactor(SDLoc(N), Ops); + } + } + return Result; + } + return SDValue(); +} + +/// MERGE_VALUES can always be eliminated. +SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) { + WorklistRemover DeadNodes(*this); + // Replacing results may cause a different MERGE_VALUES to suddenly + // be CSE'd with N, and carry its uses with it. Iterate until no + // uses remain, to ensure that the node can be safely deleted. + // First add the users of this node to the work list so that they + // can be tried again once they have new operands. + AddUsersToWorklist(N); + do { + // Do as a single replacement to avoid rewalking use lists. + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) + Ops.push_back(N->getOperand(i)); + DAG.ReplaceAllUsesWith(N, Ops.data()); + } while (!N->use_empty()); + deleteAndRecombine(N); + return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a +/// ConstantSDNode pointer else nullptr. +static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) { + ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N); + return Const != nullptr && !Const->isOpaque() ? Const : nullptr; +} + /// Return true if 'Use' is a load or a store that uses N as its base pointer /// and that N may be folded in the load / store addressing mode. static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, @@ -2096,797 +2096,797 @@ static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG, VT.getTypeForEVT(*DAG.getContext()), AS); } -SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { - assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && - "Unexpected binary operator"); - - // Don't do this unless the old select is going away. We want to eliminate the - // binary operator, not replace a binop with a select. - // TODO: Handle ISD::SELECT_CC. - unsigned SelOpNo = 0; - SDValue Sel = BO->getOperand(0); - if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { - SelOpNo = 1; - Sel = BO->getOperand(1); - } - - if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) - return SDValue(); - - SDValue CT = Sel.getOperand(1); - if (!isConstantOrConstantVector(CT, true) && +SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) { + assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 && + "Unexpected binary operator"); + + // Don't do this unless the old select is going away. We want to eliminate the + // binary operator, not replace a binop with a select. + // TODO: Handle ISD::SELECT_CC. + unsigned SelOpNo = 0; + SDValue Sel = BO->getOperand(0); + if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) { + SelOpNo = 1; + Sel = BO->getOperand(1); + } + + if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) + return SDValue(); + + SDValue CT = Sel.getOperand(1); + if (!isConstantOrConstantVector(CT, true) && !DAG.isConstantFPBuildVectorOrConstantFP(CT)) - return SDValue(); - - SDValue CF = Sel.getOperand(2); - if (!isConstantOrConstantVector(CF, true) && + return SDValue(); + + SDValue CF = Sel.getOperand(2); + if (!isConstantOrConstantVector(CF, true) && !DAG.isConstantFPBuildVectorOrConstantFP(CF)) - return SDValue(); - - // Bail out if any constants are opaque because we can't constant fold those. - // The exception is "and" and "or" with either 0 or -1 in which case we can - // propagate non constant operands into select. I.e.: - // and (select Cond, 0, -1), X --> select Cond, 0, X - // or X, (select Cond, -1, 0) --> select Cond, -1, X - auto BinOpcode = BO->getOpcode(); - bool CanFoldNonConst = - (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && - (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && - (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); - - SDValue CBO = BO->getOperand(SelOpNo ^ 1); - if (!CanFoldNonConst && - !isConstantOrConstantVector(CBO, true) && + return SDValue(); + + // Bail out if any constants are opaque because we can't constant fold those. + // The exception is "and" and "or" with either 0 or -1 in which case we can + // propagate non constant operands into select. I.e.: + // and (select Cond, 0, -1), X --> select Cond, 0, X + // or X, (select Cond, -1, 0) --> select Cond, -1, X + auto BinOpcode = BO->getOpcode(); + bool CanFoldNonConst = + (BinOpcode == ISD::AND || BinOpcode == ISD::OR) && + (isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) && + (isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF)); + + SDValue CBO = BO->getOperand(SelOpNo ^ 1); + if (!CanFoldNonConst && + !isConstantOrConstantVector(CBO, true) && !DAG.isConstantFPBuildVectorOrConstantFP(CBO)) - return SDValue(); - + return SDValue(); + EVT VT = BO->getValueType(0); - - // We have a select-of-constants followed by a binary operator with a - // constant. Eliminate the binop by pulling the constant math into the select. - // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO - SDLoc DL(Sel); - SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) - : DAG.getNode(BinOpcode, DL, VT, CT, CBO); - if (!CanFoldNonConst && !NewCT.isUndef() && - !isConstantOrConstantVector(NewCT, true) && + + // We have a select-of-constants followed by a binary operator with a + // constant. Eliminate the binop by pulling the constant math into the select. + // Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO + SDLoc DL(Sel); + SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT) + : DAG.getNode(BinOpcode, DL, VT, CT, CBO); + if (!CanFoldNonConst && !NewCT.isUndef() && + !isConstantOrConstantVector(NewCT, true) && !DAG.isConstantFPBuildVectorOrConstantFP(NewCT)) - return SDValue(); - - SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) - : DAG.getNode(BinOpcode, DL, VT, CF, CBO); - if (!CanFoldNonConst && !NewCF.isUndef() && - !isConstantOrConstantVector(NewCF, true) && + return SDValue(); + + SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF) + : DAG.getNode(BinOpcode, DL, VT, CF, CBO); + if (!CanFoldNonConst && !NewCF.isUndef() && + !isConstantOrConstantVector(NewCF, true) && !DAG.isConstantFPBuildVectorOrConstantFP(NewCF)) - return SDValue(); - - SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); - SelectOp->setFlags(BO->getFlags()); - return SelectOp; -} - -static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { - assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && - "Expecting add or sub"); - - // Match a constant operand and a zext operand for the math instruction: - // add Z, C - // sub C, Z - bool IsAdd = N->getOpcode() == ISD::ADD; - SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); - SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); - auto *CN = dyn_cast<ConstantSDNode>(C); - if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) - return SDValue(); - - // Match the zext operand as a setcc of a boolean. - if (Z.getOperand(0).getOpcode() != ISD::SETCC || - Z.getOperand(0).getValueType() != MVT::i1) - return SDValue(); - - // Match the compare as: setcc (X & 1), 0, eq. - SDValue SetCC = Z.getOperand(0); - ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); - if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || - SetCC.getOperand(0).getOpcode() != ISD::AND || - !isOneConstant(SetCC.getOperand(0).getOperand(1))) - return SDValue(); - - // We are adding/subtracting a constant and an inverted low bit. Turn that - // into a subtract/add of the low bit with incremented/decremented constant: - // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) - // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) - EVT VT = C.getValueType(); - SDLoc DL(N); - SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); - SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : - DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); - return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); -} - -/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into -/// a shift and add with a different constant. -static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { - assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && - "Expecting add or sub"); - - // We need a constant operand for the add/sub, and the other operand is a - // logical shift right: add (srl), C or sub C, (srl). - bool IsAdd = N->getOpcode() == ISD::ADD; - SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); - SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); - if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || - ShiftOp.getOpcode() != ISD::SRL) - return SDValue(); - - // The shift must be of a 'not' value. - SDValue Not = ShiftOp.getOperand(0); - if (!Not.hasOneUse() || !isBitwiseNot(Not)) - return SDValue(); - - // The shift must be moving the sign bit to the least-significant-bit. - EVT VT = ShiftOp.getValueType(); - SDValue ShAmt = ShiftOp.getOperand(1); - ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); - if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) - return SDValue(); - - // Eliminate the 'not' by adjusting the shift and add/sub constant: - // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) - // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) - SDLoc DL(N); - auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; - SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); - if (SDValue NewC = - DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, - {ConstantOp, DAG.getConstant(1, DL, VT)})) - return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); - return SDValue(); -} - -/// Try to fold a node that behaves like an ADD (note that N isn't necessarily -/// an ISD::ADD here, it could for example be an ISD::OR if we know that there -/// are no common bits set in the operands). -SDValue DAGCombiner::visitADDLike(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (add x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - } - - // fold (add x, undef) -> undef - if (N0.isUndef()) - return N0; - - if (N1.isUndef()) - return N1; - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - // canonicalize constant to RHS - if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::ADD, DL, VT, N1, N0); - // fold (add c1, c2) -> c1+c2 - return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); - } - - // fold (add x, 0) -> x - if (isNullConstant(N1)) - return N0; - - if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { - // fold ((A-c1)+c2) -> (A+(c2-c1)) - if (N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { - SDValue Sub = - DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); - assert(Sub && "Constant folding failed"); - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); - } - - // fold ((c1-A)+c2) -> (c1+c2)-A - if (N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { - SDValue Add = - DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); - assert(Add && "Constant folding failed"); - return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); - } - - // add (sext i1 X), 1 -> zext (not i1 X) - // We don't transform this pattern: - // add (zext i1 X), -1 -> sext (not i1 X) - // because most (?) targets generate better code for the zext form. - if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && - isOneOrOneSplat(N1)) { - SDValue X = N0.getOperand(0); - if ((!LegalOperations || - (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && - TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && - X.getScalarValueSizeInBits() == 1) { - SDValue Not = DAG.getNOT(DL, X, X.getValueType()); - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); - } - } - - // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is - // equivalent to (add x, c0). - if (N0.getOpcode() == ISD::OR && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && - DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { - if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, - {N1, N0.getOperand(1)})) - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); - } - } - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate add - if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { - if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) - return RADD; - } - // fold ((0-A) + B) -> B-A - if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); - - // fold (A + (0-B)) -> A-B - if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); - - // fold (A+(B-A)) -> B - if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) - return N1.getOperand(0); - - // fold ((B-A)+A) -> B - if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) - return N0.getOperand(0); - - // fold ((A-B)+(C-A)) -> (C-B) - if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && - N0.getOperand(0) == N1.getOperand(1)) - return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), - N0.getOperand(1)); - - // fold ((A-B)+(B-C)) -> (A-C) - if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && - N0.getOperand(1) == N1.getOperand(0)) - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), - N1.getOperand(1)); - - // fold (A+(B-(A+C))) to (B-C) - if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && - N0 == N1.getOperand(1).getOperand(0)) - return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), - N1.getOperand(1).getOperand(1)); - - // fold (A+(B-(C+A))) to (B-C) - if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && - N0 == N1.getOperand(1).getOperand(1)) - return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), - N1.getOperand(1).getOperand(0)); - - // fold (A+((B-A)+or-C)) to (B+or-C) - if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && - N1.getOperand(0).getOpcode() == ISD::SUB && - N0 == N1.getOperand(0).getOperand(1)) - return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), - N1.getOperand(1)); - - // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant - if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - SDValue N10 = N1.getOperand(0); - SDValue N11 = N1.getOperand(1); - - if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), - DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); - } - - // fold (add (umax X, C), -C) --> (usubsat X, C) - if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { - auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { - return (!Max && !Op) || - (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); - }; - if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, - /*AllowUndefs*/ true)) - return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), - N0.getOperand(1)); - } - - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - if (isOneOrOneSplat(N1)) { - // fold (add (xor a, -1), 1) -> (sub 0, a) - if (isBitwiseNot(N0)) - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), - N0.getOperand(0)); - - // fold (add (add (xor a, -1), b), 1) -> (sub b, a) - if (N0.getOpcode() == ISD::ADD || - N0.getOpcode() == ISD::UADDO || - N0.getOpcode() == ISD::SADDO) { - SDValue A, Xor; - - if (isBitwiseNot(N0.getOperand(0))) { - A = N0.getOperand(1); - Xor = N0.getOperand(0); - } else if (isBitwiseNot(N0.getOperand(1))) { - A = N0.getOperand(0); - Xor = N0.getOperand(1); - } - - if (Xor) - return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); - } - - // Look for: - // add (add x, y), 1 - // And if the target does not like this form then turn into: - // sub y, (xor x, -1) - if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && - N0.getOpcode() == ISD::ADD) { - SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), - DAG.getAllOnesConstant(DL, VT)); - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); - } - } - - // (x - y) + -1 -> add (xor y, -1), x - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && - isAllOnesOrAllOnesSplat(N1)) { - SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); - return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); - } - - if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) - return Combined; - - if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) - return Combined; - - return SDValue(); -} - -SDValue DAGCombiner::visitADD(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - if (SDValue Combined = visitADDLike(N)) - return Combined; - - if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) - return V; - - if (SDValue V = foldAddSubOfSignBit(N, DAG)) - return V; - - // fold (a+b) -> (a|b) iff a and b share no bits. - if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && - DAG.haveNoCommonBitsSet(N0, N1)) - return DAG.getNode(ISD::OR, DL, VT, N0, N1); - - // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). - if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { + return SDValue(); + + SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF); + SelectOp->setFlags(BO->getFlags()); + return SelectOp; +} + +static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) { + assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && + "Expecting add or sub"); + + // Match a constant operand and a zext operand for the math instruction: + // add Z, C + // sub C, Z + bool IsAdd = N->getOpcode() == ISD::ADD; + SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0); + SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1); + auto *CN = dyn_cast<ConstantSDNode>(C); + if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + + // Match the zext operand as a setcc of a boolean. + if (Z.getOperand(0).getOpcode() != ISD::SETCC || + Z.getOperand(0).getValueType() != MVT::i1) + return SDValue(); + + // Match the compare as: setcc (X & 1), 0, eq. + SDValue SetCC = Z.getOperand(0); + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get(); + if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) || + SetCC.getOperand(0).getOpcode() != ISD::AND || + !isOneConstant(SetCC.getOperand(0).getOperand(1))) + return SDValue(); + + // We are adding/subtracting a constant and an inverted low bit. Turn that + // into a subtract/add of the low bit with incremented/decremented constant: + // add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1)) + // sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1)) + EVT VT = C.getValueType(); + SDLoc DL(N); + SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT); + SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) : + DAG.getConstant(CN->getAPIntValue() - 1, DL, VT); + return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit); +} + +/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into +/// a shift and add with a different constant. +static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) { + assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && + "Expecting add or sub"); + + // We need a constant operand for the add/sub, and the other operand is a + // logical shift right: add (srl), C or sub C, (srl). + bool IsAdd = N->getOpcode() == ISD::ADD; + SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0); + SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1); + if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) || + ShiftOp.getOpcode() != ISD::SRL) + return SDValue(); + + // The shift must be of a 'not' value. + SDValue Not = ShiftOp.getOperand(0); + if (!Not.hasOneUse() || !isBitwiseNot(Not)) + return SDValue(); + + // The shift must be moving the sign bit to the least-significant-bit. + EVT VT = ShiftOp.getValueType(); + SDValue ShAmt = ShiftOp.getOperand(1); + ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); + if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1)) + return SDValue(); + + // Eliminate the 'not' by adjusting the shift and add/sub constant: + // add (srl (not X), 31), C --> add (sra X, 31), (C + 1) + // sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1) + SDLoc DL(N); + auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL; + SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt); + if (SDValue NewC = + DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT, + {ConstantOp, DAG.getConstant(1, DL, VT)})) + return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC); + return SDValue(); +} + +/// Try to fold a node that behaves like an ADD (note that N isn't necessarily +/// an ISD::ADD here, it could for example be an ISD::OR if we know that there +/// are no common bits set in the operands). +SDValue DAGCombiner::visitADDLike(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (add x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return N1; + } + + // fold (add x, undef) -> undef + if (N0.isUndef()) + return N0; + + if (N1.isUndef()) + return N1; + + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { + // canonicalize constant to RHS + if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(ISD::ADD, DL, VT, N1, N0); + // fold (add c1, c2) -> c1+c2 + return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1}); + } + + // fold (add x, 0) -> x + if (isNullConstant(N1)) + return N0; + + if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) { + // fold ((A-c1)+c2) -> (A+(c2-c1)) + if (N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) { + SDValue Sub = + DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)}); + assert(Sub && "Constant folding failed"); + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub); + } + + // fold ((c1-A)+c2) -> (c1+c2)-A + if (N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) { + SDValue Add = + DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)}); + assert(Add && "Constant folding failed"); + return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); + } + + // add (sext i1 X), 1 -> zext (not i1 X) + // We don't transform this pattern: + // add (zext i1 X), -1 -> sext (not i1 X) + // because most (?) targets generate better code for the zext form. + if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() && + isOneOrOneSplat(N1)) { + SDValue X = N0.getOperand(0); + if ((!LegalOperations || + (TLI.isOperationLegal(ISD::XOR, X.getValueType()) && + TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) && + X.getScalarValueSizeInBits() == 1) { + SDValue Not = DAG.getNOT(DL, X, X.getValueType()); + return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not); + } + } + + // Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is + // equivalent to (add x, c0). + if (N0.getOpcode() == ISD::OR && + isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) && + DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) { + if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, + {N1, N0.getOperand(1)})) + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0); + } + } + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // reassociate add + if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) { + if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags())) + return RADD; + } + // fold ((0-A) + B) -> B-A + if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0))) + return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); + + // fold (A + (0-B)) -> A-B + if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) + return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1)); + + // fold (A+(B-A)) -> B + if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) + return N1.getOperand(0); + + // fold ((B-A)+A) -> B + if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1)) + return N0.getOperand(0); + + // fold ((A-B)+(C-A)) -> (C-B) + if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && + N0.getOperand(0) == N1.getOperand(1)) + return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), + N0.getOperand(1)); + + // fold ((A-B)+(B-C)) -> (A-C) + if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB && + N0.getOperand(1) == N1.getOperand(0)) + return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), + N1.getOperand(1)); + + // fold (A+(B-(A+C))) to (B-C) + if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && + N0 == N1.getOperand(1).getOperand(0)) + return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), + N1.getOperand(1).getOperand(1)); + + // fold (A+(B-(C+A))) to (B-C) + if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD && + N0 == N1.getOperand(1).getOperand(1)) + return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0), + N1.getOperand(1).getOperand(0)); + + // fold (A+((B-A)+or-C)) to (B+or-C) + if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) && + N1.getOperand(0).getOpcode() == ISD::SUB && + N0 == N1.getOperand(0).getOperand(1)) + return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0), + N1.getOperand(1)); + + // fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant + if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) { + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + SDValue N10 = N1.getOperand(0); + SDValue N11 = N1.getOperand(1); + + if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10)) + return DAG.getNode(ISD::SUB, DL, VT, + DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10), + DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11)); + } + + // fold (add (umax X, C), -C) --> (usubsat X, C) + if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) { + auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) { + return (!Max && !Op) || + (Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue())); + }; + if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT, + /*AllowUndefs*/ true)) + return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0), + N0.getOperand(1)); + } + + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + if (isOneOrOneSplat(N1)) { + // fold (add (xor a, -1), 1) -> (sub 0, a) + if (isBitwiseNot(N0)) + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + N0.getOperand(0)); + + // fold (add (add (xor a, -1), b), 1) -> (sub b, a) + if (N0.getOpcode() == ISD::ADD || + N0.getOpcode() == ISD::UADDO || + N0.getOpcode() == ISD::SADDO) { + SDValue A, Xor; + + if (isBitwiseNot(N0.getOperand(0))) { + A = N0.getOperand(1); + Xor = N0.getOperand(0); + } else if (isBitwiseNot(N0.getOperand(1))) { + A = N0.getOperand(0); + Xor = N0.getOperand(1); + } + + if (Xor) + return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0)); + } + + // Look for: + // add (add x, y), 1 + // And if the target does not like this form then turn into: + // sub y, (xor x, -1) + if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && + N0.getOpcode() == ISD::ADD) { + SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), + DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not); + } + } + + // (x - y) + -1 -> add (xor y, -1), x + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && + isAllOnesOrAllOnesSplat(N1)) { + SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1); + return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); + } + + if (SDValue Combined = visitADDLikeCommutative(N0, N1, N)) + return Combined; + + if (SDValue Combined = visitADDLikeCommutative(N1, N0, N)) + return Combined; + + return SDValue(); +} + +SDValue DAGCombiner::visitADD(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + if (SDValue Combined = visitADDLike(N)) + return Combined; + + if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) + return V; + + if (SDValue V = foldAddSubOfSignBit(N, DAG)) + return V; + + // fold (a+b) -> (a|b) iff a and b share no bits. + if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) && + DAG.haveNoCommonBitsSet(N0, N1)) + return DAG.getNode(ISD::OR, DL, VT, N0, N1); + + // Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)). + if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) { const APInt &C0 = N0->getConstantOperandAPInt(0); const APInt &C1 = N1->getConstantOperandAPInt(0); - return DAG.getVScale(DL, VT, C0 + C1); - } - - // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) - if ((N0.getOpcode() == ISD::ADD) && - (N0.getOperand(1).getOpcode() == ISD::VSCALE) && - (N1.getOpcode() == ISD::VSCALE)) { + return DAG.getVScale(DL, VT, C0 + C1); + } + + // fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2) + if ((N0.getOpcode() == ISD::ADD) && + (N0.getOperand(1).getOpcode() == ISD::VSCALE) && + (N1.getOpcode() == ISD::VSCALE)) { const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0); const APInt &VS1 = N1->getConstantOperandAPInt(0); SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1); - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitADDSAT(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - // TODO SimplifyVBinOp - - // fold (add_sat x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - } - - // fold (add_sat x, undef) -> -1 - if (N0.isUndef() || N1.isUndef()) - return DAG.getAllOnesConstant(DL, VT); - - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - // canonicalize constant to RHS - if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(Opcode, DL, VT, N1, N0); - // fold (add_sat c1, c2) -> c3 - return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); - } - - // fold (add_sat x, 0) -> x - if (isNullConstant(N1)) - return N0; - - // If it cannot overflow, transform into an add. - if (Opcode == ISD::UADDSAT) - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return DAG.getNode(ISD::ADD, DL, VT, N0, N1); - - return SDValue(); -} - -static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { - bool Masked = false; - - // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. - while (true) { - if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { - V = V.getOperand(0); - continue; - } - - if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { - Masked = true; - V = V.getOperand(0); - continue; - } - - break; - } - - // If this is not a carry, return. - if (V.getResNo() != 1) - return SDValue(); - - if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && - V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) - return SDValue(); - - EVT VT = V.getNode()->getValueType(0); - if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) - return SDValue(); - - // If the result is masked, then no matter what kind of bool it is we can - // return. If it isn't, then we need to make sure the bool type is either 0 or - // 1 and not other values. - if (Masked || - TLI.getBooleanContents(V.getValueType()) == - TargetLoweringBase::ZeroOrOneBooleanContent) - return V; - - return SDValue(); -} - -/// Given the operands of an add/sub operation, see if the 2nd operand is a -/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert -/// the opcode and bypass the mask operation. -static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, - SelectionDAG &DAG, const SDLoc &DL) { - if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) - return SDValue(); - - EVT VT = N0.getValueType(); - if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) - return SDValue(); - - // add N0, (and (AssertSext X, i1), 1) --> sub N0, X - // sub N0, (and (AssertSext X, i1), 1) --> add N0, X - return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); -} - -/// Helper for doing combines based on N0 and N1 being added to each other. -SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, - SDNode *LocReference) { - EVT VT = N0.getValueType(); - SDLoc DL(LocReference); - - // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) - if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(0).getOperand(0))) - return DAG.getNode(ISD::SUB, DL, VT, N0, - DAG.getNode(ISD::SHL, DL, VT, - N1.getOperand(0).getOperand(1), - N1.getOperand(1))); - - if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) - return V; - - // Look for: - // add (add x, 1), y - // And if the target does not like this form then turn into: - // sub y, (xor x, -1) - if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && - N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { - SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), - DAG.getAllOnesConstant(DL, VT)); - return DAG.getNode(ISD::SUB, DL, VT, N1, Not); - } - - // Hoist one-use subtraction by non-opaque constant: - // (x - C) + y -> (x + y) - C - // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); - return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); - } - // Hoist one-use subtraction from non-opaque constant: - // (C - x) + y -> (y - x) + C - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); - } - - // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' - // rather than 'add 0/-1' (the zext should get folded). - // add (sext i1 Y), X --> sub X, (zext i1 Y) - if (N0.getOpcode() == ISD::SIGN_EXTEND && - N0.getOperand(0).getScalarValueSizeInBits() == 1 && - TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { - SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); - return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); - } - - // add X, (sextinreg Y i1) -> sub X, (and Y 1) - if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { - VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); - if (TN->getVT() == MVT::i1) { - SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), - DAG.getConstant(1, DL, VT)); - return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); - } - } - - // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) - if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && - N1.getResNo() == 0) - return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), - N0, N1.getOperand(0), N1.getOperand(2)); - - // (add X, Carry) -> (addcarry X, 0, Carry) - if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) - if (SDValue Carry = getAsCarry(TLI, N1)) - return DAG.getNode(ISD::ADDCARRY, DL, - DAG.getVTList(VT, Carry.getValueType()), N0, - DAG.getConstant(0, DL, VT), Carry); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // If the flag result is dead, turn this into an ADD. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // canonicalize constant to RHS. - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); - - // fold (addc x, 0) -> x + no carry out - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, - DL, MVT::Glue)); - - // If it cannot overflow, transform into an add. - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - return SDValue(); -} - -/** - * Flips a boolean if it is cheaper to compute. If the Force parameters is set, - * then the flip also occurs if computing the inverse is the same cost. - * This function returns an empty SDValue in case it cannot flip the boolean - * without increasing the cost of the computation. If you want to flip a boolean + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitADDSAT(SDNode *N) { + unsigned Opcode = N->getOpcode(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // fold vector ops + if (VT.isVector()) { + // TODO SimplifyVBinOp + + // fold (add_sat x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return N1; + } + + // fold (add_sat x, undef) -> -1 + if (N0.isUndef() || N1.isUndef()) + return DAG.getAllOnesConstant(DL, VT); + + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { + // canonicalize constant to RHS + if (!DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(Opcode, DL, VT, N1, N0); + // fold (add_sat c1, c2) -> c3 + return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}); + } + + // fold (add_sat x, 0) -> x + if (isNullConstant(N1)) + return N0; + + // If it cannot overflow, transform into an add. + if (Opcode == ISD::UADDSAT) + if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) + return DAG.getNode(ISD::ADD, DL, VT, N0, N1); + + return SDValue(); +} + +static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) { + bool Masked = false; + + // First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization. + while (true) { + if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) { + V = V.getOperand(0); + continue; + } + + if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) { + Masked = true; + V = V.getOperand(0); + continue; + } + + break; + } + + // If this is not a carry, return. + if (V.getResNo() != 1) + return SDValue(); + + if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY && + V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO) + return SDValue(); + + EVT VT = V.getNode()->getValueType(0); + if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT)) + return SDValue(); + + // If the result is masked, then no matter what kind of bool it is we can + // return. If it isn't, then we need to make sure the bool type is either 0 or + // 1 and not other values. + if (Masked || + TLI.getBooleanContents(V.getValueType()) == + TargetLoweringBase::ZeroOrOneBooleanContent) + return V; + + return SDValue(); +} + +/// Given the operands of an add/sub operation, see if the 2nd operand is a +/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert +/// the opcode and bypass the mask operation. +static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1, + SelectionDAG &DAG, const SDLoc &DL) { + if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1))) + return SDValue(); + + EVT VT = N0.getValueType(); + if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits()) + return SDValue(); + + // add N0, (and (AssertSext X, i1), 1) --> sub N0, X + // sub N0, (and (AssertSext X, i1), 1) --> add N0, X + return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0)); +} + +/// Helper for doing combines based on N0 and N1 being added to each other. +SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1, + SDNode *LocReference) { + EVT VT = N0.getValueType(); + SDLoc DL(LocReference); + + // fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n)) + if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB && + isNullOrNullSplat(N1.getOperand(0).getOperand(0))) + return DAG.getNode(ISD::SUB, DL, VT, N0, + DAG.getNode(ISD::SHL, DL, VT, + N1.getOperand(0).getOperand(1), + N1.getOperand(1))); + + if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL)) + return V; + + // Look for: + // add (add x, 1), y + // And if the target does not like this form then turn into: + // sub y, (xor x, -1) + if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() && + N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) { + SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0), + DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::SUB, DL, VT, N1, Not); + } + + // Hoist one-use subtraction by non-opaque constant: + // (x - C) + y -> (x + y) - C + // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1); + return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1)); + } + // Hoist one-use subtraction from non-opaque constant: + // (C - x) + y -> (y - x) + C + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1)); + return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0)); + } + + // If the target's bool is represented as 0/1, prefer to make this 'sub 0/1' + // rather than 'add 0/-1' (the zext should get folded). + // add (sext i1 Y), X --> sub X, (zext i1 Y) + if (N0.getOpcode() == ISD::SIGN_EXTEND && + N0.getOperand(0).getScalarValueSizeInBits() == 1 && + TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) { + SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)); + return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt); + } + + // add X, (sextinreg Y i1) -> sub X, (and Y 1) + if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { + VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); + if (TN->getVT() == MVT::i1) { + SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), + DAG.getConstant(1, DL, VT)); + return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt); + } + } + + // (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) + if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) && + N1.getResNo() == 0) + return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(), + N0, N1.getOperand(0), N1.getOperand(2)); + + // (add X, Carry) -> (addcarry X, 0, Carry) + if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) + if (SDValue Carry = getAsCarry(TLI, N1)) + return DAG.getNode(ISD::ADDCARRY, DL, + DAG.getVTList(VT, Carry.getValueType()), N0, + DAG.getConstant(0, DL, VT), Carry); + + return SDValue(); +} + +SDValue DAGCombiner::visitADDC(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // If the flag result is dead, turn this into an ADD. + if (!N->hasAnyUseOfValue(1)) + return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), + DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + // canonicalize constant to RHS. + ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + if (N0C && !N1C) + return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0); + + // fold (addc x, 0) -> x + no carry out + if (isNullConstant(N1)) + return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, + DL, MVT::Glue)); + + // If it cannot overflow, transform into an add. + if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) + return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), + DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + return SDValue(); +} + +/** + * Flips a boolean if it is cheaper to compute. If the Force parameters is set, + * then the flip also occurs if computing the inverse is the same cost. + * This function returns an empty SDValue in case it cannot flip the boolean + * without increasing the cost of the computation. If you want to flip a boolean * no matter what, use DAG.getLogicalNOT. - */ -static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, - const TargetLowering &TLI, - bool Force) { - if (Force && isa<ConstantSDNode>(V)) + */ +static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG, + const TargetLowering &TLI, + bool Force) { + if (Force && isa<ConstantSDNode>(V)) return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); - - if (V.getOpcode() != ISD::XOR) - return SDValue(); - - ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); - if (!Const) - return SDValue(); - - EVT VT = V.getValueType(); - - bool IsFlip = false; - switch(TLI.getBooleanContents(VT)) { - case TargetLowering::ZeroOrOneBooleanContent: - IsFlip = Const->isOne(); - break; - case TargetLowering::ZeroOrNegativeOneBooleanContent: - IsFlip = Const->isAllOnesValue(); - break; - case TargetLowering::UndefinedBooleanContent: - IsFlip = (Const->getAPIntValue() & 0x01) == 1; - break; - } - - if (IsFlip) - return V.getOperand(0); - if (Force) + + if (V.getOpcode() != ISD::XOR) + return SDValue(); + + ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false); + if (!Const) + return SDValue(); + + EVT VT = V.getValueType(); + + bool IsFlip = false; + switch(TLI.getBooleanContents(VT)) { + case TargetLowering::ZeroOrOneBooleanContent: + IsFlip = Const->isOne(); + break; + case TargetLowering::ZeroOrNegativeOneBooleanContent: + IsFlip = Const->isAllOnesValue(); + break; + case TargetLowering::UndefinedBooleanContent: + IsFlip = (Const->getAPIntValue() & 0x01) == 1; + break; + } + + if (IsFlip) + return V.getOperand(0); + if (Force) return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType()); - return SDValue(); -} - -SDValue DAGCombiner::visitADDO(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - bool IsSigned = (ISD::SADDO == N->getOpcode()); - - EVT CarryVT = N->getValueType(1); - SDLoc DL(N); - - // If the flag result is dead, turn this into an ADD. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getUNDEF(CarryVT)); - - // canonicalize constant to RHS. - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); - - // fold (addo x, 0) -> x + no carry out - if (isNullOrNullSplat(N1)) - return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); - - if (!IsSigned) { - // If it cannot overflow, transform into an add. - if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) - return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), - DAG.getConstant(0, DL, CarryVT)); - - // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. - if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { - SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), - DAG.getConstant(0, DL, VT), N0.getOperand(0)); + return SDValue(); +} + +SDValue DAGCombiner::visitADDO(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + bool IsSigned = (ISD::SADDO == N->getOpcode()); + + EVT CarryVT = N->getValueType(1); + SDLoc DL(N); + + // If the flag result is dead, turn this into an ADD. + if (!N->hasAnyUseOfValue(1)) + return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), + DAG.getUNDEF(CarryVT)); + + // canonicalize constant to RHS. + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); + + // fold (addo x, 0) -> x + no carry out + if (isNullOrNullSplat(N1)) + return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); + + if (!IsSigned) { + // If it cannot overflow, transform into an add. + if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never) + return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1), + DAG.getConstant(0, DL, CarryVT)); + + // fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry. + if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) { + SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(), + DAG.getConstant(0, DL, VT), N0.getOperand(0)); return CombineTo( N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); - } - - if (SDValue Combined = visitUADDOLike(N0, N1, N)) - return Combined; - - if (SDValue Combined = visitUADDOLike(N1, N0, N)) - return Combined; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N0.getValueType(); - if (VT.isVector()) - return SDValue(); - - // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) - // If Y + 1 cannot overflow. - if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { - SDValue Y = N1.getOperand(0); - SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); - if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, - N1.getOperand(2)); - } - - // (uaddo X, Carry) -> (addcarry X, 0, Carry) - if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) - if (SDValue Carry = getAsCarry(TLI, N1)) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, - DAG.getConstant(0, SDLoc(N), VT), Carry); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDE(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // canonicalize constant to RHS - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), - N1, N0, CarryIn); - - // fold (adde x, y, false) -> (addc x, y) - if (CarryIn.getOpcode() == ISD::CARRY_FALSE) - return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); - - return SDValue(); -} - -SDValue DAGCombiner::visitADDCARRY(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - SDLoc DL(N); - - // canonicalize constant to RHS - ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (N0C && !N1C) - return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); - - // fold (addcarry x, y, false) -> (uaddo x, y) - if (isNullConstant(CarryIn)) { - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) - return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); - } - - // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. - if (isNullConstant(N0) && isNullConstant(N1)) { - EVT VT = N0.getValueType(); - EVT CarryVT = CarryIn.getValueType(); - SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); - AddToWorklist(CarryExt.getNode()); - return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, - DAG.getConstant(1, DL, VT)), - DAG.getConstant(0, DL, CarryVT)); - } - - if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) - return Combined; - - if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) - return Combined; - - return SDValue(); -} - + } + + if (SDValue Combined = visitUADDOLike(N0, N1, N)) + return Combined; + + if (SDValue Combined = visitUADDOLike(N1, N0, N)) + return Combined; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) { + EVT VT = N0.getValueType(); + if (VT.isVector()) + return SDValue(); + + // (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry) + // If Y + 1 cannot overflow. + if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) { + SDValue Y = N1.getOperand(0); + SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType()); + if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never) + return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y, + N1.getOperand(2)); + } + + // (uaddo X, Carry) -> (addcarry X, 0, Carry) + if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) + if (SDValue Carry = getAsCarry(TLI, N1)) + return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, + DAG.getConstant(0, SDLoc(N), VT), Carry); + + return SDValue(); +} + +SDValue DAGCombiner::visitADDE(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CarryIn = N->getOperand(2); + + // canonicalize constant to RHS + ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + if (N0C && !N1C) + return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(), + N1, N0, CarryIn); + + // fold (adde x, y, false) -> (addc x, y) + if (CarryIn.getOpcode() == ISD::CARRY_FALSE) + return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1); + + return SDValue(); +} + +SDValue DAGCombiner::visitADDCARRY(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CarryIn = N->getOperand(2); + SDLoc DL(N); + + // canonicalize constant to RHS + ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + if (N0C && !N1C) + return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn); + + // fold (addcarry x, y, false) -> (uaddo x, y) + if (isNullConstant(CarryIn)) { + if (!LegalOperations || + TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0))) + return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1); + } + + // fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry. + if (isNullConstant(N0) && isNullConstant(N1)) { + EVT VT = N0.getValueType(); + EVT CarryVT = CarryIn.getValueType(); + SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT); + AddToWorklist(CarryExt.getNode()); + return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt, + DAG.getConstant(1, DL, VT)), + DAG.getConstant(0, DL, CarryVT)); + } + + if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N)) + return Combined; + + if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N)) + return Combined; + + return SDValue(); +} + SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); @@ -2909,297 +2909,297 @@ SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) { return SDValue(); } -/** - * If we are facing some sort of diamond carry propapagtion pattern try to - * break it up to generate something like: - * (addcarry X, 0, (addcarry A, B, Z):Carry) - * - * The end result is usually an increase in operation required, but because the - * carry is now linearized, other tranforms can kick in and optimize the DAG. - * - * Patterns typically look something like - * (uaddo A, B) - * / \ - * Carry Sum - * | \ - * | (addcarry *, 0, Z) - * | / - * \ Carry - * | / - * (addcarry X, *, *) - * - * But numerous variation exist. Our goal is to identify A, B, X and Z and - * produce a combine with a single path for carry propagation. - */ -static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, - SDValue X, SDValue Carry0, SDValue Carry1, - SDNode *N) { - if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) - return SDValue(); - if (Carry1.getOpcode() != ISD::UADDO) - return SDValue(); - - SDValue Z; - - /** - * First look for a suitable Z. It will present itself in the form of - * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true - */ - if (Carry0.getOpcode() == ISD::ADDCARRY && - isNullConstant(Carry0.getOperand(1))) { - Z = Carry0.getOperand(2); - } else if (Carry0.getOpcode() == ISD::UADDO && - isOneConstant(Carry0.getOperand(1))) { - EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); - Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); - } else { - // We couldn't find a suitable Z. - return SDValue(); - } - - - auto cancelDiamond = [&](SDValue A,SDValue B) { - SDLoc DL(N); - SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); - Combiner.AddToWorklist(NewY.getNode()); - return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, - DAG.getConstant(0, DL, X.getValueType()), - NewY.getValue(1)); - }; - - /** - * (uaddo A, B) - * | - * Sum - * | - * (addcarry *, 0, Z) - */ - if (Carry0.getOperand(0) == Carry1.getValue(0)) { - return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); - } - - /** - * (addcarry A, 0, Z) - * | - * Sum - * | - * (uaddo *, B) - */ - if (Carry1.getOperand(0) == Carry0.getValue(0)) { - return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); - } - - if (Carry1.getOperand(1) == Carry0.getValue(0)) { - return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); - } - - return SDValue(); -} - -// If we are facing some sort of diamond carry/borrow in/out pattern try to -// match patterns like: -// -// (uaddo A, B) CarryIn -// | \ | -// | \ | -// PartialSum PartialCarryOutX / -// | | / -// | ____|____________/ -// | / | -// (uaddo *, *) \________ -// | \ \ -// | \ | -// | PartialCarryOutY | -// | \ | -// | \ / -// AddCarrySum | ______/ -// | / -// CarryOut = (or *, *) -// -// And generate ADDCARRY (or SUBCARRY) with two result values: -// -// {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) -// -// Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with -// a single path for carry/borrow out propagation: -static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, - const TargetLowering &TLI, SDValue Carry0, - SDValue Carry1, SDNode *N) { - if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) - return SDValue(); - unsigned Opcode = Carry0.getOpcode(); - if (Opcode != Carry1.getOpcode()) - return SDValue(); - if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) - return SDValue(); - - // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the - // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in - // the above ASCII art.) - if (Carry1.getOperand(0) != Carry0.getValue(0) && - Carry1.getOperand(1) != Carry0.getValue(0)) - std::swap(Carry0, Carry1); - if (Carry1.getOperand(0) != Carry0.getValue(0) && - Carry1.getOperand(1) != Carry0.getValue(0)) - return SDValue(); - - // The carry in value must be on the righthand side for subtraction. - unsigned CarryInOperandNum = - Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; - if (Opcode == ISD::USUBO && CarryInOperandNum != 1) - return SDValue(); - SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); - - unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; - if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) - return SDValue(); - - // Verify that the carry/borrow in is plausibly a carry/borrow bit. - // TODO: make getAsCarry() aware of how partial carries are merged. - if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) - return SDValue(); - CarryIn = CarryIn.getOperand(0); - if (CarryIn.getValueType() != MVT::i1) - return SDValue(); - - SDLoc DL(N); - SDValue Merged = - DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), - Carry0.getOperand(1), CarryIn); - - // Please note that because we have proven that the result of the UADDO/USUBO - // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can - // therefore prove that if the first UADDO/USUBO overflows, the second - // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the - // maximum value. - // - // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry - // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) - // - // This is important because it means that OR and XOR can be used to merge - // carry flags; and that AND can return a constant zero. - // - // TODO: match other operations that can merge flags (ADD, etc) - DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); - if (N->getOpcode() == ISD::AND) - return DAG.getConstant(0, DL, MVT::i1); - return Merged.getValue(1); -} - -SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, - SDNode *N) { - // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. - if (isBitwiseNot(N0)) - if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { - SDLoc DL(N); - SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, - N0.getOperand(0), NotC); +/** + * If we are facing some sort of diamond carry propapagtion pattern try to + * break it up to generate something like: + * (addcarry X, 0, (addcarry A, B, Z):Carry) + * + * The end result is usually an increase in operation required, but because the + * carry is now linearized, other tranforms can kick in and optimize the DAG. + * + * Patterns typically look something like + * (uaddo A, B) + * / \ + * Carry Sum + * | \ + * | (addcarry *, 0, Z) + * | / + * \ Carry + * | / + * (addcarry X, *, *) + * + * But numerous variation exist. Our goal is to identify A, B, X and Z and + * produce a combine with a single path for carry propagation. + */ +static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, + SDValue X, SDValue Carry0, SDValue Carry1, + SDNode *N) { + if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1) + return SDValue(); + if (Carry1.getOpcode() != ISD::UADDO) + return SDValue(); + + SDValue Z; + + /** + * First look for a suitable Z. It will present itself in the form of + * (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true + */ + if (Carry0.getOpcode() == ISD::ADDCARRY && + isNullConstant(Carry0.getOperand(1))) { + Z = Carry0.getOperand(2); + } else if (Carry0.getOpcode() == ISD::UADDO && + isOneConstant(Carry0.getOperand(1))) { + EVT VT = Combiner.getSetCCResultType(Carry0.getValueType()); + Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT); + } else { + // We couldn't find a suitable Z. + return SDValue(); + } + + + auto cancelDiamond = [&](SDValue A,SDValue B) { + SDLoc DL(N); + SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z); + Combiner.AddToWorklist(NewY.getNode()); + return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X, + DAG.getConstant(0, DL, X.getValueType()), + NewY.getValue(1)); + }; + + /** + * (uaddo A, B) + * | + * Sum + * | + * (addcarry *, 0, Z) + */ + if (Carry0.getOperand(0) == Carry1.getValue(0)) { + return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1)); + } + + /** + * (addcarry A, 0, Z) + * | + * Sum + * | + * (uaddo *, B) + */ + if (Carry1.getOperand(0) == Carry0.getValue(0)) { + return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1)); + } + + if (Carry1.getOperand(1) == Carry0.getValue(0)) { + return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0)); + } + + return SDValue(); +} + +// If we are facing some sort of diamond carry/borrow in/out pattern try to +// match patterns like: +// +// (uaddo A, B) CarryIn +// | \ | +// | \ | +// PartialSum PartialCarryOutX / +// | | / +// | ____|____________/ +// | / | +// (uaddo *, *) \________ +// | \ \ +// | \ | +// | PartialCarryOutY | +// | \ | +// | \ / +// AddCarrySum | ______/ +// | / +// CarryOut = (or *, *) +// +// And generate ADDCARRY (or SUBCARRY) with two result values: +// +// {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn) +// +// Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with +// a single path for carry/borrow out propagation: +static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG, + const TargetLowering &TLI, SDValue Carry0, + SDValue Carry1, SDNode *N) { + if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1) + return SDValue(); + unsigned Opcode = Carry0.getOpcode(); + if (Opcode != Carry1.getOpcode()) + return SDValue(); + if (Opcode != ISD::UADDO && Opcode != ISD::USUBO) + return SDValue(); + + // Canonicalize the add/sub of A and B as Carry0 and the add/sub of the + // carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in + // the above ASCII art.) + if (Carry1.getOperand(0) != Carry0.getValue(0) && + Carry1.getOperand(1) != Carry0.getValue(0)) + std::swap(Carry0, Carry1); + if (Carry1.getOperand(0) != Carry0.getValue(0) && + Carry1.getOperand(1) != Carry0.getValue(0)) + return SDValue(); + + // The carry in value must be on the righthand side for subtraction. + unsigned CarryInOperandNum = + Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0; + if (Opcode == ISD::USUBO && CarryInOperandNum != 1) + return SDValue(); + SDValue CarryIn = Carry1.getOperand(CarryInOperandNum); + + unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY; + if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType())) + return SDValue(); + + // Verify that the carry/borrow in is plausibly a carry/borrow bit. + // TODO: make getAsCarry() aware of how partial carries are merged. + if (CarryIn.getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + CarryIn = CarryIn.getOperand(0); + if (CarryIn.getValueType() != MVT::i1) + return SDValue(); + + SDLoc DL(N); + SDValue Merged = + DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0), + Carry0.getOperand(1), CarryIn); + + // Please note that because we have proven that the result of the UADDO/USUBO + // of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can + // therefore prove that if the first UADDO/USUBO overflows, the second + // UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the + // maximum value. + // + // 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry + // 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow) + // + // This is important because it means that OR and XOR can be used to merge + // carry flags; and that AND can return a constant zero. + // + // TODO: match other operations that can merge flags (ADD, etc) + DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0)); + if (N->getOpcode() == ISD::AND) + return DAG.getConstant(0, DL, MVT::i1); + return Merged.getValue(1); +} + +SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, + SDNode *N) { + // fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry. + if (isBitwiseNot(N0)) + if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) { + SDLoc DL(N); + SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1, + N0.getOperand(0), NotC); return CombineTo( N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1))); - } - - // Iff the flag result is dead: - // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) - // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo - // or the dependency between the instructions. - if ((N0.getOpcode() == ISD::ADD || - (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && - N0.getValue(1) != CarryIn)) && - isNullConstant(N1) && !N->hasAnyUseOfValue(1)) - return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), - N0.getOperand(0), N0.getOperand(1), CarryIn); - - /** - * When one of the addcarry argument is itself a carry, we may be facing - * a diamond carry propagation. In which case we try to transform the DAG - * to ensure linear carry propagation if that is possible. - */ - if (auto Y = getAsCarry(TLI, N1)) { - // Because both are carries, Y and Z can be swapped. - if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) - return R; - if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) - return R; - } - - return SDValue(); -} - -// Since it may not be valid to emit a fold to zero for vector initializers -// check if we can before folding. -static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, - SelectionDAG &DAG, bool LegalOperations) { - if (!VT.isVector()) - return DAG.getConstant(0, DL, VT); - if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) - return DAG.getConstant(0, DL, VT); - return SDValue(); -} - -SDValue DAGCombiner::visitSUB(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (sub x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (sub x, x) -> 0 - // FIXME: Refactor this and xor and other similar operations together. - if (N0 == N1) - return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // fold (sub c1, c2) -> c3 - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) - return C; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); - - // fold (sub x, c) -> (add x, -c) - if (N1C) { - return DAG.getNode(ISD::ADD, DL, VT, N0, - DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); - } - - if (isNullOrNullSplat(N0)) { - unsigned BitWidth = VT.getScalarSizeInBits(); - // Right-shifting everything out but the sign bit followed by negation is - // the same as flipping arithmetic/logical shift type without the negation: - // -(X >>u 31) -> (X >>s 31) - // -(X >>s 31) -> (X >>u 31) - if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { - ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); - if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { - auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; - if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) - return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); - } - } - - // 0 - X --> 0 if the sub is NUW. - if (N->getFlags().hasNoUnsignedWrap()) - return N0; - - if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { - // N1 is either 0 or the minimum signed value. If the sub is NSW, then - // N1 must be 0 because negating the minimum signed value is undefined. - if (N->getFlags().hasNoSignedWrap()) - return N0; - - // 0 - X --> X if X is 0 or the minimum signed value. - return N1; - } + } + + // Iff the flag result is dead: + // (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry) + // Don't do this if the Carry comes from the uaddo. It won't remove the uaddo + // or the dependency between the instructions. + if ((N0.getOpcode() == ISD::ADD || + (N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 && + N0.getValue(1) != CarryIn)) && + isNullConstant(N1) && !N->hasAnyUseOfValue(1)) + return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), + N0.getOperand(0), N0.getOperand(1), CarryIn); + + /** + * When one of the addcarry argument is itself a carry, we may be facing + * a diamond carry propagation. In which case we try to transform the DAG + * to ensure linear carry propagation if that is possible. + */ + if (auto Y = getAsCarry(TLI, N1)) { + // Because both are carries, Y and Z can be swapped. + if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N)) + return R; + if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N)) + return R; + } + + return SDValue(); +} + +// Since it may not be valid to emit a fold to zero for vector initializers +// check if we can before folding. +static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT, + SelectionDAG &DAG, bool LegalOperations) { + if (!VT.isVector()) + return DAG.getConstant(0, DL, VT); + if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) + return DAG.getConstant(0, DL, VT); + return SDValue(); +} + +SDValue DAGCombiner::visitSUB(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (sub x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + } + + // fold (sub x, x) -> 0 + // FIXME: Refactor this and xor and other similar operations together. + if (N0 == N1) + return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + + // fold (sub c1, c2) -> c3 + if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1})) + return C; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); + + // fold (sub x, c) -> (add x, -c) + if (N1C) { + return DAG.getNode(ISD::ADD, DL, VT, N0, + DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); + } + + if (isNullOrNullSplat(N0)) { + unsigned BitWidth = VT.getScalarSizeInBits(); + // Right-shifting everything out but the sign bit followed by negation is + // the same as flipping arithmetic/logical shift type without the negation: + // -(X >>u 31) -> (X >>s 31) + // -(X >>s 31) -> (X >>u 31) + if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) { + ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1)); + if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) { + auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA; + if (!LegalOperations || TLI.isOperationLegal(NewSh, VT)) + return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1)); + } + } + + // 0 - X --> 0 if the sub is NUW. + if (N->getFlags().hasNoUnsignedWrap()) + return N0; + + if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) { + // N1 is either 0 or the minimum signed value. If the sub is NSW, then + // N1 must be 0 because negating the minimum signed value is undefined. + if (N->getFlags().hasNoSignedWrap()) + return N0; + + // 0 - X --> X if X is 0 or the minimum signed value. + return N1; + } // Convert 0 - abs(x). SDValue Result; @@ -3207,394 +3207,394 @@ SDValue DAGCombiner::visitSUB(SDNode *N) { !TLI.isOperationLegalOrCustom(ISD::ABS, VT) && TLI.expandABS(N1.getNode(), Result, DAG, true)) return Result; - } - - // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) - if (isAllOnesOrAllOnesSplat(N0)) - return DAG.getNode(ISD::XOR, DL, VT, N1, N0); - - // fold (A - (0-B)) -> A+B - if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) - return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); - - // fold A-(A-B) -> B - if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) - return N1.getOperand(1); - - // fold (A+B)-A -> B - if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) - return N0.getOperand(1); - - // fold (A+B)-B -> A - if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) - return N0.getOperand(0); - - // fold (A+C1)-C2 -> A+(C1-C2) - if (N0.getOpcode() == ISD::ADD && - isConstantOrConstantVector(N1, /* NoOpaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { - SDValue NewC = - DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); - assert(NewC && "Constant folding failed"); - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); - } - - // fold C2-(A+C1) -> (C2-C1)-A - if (N1.getOpcode() == ISD::ADD) { - SDValue N11 = N1.getOperand(1); - if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && - isConstantOrConstantVector(N11, /* NoOpaques */ true)) { - SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); - assert(NewC && "Constant folding failed"); - return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); - } - } - - // fold (A-C1)-C2 -> A-(C1+C2) - if (N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N1, /* NoOpaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { - SDValue NewC = - DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); - assert(NewC && "Constant folding failed"); - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); - } - - // fold (c1-A)-c2 -> (c1-c2)-A - if (N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N1, /* NoOpaques */ true) && - isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { - SDValue NewC = - DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); - assert(NewC && "Constant folding failed"); - return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); - } - - // fold ((A+(B+or-C))-B) -> A+or-C - if (N0.getOpcode() == ISD::ADD && - (N0.getOperand(1).getOpcode() == ISD::SUB || - N0.getOperand(1).getOpcode() == ISD::ADD) && - N0.getOperand(1).getOperand(0) == N1) - return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(1)); - - // fold ((A+(C+B))-B) -> A+C - if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && - N0.getOperand(1).getOperand(1) == N1) - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(0)); - - // fold ((A-(B-C))-C) -> A-B - if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && - N0.getOperand(1).getOperand(1) == N1) - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), - N0.getOperand(1).getOperand(0)); - - // fold (A-(B-C)) -> A+(C-B) - if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) - return DAG.getNode(ISD::ADD, DL, VT, N0, - DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), - N1.getOperand(0))); - - // A - (A & B) -> A & (~B) - if (N1.getOpcode() == ISD::AND) { - SDValue A = N1.getOperand(0); - SDValue B = N1.getOperand(1); - if (A != N0) - std::swap(A, B); - if (A == N0 && - (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { - SDValue InvB = - DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); - return DAG.getNode(ISD::AND, DL, VT, A, InvB); - } - } - - // fold (X - (-Y * Z)) -> (X + (Y * Z)) - if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { - if (N1.getOperand(0).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, - N1.getOperand(0).getOperand(1), - N1.getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); - } - if (N1.getOperand(1).getOpcode() == ISD::SUB && - isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, - N1.getOperand(0), - N1.getOperand(1).getOperand(1)); - return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); - } - } - - // If either operand of a sub is undef, the result is undef - if (N0.isUndef()) - return N0; - if (N1.isUndef()) - return N1; - - if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) - return V; - - if (SDValue V = foldAddSubOfSignBit(N, DAG)) - return V; - - if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) - return V; - - // (x - y) - 1 -> add (xor y, -1), x - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { - SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), - DAG.getAllOnesConstant(DL, VT)); - return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); - } - - // Look for: - // sub y, (xor x, -1) - // And if the target does not like this form then turn into: - // add (add x, y), 1 - if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); - return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); - } - - // Hoist one-use addition by non-opaque constant: - // (x + C) - y -> (x - y) + C - if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && - isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); - return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); - } - // y - (x + C) -> (y - x) - C - if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && - isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); - return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); - } - // (x - C) - y -> (x - y) - C - // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); - return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); - } - // (C - x) - y -> C - (x + y) - if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && - isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); - return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); - } - - // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' - // rather than 'sub 0/1' (the sext should get folded). - // sub X, (zext i1 Y) --> add X, (sext i1 Y) - if (N1.getOpcode() == ISD::ZERO_EXTEND && - N1.getOperand(0).getScalarValueSizeInBits() == 1 && - TLI.getBooleanContents(VT) == - TargetLowering::ZeroOrNegativeOneBooleanContent) { - SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); - return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); - } - - // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { - if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { - SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); - SDValue S0 = N1.getOperand(0); + } + + // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + if (isAllOnesOrAllOnesSplat(N0)) + return DAG.getNode(ISD::XOR, DL, VT, N1, N0); + + // fold (A - (0-B)) -> A+B + if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0))) + return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1)); + + // fold A-(A-B) -> B + if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0)) + return N1.getOperand(1); + + // fold (A+B)-A -> B + if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) + return N0.getOperand(1); + + // fold (A+B)-B -> A + if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) + return N0.getOperand(0); + + // fold (A+C1)-C2 -> A+(C1-C2) + if (N0.getOpcode() == ISD::ADD && + isConstantOrConstantVector(N1, /* NoOpaques */ true) && + isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { + SDValue NewC = + DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1}); + assert(NewC && "Constant folding failed"); + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC); + } + + // fold C2-(A+C1) -> (C2-C1)-A + if (N1.getOpcode() == ISD::ADD) { + SDValue N11 = N1.getOperand(1); + if (isConstantOrConstantVector(N0, /* NoOpaques */ true) && + isConstantOrConstantVector(N11, /* NoOpaques */ true)) { + SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11}); + assert(NewC && "Constant folding failed"); + return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0)); + } + } + + // fold (A-C1)-C2 -> A-(C1+C2) + if (N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N1, /* NoOpaques */ true) && + isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { + SDValue NewC = + DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1}); + assert(NewC && "Constant folding failed"); + return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC); + } + + // fold (c1-A)-c2 -> (c1-c2)-A + if (N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N1, /* NoOpaques */ true) && + isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) { + SDValue NewC = + DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1}); + assert(NewC && "Constant folding failed"); + return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1)); + } + + // fold ((A+(B+or-C))-B) -> A+or-C + if (N0.getOpcode() == ISD::ADD && + (N0.getOperand(1).getOpcode() == ISD::SUB || + N0.getOperand(1).getOpcode() == ISD::ADD) && + N0.getOperand(1).getOperand(0) == N1) + return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0), + N0.getOperand(1).getOperand(1)); + + // fold ((A+(C+B))-B) -> A+C + if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD && + N0.getOperand(1).getOperand(1) == N1) + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), + N0.getOperand(1).getOperand(0)); + + // fold ((A-(B-C))-C) -> A-B + if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB && + N0.getOperand(1).getOperand(1) == N1) + return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), + N0.getOperand(1).getOperand(0)); + + // fold (A-(B-C)) -> A+(C-B) + if (N1.getOpcode() == ISD::SUB && N1.hasOneUse()) + return DAG.getNode(ISD::ADD, DL, VT, N0, + DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1), + N1.getOperand(0))); + + // A - (A & B) -> A & (~B) + if (N1.getOpcode() == ISD::AND) { + SDValue A = N1.getOperand(0); + SDValue B = N1.getOperand(1); + if (A != N0) + std::swap(A, B); + if (A == N0 && + (N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) { + SDValue InvB = + DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::AND, DL, VT, A, InvB); + } + } + + // fold (X - (-Y * Z)) -> (X + (Y * Z)) + if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) { + if (N1.getOperand(0).getOpcode() == ISD::SUB && + isNullOrNullSplat(N1.getOperand(0).getOperand(0))) { + SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, + N1.getOperand(0).getOperand(1), + N1.getOperand(1)); + return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); + } + if (N1.getOperand(1).getOpcode() == ISD::SUB && + isNullOrNullSplat(N1.getOperand(1).getOperand(0))) { + SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, + N1.getOperand(0), + N1.getOperand(1).getOperand(1)); + return DAG.getNode(ISD::ADD, DL, VT, N0, Mul); + } + } + + // If either operand of a sub is undef, the result is undef + if (N0.isUndef()) + return N0; + if (N1.isUndef()) + return N1; + + if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG)) + return V; + + if (SDValue V = foldAddSubOfSignBit(N, DAG)) + return V; + + if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N))) + return V; + + // (x - y) - 1 -> add (xor y, -1), x + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) { + SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), + DAG.getAllOnesConstant(DL, VT)); + return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0)); + } + + // Look for: + // sub y, (xor x, -1) + // And if the target does not like this form then turn into: + // add (add x, y), 1 + if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) { + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0)); + return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT)); + } + + // Hoist one-use addition by non-opaque constant: + // (x + C) - y -> (x - y) + C + if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD && + isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); + return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1)); + } + // y - (x + C) -> (y - x) - C + if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD && + isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0)); + return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1)); + } + // (x - C) - y -> (x - y) - C + // This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors. + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) { + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1); + return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1)); + } + // (C - x) - y -> C - (x + y) + if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && + isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) { + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1); + return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add); + } + + // If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1' + // rather than 'sub 0/1' (the sext should get folded). + // sub X, (zext i1 Y) --> add X, (sext i1 Y) + if (N1.getOpcode() == ISD::ZERO_EXTEND && + N1.getOperand(0).getScalarValueSizeInBits() == 1 && + TLI.getBooleanContents(VT) == + TargetLowering::ZeroOrNegativeOneBooleanContent) { + SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0)); + return DAG.getNode(ISD::ADD, DL, VT, N0, SExt); + } + + // fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X) + if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { + if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) { + SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1); + SDValue S0 = N1.getOperand(0); if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0)) - if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) + if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1))) if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) - return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); - } - } - - // If the relocation model supports it, consider symbol offsets. - if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) - if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { - // fold (sub Sym, c) -> Sym-c - if (N1C && GA->getOpcode() == ISD::GlobalAddress) - return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, - GA->getOffset() - - (uint64_t)N1C->getSExtValue()); - // fold (sub Sym+c1, Sym+c2) -> c1-c2 - if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) - if (GA->getGlobal() == GB->getGlobal()) - return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), - DL, VT); - } - - // sub X, (sextinreg Y i1) -> add X, (and Y 1) - if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { - VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); - if (TN->getVT() == MVT::i1) { - SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), - DAG.getConstant(1, DL, VT)); - return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); - } - } - - // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) - if (N1.getOpcode() == ISD::VSCALE) { + return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0); + } + } + + // If the relocation model supports it, consider symbol offsets. + if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0)) + if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) { + // fold (sub Sym, c) -> Sym-c + if (N1C && GA->getOpcode() == ISD::GlobalAddress) + return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT, + GA->getOffset() - + (uint64_t)N1C->getSExtValue()); + // fold (sub Sym+c1, Sym+c2) -> c1-c2 + if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1)) + if (GA->getGlobal() == GB->getGlobal()) + return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(), + DL, VT); + } + + // sub X, (sextinreg Y i1) -> add X, (and Y 1) + if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) { + VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1)); + if (TN->getVT() == MVT::i1) { + SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0), + DAG.getConstant(1, DL, VT)); + return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt); + } + } + + // canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C)) + if (N1.getOpcode() == ISD::VSCALE) { const APInt &IntVal = N1.getConstantOperandAPInt(0); - return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); - } - - // Prefer an add for more folding potential and possibly better codegen: - // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) - if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { - SDValue ShAmt = N1.getOperand(1); - ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); - if (ShAmtC && - ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { - SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); - return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); - } - } - - if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { - // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) - if (SDValue Carry = getAsCarry(TLI, N0)) { - SDValue X = N1; - SDValue Zero = DAG.getConstant(0, DL, VT); - SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); - return DAG.getNode(ISD::ADDCARRY, DL, - DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, - Carry); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBSAT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // fold vector ops - if (VT.isVector()) { - // TODO SimplifyVBinOp - - // fold (sub_sat x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (sub_sat x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // fold (sub_sat x, x) -> 0 - if (N0 == N1) - return DAG.getConstant(0, DL, VT); - - // fold (sub_sat c1, c2) -> c3 - if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) - return C; - - // fold (sub_sat x, 0) -> x - if (isNullConstant(N1)) - return N0; - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - SDLoc DL(N); - - // If the flag result is dead, turn this into an SUB. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // fold (subc x, x) -> 0 + no borrow - if (N0 == N1) - return CombineTo(N, DAG.getConstant(0, DL, VT), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // fold (subc x, 0) -> x + no borrow - if (isNullConstant(N1)) - return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow - if (isAllOnesConstant(N0)) - return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), - DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBO(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - bool IsSigned = (ISD::SSUBO == N->getOpcode()); - - EVT CarryVT = N->getValueType(1); - SDLoc DL(N); - - // If the flag result is dead, turn this into an SUB. - if (!N->hasAnyUseOfValue(1)) - return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), - DAG.getUNDEF(CarryVT)); - - // fold (subo x, x) -> 0 + no borrow - if (N0 == N1) - return CombineTo(N, DAG.getConstant(0, DL, VT), - DAG.getConstant(0, DL, CarryVT)); - - ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); - - // fold (subox, c) -> (addo x, -c) - if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { - return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, - DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); - } - - // fold (subo x, 0) -> x + no borrow - if (isNullOrNullSplat(N1)) - return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); - - // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow - if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) - return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), - DAG.getConstant(0, DL, CarryVT)); - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBE(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // fold (sube x, y, false) -> (subc x, y) - if (CarryIn.getOpcode() == ISD::CARRY_FALSE) - return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); - - return SDValue(); -} - -SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue CarryIn = N->getOperand(2); - - // fold (subcarry x, y, false) -> (usubo x, y) - if (isNullConstant(CarryIn)) { - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) - return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); - } - - return SDValue(); -} - + return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal)); + } + + // Prefer an add for more folding potential and possibly better codegen: + // sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1) + if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) { + SDValue ShAmt = N1.getOperand(1); + ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt); + if (ShAmtC && + ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) { + SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt); + return DAG.getNode(ISD::ADD, DL, VT, N0, SRA); + } + } + + if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) { + // (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry) + if (SDValue Carry = getAsCarry(TLI, N0)) { + SDValue X = N1; + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X); + return DAG.getNode(ISD::ADDCARRY, DL, + DAG.getVTList(VT, Carry.getValueType()), NegX, Zero, + Carry); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitSUBSAT(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // fold vector ops + if (VT.isVector()) { + // TODO SimplifyVBinOp + + // fold (sub_sat x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + } + + // fold (sub_sat x, undef) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, DL, VT); + + // fold (sub_sat x, x) -> 0 + if (N0 == N1) + return DAG.getConstant(0, DL, VT); + + // fold (sub_sat c1, c2) -> c3 + if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1})) + return C; + + // fold (sub_sat x, 0) -> x + if (isNullConstant(N1)) + return N0; + + return SDValue(); +} + +SDValue DAGCombiner::visitSUBC(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + SDLoc DL(N); + + // If the flag result is dead, turn this into an SUB. + if (!N->hasAnyUseOfValue(1)) + return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), + DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + // fold (subc x, x) -> 0 + no borrow + if (N0 == N1) + return CombineTo(N, DAG.getConstant(0, DL, VT), + DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + // fold (subc x, 0) -> x + no borrow + if (isNullConstant(N1)) + return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + // Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow + if (isAllOnesConstant(N0)) + return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), + DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue)); + + return SDValue(); +} + +SDValue DAGCombiner::visitSUBO(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + bool IsSigned = (ISD::SSUBO == N->getOpcode()); + + EVT CarryVT = N->getValueType(1); + SDLoc DL(N); + + // If the flag result is dead, turn this into an SUB. + if (!N->hasAnyUseOfValue(1)) + return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1), + DAG.getUNDEF(CarryVT)); + + // fold (subo x, x) -> 0 + no borrow + if (N0 == N1) + return CombineTo(N, DAG.getConstant(0, DL, VT), + DAG.getConstant(0, DL, CarryVT)); + + ConstantSDNode *N1C = getAsNonOpaqueConstant(N1); + + // fold (subox, c) -> (addo x, -c) + if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) { + return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, + DAG.getConstant(-N1C->getAPIntValue(), DL, VT)); + } + + // fold (subo x, 0) -> x + no borrow + if (isNullOrNullSplat(N1)) + return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT)); + + // Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow + if (!IsSigned && isAllOnesOrAllOnesSplat(N0)) + return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0), + DAG.getConstant(0, DL, CarryVT)); + + return SDValue(); +} + +SDValue DAGCombiner::visitSUBE(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CarryIn = N->getOperand(2); + + // fold (sube x, y, false) -> (subc x, y) + if (CarryIn.getOpcode() == ISD::CARRY_FALSE) + return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1); + + return SDValue(); +} + +SDValue DAGCombiner::visitSUBCARRY(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue CarryIn = N->getOperand(2); + + // fold (subcarry x, y, false) -> (usubo x, y) + if (isNullConstant(CarryIn)) { + if (!LegalOperations || + TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0))) + return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1); + } + + return SDValue(); +} + SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); @@ -3610,119 +3610,119 @@ SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) { return SDValue(); } -// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and -// UMULFIXSAT here. -SDValue DAGCombiner::visitMULFIX(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue Scale = N->getOperand(2); - EVT VT = N0.getValueType(); - - // fold (mulfix x, undef, scale) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - // Canonicalize constant to RHS (vector doesn't have to splat) - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); - - // fold (mulfix x, 0, scale) -> 0 - if (isNullConstant(N1)) - return DAG.getConstant(0, SDLoc(N), VT); - - return SDValue(); -} - -SDValue DAGCombiner::visitMUL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - - // fold (mul x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - bool N1IsConst = false; - bool N1IsOpaqueConst = false; - APInt ConstValue1; - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); - assert((!N1IsConst || - ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && - "Splat APInt should be element width"); - } else { - N1IsConst = isa<ConstantSDNode>(N1); - if (N1IsConst) { - ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); - N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); - } - } - - // fold (mul c1, c2) -> c1*c2 - if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) - return C; - - // canonicalize constant to RHS (vector doesn't have to splat) - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); - - // fold (mul x, 0) -> 0 - if (N1IsConst && ConstValue1.isNullValue()) - return N1; - - // fold (mul x, 1) -> x - if (N1IsConst && ConstValue1.isOneValue()) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (mul x, -1) -> 0-x - if (N1IsConst && ConstValue1.isAllOnesValue()) { - SDLoc DL(N); - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getConstant(0, DL, VT), N0); - } - - // fold (mul x, (1 << c)) -> x << c - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1) && - (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { - SDLoc DL(N); - SDValue LogBase2 = BuildLogBase2(N1, DL); - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); - return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); - } - - // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c - if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { - unsigned Log2Val = (-ConstValue1).logBase2(); - SDLoc DL(N); - // FIXME: If the input is something that is easily negated (e.g. a - // single-use add), we should put the negate there. - return DAG.getNode(ISD::SUB, DL, VT, - DAG.getConstant(0, DL, VT), - DAG.getNode(ISD::SHL, DL, VT, N0, - DAG.getConstant(Log2Val, DL, - getShiftAmountTy(N0.getValueType())))); - } - +// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and +// UMULFIXSAT here. +SDValue DAGCombiner::visitMULFIX(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue Scale = N->getOperand(2); + EVT VT = N0.getValueType(); + + // fold (mulfix x, undef, scale) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, SDLoc(N), VT); + + // Canonicalize constant to RHS (vector doesn't have to splat) + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale); + + // fold (mulfix x, 0, scale) -> 0 + if (isNullConstant(N1)) + return DAG.getConstant(0, SDLoc(N), VT); + + return SDValue(); +} + +SDValue DAGCombiner::visitMUL(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + + // fold (mul x, undef) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, SDLoc(N), VT); + + bool N1IsConst = false; + bool N1IsOpaqueConst = false; + APInt ConstValue1; + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1); + assert((!N1IsConst || + ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) && + "Splat APInt should be element width"); + } else { + N1IsConst = isa<ConstantSDNode>(N1); + if (N1IsConst) { + ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue(); + N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque(); + } + } + + // fold (mul c1, c2) -> c1*c2 + if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1})) + return C; + + // canonicalize constant to RHS (vector doesn't have to splat) + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0); + + // fold (mul x, 0) -> 0 + if (N1IsConst && ConstValue1.isNullValue()) + return N1; + + // fold (mul x, 1) -> x + if (N1IsConst && ConstValue1.isOneValue()) + return N0; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // fold (mul x, -1) -> 0-x + if (N1IsConst && ConstValue1.isAllOnesValue()) { + SDLoc DL(N); + return DAG.getNode(ISD::SUB, DL, VT, + DAG.getConstant(0, DL, VT), N0); + } + + // fold (mul x, (1 << c)) -> x << c + if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && + DAG.isKnownToBeAPowerOfTwo(N1) && + (!VT.isVector() || Level <= AfterLegalizeVectorOps)) { + SDLoc DL(N); + SDValue LogBase2 = BuildLogBase2(N1, DL); + EVT ShiftVT = getShiftAmountTy(N0.getValueType()); + SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); + return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc); + } + + // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c + if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) { + unsigned Log2Val = (-ConstValue1).logBase2(); + SDLoc DL(N); + // FIXME: If the input is something that is easily negated (e.g. a + // single-use add), we should put the negate there. + return DAG.getNode(ISD::SUB, DL, VT, + DAG.getConstant(0, DL, VT), + DAG.getNode(ISD::SHL, DL, VT, N0, + DAG.getConstant(Log2Val, DL, + getShiftAmountTy(N0.getValueType())))); + } + // Try to transform: // (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub. - // mul x, (2^N + 1) --> add (shl x, N), x - // mul x, (2^N - 1) --> sub (shl x, N), x - // Examples: x * 33 --> (x << 5) + x - // x * 15 --> (x << 4) - x - // x * -33 --> -((x << 5) + x) - // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) + // mul x, (2^N + 1) --> add (shl x, N), x + // mul x, (2^N - 1) --> sub (shl x, N), x + // Examples: x * 33 --> (x << 5) + x + // x * 15 --> (x << 4) - x + // x * -33 --> -((x << 5) + x) + // x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4) // (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub. // mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M)) // mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M)) @@ -3730,90 +3730,90 @@ SDValue DAGCombiner::visitMUL(SDNode *N) { // x * 0xf800 --> (x << 16) - (x << 11) // x * -0x8800 --> -((x << 15) + (x << 11)) // x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16) - if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { - // TODO: We could handle more general decomposition of any constant by - // having the target set a limit on number of ops and making a - // callback to determine that sequence (similar to sqrt expansion). - unsigned MathOp = ISD::DELETED_NODE; - APInt MulC = ConstValue1.abs(); + if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) { + // TODO: We could handle more general decomposition of any constant by + // having the target set a limit on number of ops and making a + // callback to determine that sequence (similar to sqrt expansion). + unsigned MathOp = ISD::DELETED_NODE; + APInt MulC = ConstValue1.abs(); // The constant `2` should be treated as (2^0 + 1). unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros(); MulC.lshrInPlace(TZeros); - if ((MulC - 1).isPowerOf2()) - MathOp = ISD::ADD; - else if ((MulC + 1).isPowerOf2()) - MathOp = ISD::SUB; - - if (MathOp != ISD::DELETED_NODE) { - unsigned ShAmt = - MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); + if ((MulC - 1).isPowerOf2()) + MathOp = ISD::ADD; + else if ((MulC + 1).isPowerOf2()) + MathOp = ISD::SUB; + + if (MathOp != ISD::DELETED_NODE) { + unsigned ShAmt = + MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2(); ShAmt += TZeros; - assert(ShAmt < VT.getScalarSizeInBits() && - "multiply-by-constant generated out of bounds shift"); - SDLoc DL(N); - SDValue Shl = - DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); + assert(ShAmt < VT.getScalarSizeInBits() && + "multiply-by-constant generated out of bounds shift"); + SDLoc DL(N); + SDValue Shl = + DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT)); SDValue R = TZeros ? DAG.getNode(MathOp, DL, VT, Shl, DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(TZeros, DL, VT))) : DAG.getNode(MathOp, DL, VT, Shl, N0); - if (ConstValue1.isNegative()) - R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); - return R; - } - } - - // (mul (shl X, c1), c2) -> (mul X, c2 << c1) - if (N0.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N1, /* NoOpaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { - SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); - if (isConstantOrConstantVector(C3)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); - } - - // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one - // use. - { - SDValue Sh(nullptr, 0), Y(nullptr, 0); - - // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). - if (N0.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N0.getOperand(1)) && - N0.getNode()->hasOneUse()) { - Sh = N0; Y = N1; - } else if (N1.getOpcode() == ISD::SHL && - isConstantOrConstantVector(N1.getOperand(1)) && - N1.getNode()->hasOneUse()) { - Sh = N1; Y = N0; - } - - if (Sh.getNode()) { - SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); - return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); - } - } - - // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) - if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && - N0.getOpcode() == ISD::ADD && - DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && - isMulAddWithConstProfitable(N, N0, N1)) - return DAG.getNode(ISD::ADD, SDLoc(N), VT, - DAG.getNode(ISD::MUL, SDLoc(N0), VT, - N0.getOperand(0), N1), - DAG.getNode(ISD::MUL, SDLoc(N1), VT, - N0.getOperand(1), N1)); - - // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). - if (N0.getOpcode() == ISD::VSCALE) - if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { + if (ConstValue1.isNegative()) + R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R); + return R; + } + } + + // (mul (shl X, c1), c2) -> (mul X, c2 << c1) + if (N0.getOpcode() == ISD::SHL && + isConstantOrConstantVector(N1, /* NoOpaques */ true) && + isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) { + SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1)); + if (isConstantOrConstantVector(C3)) + return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3); + } + + // Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one + // use. + { + SDValue Sh(nullptr, 0), Y(nullptr, 0); + + // Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)). + if (N0.getOpcode() == ISD::SHL && + isConstantOrConstantVector(N0.getOperand(1)) && + N0.getNode()->hasOneUse()) { + Sh = N0; Y = N1; + } else if (N1.getOpcode() == ISD::SHL && + isConstantOrConstantVector(N1.getOperand(1)) && + N1.getNode()->hasOneUse()) { + Sh = N1; Y = N0; + } + + if (Sh.getNode()) { + SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y); + return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1)); + } + } + + // fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2) + if (DAG.isConstantIntBuildVectorOrConstantInt(N1) && + N0.getOpcode() == ISD::ADD && + DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) && + isMulAddWithConstProfitable(N, N0, N1)) + return DAG.getNode(ISD::ADD, SDLoc(N), VT, + DAG.getNode(ISD::MUL, SDLoc(N0), VT, + N0.getOperand(0), N1), + DAG.getNode(ISD::MUL, SDLoc(N1), VT, + N0.getOperand(1), N1)); + + // Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)). + if (N0.getOpcode() == ISD::VSCALE) + if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) { const APInt &C0 = N0.getConstantOperandAPInt(0); const APInt &C1 = NC1->getAPIntValue(); - return DAG.getVScale(SDLoc(N), VT, C0 * C1); - } - + return DAG.getVScale(SDLoc(N), VT, C0 * C1); + } + // Fold ((mul x, 0/undef) -> 0, // (mul x, 1) -> x) -> x) // -> and(x, mask) @@ -3845,1240 +3845,1240 @@ SDValue DAGCombiner::visitMUL(SDNode *N) { } } - // reassociate mul - if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) - return RMUL; - - return SDValue(); -} - -/// Return true if divmod libcall is available. -static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, - const TargetLowering &TLI) { - RTLIB::Libcall LC; - EVT NodeType = Node->getValueType(0); - if (!NodeType.isSimple()) - return false; - switch (NodeType.getSimpleVT().SimpleTy) { - default: return false; // No libcall for vector types. - case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; - case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; - case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; - case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; - case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; - } - - return TLI.getLibcallName(LC) != nullptr; -} - -/// Issue divrem if both quotient and remainder are needed. -SDValue DAGCombiner::useDivRem(SDNode *Node) { - if (Node->use_empty()) - return SDValue(); // This is a dead node, leave it alone. - - unsigned Opcode = Node->getOpcode(); - bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); - unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; - - // DivMod lib calls can still work on non-legal types if using lib-calls. - EVT VT = Node->getValueType(0); - if (VT.isVector() || !VT.isInteger()) - return SDValue(); - - if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) - return SDValue(); - - // If DIVREM is going to get expanded into a libcall, - // but there is no libcall available, then don't combine. - if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && - !isDivRemLibcallAvailable(Node, isSigned, TLI)) - return SDValue(); - - // If div is legal, it's better to do the normal expansion - unsigned OtherOpcode = 0; - if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { - OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; - if (TLI.isOperationLegalOrCustom(Opcode, VT)) - return SDValue(); - } else { - OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; - if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) - return SDValue(); - } - - SDValue Op0 = Node->getOperand(0); - SDValue Op1 = Node->getOperand(1); - SDValue combined; - for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), - UE = Op0.getNode()->use_end(); UI != UE; ++UI) { - SDNode *User = *UI; - if (User == Node || User->getOpcode() == ISD::DELETED_NODE || - User->use_empty()) - continue; - // Convert the other matching node(s), too; - // otherwise, the DIVREM may get target-legalized into something - // target-specific that we won't be able to recognize. - unsigned UserOpc = User->getOpcode(); - if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && - User->getOperand(0) == Op0 && - User->getOperand(1) == Op1) { - if (!combined) { - if (UserOpc == OtherOpcode) { - SDVTList VTs = DAG.getVTList(VT, VT); - combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); - } else if (UserOpc == DivRemOpc) { - combined = SDValue(User, 0); - } else { - assert(UserOpc == Opcode); - continue; - } - } - if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) - CombineTo(User, combined); - else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) - CombineTo(User, combined.getValue(1)); - } - } - return combined; -} - -static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - unsigned Opc = N->getOpcode(); - bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // X / undef -> undef - // X % undef -> undef - // X / 0 -> undef - // X % 0 -> undef - // NOTE: This includes vectors where any divisor element is zero/undef. - if (DAG.isUndef(Opc, {N0, N1})) - return DAG.getUNDEF(VT); - - // undef / X -> 0 - // undef % X -> 0 - if (N0.isUndef()) - return DAG.getConstant(0, DL, VT); - - // 0 / X -> 0 - // 0 % X -> 0 - ConstantSDNode *N0C = isConstOrConstSplat(N0); - if (N0C && N0C->isNullValue()) - return N0; - - // X / X -> 1 - // X % X -> 0 - if (N0 == N1) - return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); - - // X / 1 -> X - // X % 1 -> 0 - // If this is a boolean op (single-bit element type), we can't have - // division-by-zero or remainder-by-zero, so assume the divisor is 1. - // TODO: Similarly, if we're zero-extending a boolean divisor, then assume - // it's a 1. - if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) - return IsDiv ? N0 : DAG.getConstant(0, DL, VT); - - return SDValue(); -} - -SDValue DAGCombiner::visitSDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - SDLoc DL(N); - - // fold (sdiv c1, c2) -> c1/c2 - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) - return C; - - // fold (sdiv X, -1) -> 0-X - if (N1C && N1C->isAllOnesValue()) - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); - - // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) - if (N1C && N1C->getAPIntValue().isMinSignedValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT)); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // If we know the sign bits of both operands are zero, strength reduce to a - // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 - if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); - - if (SDValue V = visitSDIVLike(N0, N1, N)) { - // If the corresponding remainder node exists, update its users with - // (Dividend - (Quotient * Divisor). - if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), - { N0, N1 })) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(Mul.getNode()); - AddToWorklist(Sub.getNode()); - CombineTo(RemNode, Sub); - } - return V; - } - - // sdiv, srem -> sdivrem - // If the divisor is constant, then return DIVREM only if isIntDivCheap() is - // true. Otherwise, we break the simplification logic in visitREM(). - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue DivRem = useDivRem(N)) - return DivRem; - - return SDValue(); -} - -SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - unsigned BitWidth = VT.getScalarSizeInBits(); - - // Helper for determining whether a value is a power-2 constant scalar or a - // vector of such elements. - auto IsPowerOfTwo = [](ConstantSDNode *C) { - if (C->isNullValue() || C->isOpaque()) - return false; - if (C->getAPIntValue().isPowerOf2()) - return true; - if ((-C->getAPIntValue()).isPowerOf2()) - return true; - return false; - }; - - // fold (sdiv X, pow2) -> simple ops after legalize - // FIXME: We check for the exact bit here because the generic lowering gives - // better results in that case. The target-specific lowering should learn how - // to handle exact sdivs efficiently. - if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { - // Target-specific implementation of sdiv x, pow2. - if (SDValue Res = BuildSDIVPow2(N)) - return Res; - - // Create constants that are functions of the shift amount value. - EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); - SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); - SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); - C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); - SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); - if (!isConstantOrConstantVector(Inexact)) - return SDValue(); - - // Splat the sign bit into the register - SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, - DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); - AddToWorklist(Sign.getNode()); - - // Add (N0 < 0) ? abs2 - 1 : 0; - SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); - AddToWorklist(Srl.getNode()); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); - AddToWorklist(Add.getNode()); - SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); - AddToWorklist(Sra.getNode()); - - // Special case: (sdiv X, 1) -> X - // Special Case: (sdiv X, -1) -> 0-X - SDValue One = DAG.getConstant(1, DL, VT); - SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); - SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); - SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); - SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); - Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); - - // If dividing by a positive value, we're done. Otherwise, the result must - // be negated. - SDValue Zero = DAG.getConstant(0, DL, VT); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); - - // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. - SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); - SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); - return Res; - } - - // If integer divide is expensive and we satisfy the requirements, emit an - // alternate sequence. Targets may check function attributes for size/speed - // trade-offs. - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (isConstantOrConstantVector(N1) && - !TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue Op = BuildSDIV(N)) - return Op; - - return SDValue(); -} - -SDValue DAGCombiner::visitUDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - SDLoc DL(N); - - // fold (udiv c1, c2) -> c1/c2 - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) - return C; - - // fold (udiv X, -1) -> select(X == -1, 1, 0) - if (N1C && N1C->getAPIntValue().isAllOnesValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT)); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (SDValue V = visitUDIVLike(N0, N1, N)) { - // If the corresponding remainder node exists, update its users with - // (Dividend - (Quotient * Divisor). - if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), - { N0, N1 })) { - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(Mul.getNode()); - AddToWorklist(Sub.getNode()); - CombineTo(RemNode, Sub); - } - return V; - } - - // sdiv, srem -> sdivrem - // If the divisor is constant, then return DIVREM only if isIntDivCheap() is - // true. Otherwise, we break the simplification logic in visitREM(). - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue DivRem = useDivRem(N)) - return DivRem; - - return SDValue(); -} - -SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // fold (udiv x, (1 << c)) -> x >>u c - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1)) { - SDValue LogBase2 = BuildLogBase2(N1, DL); - AddToWorklist(LogBase2.getNode()); - - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); - AddToWorklist(Trunc.getNode()); - return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); - } - - // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 - if (N1.getOpcode() == ISD::SHL) { - SDValue N10 = N1.getOperand(0); - if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N10)) { - SDValue LogBase2 = BuildLogBase2(N10, DL); - AddToWorklist(LogBase2.getNode()); - - EVT ADDVT = N1.getOperand(1).getValueType(); - SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); - AddToWorklist(Trunc.getNode()); - SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::SRL, DL, VT, N0, Add); - } - } - - // fold (udiv x, c) -> alternate - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - if (isConstantOrConstantVector(N1) && - !TLI.isIntDivCheap(N->getValueType(0), Attr)) - if (SDValue Op = BuildUDIV(N)) - return Op; - - return SDValue(); -} - -// handles ISD::SREM and ISD::UREM -SDValue DAGCombiner::visitREM(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT CCVT = getSetCCResultType(VT); - - bool isSigned = (Opcode == ISD::SREM); - SDLoc DL(N); - - // fold (rem c1, c2) -> c1%c2 - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) - return C; - - // fold (urem X, -1) -> select(X == -1, 0, x) - if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) - return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), - DAG.getConstant(0, DL, VT), N0); - - if (SDValue V = simplifyDivRem(N, DAG)) - return V; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (isSigned) { - // If we know the sign bits of both operands are zero, strength reduce to a - // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 - if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UREM, DL, VT, N0, N1); - } else { - if (DAG.isKnownToBeAPowerOfTwo(N1)) { - // fold (urem x, pow2) -> (and x, pow2-1) + // reassociate mul + if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags())) + return RMUL; + + return SDValue(); +} + +/// Return true if divmod libcall is available. +static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned, + const TargetLowering &TLI) { + RTLIB::Libcall LC; + EVT NodeType = Node->getValueType(0); + if (!NodeType.isSimple()) + return false; + switch (NodeType.getSimpleVT().SimpleTy) { + default: return false; // No libcall for vector types. + case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; + case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; + case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; + case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; + case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; + } + + return TLI.getLibcallName(LC) != nullptr; +} + +/// Issue divrem if both quotient and remainder are needed. +SDValue DAGCombiner::useDivRem(SDNode *Node) { + if (Node->use_empty()) + return SDValue(); // This is a dead node, leave it alone. + + unsigned Opcode = Node->getOpcode(); + bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM); + unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; + + // DivMod lib calls can still work on non-legal types if using lib-calls. + EVT VT = Node->getValueType(0); + if (VT.isVector() || !VT.isInteger()) + return SDValue(); + + if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT)) + return SDValue(); + + // If DIVREM is going to get expanded into a libcall, + // but there is no libcall available, then don't combine. + if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) && + !isDivRemLibcallAvailable(Node, isSigned, TLI)) + return SDValue(); + + // If div is legal, it's better to do the normal expansion + unsigned OtherOpcode = 0; + if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) { + OtherOpcode = isSigned ? ISD::SREM : ISD::UREM; + if (TLI.isOperationLegalOrCustom(Opcode, VT)) + return SDValue(); + } else { + OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV; + if (TLI.isOperationLegalOrCustom(OtherOpcode, VT)) + return SDValue(); + } + + SDValue Op0 = Node->getOperand(0); + SDValue Op1 = Node->getOperand(1); + SDValue combined; + for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), + UE = Op0.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + if (User == Node || User->getOpcode() == ISD::DELETED_NODE || + User->use_empty()) + continue; + // Convert the other matching node(s), too; + // otherwise, the DIVREM may get target-legalized into something + // target-specific that we won't be able to recognize. + unsigned UserOpc = User->getOpcode(); + if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) && + User->getOperand(0) == Op0 && + User->getOperand(1) == Op1) { + if (!combined) { + if (UserOpc == OtherOpcode) { + SDVTList VTs = DAG.getVTList(VT, VT); + combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1); + } else if (UserOpc == DivRemOpc) { + combined = SDValue(User, 0); + } else { + assert(UserOpc == Opcode); + continue; + } + } + if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV) + CombineTo(User, combined); + else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM) + CombineTo(User, combined.getValue(1)); + } + } + return combined; +} + +static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + unsigned Opc = N->getOpcode(); + bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc); + ConstantSDNode *N1C = isConstOrConstSplat(N1); + + // X / undef -> undef + // X % undef -> undef + // X / 0 -> undef + // X % 0 -> undef + // NOTE: This includes vectors where any divisor element is zero/undef. + if (DAG.isUndef(Opc, {N0, N1})) + return DAG.getUNDEF(VT); + + // undef / X -> 0 + // undef % X -> 0 + if (N0.isUndef()) + return DAG.getConstant(0, DL, VT); + + // 0 / X -> 0 + // 0 % X -> 0 + ConstantSDNode *N0C = isConstOrConstSplat(N0); + if (N0C && N0C->isNullValue()) + return N0; + + // X / X -> 1 + // X % X -> 0 + if (N0 == N1) + return DAG.getConstant(IsDiv ? 1 : 0, DL, VT); + + // X / 1 -> X + // X % 1 -> 0 + // If this is a boolean op (single-bit element type), we can't have + // division-by-zero or remainder-by-zero, so assume the divisor is 1. + // TODO: Similarly, if we're zero-extending a boolean divisor, then assume + // it's a 1. + if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1)) + return IsDiv ? N0 : DAG.getConstant(0, DL, VT); + + return SDValue(); +} + +SDValue DAGCombiner::visitSDIV(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT CCVT = getSetCCResultType(VT); + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + SDLoc DL(N); + + // fold (sdiv c1, c2) -> c1/c2 + ConstantSDNode *N1C = isConstOrConstSplat(N1); + if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1})) + return C; + + // fold (sdiv X, -1) -> 0-X + if (N1C && N1C->isAllOnesValue()) + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0); + + // fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0) + if (N1C && N1C->getAPIntValue().isMinSignedValue()) + return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), + DAG.getConstant(1, DL, VT), + DAG.getConstant(0, DL, VT)); + + if (SDValue V = simplifyDivRem(N, DAG)) + return V; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // If we know the sign bits of both operands are zero, strength reduce to a + // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 + if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1); + + if (SDValue V = visitSDIVLike(N0, N1, N)) { + // If the corresponding remainder node exists, update its users with + // (Dividend - (Quotient * Divisor). + if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(), + { N0, N1 })) { + SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); + AddToWorklist(Mul.getNode()); + AddToWorklist(Sub.getNode()); + CombineTo(RemNode, Sub); + } + return V; + } + + // sdiv, srem -> sdivrem + // If the divisor is constant, then return DIVREM only if isIntDivCheap() is + // true. Otherwise, we break the simplification logic in visitREM(). + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) + if (SDValue DivRem = useDivRem(N)) + return DivRem; + + return SDValue(); +} + +SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + EVT CCVT = getSetCCResultType(VT); + unsigned BitWidth = VT.getScalarSizeInBits(); + + // Helper for determining whether a value is a power-2 constant scalar or a + // vector of such elements. + auto IsPowerOfTwo = [](ConstantSDNode *C) { + if (C->isNullValue() || C->isOpaque()) + return false; + if (C->getAPIntValue().isPowerOf2()) + return true; + if ((-C->getAPIntValue()).isPowerOf2()) + return true; + return false; + }; + + // fold (sdiv X, pow2) -> simple ops after legalize + // FIXME: We check for the exact bit here because the generic lowering gives + // better results in that case. The target-specific lowering should learn how + // to handle exact sdivs efficiently. + if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) { + // Target-specific implementation of sdiv x, pow2. + if (SDValue Res = BuildSDIVPow2(N)) + return Res; + + // Create constants that are functions of the shift amount value. + EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); + SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy); + SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1); + C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy); + SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1); + if (!isConstantOrConstantVector(Inexact)) + return SDValue(); + + // Splat the sign bit into the register + SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0, + DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy)); + AddToWorklist(Sign.getNode()); + + // Add (N0 < 0) ? abs2 - 1 : 0; + SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact); + AddToWorklist(Srl.getNode()); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl); + AddToWorklist(Add.getNode()); + SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1); + AddToWorklist(Sra.getNode()); + + // Special case: (sdiv X, 1) -> X + // Special Case: (sdiv X, -1) -> 0-X + SDValue One = DAG.getConstant(1, DL, VT); + SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); + SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ); + SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ); + SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes); + Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra); + + // If dividing by a positive value, we're done. Otherwise, the result must + // be negated. + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra); + + // FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding. + SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT); + SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra); + return Res; + } + + // If integer divide is expensive and we satisfy the requirements, emit an + // alternate sequence. Targets may check function attributes for size/speed + // trade-offs. + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + if (isConstantOrConstantVector(N1) && + !TLI.isIntDivCheap(N->getValueType(0), Attr)) + if (SDValue Op = BuildSDIV(N)) + return Op; + + return SDValue(); +} + +SDValue DAGCombiner::visitUDIV(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT CCVT = getSetCCResultType(VT); + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + SDLoc DL(N); + + // fold (udiv c1, c2) -> c1/c2 + ConstantSDNode *N1C = isConstOrConstSplat(N1); + if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1})) + return C; + + // fold (udiv X, -1) -> select(X == -1, 1, 0) + if (N1C && N1C->getAPIntValue().isAllOnesValue()) + return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), + DAG.getConstant(1, DL, VT), + DAG.getConstant(0, DL, VT)); + + if (SDValue V = simplifyDivRem(N, DAG)) + return V; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + if (SDValue V = visitUDIVLike(N0, N1, N)) { + // If the corresponding remainder node exists, update its users with + // (Dividend - (Quotient * Divisor). + if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(), + { N0, N1 })) { + SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1); + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); + AddToWorklist(Mul.getNode()); + AddToWorklist(Sub.getNode()); + CombineTo(RemNode, Sub); + } + return V; + } + + // sdiv, srem -> sdivrem + // If the divisor is constant, then return DIVREM only if isIntDivCheap() is + // true. Otherwise, we break the simplification logic in visitREM(). + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr)) + if (SDValue DivRem = useDivRem(N)) + return DivRem; + + return SDValue(); +} + +SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // fold (udiv x, (1 << c)) -> x >>u c + if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && + DAG.isKnownToBeAPowerOfTwo(N1)) { + SDValue LogBase2 = BuildLogBase2(N1, DL); + AddToWorklist(LogBase2.getNode()); + + EVT ShiftVT = getShiftAmountTy(N0.getValueType()); + SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT); + AddToWorklist(Trunc.getNode()); + return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); + } + + // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 + if (N1.getOpcode() == ISD::SHL) { + SDValue N10 = N1.getOperand(0); + if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) && + DAG.isKnownToBeAPowerOfTwo(N10)) { + SDValue LogBase2 = BuildLogBase2(N10, DL); + AddToWorklist(LogBase2.getNode()); + + EVT ADDVT = N1.getOperand(1).getValueType(); + SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT); + AddToWorklist(Trunc.getNode()); + SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc); + AddToWorklist(Add.getNode()); + return DAG.getNode(ISD::SRL, DL, VT, N0, Add); + } + } + + // fold (udiv x, c) -> alternate + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + if (isConstantOrConstantVector(N1) && + !TLI.isIntDivCheap(N->getValueType(0), Attr)) + if (SDValue Op = BuildUDIV(N)) + return Op; + + return SDValue(); +} + +// handles ISD::SREM and ISD::UREM +SDValue DAGCombiner::visitREM(SDNode *N) { + unsigned Opcode = N->getOpcode(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT CCVT = getSetCCResultType(VT); + + bool isSigned = (Opcode == ISD::SREM); + SDLoc DL(N); + + // fold (rem c1, c2) -> c1%c2 + ConstantSDNode *N1C = isConstOrConstSplat(N1); + if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1})) + return C; + + // fold (urem X, -1) -> select(X == -1, 0, x) + if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue()) + return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ), + DAG.getConstant(0, DL, VT), N0); + + if (SDValue V = simplifyDivRem(N, DAG)) + return V; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + if (isSigned) { + // If we know the sign bits of both operands are zero, strength reduce to a + // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 + if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::UREM, DL, VT, N0, N1); + } else { + if (DAG.isKnownToBeAPowerOfTwo(N1)) { + // fold (urem x, pow2) -> (and x, pow2-1) SDValue NegOne = DAG.getAllOnesConstant(DL, VT); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0, Add); - } - if (N1.getOpcode() == ISD::SHL && - DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { - // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); + AddToWorklist(Add.getNode()); + return DAG.getNode(ISD::AND, DL, VT, N0, Add); + } + if (N1.getOpcode() == ISD::SHL && + DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) { + // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) SDValue NegOne = DAG.getAllOnesConstant(DL, VT); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0, Add); - } - } - - AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); - - // If X/C can be simplified by the division-by-constant logic, lower - // X%C to the equivalent of X-X/C*C. - // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the - // speculative DIV must not cause a DIVREM conversion. We guard against this - // by skipping the simplification if isIntDivCheap(). When div is not cheap, - // combine will not return a DIVREM. Regardless, checking cheapness here - // makes sense since the simplification results in fatter code. - if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { - SDValue OptimizedDiv = - isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); - if (OptimizedDiv.getNode()) { - // If the equivalent Div node also exists, update its users. - unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; - if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), - { N0, N1 })) - CombineTo(DivNode, OptimizedDiv); - SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); - SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); - AddToWorklist(OptimizedDiv.getNode()); - AddToWorklist(Mul.getNode()); - return Sub; - } - } - - // sdiv, srem -> sdivrem - if (SDValue DivRem = useDivRem(N)) - return DivRem.getValue(1); - - return SDValue(); -} - -SDValue DAGCombiner::visitMULHS(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (VT.isVector()) { - // fold (mulhs x, 0) -> 0 - // do not return N0/N1, because undef node may exist. - if (ISD::isBuildVectorAllZeros(N0.getNode()) || - ISD::isBuildVectorAllZeros(N1.getNode())) - return DAG.getConstant(0, DL, VT); - } - - // fold (mulhs x, 0) -> 0 - if (isNullConstant(N1)) - return N1; - // fold (mulhs x, 1) -> (sra x, size(x)-1) - if (isOneConstant(N1)) - return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, - DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, - getShiftAmountTy(N0.getValueType()))); - - // fold (mulhs x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // If the type twice as wide is legal, transform the mulhs to a wider multiply - // plus a shift. + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne); + AddToWorklist(Add.getNode()); + return DAG.getNode(ISD::AND, DL, VT, N0, Add); + } + } + + AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); + + // If X/C can be simplified by the division-by-constant logic, lower + // X%C to the equivalent of X-X/C*C. + // Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the + // speculative DIV must not cause a DIVREM conversion. We guard against this + // by skipping the simplification if isIntDivCheap(). When div is not cheap, + // combine will not return a DIVREM. Regardless, checking cheapness here + // makes sense since the simplification results in fatter code. + if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) { + SDValue OptimizedDiv = + isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N); + if (OptimizedDiv.getNode()) { + // If the equivalent Div node also exists, update its users. + unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV; + if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(), + { N0, N1 })) + CombineTo(DivNode, OptimizedDiv); + SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1); + SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul); + AddToWorklist(OptimizedDiv.getNode()); + AddToWorklist(Mul.getNode()); + return Sub; + } + } + + // sdiv, srem -> sdivrem + if (SDValue DivRem = useDivRem(N)) + return DivRem.getValue(1); + + return SDValue(); +} + +SDValue DAGCombiner::visitMULHS(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if (VT.isVector()) { + // fold (mulhs x, 0) -> 0 + // do not return N0/N1, because undef node may exist. + if (ISD::isBuildVectorAllZeros(N0.getNode()) || + ISD::isBuildVectorAllZeros(N1.getNode())) + return DAG.getConstant(0, DL, VT); + } + + // fold (mulhs x, 0) -> 0 + if (isNullConstant(N1)) + return N1; + // fold (mulhs x, 1) -> (sra x, size(x)-1) + if (isOneConstant(N1)) + return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0, + DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL, + getShiftAmountTy(N0.getValueType()))); + + // fold (mulhs x, undef) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, DL, VT); + + // If the type twice as wide is legal, transform the mulhs to a wider multiply + // plus a shift. if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); - N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); - N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); - N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(N1.getValueType()))); - return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitMULHU(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (VT.isVector()) { - // fold (mulhu x, 0) -> 0 - // do not return N0/N1, because undef node may exist. - if (ISD::isBuildVectorAllZeros(N0.getNode()) || - ISD::isBuildVectorAllZeros(N1.getNode())) - return DAG.getConstant(0, DL, VT); - } - - // fold (mulhu x, 0) -> 0 - if (isNullConstant(N1)) - return N1; - // fold (mulhu x, 1) -> 0 - if (isOneConstant(N1)) - return DAG.getConstant(0, DL, N0.getValueType()); - // fold (mulhu x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) - if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && - DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { - unsigned NumEltBits = VT.getScalarSizeInBits(); - SDValue LogBase2 = BuildLogBase2(N1, DL); - SDValue SRLAmt = DAG.getNode( - ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); - EVT ShiftVT = getShiftAmountTy(N0.getValueType()); - SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); - return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); - } - - // If the type twice as wide is legal, transform the mulhu to a wider multiply - // plus a shift. + MVT Simple = VT.getSimpleVT(); + unsigned SimpleSize = Simple.getSizeInBits(); + EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); + if (TLI.isOperationLegal(ISD::MUL, NewVT)) { + N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0); + N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1); + N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); + N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, + DAG.getConstant(SimpleSize, DL, + getShiftAmountTy(N1.getValueType()))); + return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitMULHU(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if (VT.isVector()) { + // fold (mulhu x, 0) -> 0 + // do not return N0/N1, because undef node may exist. + if (ISD::isBuildVectorAllZeros(N0.getNode()) || + ISD::isBuildVectorAllZeros(N1.getNode())) + return DAG.getConstant(0, DL, VT); + } + + // fold (mulhu x, 0) -> 0 + if (isNullConstant(N1)) + return N1; + // fold (mulhu x, 1) -> 0 + if (isOneConstant(N1)) + return DAG.getConstant(0, DL, N0.getValueType()); + // fold (mulhu x, undef) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, DL, VT); + + // fold (mulhu x, (1 << c)) -> x >> (bitwidth - c) + if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) && + DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) { + unsigned NumEltBits = VT.getScalarSizeInBits(); + SDValue LogBase2 = BuildLogBase2(N1, DL); + SDValue SRLAmt = DAG.getNode( + ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2); + EVT ShiftVT = getShiftAmountTy(N0.getValueType()); + SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT); + return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc); + } + + // If the type twice as wide is legal, transform the mulhu to a wider multiply + // plus a shift. if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); - N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); - N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); - N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(N1.getValueType()))); - return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); - } - } - - return SDValue(); -} - -/// Perform optimizations common to nodes that compute two values. LoOp and HiOp -/// give the opcodes for the two computations that are being performed. Return -/// true if a simplification was made. -SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, - unsigned HiOp) { - // If the high half is not needed, just compute the low half. - bool HiExists = N->hasAnyUseOfValue(1); - if (!HiExists && (!LegalOperations || - TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { - SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); - return CombineTo(N, Res, Res); - } - - // If the low half is not needed, just compute the high half. - bool LoExists = N->hasAnyUseOfValue(0); - if (!LoExists && (!LegalOperations || - TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { - SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); - return CombineTo(N, Res, Res); - } - - // If both halves are used, return as it is. - if (LoExists && HiExists) - return SDValue(); - - // If the two computed results can be simplified separately, separate them. - if (LoExists) { - SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); - AddToWorklist(Lo.getNode()); - SDValue LoOpt = combine(Lo.getNode()); - if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && - (!LegalOperations || - TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) - return CombineTo(N, LoOpt, LoOpt); - } - - if (HiExists) { - SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); - AddToWorklist(Hi.getNode()); - SDValue HiOpt = combine(Hi.getNode()); - if (HiOpt.getNode() && HiOpt != Hi && - (!LegalOperations || - TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) - return CombineTo(N, HiOpt, HiOpt); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { - if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) - return Res; - - EVT VT = N->getValueType(0); - SDLoc DL(N); - - // If the type is twice as wide is legal, transform the mulhu to a wider - // multiply plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); - SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); - Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); - // Compute the high part as N1. - Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(Lo.getValueType()))); - Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); - // Compute the low part as N0. - Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); - return CombineTo(N, Lo, Hi); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { - if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) - return Res; - - EVT VT = N->getValueType(0); - SDLoc DL(N); - - // (umul_lohi N0, 0) -> (0, 0) - if (isNullConstant(N->getOperand(1))) { - SDValue Zero = DAG.getConstant(0, DL, VT); - return CombineTo(N, Zero, Zero); - } - - // (umul_lohi N0, 1) -> (N0, 0) - if (isOneConstant(N->getOperand(1))) { - SDValue Zero = DAG.getConstant(0, DL, VT); - return CombineTo(N, N->getOperand(0), Zero); - } - - // If the type is twice as wide is legal, transform the mulhu to a wider - // multiply plus a shift. - if (VT.isSimple() && !VT.isVector()) { - MVT Simple = VT.getSimpleVT(); - unsigned SimpleSize = Simple.getSizeInBits(); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); - if (TLI.isOperationLegal(ISD::MUL, NewVT)) { - SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); - SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); - Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); - // Compute the high part as N1. - Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, - DAG.getConstant(SimpleSize, DL, - getShiftAmountTy(Lo.getValueType()))); - Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); - // Compute the low part as N0. - Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); - return CombineTo(N, Lo, Hi); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitMULO(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - bool IsSigned = (ISD::SMULO == N->getOpcode()); - - EVT CarryVT = N->getValueType(1); - SDLoc DL(N); - - // canonicalize constant to RHS. - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); - - // fold (mulo x, 0) -> 0 + no carry out - if (isNullOrNullSplat(N1)) - return CombineTo(N, DAG.getConstant(0, DL, VT), - DAG.getConstant(0, DL, CarryVT)); - - // (mulo x, 2) -> (addo x, x) - if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) - if (C2->getAPIntValue() == 2) - return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, - N->getVTList(), N0, N0); - - return SDValue(); -} - -SDValue DAGCombiner::visitIMINMAX(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - unsigned Opcode = N->getOpcode(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold operation with constant operands. - if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) - return C; - - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); - - // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. - // Only do this if the current op isn't legal and the flipped is. - if (!TLI.isOperationLegal(Opcode, VT) && - (N0.isUndef() || DAG.SignBitIsZero(N0)) && - (N1.isUndef() || DAG.SignBitIsZero(N1))) { - unsigned AltOpcode; - switch (Opcode) { - case ISD::SMIN: AltOpcode = ISD::UMIN; break; - case ISD::SMAX: AltOpcode = ISD::UMAX; break; - case ISD::UMIN: AltOpcode = ISD::SMIN; break; - case ISD::UMAX: AltOpcode = ISD::SMAX; break; - default: llvm_unreachable("Unknown MINMAX opcode"); - } - if (TLI.isOperationLegal(AltOpcode, VT)) - return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); - } - + MVT Simple = VT.getSimpleVT(); + unsigned SimpleSize = Simple.getSizeInBits(); + EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); + if (TLI.isOperationLegal(ISD::MUL, NewVT)) { + N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0); + N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1); + N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1); + N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1, + DAG.getConstant(SimpleSize, DL, + getShiftAmountTy(N1.getValueType()))); + return DAG.getNode(ISD::TRUNCATE, DL, VT, N1); + } + } + + return SDValue(); +} + +/// Perform optimizations common to nodes that compute two values. LoOp and HiOp +/// give the opcodes for the two computations that are being performed. Return +/// true if a simplification was made. +SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp, + unsigned HiOp) { + // If the high half is not needed, just compute the low half. + bool HiExists = N->hasAnyUseOfValue(1); + if (!HiExists && (!LegalOperations || + TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) { + SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); + return CombineTo(N, Res, Res); + } + + // If the low half is not needed, just compute the high half. + bool LoExists = N->hasAnyUseOfValue(0); + if (!LoExists && (!LegalOperations || + TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) { + SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); + return CombineTo(N, Res, Res); + } + + // If both halves are used, return as it is. + if (LoExists && HiExists) + return SDValue(); + + // If the two computed results can be simplified separately, separate them. + if (LoExists) { + SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops()); + AddToWorklist(Lo.getNode()); + SDValue LoOpt = combine(Lo.getNode()); + if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() && + (!LegalOperations || + TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType()))) + return CombineTo(N, LoOpt, LoOpt); + } + + if (HiExists) { + SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops()); + AddToWorklist(Hi.getNode()); + SDValue HiOpt = combine(Hi.getNode()); + if (HiOpt.getNode() && HiOpt != Hi && + (!LegalOperations || + TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType()))) + return CombineTo(N, HiOpt, HiOpt); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) { + if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS)) + return Res; + + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // If the type is twice as wide is legal, transform the mulhu to a wider + // multiply plus a shift. + if (VT.isSimple() && !VT.isVector()) { + MVT Simple = VT.getSimpleVT(); + unsigned SimpleSize = Simple.getSizeInBits(); + EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); + if (TLI.isOperationLegal(ISD::MUL, NewVT)) { + SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0)); + SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1)); + Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); + // Compute the high part as N1. + Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, + DAG.getConstant(SimpleSize, DL, + getShiftAmountTy(Lo.getValueType()))); + Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); + // Compute the low part as N0. + Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); + return CombineTo(N, Lo, Hi); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) { + if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU)) + return Res; + + EVT VT = N->getValueType(0); + SDLoc DL(N); + + // (umul_lohi N0, 0) -> (0, 0) + if (isNullConstant(N->getOperand(1))) { + SDValue Zero = DAG.getConstant(0, DL, VT); + return CombineTo(N, Zero, Zero); + } + + // (umul_lohi N0, 1) -> (N0, 0) + if (isOneConstant(N->getOperand(1))) { + SDValue Zero = DAG.getConstant(0, DL, VT); + return CombineTo(N, N->getOperand(0), Zero); + } + + // If the type is twice as wide is legal, transform the mulhu to a wider + // multiply plus a shift. + if (VT.isSimple() && !VT.isVector()) { + MVT Simple = VT.getSimpleVT(); + unsigned SimpleSize = Simple.getSizeInBits(); + EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2); + if (TLI.isOperationLegal(ISD::MUL, NewVT)) { + SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0)); + SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1)); + Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi); + // Compute the high part as N1. + Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo, + DAG.getConstant(SimpleSize, DL, + getShiftAmountTy(Lo.getValueType()))); + Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi); + // Compute the low part as N0. + Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo); + return CombineTo(N, Lo, Hi); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitMULO(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + bool IsSigned = (ISD::SMULO == N->getOpcode()); + + EVT CarryVT = N->getValueType(1); + SDLoc DL(N); + + // canonicalize constant to RHS. + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0); + + // fold (mulo x, 0) -> 0 + no carry out + if (isNullOrNullSplat(N1)) + return CombineTo(N, DAG.getConstant(0, DL, VT), + DAG.getConstant(0, DL, CarryVT)); + + // (mulo x, 2) -> (addo x, x) + if (ConstantSDNode *C2 = isConstOrConstSplat(N1)) + if (C2->getAPIntValue() == 2) + return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL, + N->getVTList(), N0, N0); + + return SDValue(); +} + +SDValue DAGCombiner::visitIMINMAX(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + unsigned Opcode = N->getOpcode(); + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold operation with constant operands. + if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1})) + return C; + + // canonicalize constant to RHS + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); + + // Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX. + // Only do this if the current op isn't legal and the flipped is. + if (!TLI.isOperationLegal(Opcode, VT) && + (N0.isUndef() || DAG.SignBitIsZero(N0)) && + (N1.isUndef() || DAG.SignBitIsZero(N1))) { + unsigned AltOpcode; + switch (Opcode) { + case ISD::SMIN: AltOpcode = ISD::UMIN; break; + case ISD::SMAX: AltOpcode = ISD::UMAX; break; + case ISD::UMIN: AltOpcode = ISD::SMIN; break; + case ISD::UMAX: AltOpcode = ISD::SMAX; break; + default: llvm_unreachable("Unknown MINMAX opcode"); + } + if (TLI.isOperationLegal(AltOpcode, VT)) + return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1); + } + // Simplify the operands using demanded-bits information. if (SimplifyDemandedBits(SDValue(N, 0))) return SDValue(N, 0); - return SDValue(); -} - -/// If this is a bitwise logic instruction and both operands have the same -/// opcode, try to sink the other opcode after the logic instruction. -SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { - SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - unsigned LogicOpcode = N->getOpcode(); - unsigned HandOpcode = N0.getOpcode(); - assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || - LogicOpcode == ISD::XOR) && "Expected logic opcode"); - assert(HandOpcode == N1.getOpcode() && "Bad input!"); - - // Bail early if none of these transforms apply. - if (N0.getNumOperands() == 0) - return SDValue(); - - // FIXME: We should check number of uses of the operands to not increase - // the instruction count for all transforms. - - // Handle size-changing casts. - SDValue X = N0.getOperand(0); - SDValue Y = N1.getOperand(0); - EVT XVT = X.getValueType(); - SDLoc DL(N); - if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || - HandOpcode == ISD::SIGN_EXTEND) { - // If both operands have other uses, this transform would create extra - // instructions without eliminating anything. - if (!N0.hasOneUse() && !N1.hasOneUse()) - return SDValue(); - // We need matching integer source types. - if (XVT != Y.getValueType()) - return SDValue(); - // Don't create an illegal op during or after legalization. Don't ever - // create an unsupported vector op. - if ((VT.isVector() || LegalOperations) && - !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) - return SDValue(); - // Avoid infinite looping with PromoteIntBinOp. - // TODO: Should we apply desirable/legal constraints to all opcodes? - if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && - !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) - return SDValue(); - // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) - if (HandOpcode == ISD::TRUNCATE) { - // If both operands have other uses, this transform would create extra - // instructions without eliminating anything. - if (!N0.hasOneUse() && !N1.hasOneUse()) - return SDValue(); - // We need matching source types. - if (XVT != Y.getValueType()) - return SDValue(); - // Don't create an illegal op during or after legalization. - if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) - return SDValue(); - // Be extra careful sinking truncate. If it's free, there's no benefit in - // widening a binop. Also, don't create a logic op on an illegal type. - if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) - return SDValue(); - if (!TLI.isTypeLegal(XVT)) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // For binops SHL/SRL/SRA/AND: - // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z - if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || - HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && - N0.getOperand(1) == N1.getOperand(1)) { - // If either operand has other uses, this transform is not an improvement. - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); - } - - // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) - if (HandOpcode == ISD::BSWAP) { - // If either operand has other uses, this transform is not an improvement. - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - - // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) - // Only perform this optimization up until type legalization, before - // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by - // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and - // we don't want to undo this promotion. - // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper - // on scalars. - if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && - Level <= AfterLegalizeTypes) { - // Input types must be integer and the same. - if (XVT.isInteger() && XVT == Y.getValueType() && - !(VT.isVector() && TLI.isTypeLegal(VT) && - !XVT.isVector() && !TLI.isTypeLegal(XVT))) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); - return DAG.getNode(HandOpcode, DL, VT, Logic); - } - } - - // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). - // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) - // If both shuffles use the same mask, and both shuffle within a single - // vector, then it is worthwhile to move the swizzle after the operation. - // The type-legalizer generates this pattern when loading illegal - // vector types from memory. In many cases this allows additional shuffle - // optimizations. - // There are other cases where moving the shuffle after the xor/and/or - // is profitable even if shuffles don't perform a swizzle. - // If both shuffles use the same mask, and both shuffles have the same first - // or second operand, then it might still be profitable to move the shuffle - // after the xor/and/or operation. - if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { - auto *SVN0 = cast<ShuffleVectorSDNode>(N0); - auto *SVN1 = cast<ShuffleVectorSDNode>(N1); - assert(X.getValueType() == Y.getValueType() && - "Inputs to shuffles are not the same type"); - - // Check that both shuffles use the same mask. The masks are known to be of - // the same length because the result vector type is the same. - // Check also that shuffles have only one use to avoid introducing extra - // instructions. - if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || - !SVN0->getMask().equals(SVN1->getMask())) - return SDValue(); - - // Don't try to fold this node if it requires introducing a - // build vector of all zeros that might be illegal at this stage. - SDValue ShOp = N0.getOperand(1); - if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) - ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) - if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, - N0.getOperand(0), N1.getOperand(0)); - return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); - } - - // Don't try to fold this node if it requires introducing a - // build vector of all zeros that might be illegal at this stage. - ShOp = N0.getOperand(0); - if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) - ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) - if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { - SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), - N1.getOperand(1)); - return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); - } - } - - return SDValue(); -} - -/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. -SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, - const SDLoc &DL) { - SDValue LL, LR, RL, RR, N0CC, N1CC; - if (!isSetCCEquivalent(N0, LL, LR, N0CC) || - !isSetCCEquivalent(N1, RL, RR, N1CC)) - return SDValue(); - - assert(N0.getValueType() == N1.getValueType() && - "Unexpected operand types for bitwise logic op"); - assert(LL.getValueType() == LR.getValueType() && - RL.getValueType() == RR.getValueType() && - "Unexpected operand types for setcc"); - - // If we're here post-legalization or the logic op type is not i1, the logic - // op type must match a setcc result type. Also, all folds require new - // operations on the left and right operands, so those types must match. - EVT VT = N0.getValueType(); - EVT OpVT = LL.getValueType(); - if (LegalOperations || VT.getScalarType() != MVT::i1) - if (VT != getSetCCResultType(OpVT)) - return SDValue(); - if (OpVT != RL.getValueType()) - return SDValue(); - - ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); - ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); - bool IsInteger = OpVT.isInteger(); - if (LR == RR && CC0 == CC1 && IsInteger) { - bool IsZero = isNullOrNullSplat(LR); - bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); - - // All bits clear? - bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; - // All sign bits clear? - bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; - // Any bits set? - bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; - // Any sign bits set? - bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; - - // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) - // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) - // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) - // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) - if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { - SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); - AddToWorklist(Or.getNode()); - return DAG.getSetCC(DL, VT, Or, LR, CC1); - } - - // All bits set? - bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; - // All sign bits set? - bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; - // Any bits clear? - bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; - // Any sign bits clear? - bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; - - // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) - // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) - // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) - // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) - if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { - SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); - AddToWorklist(And.getNode()); - return DAG.getSetCC(DL, VT, And, LR, CC1); - } - } - - // TODO: What is the 'or' equivalent of this fold? - // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) - if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && - IsInteger && CC0 == ISD::SETNE && - ((isNullConstant(LR) && isAllOnesConstant(RR)) || - (isAllOnesConstant(LR) && isNullConstant(RR)))) { - SDValue One = DAG.getConstant(1, DL, OpVT); - SDValue Two = DAG.getConstant(2, DL, OpVT); - SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); - AddToWorklist(Add.getNode()); - return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); - } - - // Try more general transforms if the predicates match and the only user of - // the compares is the 'and' or 'or'. - if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && - N0.hasOneUse() && N1.hasOneUse()) { - // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 - // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 - if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { - SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); - SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); - SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); - SDValue Zero = DAG.getConstant(0, DL, OpVT); - return DAG.getSetCC(DL, VT, Or, Zero, CC1); - } - - // Turn compare of constants whose difference is 1 bit into add+and+setcc. - // TODO - support non-uniform vector amounts. - if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { - // Match a shared variable operand and 2 non-opaque constant operands. - ConstantSDNode *C0 = isConstOrConstSplat(LR); - ConstantSDNode *C1 = isConstOrConstSplat(RR); - if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { - // Canonicalize larger constant as C0. - if (C1->getAPIntValue().ugt(C0->getAPIntValue())) - std::swap(C0, C1); - - // The difference of the constants must be a single bit. - const APInt &C0Val = C0->getAPIntValue(); - const APInt &C1Val = C1->getAPIntValue(); - if ((C0Val - C1Val).isPowerOf2()) { - // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> - // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq - SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); - SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); - SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); - SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); - SDValue Zero = DAG.getConstant(0, DL, OpVT); - return DAG.getSetCC(DL, VT, And, Zero, CC0); - } - } - } - } - - // Canonicalize equivalent operands to LL == RL. - if (LL == RR && LR == RL) { - CC1 = ISD::getSetCCSwappedOperands(CC1); - std::swap(RL, RR); - } - - // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) - // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) - if (LL == RL && LR == RR) { - ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) - : ISD::getSetCCOrOperation(CC0, CC1, OpVT); - if (NewCC != ISD::SETCC_INVALID && - (!LegalOperations || - (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && - TLI.isOperationLegal(ISD::SETCC, OpVT)))) - return DAG.getSetCC(DL, VT, LL, LR, NewCC); - } - - return SDValue(); -} - -/// This contains all DAGCombine rules which reduce two values combined by -/// an And operation to a single value. This makes them reusable in the context -/// of visitSELECT(). Rules involving constants are not included as -/// visitSELECT() already handles those cases. -SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N1.getValueType(); - SDLoc DL(N); - - // fold (and x, undef) -> 0 - if (N0.isUndef() || N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) - return V; - - if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && - VT.getSizeInBits() <= 64) { - if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { - // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal - // immediate for an add, but it is legal if its top c2 bits are set, - // transform the ADD so the immediate doesn't need to be materialized - // in a register. - APInt ADDC = ADDI->getAPIntValue(); - APInt SRLC = SRLI->getAPIntValue(); - if (ADDC.getMinSignedBits() <= 64 && - SRLC.ult(VT.getSizeInBits()) && - !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { - APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), - SRLC.getZExtValue()); - if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { - ADDC |= Mask; - if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { - SDLoc DL0(N0); - SDValue NewAdd = - DAG.getNode(ISD::ADD, DL0, VT, - N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); - CombineTo(N0.getNode(), NewAdd); - // Return N so it doesn't get rechecked! - return SDValue(N, 0); - } - } - } - } - } - } - - // Reduce bit extract of low half of an integer to the narrower type. - // (and (srl i64:x, K), KMask) -> - // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) - if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { - if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { - if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - unsigned Size = VT.getSizeInBits(); - const APInt &AndMask = CAnd->getAPIntValue(); - unsigned ShiftBits = CShift->getZExtValue(); - - // Bail out, this node will probably disappear anyway. - if (ShiftBits == 0) - return SDValue(); - - unsigned MaskBits = AndMask.countTrailingOnes(); - EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); - - if (AndMask.isMask() && - // Required bits must not span the two halves of the integer and - // must fit in the half size type. - (ShiftBits + MaskBits <= Size / 2) && - TLI.isNarrowingProfitable(VT, HalfVT) && - TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && - TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && - TLI.isTruncateFree(VT, HalfVT) && - TLI.isZExtFree(HalfVT, VT)) { - // The isNarrowingProfitable is to avoid regressions on PPC and - // AArch64 which match a few 64-bit bit insert / bit extract patterns - // on downstream users of this. Those patterns could probably be - // extended to handle extensions mixed in. - - SDValue SL(N0); - assert(MaskBits <= Size); - - // Extracting the highest bit of the low half. - EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, - N0.getOperand(0)); - - SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); - SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); - SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); - SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); - return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); - } - } - } - } - - return SDValue(); -} - -bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, - EVT LoadResultTy, EVT &ExtVT) { - if (!AndC->getAPIntValue().isMask()) - return false; - - unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); - - ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - EVT LoadedVT = LoadN->getMemoryVT(); - - if (ExtVT == LoadedVT && - (!LegalOperations || - TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { - // ZEXTLOAD will match without needing to change the size of the value being - // loaded. - return true; - } - - // Do not change the width of a volatile or atomic loads. - if (!LoadN->isSimple()) - return false; - - // Do not generate loads of non-round integer types since these can - // be expensive (and would be wrong if the type is not byte sized). - if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) - return false; - - if (LegalOperations && - !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) - return false; - - if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) - return false; - - return true; -} - -bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, - ISD::LoadExtType ExtType, EVT &MemVT, - unsigned ShAmt) { - if (!LDST) - return false; - // Only allow byte offsets. - if (ShAmt % 8) - return false; - - // Do not generate loads of non-round integer types since these can - // be expensive (and would be wrong if the type is not byte sized). - if (!MemVT.isRound()) - return false; - - // Don't change the width of a volatile or atomic loads. - if (!LDST->isSimple()) - return false; - + return SDValue(); +} + +/// If this is a bitwise logic instruction and both operands have the same +/// opcode, try to sink the other opcode after the logic instruction. +SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) { + SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + unsigned LogicOpcode = N->getOpcode(); + unsigned HandOpcode = N0.getOpcode(); + assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR || + LogicOpcode == ISD::XOR) && "Expected logic opcode"); + assert(HandOpcode == N1.getOpcode() && "Bad input!"); + + // Bail early if none of these transforms apply. + if (N0.getNumOperands() == 0) + return SDValue(); + + // FIXME: We should check number of uses of the operands to not increase + // the instruction count for all transforms. + + // Handle size-changing casts. + SDValue X = N0.getOperand(0); + SDValue Y = N1.getOperand(0); + EVT XVT = X.getValueType(); + SDLoc DL(N); + if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND || + HandOpcode == ISD::SIGN_EXTEND) { + // If both operands have other uses, this transform would create extra + // instructions without eliminating anything. + if (!N0.hasOneUse() && !N1.hasOneUse()) + return SDValue(); + // We need matching integer source types. + if (XVT != Y.getValueType()) + return SDValue(); + // Don't create an illegal op during or after legalization. Don't ever + // create an unsupported vector op. + if ((VT.isVector() || LegalOperations) && + !TLI.isOperationLegalOrCustom(LogicOpcode, XVT)) + return SDValue(); + // Avoid infinite looping with PromoteIntBinOp. + // TODO: Should we apply desirable/legal constraints to all opcodes? + if (HandOpcode == ISD::ANY_EXTEND && LegalTypes && + !TLI.isTypeDesirableForOp(LogicOpcode, XVT)) + return SDValue(); + // logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y) + SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); + return DAG.getNode(HandOpcode, DL, VT, Logic); + } + + // logic_op (truncate x), (truncate y) --> truncate (logic_op x, y) + if (HandOpcode == ISD::TRUNCATE) { + // If both operands have other uses, this transform would create extra + // instructions without eliminating anything. + if (!N0.hasOneUse() && !N1.hasOneUse()) + return SDValue(); + // We need matching source types. + if (XVT != Y.getValueType()) + return SDValue(); + // Don't create an illegal op during or after legalization. + if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT)) + return SDValue(); + // Be extra careful sinking truncate. If it's free, there's no benefit in + // widening a binop. Also, don't create a logic op on an illegal type. + if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT)) + return SDValue(); + if (!TLI.isTypeLegal(XVT)) + return SDValue(); + SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); + return DAG.getNode(HandOpcode, DL, VT, Logic); + } + + // For binops SHL/SRL/SRA/AND: + // logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z + if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL || + HandOpcode == ISD::SRA || HandOpcode == ISD::AND) && + N0.getOperand(1) == N1.getOperand(1)) { + // If either operand has other uses, this transform is not an improvement. + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); + return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1)); + } + + // Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y) + if (HandOpcode == ISD::BSWAP) { + // If either operand has other uses, this transform is not an improvement. + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); + return DAG.getNode(HandOpcode, DL, VT, Logic); + } + + // Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) + // Only perform this optimization up until type legalization, before + // LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by + // adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and + // we don't want to undo this promotion. + // We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper + // on scalars. + if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) && + Level <= AfterLegalizeTypes) { + // Input types must be integer and the same. + if (XVT.isInteger() && XVT == Y.getValueType() && + !(VT.isVector() && TLI.isTypeLegal(VT) && + !XVT.isVector() && !TLI.isTypeLegal(XVT))) { + SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y); + return DAG.getNode(HandOpcode, DL, VT, Logic); + } + } + + // Xor/and/or are indifferent to the swizzle operation (shuffle of one value). + // Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B)) + // If both shuffles use the same mask, and both shuffle within a single + // vector, then it is worthwhile to move the swizzle after the operation. + // The type-legalizer generates this pattern when loading illegal + // vector types from memory. In many cases this allows additional shuffle + // optimizations. + // There are other cases where moving the shuffle after the xor/and/or + // is profitable even if shuffles don't perform a swizzle. + // If both shuffles use the same mask, and both shuffles have the same first + // or second operand, then it might still be profitable to move the shuffle + // after the xor/and/or operation. + if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) { + auto *SVN0 = cast<ShuffleVectorSDNode>(N0); + auto *SVN1 = cast<ShuffleVectorSDNode>(N1); + assert(X.getValueType() == Y.getValueType() && + "Inputs to shuffles are not the same type"); + + // Check that both shuffles use the same mask. The masks are known to be of + // the same length because the result vector type is the same. + // Check also that shuffles have only one use to avoid introducing extra + // instructions. + if (!SVN0->hasOneUse() || !SVN1->hasOneUse() || + !SVN0->getMask().equals(SVN1->getMask())) + return SDValue(); + + // Don't try to fold this node if it requires introducing a + // build vector of all zeros that might be illegal at this stage. + SDValue ShOp = N0.getOperand(1); + if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) + ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + + // (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C) + if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) { + SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, + N0.getOperand(0), N1.getOperand(0)); + return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask()); + } + + // Don't try to fold this node if it requires introducing a + // build vector of all zeros that might be illegal at this stage. + ShOp = N0.getOperand(0); + if (LogicOpcode == ISD::XOR && !ShOp.isUndef()) + ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + + // (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B)) + if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) { + SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1), + N1.getOperand(1)); + return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask()); + } + } + + return SDValue(); +} + +/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient. +SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1, + const SDLoc &DL) { + SDValue LL, LR, RL, RR, N0CC, N1CC; + if (!isSetCCEquivalent(N0, LL, LR, N0CC) || + !isSetCCEquivalent(N1, RL, RR, N1CC)) + return SDValue(); + + assert(N0.getValueType() == N1.getValueType() && + "Unexpected operand types for bitwise logic op"); + assert(LL.getValueType() == LR.getValueType() && + RL.getValueType() == RR.getValueType() && + "Unexpected operand types for setcc"); + + // If we're here post-legalization or the logic op type is not i1, the logic + // op type must match a setcc result type. Also, all folds require new + // operations on the left and right operands, so those types must match. + EVT VT = N0.getValueType(); + EVT OpVT = LL.getValueType(); + if (LegalOperations || VT.getScalarType() != MVT::i1) + if (VT != getSetCCResultType(OpVT)) + return SDValue(); + if (OpVT != RL.getValueType()) + return SDValue(); + + ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get(); + ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get(); + bool IsInteger = OpVT.isInteger(); + if (LR == RR && CC0 == CC1 && IsInteger) { + bool IsZero = isNullOrNullSplat(LR); + bool IsNeg1 = isAllOnesOrAllOnesSplat(LR); + + // All bits clear? + bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero; + // All sign bits clear? + bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1; + // Any bits set? + bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero; + // Any sign bits set? + bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero; + + // (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0) + // (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1) + // (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0) + // (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0) + if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) { + SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL); + AddToWorklist(Or.getNode()); + return DAG.getSetCC(DL, VT, Or, LR, CC1); + } + + // All bits set? + bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1; + // All sign bits set? + bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero; + // Any bits clear? + bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1; + // Any sign bits clear? + bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1; + + // (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1) + // (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0) + // (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1) + // (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1) + if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) { + SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL); + AddToWorklist(And.getNode()); + return DAG.getSetCC(DL, VT, And, LR, CC1); + } + } + + // TODO: What is the 'or' equivalent of this fold? + // (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2) + if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 && + IsInteger && CC0 == ISD::SETNE && + ((isNullConstant(LR) && isAllOnesConstant(RR)) || + (isAllOnesConstant(LR) && isNullConstant(RR)))) { + SDValue One = DAG.getConstant(1, DL, OpVT); + SDValue Two = DAG.getConstant(2, DL, OpVT); + SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One); + AddToWorklist(Add.getNode()); + return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE); + } + + // Try more general transforms if the predicates match and the only user of + // the compares is the 'and' or 'or'. + if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 && + N0.hasOneUse() && N1.hasOneUse()) { + // and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 + // or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0 + if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) { + SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR); + SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR); + SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR); + SDValue Zero = DAG.getConstant(0, DL, OpVT); + return DAG.getSetCC(DL, VT, Or, Zero, CC1); + } + + // Turn compare of constants whose difference is 1 bit into add+and+setcc. + // TODO - support non-uniform vector amounts. + if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) { + // Match a shared variable operand and 2 non-opaque constant operands. + ConstantSDNode *C0 = isConstOrConstSplat(LR); + ConstantSDNode *C1 = isConstOrConstSplat(RR); + if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) { + // Canonicalize larger constant as C0. + if (C1->getAPIntValue().ugt(C0->getAPIntValue())) + std::swap(C0, C1); + + // The difference of the constants must be a single bit. + const APInt &C0Val = C0->getAPIntValue(); + const APInt &C1Val = C1->getAPIntValue(); + if ((C0Val - C1Val).isPowerOf2()) { + // and/or (setcc X, C0, ne), (setcc X, C1, ne/eq) --> + // setcc ((add X, -C1), ~(C0 - C1)), 0, ne/eq + SDValue OffsetC = DAG.getConstant(-C1Val, DL, OpVT); + SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LL, OffsetC); + SDValue MaskC = DAG.getConstant(~(C0Val - C1Val), DL, OpVT); + SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Add, MaskC); + SDValue Zero = DAG.getConstant(0, DL, OpVT); + return DAG.getSetCC(DL, VT, And, Zero, CC0); + } + } + } + } + + // Canonicalize equivalent operands to LL == RL. + if (LL == RR && LR == RL) { + CC1 = ISD::getSetCCSwappedOperands(CC1); + std::swap(RL, RR); + } + + // (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) + // (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC) + if (LL == RL && LR == RR) { + ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT) + : ISD::getSetCCOrOperation(CC0, CC1, OpVT); + if (NewCC != ISD::SETCC_INVALID && + (!LegalOperations || + (TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) && + TLI.isOperationLegal(ISD::SETCC, OpVT)))) + return DAG.getSetCC(DL, VT, LL, LR, NewCC); + } + + return SDValue(); +} + +/// This contains all DAGCombine rules which reduce two values combined by +/// an And operation to a single value. This makes them reusable in the context +/// of visitSELECT(). Rules involving constants are not included as +/// visitSELECT() already handles those cases. +SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) { + EVT VT = N1.getValueType(); + SDLoc DL(N); + + // fold (and x, undef) -> 0 + if (N0.isUndef() || N1.isUndef()) + return DAG.getConstant(0, DL, VT); + + if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL)) + return V; + + if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL && + VT.getSizeInBits() <= 64) { + if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) { + // Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal + // immediate for an add, but it is legal if its top c2 bits are set, + // transform the ADD so the immediate doesn't need to be materialized + // in a register. + APInt ADDC = ADDI->getAPIntValue(); + APInt SRLC = SRLI->getAPIntValue(); + if (ADDC.getMinSignedBits() <= 64 && + SRLC.ult(VT.getSizeInBits()) && + !TLI.isLegalAddImmediate(ADDC.getSExtValue())) { + APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), + SRLC.getZExtValue()); + if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) { + ADDC |= Mask; + if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) { + SDLoc DL0(N0); + SDValue NewAdd = + DAG.getNode(ISD::ADD, DL0, VT, + N0.getOperand(0), DAG.getConstant(ADDC, DL, VT)); + CombineTo(N0.getNode(), NewAdd); + // Return N so it doesn't get rechecked! + return SDValue(N, 0); + } + } + } + } + } + } + + // Reduce bit extract of low half of an integer to the narrower type. + // (and (srl i64:x, K), KMask) -> + // (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask) + if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { + if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) { + if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + unsigned Size = VT.getSizeInBits(); + const APInt &AndMask = CAnd->getAPIntValue(); + unsigned ShiftBits = CShift->getZExtValue(); + + // Bail out, this node will probably disappear anyway. + if (ShiftBits == 0) + return SDValue(); + + unsigned MaskBits = AndMask.countTrailingOnes(); + EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2); + + if (AndMask.isMask() && + // Required bits must not span the two halves of the integer and + // must fit in the half size type. + (ShiftBits + MaskBits <= Size / 2) && + TLI.isNarrowingProfitable(VT, HalfVT) && + TLI.isTypeDesirableForOp(ISD::AND, HalfVT) && + TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) && + TLI.isTruncateFree(VT, HalfVT) && + TLI.isZExtFree(HalfVT, VT)) { + // The isNarrowingProfitable is to avoid regressions on PPC and + // AArch64 which match a few 64-bit bit insert / bit extract patterns + // on downstream users of this. Those patterns could probably be + // extended to handle extensions mixed in. + + SDValue SL(N0); + assert(MaskBits <= Size); + + // Extracting the highest bit of the low half. + EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout()); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT, + N0.getOperand(0)); + + SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT); + SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT); + SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK); + SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask); + return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And); + } + } + } + } + + return SDValue(); +} + +bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN, + EVT LoadResultTy, EVT &ExtVT) { + if (!AndC->getAPIntValue().isMask()) + return false; + + unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes(); + + ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); + EVT LoadedVT = LoadN->getMemoryVT(); + + if (ExtVT == LoadedVT && + (!LegalOperations || + TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) { + // ZEXTLOAD will match without needing to change the size of the value being + // loaded. + return true; + } + + // Do not change the width of a volatile or atomic loads. + if (!LoadN->isSimple()) + return false; + + // Do not generate loads of non-round integer types since these can + // be expensive (and would be wrong if the type is not byte sized). + if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound()) + return false; + + if (LegalOperations && + !TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT)) + return false; + + if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT)) + return false; + + return true; +} + +bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, + ISD::LoadExtType ExtType, EVT &MemVT, + unsigned ShAmt) { + if (!LDST) + return false; + // Only allow byte offsets. + if (ShAmt % 8) + return false; + + // Do not generate loads of non-round integer types since these can + // be expensive (and would be wrong if the type is not byte sized). + if (!MemVT.isRound()) + return false; + + // Don't change the width of a volatile or atomic loads. + if (!LDST->isSimple()) + return false; + EVT LdStMemVT = LDST->getMemoryVT(); // Bail out when changing the scalable property, since we can't be sure that @@ -5086,362 +5086,362 @@ bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST, if (LdStMemVT.isScalableVector() != MemVT.isScalableVector()) return false; - // Verify that we are actually reducing a load width here. + // Verify that we are actually reducing a load width here. if (LdStMemVT.bitsLT(MemVT)) - return false; - - // Ensure that this isn't going to produce an unsupported memory access. - if (ShAmt) { - assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); - const unsigned ByteShAmt = ShAmt / 8; - const Align LDSTAlign = LDST->getAlign(); - const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); - if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, - LDST->getAddressSpace(), NarrowAlign, - LDST->getMemOperand()->getFlags())) - return false; - } - - // It's not possible to generate a constant of extended or untyped type. - EVT PtrType = LDST->getBasePtr().getValueType(); - if (PtrType == MVT::Untyped || PtrType.isExtended()) - return false; - - if (isa<LoadSDNode>(LDST)) { - LoadSDNode *Load = cast<LoadSDNode>(LDST); - // Don't transform one with multiple uses, this would require adding a new - // load. - if (!SDValue(Load, 0).hasOneUse()) - return false; - - if (LegalOperations && - !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) - return false; - - // For the transform to be legal, the load must produce only two values - // (the value loaded and the chain). Don't transform a pre-increment - // load, for example, which produces an extra value. Otherwise the - // transformation is not equivalent, and the downstream logic to replace - // uses gets things wrong. - if (Load->getNumValues() > 2) - return false; - - // If the load that we're shrinking is an extload and we're not just - // discarding the extension we can't simply shrink the load. Bail. - // TODO: It would be possible to merge the extensions in some cases. - if (Load->getExtensionType() != ISD::NON_EXTLOAD && - Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) - return false; - - if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) - return false; - } else { - assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); - StoreSDNode *Store = cast<StoreSDNode>(LDST); - // Can't write outside the original store - if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) - return false; - - if (LegalOperations && - !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) - return false; - } - return true; -} - -bool DAGCombiner::SearchForAndLoads(SDNode *N, - SmallVectorImpl<LoadSDNode*> &Loads, - SmallPtrSetImpl<SDNode*> &NodesWithConsts, - ConstantSDNode *Mask, - SDNode *&NodeToMask) { - // Recursively search for the operands, looking for loads which can be - // narrowed. - for (SDValue Op : N->op_values()) { - if (Op.getValueType().isVector()) - return false; - - // Some constants may need fixing up later if they are too large. - if (auto *C = dyn_cast<ConstantSDNode>(Op)) { - if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && - (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) - NodesWithConsts.insert(N); - continue; - } - - if (!Op.hasOneUse()) - return false; - - switch(Op.getOpcode()) { - case ISD::LOAD: { - auto *Load = cast<LoadSDNode>(Op); - EVT ExtVT; - if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && - isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { - - // ZEXTLOAD is already small enough. - if (Load->getExtensionType() == ISD::ZEXTLOAD && - ExtVT.bitsGE(Load->getMemoryVT())) - continue; - - // Use LE to convert equal sized loads to zext. - if (ExtVT.bitsLE(Load->getMemoryVT())) - Loads.push_back(Load); - - continue; - } - return false; - } - case ISD::ZERO_EXTEND: - case ISD::AssertZext: { - unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); - EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - EVT VT = Op.getOpcode() == ISD::AssertZext ? - cast<VTSDNode>(Op.getOperand(1))->getVT() : - Op.getOperand(0).getValueType(); - - // We can accept extending nodes if the mask is wider or an equal - // width to the original type. - if (ExtVT.bitsGE(VT)) - continue; - break; - } - case ISD::OR: - case ISD::XOR: - case ISD::AND: - if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, - NodeToMask)) - return false; - continue; - } - - // Allow one node which will masked along with any loads found. - if (NodeToMask) - return false; - - // Also ensure that the node to be masked only produces one data result. - NodeToMask = Op.getNode(); - if (NodeToMask->getNumValues() > 1) { - bool HasValue = false; - for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { - MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); - if (VT != MVT::Glue && VT != MVT::Other) { - if (HasValue) { - NodeToMask = nullptr; - return false; - } - HasValue = true; - } - } - assert(HasValue && "Node to be masked has no data result?"); - } - } - return true; -} - -bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { - auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (!Mask) - return false; - - if (!Mask->getAPIntValue().isMask()) - return false; - - // No need to do anything if the and directly uses a load. - if (isa<LoadSDNode>(N->getOperand(0))) - return false; - - SmallVector<LoadSDNode*, 8> Loads; - SmallPtrSet<SDNode*, 2> NodesWithConsts; - SDNode *FixupNode = nullptr; - if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { - if (Loads.size() == 0) - return false; - - LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); - SDValue MaskOp = N->getOperand(1); - - // If it exists, fixup the single node we allow in the tree that needs - // masking. - if (FixupNode) { - LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); - SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), - FixupNode->getValueType(0), - SDValue(FixupNode, 0), MaskOp); - DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); - if (And.getOpcode() == ISD ::AND) - DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); - } - - // Narrow any constants that need it. - for (auto *LogicN : NodesWithConsts) { - SDValue Op0 = LogicN->getOperand(0); - SDValue Op1 = LogicN->getOperand(1); - - if (isa<ConstantSDNode>(Op0)) - std::swap(Op0, Op1); - - SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), - Op1, MaskOp); - - DAG.UpdateNodeOperands(LogicN, Op0, And); - } - - // Create narrow loads. - for (auto *Load : Loads) { - LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); - SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), - SDValue(Load, 0), MaskOp); - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); - if (And.getOpcode() == ISD ::AND) - And = SDValue( - DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); - SDValue NewLoad = ReduceLoadWidth(And.getNode()); - assert(NewLoad && - "Shouldn't be masking the load if it can't be narrowed"); - CombineTo(Load, NewLoad, NewLoad.getValue(1)); - } - DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); - return true; - } - return false; -} - -// Unfold -// x & (-1 'logical shift' y) -// To -// (x 'opposite logical shift' y) 'logical shift' y -// if it is better for performance. -SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { - assert(N->getOpcode() == ISD::AND); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - // Do we actually prefer shifts over mask? - if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) - return SDValue(); - - // Try to match (-1 '[outer] logical shift' y) - unsigned OuterShift; - unsigned InnerShift; // The opposite direction to the OuterShift. - SDValue Y; // Shift amount. - auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { - if (!M.hasOneUse()) - return false; - OuterShift = M->getOpcode(); - if (OuterShift == ISD::SHL) - InnerShift = ISD::SRL; - else if (OuterShift == ISD::SRL) - InnerShift = ISD::SHL; - else - return false; - if (!isAllOnesConstant(M->getOperand(0))) - return false; - Y = M->getOperand(1); - return true; - }; - - SDValue X; - if (matchMask(N1)) - X = N0; - else if (matchMask(N0)) - X = N1; - else - return SDValue(); - - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // tmp = x 'opposite logical shift' y - SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); - // ret = tmp 'logical shift' y - SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); - - return T1; -} - -/// Try to replace shift/logic that tests if a bit is clear with mask + setcc. -/// For a target with a bit test, this is expected to become test + set and save -/// at least 1 instruction. -static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { - assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); - - // This is probably not worthwhile without a supported type. - EVT VT = And->getValueType(0); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.isTypeLegal(VT)) - return SDValue(); - - // Look through an optional extension and find a 'not'. - // TODO: Should we favor test+set even without the 'not' op? - SDValue Not = And->getOperand(0), And1 = And->getOperand(1); - if (Not.getOpcode() == ISD::ANY_EXTEND) - Not = Not.getOperand(0); - if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) - return SDValue(); - - // Look though an optional truncation. The source operand may not be the same - // type as the original 'and', but that is ok because we are masking off - // everything but the low bit. - SDValue Srl = Not.getOperand(0); - if (Srl.getOpcode() == ISD::TRUNCATE) - Srl = Srl.getOperand(0); - - // Match a shift-right by constant. - if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || - !isa<ConstantSDNode>(Srl.getOperand(1))) - return SDValue(); - - // We might have looked through casts that make this transform invalid. - // TODO: If the source type is wider than the result type, do the mask and - // compare in the source type. - const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); - unsigned VTBitWidth = VT.getSizeInBits(); - if (ShiftAmt.uge(VTBitWidth)) - return SDValue(); - - // Turn this into a bit-test pattern using mask op + setcc: - // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 - SDLoc DL(And); - SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); - EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); - SDValue Mask = DAG.getConstant( - APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); - SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); - SDValue Zero = DAG.getConstant(0, DL, VT); - SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); - return DAG.getZExtOrTrunc(Setcc, DL, VT); -} - -SDValue DAGCombiner::visitAND(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N1.getValueType(); - - // x & x --> x - if (N0 == N1) - return N0; - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (and x, 0) -> 0, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - // do not return N0, because undef node may exist in N0 - return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), - SDLoc(N), N0.getValueType()); - if (ISD::isBuildVectorAllZeros(N1.getNode())) - // do not return N1, because undef node may exist in N1 - return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), - SDLoc(N), N1.getValueType()); - - // fold (and x, -1) -> x, vector edition - if (ISD::isBuildVectorAllOnes(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllOnes(N1.getNode())) - return N0; + return false; + + // Ensure that this isn't going to produce an unsupported memory access. + if (ShAmt) { + assert(ShAmt % 8 == 0 && "ShAmt is byte offset"); + const unsigned ByteShAmt = ShAmt / 8; + const Align LDSTAlign = LDST->getAlign(); + const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt); + if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, + LDST->getAddressSpace(), NarrowAlign, + LDST->getMemOperand()->getFlags())) + return false; + } + + // It's not possible to generate a constant of extended or untyped type. + EVT PtrType = LDST->getBasePtr().getValueType(); + if (PtrType == MVT::Untyped || PtrType.isExtended()) + return false; + + if (isa<LoadSDNode>(LDST)) { + LoadSDNode *Load = cast<LoadSDNode>(LDST); + // Don't transform one with multiple uses, this would require adding a new + // load. + if (!SDValue(Load, 0).hasOneUse()) + return false; + + if (LegalOperations && + !TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT)) + return false; + + // For the transform to be legal, the load must produce only two values + // (the value loaded and the chain). Don't transform a pre-increment + // load, for example, which produces an extra value. Otherwise the + // transformation is not equivalent, and the downstream logic to replace + // uses gets things wrong. + if (Load->getNumValues() > 2) + return false; + + // If the load that we're shrinking is an extload and we're not just + // discarding the extension we can't simply shrink the load. Bail. + // TODO: It would be possible to merge the extensions in some cases. + if (Load->getExtensionType() != ISD::NON_EXTLOAD && + Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) + return false; + + if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT)) + return false; + } else { + assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode"); + StoreSDNode *Store = cast<StoreSDNode>(LDST); + // Can't write outside the original store + if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt) + return false; + + if (LegalOperations && + !TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT)) + return false; + } + return true; +} + +bool DAGCombiner::SearchForAndLoads(SDNode *N, + SmallVectorImpl<LoadSDNode*> &Loads, + SmallPtrSetImpl<SDNode*> &NodesWithConsts, + ConstantSDNode *Mask, + SDNode *&NodeToMask) { + // Recursively search for the operands, looking for loads which can be + // narrowed. + for (SDValue Op : N->op_values()) { + if (Op.getValueType().isVector()) + return false; + + // Some constants may need fixing up later if they are too large. + if (auto *C = dyn_cast<ConstantSDNode>(Op)) { + if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) && + (Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue()) + NodesWithConsts.insert(N); + continue; + } + + if (!Op.hasOneUse()) + return false; + + switch(Op.getOpcode()) { + case ISD::LOAD: { + auto *Load = cast<LoadSDNode>(Op); + EVT ExtVT; + if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) && + isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) { + + // ZEXTLOAD is already small enough. + if (Load->getExtensionType() == ISD::ZEXTLOAD && + ExtVT.bitsGE(Load->getMemoryVT())) + continue; + + // Use LE to convert equal sized loads to zext. + if (ExtVT.bitsLE(Load->getMemoryVT())) + Loads.push_back(Load); + + continue; + } + return false; + } + case ISD::ZERO_EXTEND: + case ISD::AssertZext: { + unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes(); + EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); + EVT VT = Op.getOpcode() == ISD::AssertZext ? + cast<VTSDNode>(Op.getOperand(1))->getVT() : + Op.getOperand(0).getValueType(); + + // We can accept extending nodes if the mask is wider or an equal + // width to the original type. + if (ExtVT.bitsGE(VT)) + continue; + break; + } + case ISD::OR: + case ISD::XOR: + case ISD::AND: + if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask, + NodeToMask)) + return false; + continue; + } + + // Allow one node which will masked along with any loads found. + if (NodeToMask) + return false; + + // Also ensure that the node to be masked only produces one data result. + NodeToMask = Op.getNode(); + if (NodeToMask->getNumValues() > 1) { + bool HasValue = false; + for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) { + MVT VT = SDValue(NodeToMask, i).getSimpleValueType(); + if (VT != MVT::Glue && VT != MVT::Other) { + if (HasValue) { + NodeToMask = nullptr; + return false; + } + HasValue = true; + } + } + assert(HasValue && "Node to be masked has no data result?"); + } + } + return true; +} + +bool DAGCombiner::BackwardsPropagateMask(SDNode *N) { + auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!Mask) + return false; + + if (!Mask->getAPIntValue().isMask()) + return false; + + // No need to do anything if the and directly uses a load. + if (isa<LoadSDNode>(N->getOperand(0))) + return false; + + SmallVector<LoadSDNode*, 8> Loads; + SmallPtrSet<SDNode*, 2> NodesWithConsts; + SDNode *FixupNode = nullptr; + if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) { + if (Loads.size() == 0) + return false; + + LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump()); + SDValue MaskOp = N->getOperand(1); + + // If it exists, fixup the single node we allow in the tree that needs + // masking. + if (FixupNode) { + LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump()); + SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode), + FixupNode->getValueType(0), + SDValue(FixupNode, 0), MaskOp); + DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And); + if (And.getOpcode() == ISD ::AND) + DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp); + } + + // Narrow any constants that need it. + for (auto *LogicN : NodesWithConsts) { + SDValue Op0 = LogicN->getOperand(0); + SDValue Op1 = LogicN->getOperand(1); + + if (isa<ConstantSDNode>(Op0)) + std::swap(Op0, Op1); + + SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(), + Op1, MaskOp); + + DAG.UpdateNodeOperands(LogicN, Op0, And); + } + + // Create narrow loads. + for (auto *Load : Loads) { + LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump()); + SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0), + SDValue(Load, 0), MaskOp); + DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And); + if (And.getOpcode() == ISD ::AND) + And = SDValue( + DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0); + SDValue NewLoad = ReduceLoadWidth(And.getNode()); + assert(NewLoad && + "Shouldn't be masking the load if it can't be narrowed"); + CombineTo(Load, NewLoad, NewLoad.getValue(1)); + } + DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode()); + return true; + } + return false; +} + +// Unfold +// x & (-1 'logical shift' y) +// To +// (x 'opposite logical shift' y) 'logical shift' y +// if it is better for performance. +SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) { + assert(N->getOpcode() == ISD::AND); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + // Do we actually prefer shifts over mask? + if (!TLI.shouldFoldMaskToVariableShiftPair(N0)) + return SDValue(); + + // Try to match (-1 '[outer] logical shift' y) + unsigned OuterShift; + unsigned InnerShift; // The opposite direction to the OuterShift. + SDValue Y; // Shift amount. + auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool { + if (!M.hasOneUse()) + return false; + OuterShift = M->getOpcode(); + if (OuterShift == ISD::SHL) + InnerShift = ISD::SRL; + else if (OuterShift == ISD::SRL) + InnerShift = ISD::SHL; + else + return false; + if (!isAllOnesConstant(M->getOperand(0))) + return false; + Y = M->getOperand(1); + return true; + }; + + SDValue X; + if (matchMask(N1)) + X = N0; + else if (matchMask(N0)) + X = N1; + else + return SDValue(); + + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // tmp = x 'opposite logical shift' y + SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y); + // ret = tmp 'logical shift' y + SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y); + + return T1; +} + +/// Try to replace shift/logic that tests if a bit is clear with mask + setcc. +/// For a target with a bit test, this is expected to become test + set and save +/// at least 1 instruction. +static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) { + assert(And->getOpcode() == ISD::AND && "Expected an 'and' op"); + + // This is probably not worthwhile without a supported type. + EVT VT = And->getValueType(0); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.isTypeLegal(VT)) + return SDValue(); + + // Look through an optional extension and find a 'not'. + // TODO: Should we favor test+set even without the 'not' op? + SDValue Not = And->getOperand(0), And1 = And->getOperand(1); + if (Not.getOpcode() == ISD::ANY_EXTEND) + Not = Not.getOperand(0); + if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1)) + return SDValue(); + + // Look though an optional truncation. The source operand may not be the same + // type as the original 'and', but that is ok because we are masking off + // everything but the low bit. + SDValue Srl = Not.getOperand(0); + if (Srl.getOpcode() == ISD::TRUNCATE) + Srl = Srl.getOperand(0); + + // Match a shift-right by constant. + if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() || + !isa<ConstantSDNode>(Srl.getOperand(1))) + return SDValue(); + + // We might have looked through casts that make this transform invalid. + // TODO: If the source type is wider than the result type, do the mask and + // compare in the source type. + const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1); + unsigned VTBitWidth = VT.getSizeInBits(); + if (ShiftAmt.uge(VTBitWidth)) + return SDValue(); + + // Turn this into a bit-test pattern using mask op + setcc: + // and (not (srl X, C)), 1 --> (and X, 1<<C) == 0 + SDLoc DL(And); + SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT); + EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); + SDValue Mask = DAG.getConstant( + APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT); + SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask); + SDValue Zero = DAG.getConstant(0, DL, VT); + SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ); + return DAG.getZExtOrTrunc(Setcc, DL, VT); +} + +SDValue DAGCombiner::visitAND(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N1.getValueType(); + + // x & x --> x + if (N0 == N1) + return N0; + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (and x, 0) -> 0, vector edition + if (ISD::isBuildVectorAllZeros(N0.getNode())) + // do not return N0, because undef node may exist in N0 + return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()), + SDLoc(N), N0.getValueType()); + if (ISD::isBuildVectorAllZeros(N1.getNode())) + // do not return N1, because undef node may exist in N1 + return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()), + SDLoc(N), N1.getValueType()); + + // fold (and x, -1) -> x, vector edition + if (ISD::isBuildVectorAllOnes(N0.getNode())) + return N1; + if (ISD::isBuildVectorAllOnes(N1.getNode())) + return N0; // fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0); @@ -5467,174 +5467,174 @@ SDValue DAGCombiner::visitAND(SDNode *N) { } } } - } - - // fold (and c1, c2) -> c1&c2 - ConstantSDNode *N1C = isConstOrConstSplat(N1); - if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) - return C; - - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); - - // fold (and x, -1) -> x - if (isAllOnesConstant(N1)) - return N0; - - // if (and x, c) is known to be zero, return 0 - unsigned BitWidth = VT.getScalarSizeInBits(); - if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(BitWidth))) - return DAG.getConstant(0, SDLoc(N), VT); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate and - if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) - return RAND; - - // Try to convert a constant mask AND into a shuffle clear mask. - if (VT.isVector()) - if (SDValue Shuffle = XformToShuffleWithZero(N)) - return Shuffle; - - if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) - return Combined; - - // fold (and (or x, C), D) -> D if (C & D) == D - auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { - return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); - }; - if (N0.getOpcode() == ISD::OR && - ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) - return N1; - // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. - if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { - SDValue N0Op0 = N0.getOperand(0); - APInt Mask = ~N1C->getAPIntValue(); - Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); - if (DAG.MaskedValueIsZero(N0Op0, Mask)) { - SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), - N0.getValueType(), N0Op0); - - // Replace uses of the AND with uses of the Zero extend node. - CombineTo(N, Zext); - - // We actually want to replace all uses of the any_extend with the - // zero_extend, to avoid duplicating things. This will later cause this - // AND to be folded. - CombineTo(N0.getNode(), Zext); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> - // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must - // already be zero by virtue of the width of the base type of the load. - // - // the 'X' node here can either be nothing or an extract_vector_elt to catch - // more cases. - if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && - N0.getOperand(0).getOpcode() == ISD::LOAD && - N0.getOperand(0).getResNo() == 0) || - (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { - LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? - N0 : N0.getOperand(0) ); - - // Get the constant (if applicable) the zero'th operand is being ANDed with. - // This can be a pure constant or a vector splat, in which case we treat the - // vector as a scalar and use the splat value. - APInt Constant = APInt::getNullValue(1); - if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { - Constant = C->getAPIntValue(); - } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { - APInt SplatValue, SplatUndef; - unsigned SplatBitSize; - bool HasAnyUndefs; - bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, - SplatBitSize, HasAnyUndefs); - if (IsSplat) { - // Undef bits can contribute to a possible optimisation if set, so - // set them. - SplatValue |= SplatUndef; - - // The splat value may be something like "0x00FFFFFF", which means 0 for - // the first vector value and FF for the rest, repeating. We need a mask - // that will apply equally to all members of the vector, so AND all the - // lanes of the constant together. - unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); - - // If the splat value has been compressed to a bitlength lower - // than the size of the vector lane, we need to re-expand it to - // the lane size. - if (EltBitWidth > SplatBitSize) - for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); - SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) - SplatValue |= SplatValue.shl(SplatBitSize); - - // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a - // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. - if ((SplatBitSize % EltBitWidth) == 0) { - Constant = APInt::getAllOnesValue(EltBitWidth); - for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) - Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); - } - } - } - - // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is - // actually legal and isn't going to get expanded, else this is a false - // optimisation. - bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, - Load->getValueType(0), - Load->getMemoryVT()); - - // Resize the constant to the same size as the original memory access before - // extension. If it is still the AllOnesValue then this AND is completely - // unneeded. - Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); - - bool B; - switch (Load->getExtensionType()) { - default: B = false; break; - case ISD::EXTLOAD: B = CanZextLoadProfitably; break; - case ISD::ZEXTLOAD: - case ISD::NON_EXTLOAD: B = true; break; - } - - if (B && Constant.isAllOnesValue()) { - // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to - // preserve semantics once we get rid of the AND. - SDValue NewLoad(Load, 0); - - // Fold the AND away. NewLoad may get replaced immediately. - CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); - - if (Load->getExtensionType() == ISD::EXTLOAD) { - NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, - Load->getValueType(0), SDLoc(Load), - Load->getChain(), Load->getBasePtr(), - Load->getOffset(), Load->getMemoryVT(), - Load->getMemOperand()); - // Replace uses of the EXTLOAD with the new ZEXTLOAD. - if (Load->getNumValues() == 3) { - // PRE/POST_INC loads have 3 values. - SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), - NewLoad.getValue(2) }; - CombineTo(Load, To, 3, true); - } else { - CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); - } - } - - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - + } + + // fold (and c1, c2) -> c1&c2 + ConstantSDNode *N1C = isConstOrConstSplat(N1); + if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1})) + return C; + + // canonicalize constant to RHS + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0); + + // fold (and x, -1) -> x + if (isAllOnesConstant(N1)) + return N0; + + // if (and x, c) is known to be zero, return 0 + unsigned BitWidth = VT.getScalarSizeInBits(); + if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), + APInt::getAllOnesValue(BitWidth))) + return DAG.getConstant(0, SDLoc(N), VT); + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // reassociate and + if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags())) + return RAND; + + // Try to convert a constant mask AND into a shuffle clear mask. + if (VT.isVector()) + if (SDValue Shuffle = XformToShuffleWithZero(N)) + return Shuffle; + + if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) + return Combined; + + // fold (and (or x, C), D) -> D if (C & D) == D + auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) { + return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue()); + }; + if (N0.getOpcode() == ISD::OR && + ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset)) + return N1; + // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. + if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { + SDValue N0Op0 = N0.getOperand(0); + APInt Mask = ~N1C->getAPIntValue(); + Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits()); + if (DAG.MaskedValueIsZero(N0Op0, Mask)) { + SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), + N0.getValueType(), N0Op0); + + // Replace uses of the AND with uses of the Zero extend node. + CombineTo(N, Zext); + + // We actually want to replace all uses of the any_extend with the + // zero_extend, to avoid duplicating things. This will later cause this + // AND to be folded. + CombineTo(N0.getNode(), Zext); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + + // similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) -> + // (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must + // already be zero by virtue of the width of the base type of the load. + // + // the 'X' node here can either be nothing or an extract_vector_elt to catch + // more cases. + if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() && + N0.getOperand(0).getOpcode() == ISD::LOAD && + N0.getOperand(0).getResNo() == 0) || + (N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) { + LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ? + N0 : N0.getOperand(0) ); + + // Get the constant (if applicable) the zero'th operand is being ANDed with. + // This can be a pure constant or a vector splat, in which case we treat the + // vector as a scalar and use the splat value. + APInt Constant = APInt::getNullValue(1); + if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { + Constant = C->getAPIntValue(); + } else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) { + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef, + SplatBitSize, HasAnyUndefs); + if (IsSplat) { + // Undef bits can contribute to a possible optimisation if set, so + // set them. + SplatValue |= SplatUndef; + + // The splat value may be something like "0x00FFFFFF", which means 0 for + // the first vector value and FF for the rest, repeating. We need a mask + // that will apply equally to all members of the vector, so AND all the + // lanes of the constant together. + unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits(); + + // If the splat value has been compressed to a bitlength lower + // than the size of the vector lane, we need to re-expand it to + // the lane size. + if (EltBitWidth > SplatBitSize) + for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth); + SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2) + SplatValue |= SplatValue.shl(SplatBitSize); + + // Make sure that variable 'Constant' is only set if 'SplatBitSize' is a + // multiple of 'BitWidth'. Otherwise, we could propagate a wrong value. + if ((SplatBitSize % EltBitWidth) == 0) { + Constant = APInt::getAllOnesValue(EltBitWidth); + for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i) + Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth); + } + } + } + + // If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is + // actually legal and isn't going to get expanded, else this is a false + // optimisation. + bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD, + Load->getValueType(0), + Load->getMemoryVT()); + + // Resize the constant to the same size as the original memory access before + // extension. If it is still the AllOnesValue then this AND is completely + // unneeded. + Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits()); + + bool B; + switch (Load->getExtensionType()) { + default: B = false; break; + case ISD::EXTLOAD: B = CanZextLoadProfitably; break; + case ISD::ZEXTLOAD: + case ISD::NON_EXTLOAD: B = true; break; + } + + if (B && Constant.isAllOnesValue()) { + // If the load type was an EXTLOAD, convert to ZEXTLOAD in order to + // preserve semantics once we get rid of the AND. + SDValue NewLoad(Load, 0); + + // Fold the AND away. NewLoad may get replaced immediately. + CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0); + + if (Load->getExtensionType() == ISD::EXTLOAD) { + NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD, + Load->getValueType(0), SDLoc(Load), + Load->getChain(), Load->getBasePtr(), + Load->getOffset(), Load->getMemoryVT(), + Load->getMemOperand()); + // Replace uses of the EXTLOAD with the new ZEXTLOAD. + if (Load->getNumValues() == 3) { + // PRE/POST_INC loads have 3 values. + SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1), + NewLoad.getValue(2) }; + CombineTo(Load, To, 3, true); + } else { + CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1)); + } + } + + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + // fold (and (masked_gather x)) -> (zext_masked_gather x) if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) { EVT MemVT = GN0->getMemoryVT(); @@ -5657,100 +5657,100 @@ SDValue DAGCombiner::visitAND(SDNode *N) { } } - // fold (and (load x), 255) -> (zextload x, i8) - // fold (and (extload x, i16), 255) -> (zextload x, i8) - // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) - if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || - (N0.getOpcode() == ISD::ANY_EXTEND && - N0.getOperand(0).getOpcode() == ISD::LOAD))) { - if (SDValue Res = ReduceLoadWidth(N)) { - LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND - ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); - AddToWorklist(N); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); - return SDValue(N, 0); - } - } - - if (LegalTypes) { - // Attempt to propagate the AND back up to the leaves which, if they're - // loads, can be combined to narrow loads and the AND node can be removed. - // Perform after legalization so that extend nodes will already be - // combined into the loads. - if (BackwardsPropagateMask(N)) - return SDValue(N, 0); - } - - if (SDValue Combined = visitANDLike(N0, N1, N)) - return Combined; - - // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) - if (N0.getOpcode() == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // Masking the negated extension of a boolean is just the zero-extended - // boolean: - // and (sub 0, zext(bool X)), 1 --> zext(bool X) - // and (sub 0, sext(bool X)), 1 --> zext(bool X) - // - // Note: the SimplifyDemandedBits fold below can make an information-losing - // transform, and then we have no way to find this better fold. - if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { - if (isNullOrNullSplat(N0.getOperand(0))) { - SDValue SubRHS = N0.getOperand(1); - if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && - SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) - return SubRHS; - if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && - SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); - } - } - - // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) - // fold (and (sra)) -> (and (srl)) when possible. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (zext_inreg (extload x)) -> (zextload x) - // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use - if (ISD::isUNINDEXEDLoad(N0.getNode()) && - (ISD::isEXTLoad(N0.getNode()) || - (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - EVT MemVT = LN0->getMemoryVT(); - // If we zero all the possible extended bits, then we can turn this into - // a zextload if we are running before legalize or the operation is legal. - unsigned ExtBitSize = N1.getScalarValueSizeInBits(); - unsigned MemBitSize = MemVT.getScalarSizeInBits(); - APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); - if (DAG.MaskedValueIsZero(N1, ExtBits) && - ((!LegalOperations && LN0->isSimple()) || - TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { - SDValue ExtLoad = - DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), - LN0->getBasePtr(), MemVT, LN0->getMemOperand()); - AddToWorklist(N); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) - if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { - if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), - N0.getOperand(1), false)) - return BSwap; - } - - if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) - return Shifts; - - if (TLI.hasBitTest(N0, N1)) - if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) - return V; - + // fold (and (load x), 255) -> (zextload x, i8) + // fold (and (extload x, i16), 255) -> (zextload x, i8) + // fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8) + if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD || + (N0.getOpcode() == ISD::ANY_EXTEND && + N0.getOperand(0).getOpcode() == ISD::LOAD))) { + if (SDValue Res = ReduceLoadWidth(N)) { + LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND + ? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0); + AddToWorklist(N); + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res); + return SDValue(N, 0); + } + } + + if (LegalTypes) { + // Attempt to propagate the AND back up to the leaves which, if they're + // loads, can be combined to narrow loads and the AND node can be removed. + // Perform after legalization so that extend nodes will already be + // combined into the loads. + if (BackwardsPropagateMask(N)) + return SDValue(N, 0); + } + + if (SDValue Combined = visitANDLike(N0, N1, N)) + return Combined; + + // Simplify: (and (op x...), (op y...)) -> (op (and x, y)) + if (N0.getOpcode() == N1.getOpcode()) + if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) + return V; + + // Masking the negated extension of a boolean is just the zero-extended + // boolean: + // and (sub 0, zext(bool X)), 1 --> zext(bool X) + // and (sub 0, sext(bool X)), 1 --> zext(bool X) + // + // Note: the SimplifyDemandedBits fold below can make an information-losing + // transform, and then we have no way to find this better fold. + if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) { + if (isNullOrNullSplat(N0.getOperand(0))) { + SDValue SubRHS = N0.getOperand(1); + if (SubRHS.getOpcode() == ISD::ZERO_EXTEND && + SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) + return SubRHS; + if (SubRHS.getOpcode() == ISD::SIGN_EXTEND && + SubRHS.getOperand(0).getScalarValueSizeInBits() == 1) + return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0)); + } + } + + // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) + // fold (and (sra)) -> (and (srl)) when possible. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // fold (zext_inreg (extload x)) -> (zextload x) + // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use + if (ISD::isUNINDEXEDLoad(N0.getNode()) && + (ISD::isEXTLoad(N0.getNode()) || + (ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + EVT MemVT = LN0->getMemoryVT(); + // If we zero all the possible extended bits, then we can turn this into + // a zextload if we are running before legalize or the operation is legal. + unsigned ExtBitSize = N1.getScalarValueSizeInBits(); + unsigned MemBitSize = MemVT.getScalarSizeInBits(); + APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize); + if (DAG.MaskedValueIsZero(N1, ExtBits) && + ((!LegalOperations && LN0->isSimple()) || + TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) { + SDValue ExtLoad = + DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(), + LN0->getBasePtr(), MemVT, LN0->getMemOperand()); + AddToWorklist(N); + CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + + // fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const) + if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) { + if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), + N0.getOperand(1), false)) + return BSwap; + } + + if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N)) + return Shifts; + + if (TLI.hasBitTest(N0, N1)) + if (SDValue V = combineShiftAnd1ToBitTest(N, DAG)) + return V; + // Recognize the following pattern: // // AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask) @@ -5776,1326 +5776,1326 @@ SDValue DAGCombiner::visitAND(SDNode *N) { if (IsAndZeroExtMask(N0, N1)) return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0)); - return SDValue(); -} - -/// Match (a >> 8) | (a << 8) as (bswap a) >> 16. -SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, - bool DemandHighBits) { - if (!LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) - return SDValue(); - if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) - return SDValue(); - - // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) - bool LookPassAnd0 = false; - bool LookPassAnd1 = false; - if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) - std::swap(N0, N1); - if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) - std::swap(N0, N1); - if (N0.getOpcode() == ISD::AND) { - if (!N0.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - // Also handle 0xffff since the LHS is guaranteed to have zeros there. - // This is needed for X86. - if (!N01C || (N01C->getZExtValue() != 0xFF00 && - N01C->getZExtValue() != 0xFFFF)) - return SDValue(); - N0 = N0.getOperand(0); - LookPassAnd0 = true; - } - - if (N1.getOpcode() == ISD::AND) { - if (!N1.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); - if (!N11C || N11C->getZExtValue() != 0xFF) - return SDValue(); - N1 = N1.getOperand(0); - LookPassAnd1 = true; - } - - if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) - std::swap(N0, N1); - if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) - return SDValue(); - if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) - return SDValue(); - - ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); - if (!N01C || !N11C) - return SDValue(); - if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) - return SDValue(); - - // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) - SDValue N00 = N0->getOperand(0); - if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { - if (!N00.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); - if (!N001C || N001C->getZExtValue() != 0xFF) - return SDValue(); - N00 = N00.getOperand(0); - LookPassAnd0 = true; - } - - SDValue N10 = N1->getOperand(0); - if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { - if (!N10.getNode()->hasOneUse()) - return SDValue(); - ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); - // Also allow 0xFFFF since the bits will be shifted out. This is needed - // for X86. - if (!N101C || (N101C->getZExtValue() != 0xFF00 && - N101C->getZExtValue() != 0xFFFF)) - return SDValue(); - N10 = N10.getOperand(0); - LookPassAnd1 = true; - } - - if (N00 != N10) - return SDValue(); - - // Make sure everything beyond the low halfword gets set to zero since the SRL - // 16 will clear the top bits. - unsigned OpSizeInBits = VT.getSizeInBits(); - if (DemandHighBits && OpSizeInBits > 16) { - // If the left-shift isn't masked out then the only way this is a bswap is - // if all bits beyond the low 8 are 0. In that case the entire pattern - // reduces to a left shift anyway: leave it for other parts of the combiner. - if (!LookPassAnd0) - return SDValue(); - - // However, if the right shift isn't masked out then it might be because - // it's not needed. See if we can spot that too. - if (!LookPassAnd1 && - !DAG.MaskedValueIsZero( - N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) - return SDValue(); - } - - SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); - if (OpSizeInBits > 16) { - SDLoc DL(N); - Res = DAG.getNode(ISD::SRL, DL, VT, Res, - DAG.getConstant(OpSizeInBits - 16, DL, - getShiftAmountTy(VT))); - } - return Res; -} - -/// Return true if the specified node is an element that makes up a 32-bit -/// packed halfword byteswap. -/// ((x & 0x000000ff) << 8) | -/// ((x & 0x0000ff00) >> 8) | -/// ((x & 0x00ff0000) << 8) | -/// ((x & 0xff000000) >> 8) -static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { - if (!N.getNode()->hasOneUse()) - return false; - - unsigned Opc = N.getOpcode(); - if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) - return false; - - SDValue N0 = N.getOperand(0); - unsigned Opc0 = N0.getOpcode(); - if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) - return false; - - ConstantSDNode *N1C = nullptr; - // SHL or SRL: look upstream for AND mask operand - if (Opc == ISD::AND) - N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - else if (Opc0 == ISD::AND) - N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!N1C) - return false; - - unsigned MaskByteOffset; - switch (N1C->getZExtValue()) { - default: - return false; - case 0xFF: MaskByteOffset = 0; break; - case 0xFF00: MaskByteOffset = 1; break; - case 0xFFFF: - // In case demanded bits didn't clear the bits that will be shifted out. - // This is needed for X86. - if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { - MaskByteOffset = 1; - break; - } - return false; - case 0xFF0000: MaskByteOffset = 2; break; - case 0xFF000000: MaskByteOffset = 3; break; - } - - // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). - if (Opc == ISD::AND) { - if (MaskByteOffset == 0 || MaskByteOffset == 2) { - // (x >> 8) & 0xff - // (x >> 8) & 0xff0000 - if (Opc0 != ISD::SRL) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } else { - // (x << 8) & 0xff00 - // (x << 8) & 0xff000000 - if (Opc0 != ISD::SHL) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } - } else if (Opc == ISD::SHL) { - // (x & 0xff) << 8 - // (x & 0xff0000) << 8 - if (MaskByteOffset != 0 && MaskByteOffset != 2) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } else { // Opc == ISD::SRL - // (x & 0xff00) >> 8 - // (x & 0xff000000) >> 8 - if (MaskByteOffset != 1 && MaskByteOffset != 3) - return false; - ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); - if (!C || C->getZExtValue() != 8) - return false; - } - - if (Parts[MaskByteOffset]) - return false; - - Parts[MaskByteOffset] = N0.getOperand(0).getNode(); - return true; -} - -// Match 2 elements of a packed halfword bswap. -static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { - if (N.getOpcode() == ISD::OR) - return isBSwapHWordElement(N.getOperand(0), Parts) && - isBSwapHWordElement(N.getOperand(1), Parts); - - if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { - ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); - if (!C || C->getAPIntValue() != 16) - return false; - Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); - return true; - } - - return false; -} - -// Match this pattern: -// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) -// And rewrite this to: -// (rotr (bswap A), 16) -static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, - SelectionDAG &DAG, SDNode *N, SDValue N0, - SDValue N1, EVT VT, EVT ShiftAmountTy) { - assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && - "MatchBSwapHWordOrAndAnd: expecting i32"); - if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) - return SDValue(); - if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) - return SDValue(); - // TODO: this is too restrictive; lifting this restriction requires more tests - if (!N0->hasOneUse() || !N1->hasOneUse()) - return SDValue(); - ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); - ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); - if (!Mask0 || !Mask1) - return SDValue(); - if (Mask0->getAPIntValue() != 0xff00ff00 || - Mask1->getAPIntValue() != 0x00ff00ff) - return SDValue(); - SDValue Shift0 = N0.getOperand(0); - SDValue Shift1 = N1.getOperand(0); - if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) - return SDValue(); - ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); - ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); - if (!ShiftAmt0 || !ShiftAmt1) - return SDValue(); - if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) - return SDValue(); - if (Shift0.getOperand(0) != Shift1.getOperand(0)) - return SDValue(); - - SDLoc DL(N); - SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); - SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); - return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); -} - -/// Match a 32-bit packed halfword bswap. That is -/// ((x & 0x000000ff) << 8) | -/// ((x & 0x0000ff00) >> 8) | -/// ((x & 0x00ff0000) << 8) | -/// ((x & 0xff000000) >> 8) -/// => (rotl (bswap x), 16) -SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { - if (!LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - if (VT != MVT::i32) - return SDValue(); - if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) - return SDValue(); - - if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, - getShiftAmountTy(VT))) - return BSwap; - - // Try again with commuted operands. - if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, - getShiftAmountTy(VT))) - return BSwap; - - - // Look for either - // (or (bswaphpair), (bswaphpair)) - // (or (or (bswaphpair), (and)), (and)) - // (or (or (and), (bswaphpair)), (and)) - SDNode *Parts[4] = {}; - - if (isBSwapHWordPair(N0, Parts)) { - // (or (or (and), (and)), (or (and), (and))) - if (!isBSwapHWordPair(N1, Parts)) - return SDValue(); - } else if (N0.getOpcode() == ISD::OR) { - // (or (or (or (and), (and)), (and)), (and)) - if (!isBSwapHWordElement(N1, Parts)) - return SDValue(); - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && - !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) - return SDValue(); - } else - return SDValue(); - - // Make sure the parts are all coming from the same node. - if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) - return SDValue(); - - SDLoc DL(N); - SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, - SDValue(Parts[0], 0)); - - // Result of the bswap should be rotated by 16. If it's not legal, then - // do (x << 16) | (x >> 16). - SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); - if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) - return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); - if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) - return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); - return DAG.getNode(ISD::OR, DL, VT, - DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), - DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); -} - -/// This contains all DAGCombine rules which reduce two values combined by -/// an Or operation to a single value \see visitANDLike(). -SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N1.getValueType(); - SDLoc DL(N); - - // fold (or x, undef) -> -1 - if (!LegalOperations && (N0.isUndef() || N1.isUndef())) - return DAG.getAllOnesConstant(DL, VT); - - if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) - return V; - - // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. - if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && - // Don't increase # computations. - (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { - // We can only do this xform if we know that bits from X that are set in C2 - // but not in C1 are already zero. Likewise for Y. - if (const ConstantSDNode *N0O1C = - getAsNonOpaqueConstant(N0.getOperand(1))) { - if (const ConstantSDNode *N1O1C = - getAsNonOpaqueConstant(N1.getOperand(1))) { - // We can only do this xform if we know that bits from X that are set in - // C2 but not in C1 are already zero. Likewise for Y. - const APInt &LHSMask = N0O1C->getAPIntValue(); - const APInt &RHSMask = N1O1C->getAPIntValue(); - - if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && - DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { - SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, - N0.getOperand(0), N1.getOperand(0)); - return DAG.getNode(ISD::AND, DL, VT, X, - DAG.getConstant(LHSMask | RHSMask, DL, VT)); - } - } - } - } - - // (or (and X, M), (and X, N)) -> (and X, (or M, N)) - if (N0.getOpcode() == ISD::AND && - N1.getOpcode() == ISD::AND && - N0.getOperand(0) == N1.getOperand(0) && - // Don't increase # computations. - (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { - SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, - N0.getOperand(1), N1.getOperand(1)); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); - } - - return SDValue(); -} - -/// OR combines for which the commuted variant will be tried as well. -static SDValue visitORCommutative( - SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { - EVT VT = N0.getValueType(); - if (N0.getOpcode() == ISD::AND) { - // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) - if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) - return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); - - // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) - if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) - return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N1.getValueType(); - - // x | x --> x - if (N0 == N1) - return N0; - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (or x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - - // fold (or x, -1) -> -1, vector edition - if (ISD::isBuildVectorAllOnes(N0.getNode())) - // do not return N0, because undef node may exist in N0 - return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); - if (ISD::isBuildVectorAllOnes(N1.getNode())) - // do not return N1, because undef node may exist in N1 - return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); - - // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) - // Do this only if the resulting shuffle is legal. - if (isa<ShuffleVectorSDNode>(N0) && - isa<ShuffleVectorSDNode>(N1) && - // Avoid folding a node with illegal type. - TLI.isTypeLegal(VT)) { - bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); - bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); - bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); - bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); - // Ensure both shuffles have a zero input. - if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { - assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); - assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); - const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); - const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); - bool CanFold = true; - int NumElts = VT.getVectorNumElements(); - SmallVector<int, 4> Mask(NumElts); - - for (int i = 0; i != NumElts; ++i) { - int M0 = SV0->getMaskElt(i); - int M1 = SV1->getMaskElt(i); - - // Determine if either index is pointing to a zero vector. - bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); - bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); - - // If one element is zero and the otherside is undef, keep undef. - // This also handles the case that both are undef. - if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { - Mask[i] = -1; - continue; - } - - // Make sure only one of the elements is zero. - if (M0Zero == M1Zero) { - CanFold = false; - break; - } - - assert((M0 >= 0 || M1 >= 0) && "Undef index!"); - - // We have a zero and non-zero element. If the non-zero came from - // SV0 make the index a LHS index. If it came from SV1, make it - // a RHS index. We need to mod by NumElts because we don't care - // which operand it came from in the original shuffles. - Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; - } - - if (CanFold) { - SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); - SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); - - SDValue LegalShuffle = - TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, - Mask, DAG); - if (LegalShuffle) - return LegalShuffle; - } - } - } - } - - // fold (or c1, c2) -> c1|c2 - ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); - if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) - return C; - - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); - - // fold (or x, 0) -> x - if (isNullConstant(N1)) - return N0; - - // fold (or x, -1) -> -1 - if (isAllOnesConstant(N1)) - return N1; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (or x, c) -> c iff (x & ~c) == 0 - if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) - return N1; - - if (SDValue Combined = visitORLike(N0, N1, N)) - return Combined; - - if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) - return Combined; - - // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) - if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) - return BSwap; - if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) - return BSwap; - - // reassociate or - if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) - return ROR; - - // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) - // iff (c1 & c2) != 0 or c1/c2 are undef. - auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { - return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); - }; - if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && - ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { - if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, - {N1, N0.getOperand(1)})) { - SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); - AddToWorklist(IOR.getNode()); - return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); - } - } - - if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) - return Combined; - if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) - return Combined; - - // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) - if (N0.getOpcode() == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // See if this is some rotate idiom. - if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) - return Rot; - - if (SDValue Load = MatchLoadCombine(N)) - return Load; - - // Simplify the operands using demanded-bits information. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // If OR can be rewritten into ADD, try combines based on ADD. - if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && - DAG.haveNoCommonBitsSet(N0, N1)) - if (SDValue Combined = visitADDLike(N)) - return Combined; - - return SDValue(); -} - -static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { - if (Op.getOpcode() == ISD::AND && - DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { - Mask = Op.getOperand(1); - return Op.getOperand(0); - } - return Op; -} - -/// Match "(X shl/srl V1) & V2" where V2 may not be present. -static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, - SDValue &Mask) { - Op = stripConstantMask(DAG, Op, Mask); - if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { - Shift = Op; - return true; - } - return false; -} - -/// Helper function for visitOR to extract the needed side of a rotate idiom -/// from a shl/srl/mul/udiv. This is meant to handle cases where -/// InstCombine merged some outside op with one of the shifts from -/// the rotate pattern. -/// \returns An empty \c SDValue if the needed shift couldn't be extracted. -/// Otherwise, returns an expansion of \p ExtractFrom based on the following -/// patterns: -/// -/// (or (add v v) (shrl v bitwidth-1)): -/// expands (add v v) -> (shl v 1) -/// -/// (or (mul v c0) (shrl (mul v c1) c2)): -/// expands (mul v c0) -> (shl (mul v c1) c3) -/// -/// (or (udiv v c0) (shl (udiv v c1) c2)): -/// expands (udiv v c0) -> (shrl (udiv v c1) c3) -/// -/// (or (shl v c0) (shrl (shl v c1) c2)): -/// expands (shl v c0) -> (shl (shl v c1) c3) -/// -/// (or (shrl v c0) (shl (shrl v c1) c2)): -/// expands (shrl v c0) -> (shrl (shrl v c1) c3) -/// -/// Such that in all cases, c3+c2==bitwidth(op v c1). -static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, - SDValue ExtractFrom, SDValue &Mask, - const SDLoc &DL) { - assert(OppShift && ExtractFrom && "Empty SDValue"); - assert( - (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && - "Existing shift must be valid as a rotate half"); - - ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); - - // Value and Type of the shift. - SDValue OppShiftLHS = OppShift.getOperand(0); - EVT ShiftedVT = OppShiftLHS.getValueType(); - - // Amount of the existing shift. - ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); - - // (add v v) -> (shl v 1) - // TODO: Should this be a general DAG canonicalization? - if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && - ExtractFrom.getOpcode() == ISD::ADD && - ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && - ExtractFrom.getOperand(0) == OppShiftLHS && - OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) - return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, - DAG.getShiftAmountConstant(1, ShiftedVT, DL)); - - // Preconditions: - // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) - // - // Find opcode of the needed shift to be extracted from (op0 v c0). - unsigned Opcode = ISD::DELETED_NODE; - bool IsMulOrDiv = false; - // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift - // opcode or its arithmetic (mul or udiv) variant. - auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { - IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; - if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) - return false; - Opcode = NeededShift; - return true; - }; - // op0 must be either the needed shift opcode or the mul/udiv equivalent - // that the needed shift can be extracted from. - if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && - (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) - return SDValue(); - - // op0 must be the same opcode on both sides, have the same LHS argument, - // and produce the same value type. - if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || - OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || - ShiftedVT != ExtractFrom.getValueType()) - return SDValue(); - - // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. - ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); - // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. - ConstantSDNode *ExtractFromCst = - isConstOrConstSplat(ExtractFrom.getOperand(1)); - // TODO: We should be able to handle non-uniform constant vectors for these values - // Check that we have constant values. - if (!OppShiftCst || !OppShiftCst->getAPIntValue() || - !OppLHSCst || !OppLHSCst->getAPIntValue() || - !ExtractFromCst || !ExtractFromCst->getAPIntValue()) - return SDValue(); - - // Compute the shift amount we need to extract to complete the rotate. - const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); - if (OppShiftCst->getAPIntValue().ugt(VTWidth)) - return SDValue(); - APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); - // Normalize the bitwidth of the two mul/udiv/shift constant operands. - APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); - APInt OppLHSAmt = OppLHSCst->getAPIntValue(); - zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); - - // Now try extract the needed shift from the ExtractFrom op and see if the - // result matches up with the existing shift's LHS op. - if (IsMulOrDiv) { - // Op to extract from is a mul or udiv by a constant. - // Check: - // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 - // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 - const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), - NeededShiftAmt.getZExtValue()); - APInt ResultAmt; - APInt Rem; - APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); - if (Rem != 0 || ResultAmt != OppLHSAmt) - return SDValue(); - } else { - // Op to extract from is a shift by a constant. - // Check: - // c2 - (bitwidth(op0 v c0) - c1) == c0 - if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( - ExtractFromAmt.getBitWidth())) - return SDValue(); - } - - // Return the expanded shift op that should allow a rotate to be formed. - EVT ShiftVT = OppShift.getOperand(1).getValueType(); - EVT ResVT = ExtractFrom.getValueType(); - SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); - return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); -} - -// Return true if we can prove that, whenever Neg and Pos are both in the -// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that -// for two opposing shifts shift1 and shift2 and a value X with OpBits bits: -// -// (or (shift1 X, Neg), (shift2 X, Pos)) -// -// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate -// in direction shift1 by Neg. The range [0, EltSize) means that we only need -// to consider shift amounts with defined behavior. + return SDValue(); +} + +/// Match (a >> 8) | (a << 8) as (bswap a) >> 16. +SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1, + bool DemandHighBits) { + if (!LegalOperations) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16) + return SDValue(); + if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) + return SDValue(); + + // Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff) + bool LookPassAnd0 = false; + bool LookPassAnd1 = false; + if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL) + std::swap(N0, N1); + if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() == ISD::AND) { + if (!N0.getNode()->hasOneUse()) + return SDValue(); + ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + // Also handle 0xffff since the LHS is guaranteed to have zeros there. + // This is needed for X86. + if (!N01C || (N01C->getZExtValue() != 0xFF00 && + N01C->getZExtValue() != 0xFFFF)) + return SDValue(); + N0 = N0.getOperand(0); + LookPassAnd0 = true; + } + + if (N1.getOpcode() == ISD::AND) { + if (!N1.getNode()->hasOneUse()) + return SDValue(); + ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); + if (!N11C || N11C->getZExtValue() != 0xFF) + return SDValue(); + N1 = N1.getOperand(0); + LookPassAnd1 = true; + } + + if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) + return SDValue(); + if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse()) + return SDValue(); + + ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); + if (!N01C || !N11C) + return SDValue(); + if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8) + return SDValue(); + + // Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8) + SDValue N00 = N0->getOperand(0); + if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) { + if (!N00.getNode()->hasOneUse()) + return SDValue(); + ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1)); + if (!N001C || N001C->getZExtValue() != 0xFF) + return SDValue(); + N00 = N00.getOperand(0); + LookPassAnd0 = true; + } + + SDValue N10 = N1->getOperand(0); + if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) { + if (!N10.getNode()->hasOneUse()) + return SDValue(); + ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1)); + // Also allow 0xFFFF since the bits will be shifted out. This is needed + // for X86. + if (!N101C || (N101C->getZExtValue() != 0xFF00 && + N101C->getZExtValue() != 0xFFFF)) + return SDValue(); + N10 = N10.getOperand(0); + LookPassAnd1 = true; + } + + if (N00 != N10) + return SDValue(); + + // Make sure everything beyond the low halfword gets set to zero since the SRL + // 16 will clear the top bits. + unsigned OpSizeInBits = VT.getSizeInBits(); + if (DemandHighBits && OpSizeInBits > 16) { + // If the left-shift isn't masked out then the only way this is a bswap is + // if all bits beyond the low 8 are 0. In that case the entire pattern + // reduces to a left shift anyway: leave it for other parts of the combiner. + if (!LookPassAnd0) + return SDValue(); + + // However, if the right shift isn't masked out then it might be because + // it's not needed. See if we can spot that too. + if (!LookPassAnd1 && + !DAG.MaskedValueIsZero( + N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16))) + return SDValue(); + } + + SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00); + if (OpSizeInBits > 16) { + SDLoc DL(N); + Res = DAG.getNode(ISD::SRL, DL, VT, Res, + DAG.getConstant(OpSizeInBits - 16, DL, + getShiftAmountTy(VT))); + } + return Res; +} + +/// Return true if the specified node is an element that makes up a 32-bit +/// packed halfword byteswap. +/// ((x & 0x000000ff) << 8) | +/// ((x & 0x0000ff00) >> 8) | +/// ((x & 0x00ff0000) << 8) | +/// ((x & 0xff000000) >> 8) +static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) { + if (!N.getNode()->hasOneUse()) + return false; + + unsigned Opc = N.getOpcode(); + if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL) + return false; + + SDValue N0 = N.getOperand(0); + unsigned Opc0 = N0.getOpcode(); + if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL) + return false; + + ConstantSDNode *N1C = nullptr; + // SHL or SRL: look upstream for AND mask operand + if (Opc == ISD::AND) + N1C = dyn_cast<ConstantSDNode>(N.getOperand(1)); + else if (Opc0 == ISD::AND) + N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!N1C) + return false; + + unsigned MaskByteOffset; + switch (N1C->getZExtValue()) { + default: + return false; + case 0xFF: MaskByteOffset = 0; break; + case 0xFF00: MaskByteOffset = 1; break; + case 0xFFFF: + // In case demanded bits didn't clear the bits that will be shifted out. + // This is needed for X86. + if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) { + MaskByteOffset = 1; + break; + } + return false; + case 0xFF0000: MaskByteOffset = 2; break; + case 0xFF000000: MaskByteOffset = 3; break; + } + + // Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00). + if (Opc == ISD::AND) { + if (MaskByteOffset == 0 || MaskByteOffset == 2) { + // (x >> 8) & 0xff + // (x >> 8) & 0xff0000 + if (Opc0 != ISD::SRL) + return false; + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!C || C->getZExtValue() != 8) + return false; + } else { + // (x << 8) & 0xff00 + // (x << 8) & 0xff000000 + if (Opc0 != ISD::SHL) + return false; + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!C || C->getZExtValue() != 8) + return false; + } + } else if (Opc == ISD::SHL) { + // (x & 0xff) << 8 + // (x & 0xff0000) << 8 + if (MaskByteOffset != 0 && MaskByteOffset != 2) + return false; + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); + if (!C || C->getZExtValue() != 8) + return false; + } else { // Opc == ISD::SRL + // (x & 0xff00) >> 8 + // (x & 0xff000000) >> 8 + if (MaskByteOffset != 1 && MaskByteOffset != 3) + return false; + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1)); + if (!C || C->getZExtValue() != 8) + return false; + } + + if (Parts[MaskByteOffset]) + return false; + + Parts[MaskByteOffset] = N0.getOperand(0).getNode(); + return true; +} + +// Match 2 elements of a packed halfword bswap. +static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) { + if (N.getOpcode() == ISD::OR) + return isBSwapHWordElement(N.getOperand(0), Parts) && + isBSwapHWordElement(N.getOperand(1), Parts); + + if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) { + ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1)); + if (!C || C->getAPIntValue() != 16) + return false; + Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode(); + return true; + } + + return false; +} + +// Match this pattern: +// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff)) +// And rewrite this to: +// (rotr (bswap A), 16) +static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI, + SelectionDAG &DAG, SDNode *N, SDValue N0, + SDValue N1, EVT VT, EVT ShiftAmountTy) { + assert(N->getOpcode() == ISD::OR && VT == MVT::i32 && + "MatchBSwapHWordOrAndAnd: expecting i32"); + if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) + return SDValue(); + if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND) + return SDValue(); + // TODO: this is too restrictive; lifting this restriction requires more tests + if (!N0->hasOneUse() || !N1->hasOneUse()) + return SDValue(); + ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1)); + ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1)); + if (!Mask0 || !Mask1) + return SDValue(); + if (Mask0->getAPIntValue() != 0xff00ff00 || + Mask1->getAPIntValue() != 0x00ff00ff) + return SDValue(); + SDValue Shift0 = N0.getOperand(0); + SDValue Shift1 = N1.getOperand(0); + if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL) + return SDValue(); + ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1)); + ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1)); + if (!ShiftAmt0 || !ShiftAmt1) + return SDValue(); + if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8) + return SDValue(); + if (Shift0.getOperand(0) != Shift1.getOperand(0)) + return SDValue(); + + SDLoc DL(N); + SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0)); + SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy); + return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); +} + +/// Match a 32-bit packed halfword bswap. That is +/// ((x & 0x000000ff) << 8) | +/// ((x & 0x0000ff00) >> 8) | +/// ((x & 0x00ff0000) << 8) | +/// ((x & 0xff000000) >> 8) +/// => (rotl (bswap x), 16) +SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) { + if (!LegalOperations) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i32) + return SDValue(); + if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT)) + return SDValue(); + + if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT, + getShiftAmountTy(VT))) + return BSwap; + + // Try again with commuted operands. + if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT, + getShiftAmountTy(VT))) + return BSwap; + + + // Look for either + // (or (bswaphpair), (bswaphpair)) + // (or (or (bswaphpair), (and)), (and)) + // (or (or (and), (bswaphpair)), (and)) + SDNode *Parts[4] = {}; + + if (isBSwapHWordPair(N0, Parts)) { + // (or (or (and), (and)), (or (and), (and))) + if (!isBSwapHWordPair(N1, Parts)) + return SDValue(); + } else if (N0.getOpcode() == ISD::OR) { + // (or (or (or (and), (and)), (and)), (and)) + if (!isBSwapHWordElement(N1, Parts)) + return SDValue(); + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) && + !(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts))) + return SDValue(); + } else + return SDValue(); + + // Make sure the parts are all coming from the same node. + if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3]) + return SDValue(); + + SDLoc DL(N); + SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, + SDValue(Parts[0], 0)); + + // Result of the bswap should be rotated by 16. If it's not legal, then + // do (x << 16) | (x >> 16). + SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT)); + if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT)) + return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt); + if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT)) + return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt); + return DAG.getNode(ISD::OR, DL, VT, + DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt), + DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt)); +} + +/// This contains all DAGCombine rules which reduce two values combined by +/// an Or operation to a single value \see visitANDLike(). +SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) { + EVT VT = N1.getValueType(); + SDLoc DL(N); + + // fold (or x, undef) -> -1 + if (!LegalOperations && (N0.isUndef() || N1.isUndef())) + return DAG.getAllOnesConstant(DL, VT); + + if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL)) + return V; + + // (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible. + if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND && + // Don't increase # computations. + (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { + // We can only do this xform if we know that bits from X that are set in C2 + // but not in C1 are already zero. Likewise for Y. + if (const ConstantSDNode *N0O1C = + getAsNonOpaqueConstant(N0.getOperand(1))) { + if (const ConstantSDNode *N1O1C = + getAsNonOpaqueConstant(N1.getOperand(1))) { + // We can only do this xform if we know that bits from X that are set in + // C2 but not in C1 are already zero. Likewise for Y. + const APInt &LHSMask = N0O1C->getAPIntValue(); + const APInt &RHSMask = N1O1C->getAPIntValue(); + + if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) && + DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) { + SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, + N0.getOperand(0), N1.getOperand(0)); + return DAG.getNode(ISD::AND, DL, VT, X, + DAG.getConstant(LHSMask | RHSMask, DL, VT)); + } + } + } + } + + // (or (and X, M), (and X, N)) -> (and X, (or M, N)) + if (N0.getOpcode() == ISD::AND && + N1.getOpcode() == ISD::AND && + N0.getOperand(0) == N1.getOperand(0) && + // Don't increase # computations. + (N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) { + SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT, + N0.getOperand(1), N1.getOperand(1)); + return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X); + } + + return SDValue(); +} + +/// OR combines for which the commuted variant will be tried as well. +static SDValue visitORCommutative( + SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) { + EVT VT = N0.getValueType(); + if (N0.getOpcode() == ISD::AND) { + // fold (or (and X, (xor Y, -1)), Y) -> (or X, Y) + if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1) + return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1); + + // fold (or (and (xor Y, -1), X), Y) -> (or X, Y) + if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1) + return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitOR(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N1.getValueType(); + + // x | x --> x + if (N0 == N1) + return N0; + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (or x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return N1; + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + + // fold (or x, -1) -> -1, vector edition + if (ISD::isBuildVectorAllOnes(N0.getNode())) + // do not return N0, because undef node may exist in N0 + return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType()); + if (ISD::isBuildVectorAllOnes(N1.getNode())) + // do not return N1, because undef node may exist in N1 + return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType()); + + // fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask) + // Do this only if the resulting shuffle is legal. + if (isa<ShuffleVectorSDNode>(N0) && + isa<ShuffleVectorSDNode>(N1) && + // Avoid folding a node with illegal type. + TLI.isTypeLegal(VT)) { + bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode()); + bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode()); + bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); + bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode()); + // Ensure both shuffles have a zero input. + if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) { + assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!"); + assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!"); + const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0); + const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1); + bool CanFold = true; + int NumElts = VT.getVectorNumElements(); + SmallVector<int, 4> Mask(NumElts); + + for (int i = 0; i != NumElts; ++i) { + int M0 = SV0->getMaskElt(i); + int M1 = SV1->getMaskElt(i); + + // Determine if either index is pointing to a zero vector. + bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts)); + bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts)); + + // If one element is zero and the otherside is undef, keep undef. + // This also handles the case that both are undef. + if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) { + Mask[i] = -1; + continue; + } + + // Make sure only one of the elements is zero. + if (M0Zero == M1Zero) { + CanFold = false; + break; + } + + assert((M0 >= 0 || M1 >= 0) && "Undef index!"); + + // We have a zero and non-zero element. If the non-zero came from + // SV0 make the index a LHS index. If it came from SV1, make it + // a RHS index. We need to mod by NumElts because we don't care + // which operand it came from in the original shuffles. + Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts; + } + + if (CanFold) { + SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0); + SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0); + + SDValue LegalShuffle = + TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS, + Mask, DAG); + if (LegalShuffle) + return LegalShuffle; + } + } + } + } + + // fold (or c1, c2) -> c1|c2 + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1})) + return C; + + // canonicalize constant to RHS + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0); + + // fold (or x, 0) -> x + if (isNullConstant(N1)) + return N0; + + // fold (or x, -1) -> -1 + if (isAllOnesConstant(N1)) + return N1; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // fold (or x, c) -> c iff (x & ~c) == 0 + if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue())) + return N1; + + if (SDValue Combined = visitORLike(N0, N1, N)) + return Combined; + + if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) + return Combined; + + // Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16) + if (SDValue BSwap = MatchBSwapHWord(N, N0, N1)) + return BSwap; + if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1)) + return BSwap; + + // reassociate or + if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags())) + return ROR; + + // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) + // iff (c1 & c2) != 0 or c1/c2 are undef. + auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) { + return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue()); + }; + if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() && + ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) { + if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT, + {N1, N0.getOperand(1)})) { + SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1); + AddToWorklist(IOR.getNode()); + return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR); + } + } + + if (SDValue Combined = visitORCommutative(DAG, N0, N1, N)) + return Combined; + if (SDValue Combined = visitORCommutative(DAG, N1, N0, N)) + return Combined; + + // Simplify: (or (op x...), (op y...)) -> (op (or x, y)) + if (N0.getOpcode() == N1.getOpcode()) + if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) + return V; + + // See if this is some rotate idiom. + if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N))) + return Rot; + + if (SDValue Load = MatchLoadCombine(N)) + return Load; + + // Simplify the operands using demanded-bits information. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // If OR can be rewritten into ADD, try combines based on ADD. + if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) && + DAG.haveNoCommonBitsSet(N0, N1)) + if (SDValue Combined = visitADDLike(N)) + return Combined; + + return SDValue(); +} + +static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) { + if (Op.getOpcode() == ISD::AND && + DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) { + Mask = Op.getOperand(1); + return Op.getOperand(0); + } + return Op; +} + +/// Match "(X shl/srl V1) & V2" where V2 may not be present. +static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift, + SDValue &Mask) { + Op = stripConstantMask(DAG, Op, Mask); + if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) { + Shift = Op; + return true; + } + return false; +} + +/// Helper function for visitOR to extract the needed side of a rotate idiom +/// from a shl/srl/mul/udiv. This is meant to handle cases where +/// InstCombine merged some outside op with one of the shifts from +/// the rotate pattern. +/// \returns An empty \c SDValue if the needed shift couldn't be extracted. +/// Otherwise, returns an expansion of \p ExtractFrom based on the following +/// patterns: +/// +/// (or (add v v) (shrl v bitwidth-1)): +/// expands (add v v) -> (shl v 1) +/// +/// (or (mul v c0) (shrl (mul v c1) c2)): +/// expands (mul v c0) -> (shl (mul v c1) c3) +/// +/// (or (udiv v c0) (shl (udiv v c1) c2)): +/// expands (udiv v c0) -> (shrl (udiv v c1) c3) +/// +/// (or (shl v c0) (shrl (shl v c1) c2)): +/// expands (shl v c0) -> (shl (shl v c1) c3) +/// +/// (or (shrl v c0) (shl (shrl v c1) c2)): +/// expands (shrl v c0) -> (shrl (shrl v c1) c3) +/// +/// Such that in all cases, c3+c2==bitwidth(op v c1). +static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift, + SDValue ExtractFrom, SDValue &Mask, + const SDLoc &DL) { + assert(OppShift && ExtractFrom && "Empty SDValue"); + assert( + (OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) && + "Existing shift must be valid as a rotate half"); + + ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask); + + // Value and Type of the shift. + SDValue OppShiftLHS = OppShift.getOperand(0); + EVT ShiftedVT = OppShiftLHS.getValueType(); + + // Amount of the existing shift. + ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1)); + + // (add v v) -> (shl v 1) + // TODO: Should this be a general DAG canonicalization? + if (OppShift.getOpcode() == ISD::SRL && OppShiftCst && + ExtractFrom.getOpcode() == ISD::ADD && + ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) && + ExtractFrom.getOperand(0) == OppShiftLHS && + OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1) + return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS, + DAG.getShiftAmountConstant(1, ShiftedVT, DL)); + + // Preconditions: + // (or (op0 v c0) (shiftl/r (op0 v c1) c2)) + // + // Find opcode of the needed shift to be extracted from (op0 v c0). + unsigned Opcode = ISD::DELETED_NODE; + bool IsMulOrDiv = false; + // Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift + // opcode or its arithmetic (mul or udiv) variant. + auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) { + IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant; + if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift) + return false; + Opcode = NeededShift; + return true; + }; + // op0 must be either the needed shift opcode or the mul/udiv equivalent + // that the needed shift can be extracted from. + if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) && + (OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV))) + return SDValue(); + + // op0 must be the same opcode on both sides, have the same LHS argument, + // and produce the same value type. + if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() || + OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) || + ShiftedVT != ExtractFrom.getValueType()) + return SDValue(); + + // Constant mul/udiv/shift amount from the RHS of the shift's LHS op. + ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1)); + // Constant mul/udiv/shift amount from the RHS of the ExtractFrom op. + ConstantSDNode *ExtractFromCst = + isConstOrConstSplat(ExtractFrom.getOperand(1)); + // TODO: We should be able to handle non-uniform constant vectors for these values + // Check that we have constant values. + if (!OppShiftCst || !OppShiftCst->getAPIntValue() || + !OppLHSCst || !OppLHSCst->getAPIntValue() || + !ExtractFromCst || !ExtractFromCst->getAPIntValue()) + return SDValue(); + + // Compute the shift amount we need to extract to complete the rotate. + const unsigned VTWidth = ShiftedVT.getScalarSizeInBits(); + if (OppShiftCst->getAPIntValue().ugt(VTWidth)) + return SDValue(); + APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue(); + // Normalize the bitwidth of the two mul/udiv/shift constant operands. + APInt ExtractFromAmt = ExtractFromCst->getAPIntValue(); + APInt OppLHSAmt = OppLHSCst->getAPIntValue(); + zeroExtendToMatch(ExtractFromAmt, OppLHSAmt); + + // Now try extract the needed shift from the ExtractFrom op and see if the + // result matches up with the existing shift's LHS op. + if (IsMulOrDiv) { + // Op to extract from is a mul or udiv by a constant. + // Check: + // c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0 + // c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0 + const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(), + NeededShiftAmt.getZExtValue()); + APInt ResultAmt; + APInt Rem; + APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem); + if (Rem != 0 || ResultAmt != OppLHSAmt) + return SDValue(); + } else { + // Op to extract from is a shift by a constant. + // Check: + // c2 - (bitwidth(op0 v c0) - c1) == c0 + if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc( + ExtractFromAmt.getBitWidth())) + return SDValue(); + } + + // Return the expanded shift op that should allow a rotate to be formed. + EVT ShiftVT = OppShift.getOperand(1).getValueType(); + EVT ResVT = ExtractFrom.getValueType(); + SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT); + return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode); +} + +// Return true if we can prove that, whenever Neg and Pos are both in the +// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that +// for two opposing shifts shift1 and shift2 and a value X with OpBits bits: +// +// (or (shift1 X, Neg), (shift2 X, Pos)) +// +// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate +// in direction shift1 by Neg. The range [0, EltSize) means that we only need +// to consider shift amounts with defined behavior. // // The IsRotate flag should be set when the LHS of both shifts is the same. // Otherwise if matching a general funnel shift, it should be clear. -static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, +static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize, SelectionDAG &DAG, bool IsRotate) { - // If EltSize is a power of 2 then: - // - // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) - // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). - // - // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check - // for the stronger condition: - // - // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] - // - // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) - // we can just replace Neg with Neg' for the rest of the function. - // - // In other cases we check for the even stronger condition: - // - // Neg == EltSize - Pos [B] - // - // for all Neg and Pos. Note that the (or ...) then invokes undefined - // behavior if Pos == 0 (and consequently Neg == EltSize). - // - // We could actually use [A] whenever EltSize is a power of 2, but the - // only extra cases that it would match are those uninteresting ones - // where Neg and Pos are never in range at the same time. E.g. for - // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) - // as well as (sub 32, Pos), but: - // - // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) - // - // always invokes undefined behavior for 32-bit X. - // - // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. + // If EltSize is a power of 2 then: + // + // (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1) + // (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize). + // + // So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check + // for the stronger condition: + // + // Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A] + // + // for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1) + // we can just replace Neg with Neg' for the rest of the function. + // + // In other cases we check for the even stronger condition: + // + // Neg == EltSize - Pos [B] + // + // for all Neg and Pos. Note that the (or ...) then invokes undefined + // behavior if Pos == 0 (and consequently Neg == EltSize). + // + // We could actually use [A] whenever EltSize is a power of 2, but the + // only extra cases that it would match are those uninteresting ones + // where Neg and Pos are never in range at the same time. E.g. for + // EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos) + // as well as (sub 32, Pos), but: + // + // (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos)) + // + // always invokes undefined behavior for 32-bit X. + // + // Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise. // // NOTE: We can only do this when matching an AND and not a general // funnel shift. - unsigned MaskLoBits = 0; + unsigned MaskLoBits = 0; if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) { - if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { - KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); - unsigned Bits = Log2_64(EltSize); - if (NegC->getAPIntValue().getActiveBits() <= Bits && - ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { - Neg = Neg.getOperand(0); - MaskLoBits = Bits; - } - } - } - - // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. - if (Neg.getOpcode() != ISD::SUB) - return false; - ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); - if (!NegC) - return false; - SDValue NegOp1 = Neg.getOperand(1); - - // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with - // Pos'. The truncation is redundant for the purpose of the equality. - if (MaskLoBits && Pos.getOpcode() == ISD::AND) { - if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { - KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); - if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && - ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= - MaskLoBits)) - Pos = Pos.getOperand(0); - } - } - - // The condition we need is now: - // - // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask - // - // If NegOp1 == Pos then we need: - // - // EltSize & Mask == NegC & Mask - // - // (because "x & Mask" is a truncation and distributes through subtraction). - // - // We also need to account for a potential truncation of NegOp1 if the amount - // has already been legalized to a shift amount type. - APInt Width; - if ((Pos == NegOp1) || - (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) - Width = NegC->getAPIntValue(); - - // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. - // Then the condition we want to prove becomes: - // - // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask - // - // which, again because "x & Mask" is a truncation, becomes: - // - // NegC & Mask == (EltSize - PosC) & Mask - // EltSize & Mask == (NegC + PosC) & Mask - else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { - if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) - Width = PosC->getAPIntValue() + NegC->getAPIntValue(); - else - return false; - } else - return false; - - // Now we just need to check that EltSize & Mask == Width & Mask. - if (MaskLoBits) - // EltSize & Mask is 0 since Mask is EltSize - 1. - return Width.getLoBits(MaskLoBits) == 0; - return Width == EltSize; -} - -// A subroutine of MatchRotate used once we have found an OR of two opposite -// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces -// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the -// former being preferred if supported. InnerPos and InnerNeg are Pos and -// Neg with outer conversions stripped away. -SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, - SDValue Neg, SDValue InnerPos, - SDValue InnerNeg, unsigned PosOpcode, - unsigned NegOpcode, const SDLoc &DL) { - // fold (or (shl x, (*ext y)), - // (srl x, (*ext (sub 32, y)))) -> - // (rotl x, y) or (rotr x, (sub 32, y)) - // - // fold (or (shl x, (*ext (sub 32, y))), - // (srl x, (*ext y))) -> - // (rotr x, y) or (rotl x, (sub 32, y)) - EVT VT = Shifted.getValueType(); + if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) { + KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0)); + unsigned Bits = Log2_64(EltSize); + if (NegC->getAPIntValue().getActiveBits() <= Bits && + ((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) { + Neg = Neg.getOperand(0); + MaskLoBits = Bits; + } + } + } + + // Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1. + if (Neg.getOpcode() != ISD::SUB) + return false; + ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0)); + if (!NegC) + return false; + SDValue NegOp1 = Neg.getOperand(1); + + // On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with + // Pos'. The truncation is redundant for the purpose of the equality. + if (MaskLoBits && Pos.getOpcode() == ISD::AND) { + if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) { + KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0)); + if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits && + ((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >= + MaskLoBits)) + Pos = Pos.getOperand(0); + } + } + + // The condition we need is now: + // + // (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask + // + // If NegOp1 == Pos then we need: + // + // EltSize & Mask == NegC & Mask + // + // (because "x & Mask" is a truncation and distributes through subtraction). + // + // We also need to account for a potential truncation of NegOp1 if the amount + // has already been legalized to a shift amount type. + APInt Width; + if ((Pos == NegOp1) || + (NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0))) + Width = NegC->getAPIntValue(); + + // Check for cases where Pos has the form (add NegOp1, PosC) for some PosC. + // Then the condition we want to prove becomes: + // + // (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask + // + // which, again because "x & Mask" is a truncation, becomes: + // + // NegC & Mask == (EltSize - PosC) & Mask + // EltSize & Mask == (NegC + PosC) & Mask + else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) { + if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) + Width = PosC->getAPIntValue() + NegC->getAPIntValue(); + else + return false; + } else + return false; + + // Now we just need to check that EltSize & Mask == Width & Mask. + if (MaskLoBits) + // EltSize & Mask is 0 since Mask is EltSize - 1. + return Width.getLoBits(MaskLoBits) == 0; + return Width == EltSize; +} + +// A subroutine of MatchRotate used once we have found an OR of two opposite +// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces +// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the +// former being preferred if supported. InnerPos and InnerNeg are Pos and +// Neg with outer conversions stripped away. +SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos, + SDValue Neg, SDValue InnerPos, + SDValue InnerNeg, unsigned PosOpcode, + unsigned NegOpcode, const SDLoc &DL) { + // fold (or (shl x, (*ext y)), + // (srl x, (*ext (sub 32, y)))) -> + // (rotl x, y) or (rotr x, (sub 32, y)) + // + // fold (or (shl x, (*ext (sub 32, y))), + // (srl x, (*ext y))) -> + // (rotr x, y) or (rotl x, (sub 32, y)) + EVT VT = Shifted.getValueType(); if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG, /*IsRotate*/ true)) { - bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); - return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, - HasPos ? Pos : Neg); - } - - return SDValue(); -} - -// A subroutine of MatchRotate used once we have found an OR of two opposite -// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces -// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the -// former being preferred if supported. InnerPos and InnerNeg are Pos and -// Neg with outer conversions stripped away. -// TODO: Merge with MatchRotatePosNeg. -SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, - SDValue Neg, SDValue InnerPos, - SDValue InnerNeg, unsigned PosOpcode, - unsigned NegOpcode, const SDLoc &DL) { - EVT VT = N0.getValueType(); - unsigned EltBits = VT.getScalarSizeInBits(); - - // fold (or (shl x0, (*ext y)), - // (srl x1, (*ext (sub 32, y)))) -> - // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) - // - // fold (or (shl x0, (*ext (sub 32, y))), - // (srl x1, (*ext y))) -> - // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) + bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); + return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted, + HasPos ? Pos : Neg); + } + + return SDValue(); +} + +// A subroutine of MatchRotate used once we have found an OR of two opposite +// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces +// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the +// former being preferred if supported. InnerPos and InnerNeg are Pos and +// Neg with outer conversions stripped away. +// TODO: Merge with MatchRotatePosNeg. +SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, + SDValue Neg, SDValue InnerPos, + SDValue InnerNeg, unsigned PosOpcode, + unsigned NegOpcode, const SDLoc &DL) { + EVT VT = N0.getValueType(); + unsigned EltBits = VT.getScalarSizeInBits(); + + // fold (or (shl x0, (*ext y)), + // (srl x1, (*ext (sub 32, y)))) -> + // (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y)) + // + // fold (or (shl x0, (*ext (sub 32, y))), + // (srl x1, (*ext y))) -> + // (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y)) if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) { - bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); - return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, - HasPos ? Pos : Neg); - } - - // Matching the shift+xor cases, we can't easily use the xor'd shift amount - // so for now just use the PosOpcode case if its legal. - // TODO: When can we use the NegOpcode case? - if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { - auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { - if (Op.getOpcode() != BinOpc) - return false; - ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); - return Cst && (Cst->getAPIntValue() == Imm); - }; - - // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) - // -> (fshl x0, x1, y) - if (IsBinOpImm(N1, ISD::SRL, 1) && - IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && - InnerPos == InnerNeg.getOperand(0) && - TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { - return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); - } - - // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) - // -> (fshr x0, x1, y) - if (IsBinOpImm(N0, ISD::SHL, 1) && - IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && - InnerNeg == InnerPos.getOperand(0) && - TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { - return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); - } - - // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) - // -> (fshr x0, x1, y) - // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? - if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && - IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && - InnerNeg == InnerPos.getOperand(0) && - TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { - return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); - } - } - - return SDValue(); -} - -// MatchRotate - Handle an 'or' of two operands. If this is one of the many -// idioms for rotate, and if the target supports rotation instructions, generate -// a rot[lr]. This also matches funnel shift patterns, similar to rotation but -// with different shifted sources. -SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { - // Must be a legal type. Expanded 'n promoted things won't work with rotates. - EVT VT = LHS.getValueType(); - if (!TLI.isTypeLegal(VT)) - return SDValue(); - - // The target must have at least one rotate/funnel flavor. - bool HasROTL = hasOperation(ISD::ROTL, VT); - bool HasROTR = hasOperation(ISD::ROTR, VT); - bool HasFSHL = hasOperation(ISD::FSHL, VT); - bool HasFSHR = hasOperation(ISD::FSHR, VT); - if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) - return SDValue(); - - // Check for truncated rotate. - if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && - LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { - assert(LHS.getValueType() == RHS.getValueType()); - if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { - return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); - } - } - - // Match "(X shl/srl V1) & V2" where V2 may not be present. - SDValue LHSShift; // The shift. - SDValue LHSMask; // AND value if any. - matchRotateHalf(DAG, LHS, LHSShift, LHSMask); - - SDValue RHSShift; // The shift. - SDValue RHSMask; // AND value if any. - matchRotateHalf(DAG, RHS, RHSShift, RHSMask); - - // If neither side matched a rotate half, bail - if (!LHSShift && !RHSShift) - return SDValue(); - - // InstCombine may have combined a constant shl, srl, mul, or udiv with one - // side of the rotate, so try to handle that here. In all cases we need to - // pass the matched shift from the opposite side to compute the opcode and - // needed shift amount to extract. We still want to do this if both sides - // matched a rotate half because one half may be a potential overshift that - // can be broken down (ie if InstCombine merged two shl or srl ops into a - // single one). - - // Have LHS side of the rotate, try to extract the needed shift from the RHS. - if (LHSShift) - if (SDValue NewRHSShift = - extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) - RHSShift = NewRHSShift; - // Have RHS side of the rotate, try to extract the needed shift from the LHS. - if (RHSShift) - if (SDValue NewLHSShift = - extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) - LHSShift = NewLHSShift; - - // If a side is still missing, nothing else we can do. - if (!RHSShift || !LHSShift) - return SDValue(); - - // At this point we've matched or extracted a shift op on each side. - - if (LHSShift.getOpcode() == RHSShift.getOpcode()) - return SDValue(); // Shifts must disagree. - - bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); - if (!IsRotate && !(HasFSHL || HasFSHR)) - return SDValue(); // Requires funnel shift support. - - // Canonicalize shl to left side in a shl/srl pair. - if (RHSShift.getOpcode() == ISD::SHL) { - std::swap(LHS, RHS); - std::swap(LHSShift, RHSShift); - std::swap(LHSMask, RHSMask); - } - - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - SDValue LHSShiftArg = LHSShift.getOperand(0); - SDValue LHSShiftAmt = LHSShift.getOperand(1); - SDValue RHSShiftArg = RHSShift.getOperand(0); - SDValue RHSShiftAmt = RHSShift.getOperand(1); - - // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) - // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) - // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) - // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) - // iff C1+C2 == EltSizeInBits - auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; - }; - if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { - SDValue Res; - if (IsRotate && (HasROTL || HasROTR)) - Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, - HasROTL ? LHSShiftAmt : RHSShiftAmt); - else - Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, - RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); - - // If there is an AND of either shifted operand, apply it to the result. - if (LHSMask.getNode() || RHSMask.getNode()) { - SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); - SDValue Mask = AllOnes; - - if (LHSMask.getNode()) { - SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); - Mask = DAG.getNode(ISD::AND, DL, VT, Mask, - DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); - } - if (RHSMask.getNode()) { - SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); - Mask = DAG.getNode(ISD::AND, DL, VT, Mask, - DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); - } - - Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); - } - - return Res; - } - - // If there is a mask here, and we have a variable shift, we can't be sure - // that we're masking out the right stuff. - if (LHSMask.getNode() || RHSMask.getNode()) - return SDValue(); - - // If the shift amount is sign/zext/any-extended just peel it off. - SDValue LExtOp0 = LHSShiftAmt; - SDValue RExtOp0 = RHSShiftAmt; - if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || - LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || - LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || - LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && - (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || - RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || - RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || - RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { - LExtOp0 = LHSShiftAmt.getOperand(0); - RExtOp0 = RHSShiftAmt.getOperand(0); - } - - if (IsRotate && (HasROTL || HasROTR)) { - SDValue TryL = - MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, - RExtOp0, ISD::ROTL, ISD::ROTR, DL); - if (TryL) - return TryL; - - SDValue TryR = - MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, - LExtOp0, ISD::ROTR, ISD::ROTL, DL); - if (TryR) - return TryR; - } - - SDValue TryL = - MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, - LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); - if (TryL) - return TryL; - - SDValue TryR = - MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, - RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); - if (TryR) - return TryR; - - return SDValue(); -} - -namespace { - -/// Represents known origin of an individual byte in load combine pattern. The -/// value of the byte is either constant zero or comes from memory. -struct ByteProvider { - // For constant zero providers Load is set to nullptr. For memory providers - // Load represents the node which loads the byte from memory. - // ByteOffset is the offset of the byte in the value produced by the load. - LoadSDNode *Load = nullptr; - unsigned ByteOffset = 0; - - ByteProvider() = default; - - static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { - return ByteProvider(Load, ByteOffset); - } - - static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } - - bool isConstantZero() const { return !Load; } - bool isMemory() const { return Load; } - - bool operator==(const ByteProvider &Other) const { - return Other.Load == Load && Other.ByteOffset == ByteOffset; - } - -private: - ByteProvider(LoadSDNode *Load, unsigned ByteOffset) - : Load(Load), ByteOffset(ByteOffset) {} -}; - -} // end anonymous namespace - -/// Recursively traverses the expression calculating the origin of the requested -/// byte of the given value. Returns None if the provider can't be calculated. -/// -/// For all the values except the root of the expression verifies that the value -/// has exactly one use and if it's not true return None. This way if the origin -/// of the byte is returned it's guaranteed that the values which contribute to -/// the byte are not used outside of this expression. -/// -/// Because the parts of the expression are not allowed to have more than one -/// use this function iterates over trees, not DAGs. So it never visits the same -/// node more than once. -static const Optional<ByteProvider> -calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, - bool Root = false) { - // Typical i64 by i8 pattern requires recursion up to 8 calls depth - if (Depth == 10) - return None; - - if (!Root && !Op.hasOneUse()) - return None; - - assert(Op.getValueType().isScalarInteger() && "can't handle other types"); - unsigned BitWidth = Op.getValueSizeInBits(); - if (BitWidth % 8 != 0) - return None; - unsigned ByteWidth = BitWidth / 8; - assert(Index < ByteWidth && "invalid index requested"); - (void) ByteWidth; - - switch (Op.getOpcode()) { - case ISD::OR: { - auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); - if (!LHS) - return None; - auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); - if (!RHS) - return None; - - if (LHS->isConstantZero()) - return RHS; - if (RHS->isConstantZero()) - return LHS; - return None; - } - case ISD::SHL: { - auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); - if (!ShiftOp) - return None; - - uint64_t BitShift = ShiftOp->getZExtValue(); - if (BitShift % 8 != 0) - return None; - uint64_t ByteShift = BitShift / 8; - - return Index < ByteShift - ? ByteProvider::getConstantZero() - : calculateByteProvider(Op->getOperand(0), Index - ByteShift, - Depth + 1); - } - case ISD::ANY_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::ZERO_EXTEND: { - SDValue NarrowOp = Op->getOperand(0); - unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); - if (NarrowBitWidth % 8 != 0) - return None; - uint64_t NarrowByteWidth = NarrowBitWidth / 8; - - if (Index >= NarrowByteWidth) - return Op.getOpcode() == ISD::ZERO_EXTEND - ? Optional<ByteProvider>(ByteProvider::getConstantZero()) - : None; - return calculateByteProvider(NarrowOp, Index, Depth + 1); - } - case ISD::BSWAP: - return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, - Depth + 1); - case ISD::LOAD: { - auto L = cast<LoadSDNode>(Op.getNode()); - if (!L->isSimple() || L->isIndexed()) - return None; - - unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); - if (NarrowBitWidth % 8 != 0) - return None; - uint64_t NarrowByteWidth = NarrowBitWidth / 8; - - if (Index >= NarrowByteWidth) - return L->getExtensionType() == ISD::ZEXTLOAD - ? Optional<ByteProvider>(ByteProvider::getConstantZero()) - : None; - return ByteProvider::getMemory(L, Index); - } - } - - return None; -} - + bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT); + return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1, + HasPos ? Pos : Neg); + } + + // Matching the shift+xor cases, we can't easily use the xor'd shift amount + // so for now just use the PosOpcode case if its legal. + // TODO: When can we use the NegOpcode case? + if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) { + auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) { + if (Op.getOpcode() != BinOpc) + return false; + ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1)); + return Cst && (Cst->getAPIntValue() == Imm); + }; + + // fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31))) + // -> (fshl x0, x1, y) + if (IsBinOpImm(N1, ISD::SRL, 1) && + IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) && + InnerPos == InnerNeg.getOperand(0) && + TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) { + return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos); + } + + // fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y)) + // -> (fshr x0, x1, y) + if (IsBinOpImm(N0, ISD::SHL, 1) && + IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && + InnerNeg == InnerPos.getOperand(0) && + TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { + return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); + } + + // fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y)) + // -> (fshr x0, x1, y) + // TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization? + if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) && + IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) && + InnerNeg == InnerPos.getOperand(0) && + TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) { + return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg); + } + } + + return SDValue(); +} + +// MatchRotate - Handle an 'or' of two operands. If this is one of the many +// idioms for rotate, and if the target supports rotation instructions, generate +// a rot[lr]. This also matches funnel shift patterns, similar to rotation but +// with different shifted sources. +SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) { + // Must be a legal type. Expanded 'n promoted things won't work with rotates. + EVT VT = LHS.getValueType(); + if (!TLI.isTypeLegal(VT)) + return SDValue(); + + // The target must have at least one rotate/funnel flavor. + bool HasROTL = hasOperation(ISD::ROTL, VT); + bool HasROTR = hasOperation(ISD::ROTR, VT); + bool HasFSHL = hasOperation(ISD::FSHL, VT); + bool HasFSHR = hasOperation(ISD::FSHR, VT); + if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR) + return SDValue(); + + // Check for truncated rotate. + if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE && + LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) { + assert(LHS.getValueType() == RHS.getValueType()); + if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) { + return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot); + } + } + + // Match "(X shl/srl V1) & V2" where V2 may not be present. + SDValue LHSShift; // The shift. + SDValue LHSMask; // AND value if any. + matchRotateHalf(DAG, LHS, LHSShift, LHSMask); + + SDValue RHSShift; // The shift. + SDValue RHSMask; // AND value if any. + matchRotateHalf(DAG, RHS, RHSShift, RHSMask); + + // If neither side matched a rotate half, bail + if (!LHSShift && !RHSShift) + return SDValue(); + + // InstCombine may have combined a constant shl, srl, mul, or udiv with one + // side of the rotate, so try to handle that here. In all cases we need to + // pass the matched shift from the opposite side to compute the opcode and + // needed shift amount to extract. We still want to do this if both sides + // matched a rotate half because one half may be a potential overshift that + // can be broken down (ie if InstCombine merged two shl or srl ops into a + // single one). + + // Have LHS side of the rotate, try to extract the needed shift from the RHS. + if (LHSShift) + if (SDValue NewRHSShift = + extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL)) + RHSShift = NewRHSShift; + // Have RHS side of the rotate, try to extract the needed shift from the LHS. + if (RHSShift) + if (SDValue NewLHSShift = + extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL)) + LHSShift = NewLHSShift; + + // If a side is still missing, nothing else we can do. + if (!RHSShift || !LHSShift) + return SDValue(); + + // At this point we've matched or extracted a shift op on each side. + + if (LHSShift.getOpcode() == RHSShift.getOpcode()) + return SDValue(); // Shifts must disagree. + + bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0); + if (!IsRotate && !(HasFSHL || HasFSHR)) + return SDValue(); // Requires funnel shift support. + + // Canonicalize shl to left side in a shl/srl pair. + if (RHSShift.getOpcode() == ISD::SHL) { + std::swap(LHS, RHS); + std::swap(LHSShift, RHSShift); + std::swap(LHSMask, RHSMask); + } + + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + SDValue LHSShiftArg = LHSShift.getOperand(0); + SDValue LHSShiftAmt = LHSShift.getOperand(1); + SDValue RHSShiftArg = RHSShift.getOperand(0); + SDValue RHSShiftAmt = RHSShift.getOperand(1); + + // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) + // fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2) + // fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1) + // fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2) + // iff C1+C2 == EltSizeInBits + auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits; + }; + if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) { + SDValue Res; + if (IsRotate && (HasROTL || HasROTR)) + Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg, + HasROTL ? LHSShiftAmt : RHSShiftAmt); + else + Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg, + RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt); + + // If there is an AND of either shifted operand, apply it to the result. + if (LHSMask.getNode() || RHSMask.getNode()) { + SDValue AllOnes = DAG.getAllOnesConstant(DL, VT); + SDValue Mask = AllOnes; + + if (LHSMask.getNode()) { + SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt); + Mask = DAG.getNode(ISD::AND, DL, VT, Mask, + DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits)); + } + if (RHSMask.getNode()) { + SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt); + Mask = DAG.getNode(ISD::AND, DL, VT, Mask, + DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits)); + } + + Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask); + } + + return Res; + } + + // If there is a mask here, and we have a variable shift, we can't be sure + // that we're masking out the right stuff. + if (LHSMask.getNode() || RHSMask.getNode()) + return SDValue(); + + // If the shift amount is sign/zext/any-extended just peel it off. + SDValue LExtOp0 = LHSShiftAmt; + SDValue RExtOp0 = RHSShiftAmt; + if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || + LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || + LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || + LHSShiftAmt.getOpcode() == ISD::TRUNCATE) && + (RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND || + RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND || + RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND || + RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) { + LExtOp0 = LHSShiftAmt.getOperand(0); + RExtOp0 = RHSShiftAmt.getOperand(0); + } + + if (IsRotate && (HasROTL || HasROTR)) { + SDValue TryL = + MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0, + RExtOp0, ISD::ROTL, ISD::ROTR, DL); + if (TryL) + return TryL; + + SDValue TryR = + MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0, + LExtOp0, ISD::ROTR, ISD::ROTL, DL); + if (TryR) + return TryR; + } + + SDValue TryL = + MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt, + LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL); + if (TryL) + return TryL; + + SDValue TryR = + MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt, + RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL); + if (TryR) + return TryR; + + return SDValue(); +} + +namespace { + +/// Represents known origin of an individual byte in load combine pattern. The +/// value of the byte is either constant zero or comes from memory. +struct ByteProvider { + // For constant zero providers Load is set to nullptr. For memory providers + // Load represents the node which loads the byte from memory. + // ByteOffset is the offset of the byte in the value produced by the load. + LoadSDNode *Load = nullptr; + unsigned ByteOffset = 0; + + ByteProvider() = default; + + static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) { + return ByteProvider(Load, ByteOffset); + } + + static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); } + + bool isConstantZero() const { return !Load; } + bool isMemory() const { return Load; } + + bool operator==(const ByteProvider &Other) const { + return Other.Load == Load && Other.ByteOffset == ByteOffset; + } + +private: + ByteProvider(LoadSDNode *Load, unsigned ByteOffset) + : Load(Load), ByteOffset(ByteOffset) {} +}; + +} // end anonymous namespace + +/// Recursively traverses the expression calculating the origin of the requested +/// byte of the given value. Returns None if the provider can't be calculated. +/// +/// For all the values except the root of the expression verifies that the value +/// has exactly one use and if it's not true return None. This way if the origin +/// of the byte is returned it's guaranteed that the values which contribute to +/// the byte are not used outside of this expression. +/// +/// Because the parts of the expression are not allowed to have more than one +/// use this function iterates over trees, not DAGs. So it never visits the same +/// node more than once. +static const Optional<ByteProvider> +calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth, + bool Root = false) { + // Typical i64 by i8 pattern requires recursion up to 8 calls depth + if (Depth == 10) + return None; + + if (!Root && !Op.hasOneUse()) + return None; + + assert(Op.getValueType().isScalarInteger() && "can't handle other types"); + unsigned BitWidth = Op.getValueSizeInBits(); + if (BitWidth % 8 != 0) + return None; + unsigned ByteWidth = BitWidth / 8; + assert(Index < ByteWidth && "invalid index requested"); + (void) ByteWidth; + + switch (Op.getOpcode()) { + case ISD::OR: { + auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1); + if (!LHS) + return None; + auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1); + if (!RHS) + return None; + + if (LHS->isConstantZero()) + return RHS; + if (RHS->isConstantZero()) + return LHS; + return None; + } + case ISD::SHL: { + auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1)); + if (!ShiftOp) + return None; + + uint64_t BitShift = ShiftOp->getZExtValue(); + if (BitShift % 8 != 0) + return None; + uint64_t ByteShift = BitShift / 8; + + return Index < ByteShift + ? ByteProvider::getConstantZero() + : calculateByteProvider(Op->getOperand(0), Index - ByteShift, + Depth + 1); + } + case ISD::ANY_EXTEND: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: { + SDValue NarrowOp = Op->getOperand(0); + unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits(); + if (NarrowBitWidth % 8 != 0) + return None; + uint64_t NarrowByteWidth = NarrowBitWidth / 8; + + if (Index >= NarrowByteWidth) + return Op.getOpcode() == ISD::ZERO_EXTEND + ? Optional<ByteProvider>(ByteProvider::getConstantZero()) + : None; + return calculateByteProvider(NarrowOp, Index, Depth + 1); + } + case ISD::BSWAP: + return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1, + Depth + 1); + case ISD::LOAD: { + auto L = cast<LoadSDNode>(Op.getNode()); + if (!L->isSimple() || L->isIndexed()) + return None; + + unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits(); + if (NarrowBitWidth % 8 != 0) + return None; + uint64_t NarrowByteWidth = NarrowBitWidth / 8; + + if (Index >= NarrowByteWidth) + return L->getExtensionType() == ISD::ZEXTLOAD + ? Optional<ByteProvider>(ByteProvider::getConstantZero()) + : None; + return ByteProvider::getMemory(L, Index); + } + } + + return None; +} + static unsigned littleEndianByteAt(unsigned BW, unsigned i) { - return i; -} - + return i; +} + static unsigned bigEndianByteAt(unsigned BW, unsigned i) { - return BW - i - 1; -} - -// Check if the bytes offsets we are looking at match with either big or -// little endian value loaded. Return true for big endian, false for little -// endian, and None if match failed. -static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, - int64_t FirstOffset) { - // The endian can be decided only when it is 2 bytes at least. - unsigned Width = ByteOffsets.size(); - if (Width < 2) - return None; - - bool BigEndian = true, LittleEndian = true; - for (unsigned i = 0; i < Width; i++) { - int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; + return BW - i - 1; +} + +// Check if the bytes offsets we are looking at match with either big or +// little endian value loaded. Return true for big endian, false for little +// endian, and None if match failed. +static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets, + int64_t FirstOffset) { + // The endian can be decided only when it is 2 bytes at least. + unsigned Width = ByteOffsets.size(); + if (Width < 2) + return None; + + bool BigEndian = true, LittleEndian = true; + for (unsigned i = 0; i < Width; i++) { + int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset; LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i); BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i); - if (!BigEndian && !LittleEndian) - return None; - } - - assert((BigEndian != LittleEndian) && "It should be either big endian or" - "little endian"); - return BigEndian; -} - -static SDValue stripTruncAndExt(SDValue Value) { - switch (Value.getOpcode()) { - case ISD::TRUNCATE: - case ISD::ZERO_EXTEND: - case ISD::SIGN_EXTEND: - case ISD::ANY_EXTEND: - return stripTruncAndExt(Value.getOperand(0)); - } - return Value; -} - -/// Match a pattern where a wide type scalar value is stored by several narrow -/// stores. Fold it into a single store or a BSWAP and a store if the targets -/// supports it. -/// -/// Assuming little endian target: -/// i8 *p = ... -/// i32 val = ... -/// p[0] = (val >> 0) & 0xFF; -/// p[1] = (val >> 8) & 0xFF; -/// p[2] = (val >> 16) & 0xFF; -/// p[3] = (val >> 24) & 0xFF; -/// => -/// *((i32)p) = val; -/// -/// i8 *p = ... -/// i32 val = ... -/// p[0] = (val >> 24) & 0xFF; -/// p[1] = (val >> 16) & 0xFF; -/// p[2] = (val >> 8) & 0xFF; -/// p[3] = (val >> 0) & 0xFF; -/// => -/// *((i32)p) = BSWAP(val); + if (!BigEndian && !LittleEndian) + return None; + } + + assert((BigEndian != LittleEndian) && "It should be either big endian or" + "little endian"); + return BigEndian; +} + +static SDValue stripTruncAndExt(SDValue Value) { + switch (Value.getOpcode()) { + case ISD::TRUNCATE: + case ISD::ZERO_EXTEND: + case ISD::SIGN_EXTEND: + case ISD::ANY_EXTEND: + return stripTruncAndExt(Value.getOperand(0)); + } + return Value; +} + +/// Match a pattern where a wide type scalar value is stored by several narrow +/// stores. Fold it into a single store or a BSWAP and a store if the targets +/// supports it. +/// +/// Assuming little endian target: +/// i8 *p = ... +/// i32 val = ... +/// p[0] = (val >> 0) & 0xFF; +/// p[1] = (val >> 8) & 0xFF; +/// p[2] = (val >> 16) & 0xFF; +/// p[3] = (val >> 24) & 0xFF; +/// => +/// *((i32)p) = val; +/// +/// i8 *p = ... +/// i32 val = ... +/// p[0] = (val >> 24) & 0xFF; +/// p[1] = (val >> 16) & 0xFF; +/// p[2] = (val >> 8) & 0xFF; +/// p[3] = (val >> 0) & 0xFF; +/// => +/// *((i32)p) = BSWAP(val); SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { // The matching looks for "store (trunc x)" patterns that appear early but are // likely to be replaced by truncating store nodes during combining. @@ -7121,14 +7121,14 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { // TODO: We could allow multiple sizes by tracking each stored byte. if (Store->getMemoryVT() != MemVT || !Store->isSimple() || Store->isIndexed()) - return SDValue(); - Stores.push_back(Store); - Chain = Store->getChain(); - } + return SDValue(); + Stores.push_back(Store); + Chain = Store->getChain(); + } // There is no reason to continue if we do not have at least a pair of stores. if (Stores.size() < 2) - return SDValue(); - + return SDValue(); + // Handle simple types only. LLVMContext &Context = *DAG.getContext(); unsigned NumStores = Stores.size(); @@ -7136,47 +7136,47 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { unsigned WideNumBits = NumStores * NarrowNumBits; EVT WideVT = EVT::getIntegerVT(Context, WideNumBits); if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64) - return SDValue(); - + return SDValue(); + // Check if all bytes of the source value that we are looking at are stored // to the same base address. Collect offsets from Base address into OffsetMap. SDValue SourceValue; SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX); - int64_t FirstOffset = INT64_MAX; - StoreSDNode *FirstStore = nullptr; - Optional<BaseIndexOffset> Base; - for (auto Store : Stores) { + int64_t FirstOffset = INT64_MAX; + StoreSDNode *FirstStore = nullptr; + Optional<BaseIndexOffset> Base; + for (auto Store : Stores) { // All the stores store different parts of the CombinedValue. A truncate is // required to get the partial value. - SDValue Trunc = Store->getValue(); - if (Trunc.getOpcode() != ISD::TRUNCATE) - return SDValue(); + SDValue Trunc = Store->getValue(); + if (Trunc.getOpcode() != ISD::TRUNCATE) + return SDValue(); // Other than the first/last part, a shift operation is required to get the // offset. - int64_t Offset = 0; + int64_t Offset = 0; SDValue WideVal = Trunc.getOperand(0); if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) && isa<ConstantSDNode>(WideVal.getOperand(1))) { // The shift amount must be a constant multiple of the narrow type. // It is translated to the offset address in the wide source value "y". - // + // // x = srl y, ShiftAmtC - // i8 z = trunc x - // store z, ... + // i8 z = trunc x + // store z, ... uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1); if (ShiftAmtC % NarrowNumBits != 0) - return SDValue(); - + return SDValue(); + Offset = ShiftAmtC / NarrowNumBits; WideVal = WideVal.getOperand(0); - } - + } + // Stores must share the same source value with different offsets. // Truncate and extends should be stripped to get the single source value. if (!SourceValue) SourceValue = WideVal; else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal)) - return SDValue(); + return SDValue(); else if (SourceValue.getValueType() != WideVT) { if (WideVal.getValueType() == WideVT || WideVal.getScalarValueSizeInBits() > @@ -7184,40 +7184,40 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { SourceValue = WideVal; // Give up if the source value type is smaller than the store size. if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits()) - return SDValue(); - } - + return SDValue(); + } + // Stores must share the same base address. - BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); - int64_t ByteOffsetFromBase = 0; - if (!Base) - Base = Ptr; - else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) - return SDValue(); - + BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG); + int64_t ByteOffsetFromBase = 0; + if (!Base) + Base = Ptr; + else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) + return SDValue(); + // Remember the first store. - if (ByteOffsetFromBase < FirstOffset) { - FirstStore = Store; - FirstOffset = ByteOffsetFromBase; - } - // Map the offset in the store and the offset in the combined value, and - // early return if it has been set before. + if (ByteOffsetFromBase < FirstOffset) { + FirstStore = Store; + FirstOffset = ByteOffsetFromBase; + } + // Map the offset in the store and the offset in the combined value, and + // early return if it has been set before. if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX) - return SDValue(); + return SDValue(); OffsetMap[Offset] = ByteOffsetFromBase; - } - - assert(FirstOffset != INT64_MAX && "First byte offset must be set"); - assert(FirstStore && "First store must be set"); - + } + + assert(FirstOffset != INT64_MAX && "First byte offset must be set"); + assert(FirstStore && "First store must be set"); + // Check that a store of the wide type is both allowed and fast on the target const DataLayout &Layout = DAG.getDataLayout(); bool Fast = false; bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT, *FirstStore->getMemOperand(), &Fast); if (!Allowed || !Fast) - return SDValue(); - + return SDValue(); + // Check if the pieces of the value are going to the expected places in memory // to merge the stores. auto checkOffsets = [&](bool MatchLittleEndian) { @@ -7232,7 +7232,7 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { } return true; }; - + // Check if the offsets line up for the native data layout of this target. bool NeedBswap = false; bool NeedRotate = false; @@ -7245,7 +7245,7 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { else return SDValue(); } - + SDLoc DL(N); if (WideVT != SourceValue.getValueType()) { assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits && @@ -7254,2186 +7254,2186 @@ SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) { } // Before legalize we can introduce illegal bswaps/rotates which will be later - // converted to an explicit bswap sequence. This way we end up with a single - // store and byte shuffling instead of several stores and byte shuffling. + // converted to an explicit bswap sequence. This way we end up with a single + // store and byte shuffling instead of several stores and byte shuffling. if (NeedBswap) { SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue); } else if (NeedRotate) { assert(WideNumBits % 2 == 0 && "Unexpected type for rotate"); SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT); SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt); - } - - SDValue NewStore = + } + + SDValue NewStore = DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(), FirstStore->getPointerInfo(), FirstStore->getAlign()); - - // Rely on other DAG combine rules to remove the other individual stores. - DAG.ReplaceAllUsesWith(N, NewStore.getNode()); - return NewStore; -} - -/// Match a pattern where a wide type scalar value is loaded by several narrow -/// loads and combined by shifts and ors. Fold it into a single load or a load -/// and a BSWAP if the targets supports it. -/// -/// Assuming little endian target: -/// i8 *a = ... -/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) -/// => -/// i32 val = *((i32)a) -/// -/// i8 *a = ... -/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] -/// => -/// i32 val = BSWAP(*((i32)a)) -/// -/// TODO: This rule matches complex patterns with OR node roots and doesn't -/// interact well with the worklist mechanism. When a part of the pattern is -/// updated (e.g. one of the loads) its direct users are put into the worklist, -/// but the root node of the pattern which triggers the load combine is not -/// necessarily a direct user of the changed node. For example, once the address -/// of t28 load is reassociated load combine won't be triggered: -/// t25: i32 = add t4, Constant:i32<2> -/// t26: i64 = sign_extend t25 -/// t27: i64 = add t2, t26 -/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 -/// t29: i32 = zero_extend t28 -/// t32: i32 = shl t29, Constant:i8<8> -/// t33: i32 = or t23, t32 -/// As a possible fix visitLoad can check if the load can be a part of a load -/// combine pattern and add corresponding OR roots to the worklist. -SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { - assert(N->getOpcode() == ISD::OR && - "Can only match load combining against OR nodes"); - - // Handles simple types only - EVT VT = N->getValueType(0); - if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) - return SDValue(); - unsigned ByteWidth = VT.getSizeInBits() / 8; - - bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); - auto MemoryByteOffset = [&] (ByteProvider P) { - assert(P.isMemory() && "Must be a memory byte provider"); - unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); - assert(LoadBitWidth % 8 == 0 && - "can only analyze providers for individual bytes not bit"); - unsigned LoadByteWidth = LoadBitWidth / 8; - return IsBigEndianTarget + + // Rely on other DAG combine rules to remove the other individual stores. + DAG.ReplaceAllUsesWith(N, NewStore.getNode()); + return NewStore; +} + +/// Match a pattern where a wide type scalar value is loaded by several narrow +/// loads and combined by shifts and ors. Fold it into a single load or a load +/// and a BSWAP if the targets supports it. +/// +/// Assuming little endian target: +/// i8 *a = ... +/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) +/// => +/// i32 val = *((i32)a) +/// +/// i8 *a = ... +/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] +/// => +/// i32 val = BSWAP(*((i32)a)) +/// +/// TODO: This rule matches complex patterns with OR node roots and doesn't +/// interact well with the worklist mechanism. When a part of the pattern is +/// updated (e.g. one of the loads) its direct users are put into the worklist, +/// but the root node of the pattern which triggers the load combine is not +/// necessarily a direct user of the changed node. For example, once the address +/// of t28 load is reassociated load combine won't be triggered: +/// t25: i32 = add t4, Constant:i32<2> +/// t26: i64 = sign_extend t25 +/// t27: i64 = add t2, t26 +/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64 +/// t29: i32 = zero_extend t28 +/// t32: i32 = shl t29, Constant:i8<8> +/// t33: i32 = or t23, t32 +/// As a possible fix visitLoad can check if the load can be a part of a load +/// combine pattern and add corresponding OR roots to the worklist. +SDValue DAGCombiner::MatchLoadCombine(SDNode *N) { + assert(N->getOpcode() == ISD::OR && + "Can only match load combining against OR nodes"); + + // Handles simple types only + EVT VT = N->getValueType(0); + if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + unsigned ByteWidth = VT.getSizeInBits() / 8; + + bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian(); + auto MemoryByteOffset = [&] (ByteProvider P) { + assert(P.isMemory() && "Must be a memory byte provider"); + unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits(); + assert(LoadBitWidth % 8 == 0 && + "can only analyze providers for individual bytes not bit"); + unsigned LoadByteWidth = LoadBitWidth / 8; + return IsBigEndianTarget ? bigEndianByteAt(LoadByteWidth, P.ByteOffset) : littleEndianByteAt(LoadByteWidth, P.ByteOffset); - }; - - Optional<BaseIndexOffset> Base; - SDValue Chain; - - SmallPtrSet<LoadSDNode *, 8> Loads; - Optional<ByteProvider> FirstByteProvider; - int64_t FirstOffset = INT64_MAX; - - // Check if all the bytes of the OR we are looking at are loaded from the same - // base address. Collect bytes offsets from Base address in ByteOffsets. - SmallVector<int64_t, 8> ByteOffsets(ByteWidth); - unsigned ZeroExtendedBytes = 0; - for (int i = ByteWidth - 1; i >= 0; --i) { - auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); - if (!P) - return SDValue(); - - if (P->isConstantZero()) { - // It's OK for the N most significant bytes to be 0, we can just - // zero-extend the load. - if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) - return SDValue(); - continue; - } - assert(P->isMemory() && "provenance should either be memory or zero"); - - LoadSDNode *L = P->Load; - assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && - !L->isIndexed() && - "Must be enforced by calculateByteProvider"); - assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); - - // All loads must share the same chain - SDValue LChain = L->getChain(); - if (!Chain) - Chain = LChain; - else if (Chain != LChain) - return SDValue(); - - // Loads must share the same base address - BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); - int64_t ByteOffsetFromBase = 0; - if (!Base) - Base = Ptr; - else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) - return SDValue(); - - // Calculate the offset of the current byte from the base address - ByteOffsetFromBase += MemoryByteOffset(*P); - ByteOffsets[i] = ByteOffsetFromBase; - - // Remember the first byte load - if (ByteOffsetFromBase < FirstOffset) { - FirstByteProvider = P; - FirstOffset = ByteOffsetFromBase; - } - - Loads.insert(L); - } - assert(!Loads.empty() && "All the bytes of the value must be loaded from " - "memory, so there must be at least one load which produces the value"); - assert(Base && "Base address of the accessed memory location must be set"); - assert(FirstOffset != INT64_MAX && "First byte offset must be set"); - - bool NeedsZext = ZeroExtendedBytes > 0; - - EVT MemVT = - EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); - - if (!MemVT.isSimple()) - return SDValue(); - - // Before legalize we can introduce too wide illegal loads which will be later - // split into legal sized loads. This enables us to combine i64 load by i8 - // patterns to a couple of i32 loads on 32 bit targets. - if (LegalOperations && - !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, - MemVT)) - return SDValue(); - - // Check if the bytes of the OR we are looking at match with either big or - // little endian value load - Optional<bool> IsBigEndian = isBigEndian( - makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); - if (!IsBigEndian.hasValue()) - return SDValue(); - - assert(FirstByteProvider && "must be set"); - - // Ensure that the first byte is loaded from zero offset of the first load. - // So the combined value can be loaded from the first load address. - if (MemoryByteOffset(*FirstByteProvider) != 0) - return SDValue(); - LoadSDNode *FirstLoad = FirstByteProvider->Load; - - // The node we are looking at matches with the pattern, check if we can - // replace it with a single (possibly zero-extended) load and bswap + shift if - // needed. - - // If the load needs byte swap check if the target supports it - bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; - - // Before legalize we can introduce illegal bswaps which will be later - // converted to an explicit bswap sequence. This way we end up with a single - // load and byte shuffling instead of several loads and byte shuffling. - // We do not introduce illegal bswaps when zero-extending as this tends to - // introduce too many arithmetic instructions. - if (NeedsBswap && (LegalOperations || NeedsZext) && - !TLI.isOperationLegal(ISD::BSWAP, VT)) - return SDValue(); - - // If we need to bswap and zero extend, we have to insert a shift. Check that - // it is legal. - if (NeedsBswap && NeedsZext && LegalOperations && - !TLI.isOperationLegal(ISD::SHL, VT)) - return SDValue(); - - // Check that a load of the wide type is both allowed and fast on the target - bool Fast = false; - bool Allowed = - TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, - *FirstLoad->getMemOperand(), &Fast); - if (!Allowed || !Fast) - return SDValue(); - + }; + + Optional<BaseIndexOffset> Base; + SDValue Chain; + + SmallPtrSet<LoadSDNode *, 8> Loads; + Optional<ByteProvider> FirstByteProvider; + int64_t FirstOffset = INT64_MAX; + + // Check if all the bytes of the OR we are looking at are loaded from the same + // base address. Collect bytes offsets from Base address in ByteOffsets. + SmallVector<int64_t, 8> ByteOffsets(ByteWidth); + unsigned ZeroExtendedBytes = 0; + for (int i = ByteWidth - 1; i >= 0; --i) { + auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true); + if (!P) + return SDValue(); + + if (P->isConstantZero()) { + // It's OK for the N most significant bytes to be 0, we can just + // zero-extend the load. + if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i))) + return SDValue(); + continue; + } + assert(P->isMemory() && "provenance should either be memory or zero"); + + LoadSDNode *L = P->Load; + assert(L->hasNUsesOfValue(1, 0) && L->isSimple() && + !L->isIndexed() && + "Must be enforced by calculateByteProvider"); + assert(L->getOffset().isUndef() && "Unindexed load must have undef offset"); + + // All loads must share the same chain + SDValue LChain = L->getChain(); + if (!Chain) + Chain = LChain; + else if (Chain != LChain) + return SDValue(); + + // Loads must share the same base address + BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG); + int64_t ByteOffsetFromBase = 0; + if (!Base) + Base = Ptr; + else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase)) + return SDValue(); + + // Calculate the offset of the current byte from the base address + ByteOffsetFromBase += MemoryByteOffset(*P); + ByteOffsets[i] = ByteOffsetFromBase; + + // Remember the first byte load + if (ByteOffsetFromBase < FirstOffset) { + FirstByteProvider = P; + FirstOffset = ByteOffsetFromBase; + } + + Loads.insert(L); + } + assert(!Loads.empty() && "All the bytes of the value must be loaded from " + "memory, so there must be at least one load which produces the value"); + assert(Base && "Base address of the accessed memory location must be set"); + assert(FirstOffset != INT64_MAX && "First byte offset must be set"); + + bool NeedsZext = ZeroExtendedBytes > 0; + + EVT MemVT = + EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8); + + if (!MemVT.isSimple()) + return SDValue(); + + // Before legalize we can introduce too wide illegal loads which will be later + // split into legal sized loads. This enables us to combine i64 load by i8 + // patterns to a couple of i32 loads on 32 bit targets. + if (LegalOperations && + !TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, + MemVT)) + return SDValue(); + + // Check if the bytes of the OR we are looking at match with either big or + // little endian value load + Optional<bool> IsBigEndian = isBigEndian( + makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset); + if (!IsBigEndian.hasValue()) + return SDValue(); + + assert(FirstByteProvider && "must be set"); + + // Ensure that the first byte is loaded from zero offset of the first load. + // So the combined value can be loaded from the first load address. + if (MemoryByteOffset(*FirstByteProvider) != 0) + return SDValue(); + LoadSDNode *FirstLoad = FirstByteProvider->Load; + + // The node we are looking at matches with the pattern, check if we can + // replace it with a single (possibly zero-extended) load and bswap + shift if + // needed. + + // If the load needs byte swap check if the target supports it + bool NeedsBswap = IsBigEndianTarget != *IsBigEndian; + + // Before legalize we can introduce illegal bswaps which will be later + // converted to an explicit bswap sequence. This way we end up with a single + // load and byte shuffling instead of several loads and byte shuffling. + // We do not introduce illegal bswaps when zero-extending as this tends to + // introduce too many arithmetic instructions. + if (NeedsBswap && (LegalOperations || NeedsZext) && + !TLI.isOperationLegal(ISD::BSWAP, VT)) + return SDValue(); + + // If we need to bswap and zero extend, we have to insert a shift. Check that + // it is legal. + if (NeedsBswap && NeedsZext && LegalOperations && + !TLI.isOperationLegal(ISD::SHL, VT)) + return SDValue(); + + // Check that a load of the wide type is both allowed and fast on the target + bool Fast = false; + bool Allowed = + TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT, + *FirstLoad->getMemOperand(), &Fast); + if (!Allowed || !Fast) + return SDValue(); + SDValue NewLoad = DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT, Chain, FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign()); - - // Transfer chain users from old loads to the new load. - for (LoadSDNode *L : Loads) - DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); - - if (!NeedsBswap) - return NewLoad; - - SDValue ShiftedLoad = - NeedsZext - ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, - DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, - SDLoc(N), LegalOperations)) - : NewLoad; - return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); -} - -// If the target has andn, bsl, or a similar bit-select instruction, -// we want to unfold masked merge, with canonical pattern of: -// | A | |B| -// ((x ^ y) & m) ^ y -// | D | -// Into: -// (x & m) | (y & ~m) -// If y is a constant, and the 'andn' does not work with immediates, -// we unfold into a different pattern: -// ~(~x & m) & (m | y) -// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at -// the very least that breaks andnpd / andnps patterns, and because those -// patterns are simplified in IR and shouldn't be created in the DAG -SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { - assert(N->getOpcode() == ISD::XOR); - - // Don't touch 'not' (i.e. where y = -1). - if (isAllOnesOrAllOnesSplat(N->getOperand(1))) - return SDValue(); - - EVT VT = N->getValueType(0); - - // There are 3 commutable operators in the pattern, - // so we have to deal with 8 possible variants of the basic pattern. - SDValue X, Y, M; - auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { - if (And.getOpcode() != ISD::AND || !And.hasOneUse()) - return false; - SDValue Xor = And.getOperand(XorIdx); - if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) - return false; - SDValue Xor0 = Xor.getOperand(0); - SDValue Xor1 = Xor.getOperand(1); - // Don't touch 'not' (i.e. where y = -1). - if (isAllOnesOrAllOnesSplat(Xor1)) - return false; - if (Other == Xor0) - std::swap(Xor0, Xor1); - if (Other != Xor1) - return false; - X = Xor0; - Y = Xor1; - M = And.getOperand(XorIdx ? 0 : 1); - return true; - }; - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && - !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) - return SDValue(); - - // Don't do anything if the mask is constant. This should not be reachable. - // InstCombine should have already unfolded this pattern, and DAGCombiner - // probably shouldn't produce it, too. - if (isa<ConstantSDNode>(M.getNode())) - return SDValue(); - - // We can transform if the target has AndNot - if (!TLI.hasAndNot(M)) - return SDValue(); - - SDLoc DL(N); - - // If Y is a constant, check that 'andn' works with immediates. - if (!TLI.hasAndNot(Y)) { - assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); - // If not, we need to do a bit more work to make sure andn is still used. - SDValue NotX = DAG.getNOT(DL, X, VT); - SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); - SDValue NotLHS = DAG.getNOT(DL, LHS, VT); - SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); - return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); - } - - SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); - SDValue NotM = DAG.getNOT(DL, M, VT); - SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); - - return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); -} - -SDValue DAGCombiner::visitXOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N0.getValueType(); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (xor x, 0) -> x, vector edition - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N1; - if (ISD::isBuildVectorAllZeros(N1.getNode())) - return N0; - } - - // fold (xor undef, undef) -> 0. This is a common idiom (misuse). - SDLoc DL(N); - if (N0.isUndef() && N1.isUndef()) - return DAG.getConstant(0, DL, VT); - - // fold (xor x, undef) -> undef - if (N0.isUndef()) - return N0; - if (N1.isUndef()) - return N1; - - // fold (xor c1, c2) -> c1^c2 - if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) - return C; - - // canonicalize constant to RHS - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - !DAG.isConstantIntBuildVectorOrConstantInt(N1)) - return DAG.getNode(ISD::XOR, DL, VT, N1, N0); - - // fold (xor x, 0) -> x - if (isNullConstant(N1)) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // reassociate xor - if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) - return RXOR; - - // fold !(x cc y) -> (x !cc y) - unsigned N0Opcode = N0.getOpcode(); - SDValue LHS, RHS, CC; - if (TLI.isConstTrueVal(N1.getNode()) && - isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { - ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), - LHS.getValueType()); - if (!LegalOperations || - TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { - switch (N0Opcode) { - default: - llvm_unreachable("Unhandled SetCC Equivalent!"); - case ISD::SETCC: - return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); - case ISD::SELECT_CC: - return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), - N0.getOperand(3), NotCC); - case ISD::STRICT_FSETCC: - case ISD::STRICT_FSETCCS: { - if (N0.hasOneUse()) { - // FIXME Can we handle multiple uses? Could we token factor the chain - // results from the new/old setcc? + + // Transfer chain users from old loads to the new load. + for (LoadSDNode *L : Loads) + DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1)); + + if (!NeedsBswap) + return NewLoad; + + SDValue ShiftedLoad = + NeedsZext + ? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad, + DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT, + SDLoc(N), LegalOperations)) + : NewLoad; + return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad); +} + +// If the target has andn, bsl, or a similar bit-select instruction, +// we want to unfold masked merge, with canonical pattern of: +// | A | |B| +// ((x ^ y) & m) ^ y +// | D | +// Into: +// (x & m) | (y & ~m) +// If y is a constant, and the 'andn' does not work with immediates, +// we unfold into a different pattern: +// ~(~x & m) & (m | y) +// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at +// the very least that breaks andnpd / andnps patterns, and because those +// patterns are simplified in IR and shouldn't be created in the DAG +SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) { + assert(N->getOpcode() == ISD::XOR); + + // Don't touch 'not' (i.e. where y = -1). + if (isAllOnesOrAllOnesSplat(N->getOperand(1))) + return SDValue(); + + EVT VT = N->getValueType(0); + + // There are 3 commutable operators in the pattern, + // so we have to deal with 8 possible variants of the basic pattern. + SDValue X, Y, M; + auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) { + if (And.getOpcode() != ISD::AND || !And.hasOneUse()) + return false; + SDValue Xor = And.getOperand(XorIdx); + if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse()) + return false; + SDValue Xor0 = Xor.getOperand(0); + SDValue Xor1 = Xor.getOperand(1); + // Don't touch 'not' (i.e. where y = -1). + if (isAllOnesOrAllOnesSplat(Xor1)) + return false; + if (Other == Xor0) + std::swap(Xor0, Xor1); + if (Other != Xor1) + return false; + X = Xor0; + Y = Xor1; + M = And.getOperand(XorIdx ? 0 : 1); + return true; + }; + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) && + !matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0)) + return SDValue(); + + // Don't do anything if the mask is constant. This should not be reachable. + // InstCombine should have already unfolded this pattern, and DAGCombiner + // probably shouldn't produce it, too. + if (isa<ConstantSDNode>(M.getNode())) + return SDValue(); + + // We can transform if the target has AndNot + if (!TLI.hasAndNot(M)) + return SDValue(); + + SDLoc DL(N); + + // If Y is a constant, check that 'andn' works with immediates. + if (!TLI.hasAndNot(Y)) { + assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable."); + // If not, we need to do a bit more work to make sure andn is still used. + SDValue NotX = DAG.getNOT(DL, X, VT); + SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M); + SDValue NotLHS = DAG.getNOT(DL, LHS, VT); + SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y); + return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS); + } + + SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M); + SDValue NotM = DAG.getNOT(DL, M, VT); + SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM); + + return DAG.getNode(ISD::OR, DL, VT, LHS, RHS); +} + +SDValue DAGCombiner::visitXOR(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N0.getValueType(); + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (xor x, 0) -> x, vector edition + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return N1; + if (ISD::isBuildVectorAllZeros(N1.getNode())) + return N0; + } + + // fold (xor undef, undef) -> 0. This is a common idiom (misuse). + SDLoc DL(N); + if (N0.isUndef() && N1.isUndef()) + return DAG.getConstant(0, DL, VT); + + // fold (xor x, undef) -> undef + if (N0.isUndef()) + return N0; + if (N1.isUndef()) + return N1; + + // fold (xor c1, c2) -> c1^c2 + if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1})) + return C; + + // canonicalize constant to RHS + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + !DAG.isConstantIntBuildVectorOrConstantInt(N1)) + return DAG.getNode(ISD::XOR, DL, VT, N1, N0); + + // fold (xor x, 0) -> x + if (isNullConstant(N1)) + return N0; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // reassociate xor + if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags())) + return RXOR; + + // fold !(x cc y) -> (x !cc y) + unsigned N0Opcode = N0.getOpcode(); + SDValue LHS, RHS, CC; + if (TLI.isConstTrueVal(N1.getNode()) && + isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) { + ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), + LHS.getValueType()); + if (!LegalOperations || + TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) { + switch (N0Opcode) { + default: + llvm_unreachable("Unhandled SetCC Equivalent!"); + case ISD::SETCC: + return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC); + case ISD::SELECT_CC: + return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2), + N0.getOperand(3), NotCC); + case ISD::STRICT_FSETCC: + case ISD::STRICT_FSETCCS: { + if (N0.hasOneUse()) { + // FIXME Can we handle multiple uses? Could we token factor the chain + // results from the new/old setcc? SDValue SetCC = DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC, N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS); - CombineTo(N, SetCC); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); - recursivelyDeleteUnusedNodes(N0.getNode()); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - break; - } - } - } - } - - // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) - if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && - isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ - SDValue V = N0.getOperand(0); - SDLoc DL0(N0); - V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, - DAG.getConstant(1, DL0, V.getValueType())); - AddToWorklist(V.getNode()); - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); - } - - // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc - if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && - (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { - SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); - if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { - unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; - N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 - N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 - AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); - return DAG.getNode(NewOpcode, DL, VT, N00, N01); - } - } - // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants - if (isAllOnesConstant(N1) && N0.hasOneUse() && - (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { - SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); - if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { - unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; - N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 - N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 - AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); - return DAG.getNode(NewOpcode, DL, VT, N00, N01); - } - } - - // fold (not (neg x)) -> (add X, -1) - // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if - // Y is a constant or the subtract has a single use. - if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && - isNullConstant(N0.getOperand(0))) { - return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), - DAG.getAllOnesConstant(DL, VT)); - } - - // fold (not (add X, -1)) -> (neg X) - if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && - isAllOnesOrAllOnesSplat(N0.getOperand(1))) { - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), - N0.getOperand(0)); - } - - // fold (xor (and x, y), y) -> (and (not x), y) - if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { - SDValue X = N0.getOperand(0); - SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); - AddToWorklist(NotX.getNode()); - return DAG.getNode(ISD::AND, DL, VT, NotX, N1); - } - - if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { - ConstantSDNode *XorC = isConstOrConstSplat(N1); - ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); - unsigned BitWidth = VT.getScalarSizeInBits(); - if (XorC && ShiftC) { - // Don't crash on an oversized shift. We can not guarantee that a bogus - // shift has been simplified to undef. - uint64_t ShiftAmt = ShiftC->getLimitedValue(); - if (ShiftAmt < BitWidth) { - APInt Ones = APInt::getAllOnesValue(BitWidth); - Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); - if (XorC->getAPIntValue() == Ones) { - // If the xor constant is a shifted -1, do a 'not' before the shift: - // xor (X << ShiftC), XorC --> (not X) << ShiftC - // xor (X >> ShiftC), XorC --> (not X) >> ShiftC - SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); - return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); - } - } - } - } - - // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { - SDValue A = N0Opcode == ISD::ADD ? N0 : N1; - SDValue S = N0Opcode == ISD::SRA ? N0 : N1; - if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { - SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); - SDValue S0 = S.getOperand(0); + CombineTo(N, SetCC); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1)); + recursivelyDeleteUnusedNodes(N0.getNode()); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + break; + } + } + } + } + + // fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y))) + if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() && + isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){ + SDValue V = N0.getOperand(0); + SDLoc DL0(N0); + V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V, + DAG.getConstant(1, DL0, V.getValueType())); + AddToWorklist(V.getNode()); + return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V); + } + + // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc + if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() && + (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { + SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); + if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) { + unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; + N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 + N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 + AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); + return DAG.getNode(NewOpcode, DL, VT, N00, N01); + } + } + // fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants + if (isAllOnesConstant(N1) && N0.hasOneUse() && + (N0Opcode == ISD::OR || N0Opcode == ISD::AND)) { + SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1); + if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) { + unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND; + N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00 + N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01 + AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode()); + return DAG.getNode(NewOpcode, DL, VT, N00, N01); + } + } + + // fold (not (neg x)) -> (add X, -1) + // FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if + // Y is a constant or the subtract has a single use. + if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB && + isNullConstant(N0.getOperand(0))) { + return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), + DAG.getAllOnesConstant(DL, VT)); + } + + // fold (not (add X, -1)) -> (neg X) + if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD && + isAllOnesOrAllOnesSplat(N0.getOperand(1))) { + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), + N0.getOperand(0)); + } + + // fold (xor (and x, y), y) -> (and (not x), y) + if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) { + SDValue X = N0.getOperand(0); + SDValue NotX = DAG.getNOT(SDLoc(X), X, VT); + AddToWorklist(NotX.getNode()); + return DAG.getNode(ISD::AND, DL, VT, NotX, N1); + } + + if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) { + ConstantSDNode *XorC = isConstOrConstSplat(N1); + ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1)); + unsigned BitWidth = VT.getScalarSizeInBits(); + if (XorC && ShiftC) { + // Don't crash on an oversized shift. We can not guarantee that a bogus + // shift has been simplified to undef. + uint64_t ShiftAmt = ShiftC->getLimitedValue(); + if (ShiftAmt < BitWidth) { + APInt Ones = APInt::getAllOnesValue(BitWidth); + Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt); + if (XorC->getAPIntValue() == Ones) { + // If the xor constant is a shifted -1, do a 'not' before the shift: + // xor (X << ShiftC), XorC --> (not X) << ShiftC + // xor (X >> ShiftC), XorC --> (not X) >> ShiftC + SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT); + return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1)); + } + } + } + } + + // fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X) + if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) { + SDValue A = N0Opcode == ISD::ADD ? N0 : N1; + SDValue S = N0Opcode == ISD::SRA ? N0 : N1; + if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) { + SDValue A0 = A.getOperand(0), A1 = A.getOperand(1); + SDValue S0 = S.getOperand(0); if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0)) - if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) + if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1))) if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1)) - return DAG.getNode(ISD::ABS, DL, VT, S0); - } - } - - // fold (xor x, x) -> 0 - if (N0 == N1) - return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); - - // fold (xor (shl 1, x), -1) -> (rotl ~1, x) - // Here is a concrete example of this equivalence: - // i16 x == 14 - // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 - // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 - // - // => - // - // i16 ~1 == 0b1111111111111110 - // i16 rol(~1, 14) == 0b1011111111111111 - // - // Some additional tips to help conceptualize this transform: - // - Try to see the operation as placing a single zero in a value of all ones. - // - There exists no value for x which would allow the result to contain zero. - // - Values of x larger than the bitwidth are undefined and do not require a - // consistent result. - // - Pushing the zero left requires shifting one bits in from the right. - // A rotate left of ~1 is a nice way of achieving the desired result. - if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && - isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { - return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), - N0.getOperand(1)); - } - - // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) - if (N0Opcode == N1.getOpcode()) - if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) - return V; - - // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable - if (SDValue MM = unfoldMaskedMerge(N)) - return MM; - - // Simplify the expression using non-local knowledge. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) - return Combined; - - return SDValue(); -} - -/// If we have a shift-by-constant of a bitwise logic op that itself has a -/// shift-by-constant operand with identical opcode, we may be able to convert -/// that into 2 independent shifts followed by the logic op. This is a -/// throughput improvement. -static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { - // Match a one-use bitwise logic op. - SDValue LogicOp = Shift->getOperand(0); - if (!LogicOp.hasOneUse()) - return SDValue(); - - unsigned LogicOpcode = LogicOp.getOpcode(); - if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && - LogicOpcode != ISD::XOR) - return SDValue(); - - // Find a matching one-use shift by constant. - unsigned ShiftOpcode = Shift->getOpcode(); - SDValue C1 = Shift->getOperand(1); - ConstantSDNode *C1Node = isConstOrConstSplat(C1); - assert(C1Node && "Expected a shift with constant operand"); - const APInt &C1Val = C1Node->getAPIntValue(); - auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, - const APInt *&ShiftAmtVal) { - if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) - return false; - - ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); - if (!ShiftCNode) - return false; - - // Capture the shifted operand and shift amount value. - ShiftOp = V.getOperand(0); - ShiftAmtVal = &ShiftCNode->getAPIntValue(); - - // Shift amount types do not have to match their operand type, so check that - // the constants are the same width. - if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) - return false; - - // The fold is not valid if the sum of the shift values exceeds bitwidth. - if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) - return false; - - return true; - }; - - // Logic ops are commutative, so check each operand for a match. - SDValue X, Y; - const APInt *C0Val; - if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) - Y = LogicOp.getOperand(1); - else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) - Y = LogicOp.getOperand(0); - else - return SDValue(); - - // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) - SDLoc DL(Shift); - EVT VT = Shift->getValueType(0); - EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); - SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); - SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); - SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); - return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); -} - -/// Handle transforms common to the three shifts, when the shift amount is a -/// constant. -/// We are looking for: (shift being one of shl/sra/srl) -/// shift (binop X, C0), C1 -/// And want to transform into: -/// binop (shift X, C1), (shift C0, C1) -SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { - assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); - - // Do not turn a 'not' into a regular xor. - if (isBitwiseNot(N->getOperand(0))) - return SDValue(); - - // The inner binop must be one-use, since we want to replace it. - SDValue LHS = N->getOperand(0); - if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) - return SDValue(); - - // TODO: This is limited to early combining because it may reveal regressions - // otherwise. But since we just checked a target hook to see if this is - // desirable, that should have filtered out cases where this interferes - // with some other pattern matching. - if (!LegalTypes) - if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) - return R; - - // We want to pull some binops through shifts, so that we have (and (shift)) - // instead of (shift (and)), likewise for add, or, xor, etc. This sort of - // thing happens with address calculations, so it's important to canonicalize - // it. - switch (LHS.getOpcode()) { - default: - return SDValue(); - case ISD::OR: - case ISD::XOR: - case ISD::AND: - break; - case ISD::ADD: - if (N->getOpcode() != ISD::SHL) - return SDValue(); // only shl(add) not sr[al](add). - break; - } - - // We require the RHS of the binop to be a constant and not opaque as well. - ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); - if (!BinOpCst) - return SDValue(); - - // FIXME: disable this unless the input to the binop is a shift by a constant - // or is copy/select. Enable this in other cases when figure out it's exactly - // profitable. - SDValue BinOpLHSVal = LHS.getOperand(0); - bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || - BinOpLHSVal.getOpcode() == ISD::SRA || - BinOpLHSVal.getOpcode() == ISD::SRL) && - isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); - bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || - BinOpLHSVal.getOpcode() == ISD::SELECT; - - if (!IsShiftByConstant && !IsCopyOrSelect) - return SDValue(); - - if (IsCopyOrSelect && N->hasOneUse()) - return SDValue(); - - // Fold the constants, shifting the binop RHS by the shift amount. - SDLoc DL(N); - EVT VT = N->getValueType(0); - SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), - N->getOperand(1)); - assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); - - SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), - N->getOperand(1)); - return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); -} - -SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { - assert(N->getOpcode() == ISD::TRUNCATE); - assert(N->getOperand(0).getOpcode() == ISD::AND); - - // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) - EVT TruncVT = N->getValueType(0); - if (N->hasOneUse() && N->getOperand(0).hasOneUse() && - TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { - SDValue N01 = N->getOperand(0).getOperand(1); - if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { - SDLoc DL(N); - SDValue N00 = N->getOperand(0).getOperand(0); - SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); - SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); - AddToWorklist(Trunc00.getNode()); - AddToWorklist(Trunc01.getNode()); - return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitRotate(SDNode *N) { - SDLoc dl(N); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - unsigned Bitsize = VT.getScalarSizeInBits(); - - // fold (rot x, 0) -> x - if (isNullOrNullSplat(N1)) - return N0; - - // fold (rot x, c) -> x iff (c % BitSize) == 0 - if (isPowerOf2_32(Bitsize) && Bitsize > 1) { - APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); - if (DAG.MaskedValueIsZero(N1, ModuloMask)) - return N0; - } - - // fold (rot x, c) -> (rot x, c % BitSize) - bool OutOfRange = false; - auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { - OutOfRange |= C->getAPIntValue().uge(Bitsize); - return true; - }; - if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { - EVT AmtVT = N1.getValueType(); - SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); - if (SDValue Amt = - DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) - return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); - } - - // rot i16 X, 8 --> bswap X - auto *RotAmtC = isConstOrConstSplat(N1); - if (RotAmtC && RotAmtC->getAPIntValue() == 8 && - VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) - return DAG.getNode(ISD::BSWAP, dl, VT, N0); - - // Simplify the operands using demanded-bits information. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); - } - - unsigned NextOp = N0.getOpcode(); - // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) - if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { - SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); - SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); - if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { - EVT ShiftVT = C1->getValueType(0); - bool SameSide = (N->getOpcode() == NextOp); - unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; - if (SDValue CombinedShift = DAG.FoldConstantArithmetic( - CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { - SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); - SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( - ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); - return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), - CombinedShiftNorm); - } - } - } - return SDValue(); -} - -SDValue DAGCombiner::visitSHL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - EVT ShiftVT = N1.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // fold vector ops - if (VT.isVector()) { - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); - // If setcc produces all-one true value then: - // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) - if (N1CV && N1CV->isConstant()) { - if (N0.getOpcode() == ISD::AND) { - SDValue N00 = N0->getOperand(0); - SDValue N01 = N0->getOperand(1); - BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); - - if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && - TLI.getBooleanContents(N00.getOperand(0).getValueType()) == - TargetLowering::ZeroOrNegativeOneBooleanContent) { - if (SDValue C = - DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) - return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); - } - } - } - } - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (shl c1, c2) -> c1<<c2 - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) - return C; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // if (shl x, c) is known to be zero, return 0 - if (DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(OpSizeInBits))) - return DAG.getConstant(0, SDLoc(N), VT); - - // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); - } - - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) - if (N0.getOpcode() == ISD::SHL) { - auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).uge(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) - return DAG.getConstant(0, SDLoc(N), VT); - - auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).ult(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { - SDLoc DL(N); - SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); - } - } - - // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) - // For this to be valid, the second form must not preserve any of the bits - // that are shifted out by the inner shift in the first form. This means - // the outer shift size must be >= the number of bits added by the ext. - // As a corollary, we don't care what kind of ext it is. - if ((N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::ANY_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND) && - N0.getOperand(0).getOpcode() == ISD::SHL) { - SDValue N0Op0 = N0.getOperand(0); - SDValue InnerShiftAmt = N0Op0.getOperand(1); - EVT InnerVT = N0Op0.getValueType(); - uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); - - auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return c2.uge(OpSizeInBits - InnerBitwidth) && - (c1 + c2).uge(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, - /*AllowUndefs*/ false, - /*AllowTypeMismatch*/ true)) - return DAG.getConstant(0, SDLoc(N), VT); - - auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return c2.uge(OpSizeInBits - InnerBitwidth) && - (c1 + c2).ult(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, - /*AllowUndefs*/ false, - /*AllowTypeMismatch*/ true)) { - SDLoc DL(N); - SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); - SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); - Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); - return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); - } - } - - // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) - // Only fold this if the inner zext has no other uses to avoid increasing - // the total number of instructions. - if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::SRL) { - SDValue N0Op0 = N0.getOperand(0); - SDValue InnerShiftAmt = N0Op0.getOperand(1); - - auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2); - return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); - }; - if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, - /*AllowUndefs*/ false, - /*AllowTypeMismatch*/ true)) { - SDLoc DL(N); - EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); - SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); - NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); - AddToWorklist(NewSHL.getNode()); - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); - } - } - - // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 - // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 - // TODO - support non-uniform vector shift amounts. - if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && - N0->getFlags().hasExact()) { - if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { - uint64_t C1 = N0C1->getZExtValue(); - uint64_t C2 = N1C->getZExtValue(); - SDLoc DL(N); - if (C1 <= C2) - return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), - DAG.getConstant(C2 - C1, DL, ShiftVT)); - return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), - DAG.getConstant(C1 - C2, DL, ShiftVT)); - } - } - - // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or - // (and (srl x, (sub c1, c2), MASK) - // Only fold this if the inner shift has no other uses -- if it does, folding - // this will increase the total number of instructions. - // TODO - drop hasOneUse requirement if c1 == c2? - // TODO - support non-uniform vector shift amounts. - if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && - TLI.shouldFoldConstantShiftPairToMask(N, Level)) { - if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { - if (N0C1->getAPIntValue().ult(OpSizeInBits)) { - uint64_t c1 = N0C1->getZExtValue(); - uint64_t c2 = N1C->getZExtValue(); - APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); - SDValue Shift; - if (c2 > c1) { - Mask <<= c2 - c1; - SDLoc DL(N); - Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), - DAG.getConstant(c2 - c1, DL, ShiftVT)); - } else { - Mask.lshrInPlace(c1 - c2); - SDLoc DL(N); - Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), - DAG.getConstant(c1 - c2, DL, ShiftVT)); - } - SDLoc DL(N0); - return DAG.getNode(ISD::AND, DL, VT, Shift, - DAG.getConstant(Mask, DL, VT)); - } - } - } - - // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) - if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && - isConstantOrConstantVector(N1, /* No Opaques */ true)) { - SDLoc DL(N); - SDValue AllBits = DAG.getAllOnesConstant(DL, VT); - SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); - } - - // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) - // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) - // Variant of version done on multiply, except mul by a power of 2 is turned - // into a shift. - if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && - N0.getNode()->hasOneUse() && - isConstantOrConstantVector(N1, /* No Opaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && - TLI.isDesirableToCommuteWithShift(N, Level)) { - SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); - SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); - AddToWorklist(Shl0.getNode()); - AddToWorklist(Shl1.getNode()); - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); - } - - // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) - if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && - isConstantOrConstantVector(N1, /* No Opaques */ true) && - isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { - SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); - if (isConstantOrConstantVector(Shl)) - return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); - } - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSHL = visitShiftByConstant(N)) - return NewSHL; - - // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). - if (N0.getOpcode() == ISD::VSCALE) - if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { + return DAG.getNode(ISD::ABS, DL, VT, S0); + } + } + + // fold (xor x, x) -> 0 + if (N0 == N1) + return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations); + + // fold (xor (shl 1, x), -1) -> (rotl ~1, x) + // Here is a concrete example of this equivalence: + // i16 x == 14 + // i16 shl == 1 << 14 == 16384 == 0b0100000000000000 + // i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111 + // + // => + // + // i16 ~1 == 0b1111111111111110 + // i16 rol(~1, 14) == 0b1011111111111111 + // + // Some additional tips to help conceptualize this transform: + // - Try to see the operation as placing a single zero in a value of all ones. + // - There exists no value for x which would allow the result to contain zero. + // - Values of x larger than the bitwidth are undefined and do not require a + // consistent result. + // - Pushing the zero left requires shifting one bits in from the right. + // A rotate left of ~1 is a nice way of achieving the desired result. + if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL && + isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) { + return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT), + N0.getOperand(1)); + } + + // Simplify: xor (op x...), (op y...) -> (op (xor x, y)) + if (N0Opcode == N1.getOpcode()) + if (SDValue V = hoistLogicOpWithSameOpcodeHands(N)) + return V; + + // Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable + if (SDValue MM = unfoldMaskedMerge(N)) + return MM; + + // Simplify the expression using non-local knowledge. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N)) + return Combined; + + return SDValue(); +} + +/// If we have a shift-by-constant of a bitwise logic op that itself has a +/// shift-by-constant operand with identical opcode, we may be able to convert +/// that into 2 independent shifts followed by the logic op. This is a +/// throughput improvement. +static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) { + // Match a one-use bitwise logic op. + SDValue LogicOp = Shift->getOperand(0); + if (!LogicOp.hasOneUse()) + return SDValue(); + + unsigned LogicOpcode = LogicOp.getOpcode(); + if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR && + LogicOpcode != ISD::XOR) + return SDValue(); + + // Find a matching one-use shift by constant. + unsigned ShiftOpcode = Shift->getOpcode(); + SDValue C1 = Shift->getOperand(1); + ConstantSDNode *C1Node = isConstOrConstSplat(C1); + assert(C1Node && "Expected a shift with constant operand"); + const APInt &C1Val = C1Node->getAPIntValue(); + auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp, + const APInt *&ShiftAmtVal) { + if (V.getOpcode() != ShiftOpcode || !V.hasOneUse()) + return false; + + ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1)); + if (!ShiftCNode) + return false; + + // Capture the shifted operand and shift amount value. + ShiftOp = V.getOperand(0); + ShiftAmtVal = &ShiftCNode->getAPIntValue(); + + // Shift amount types do not have to match their operand type, so check that + // the constants are the same width. + if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth()) + return false; + + // The fold is not valid if the sum of the shift values exceeds bitwidth. + if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits())) + return false; + + return true; + }; + + // Logic ops are commutative, so check each operand for a match. + SDValue X, Y; + const APInt *C0Val; + if (matchFirstShift(LogicOp.getOperand(0), X, C0Val)) + Y = LogicOp.getOperand(1); + else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val)) + Y = LogicOp.getOperand(0); + else + return SDValue(); + + // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1) + SDLoc DL(Shift); + EVT VT = Shift->getValueType(0); + EVT ShiftAmtVT = Shift->getOperand(1).getValueType(); + SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT); + SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC); + SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1); + return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2); +} + +/// Handle transforms common to the three shifts, when the shift amount is a +/// constant. +/// We are looking for: (shift being one of shl/sra/srl) +/// shift (binop X, C0), C1 +/// And want to transform into: +/// binop (shift X, C1), (shift C0, C1) +SDValue DAGCombiner::visitShiftByConstant(SDNode *N) { + assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand"); + + // Do not turn a 'not' into a regular xor. + if (isBitwiseNot(N->getOperand(0))) + return SDValue(); + + // The inner binop must be one-use, since we want to replace it. + SDValue LHS = N->getOperand(0); + if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level)) + return SDValue(); + + // TODO: This is limited to early combining because it may reveal regressions + // otherwise. But since we just checked a target hook to see if this is + // desirable, that should have filtered out cases where this interferes + // with some other pattern matching. + if (!LegalTypes) + if (SDValue R = combineShiftOfShiftedLogic(N, DAG)) + return R; + + // We want to pull some binops through shifts, so that we have (and (shift)) + // instead of (shift (and)), likewise for add, or, xor, etc. This sort of + // thing happens with address calculations, so it's important to canonicalize + // it. + switch (LHS.getOpcode()) { + default: + return SDValue(); + case ISD::OR: + case ISD::XOR: + case ISD::AND: + break; + case ISD::ADD: + if (N->getOpcode() != ISD::SHL) + return SDValue(); // only shl(add) not sr[al](add). + break; + } + + // We require the RHS of the binop to be a constant and not opaque as well. + ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1)); + if (!BinOpCst) + return SDValue(); + + // FIXME: disable this unless the input to the binop is a shift by a constant + // or is copy/select. Enable this in other cases when figure out it's exactly + // profitable. + SDValue BinOpLHSVal = LHS.getOperand(0); + bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL || + BinOpLHSVal.getOpcode() == ISD::SRA || + BinOpLHSVal.getOpcode() == ISD::SRL) && + isa<ConstantSDNode>(BinOpLHSVal.getOperand(1)); + bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg || + BinOpLHSVal.getOpcode() == ISD::SELECT; + + if (!IsShiftByConstant && !IsCopyOrSelect) + return SDValue(); + + if (IsCopyOrSelect && N->hasOneUse()) + return SDValue(); + + // Fold the constants, shifting the binop RHS by the shift amount. + SDLoc DL(N); + EVT VT = N->getValueType(0); + SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1), + N->getOperand(1)); + assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!"); + + SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0), + N->getOperand(1)); + return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS); +} + +SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) { + assert(N->getOpcode() == ISD::TRUNCATE); + assert(N->getOperand(0).getOpcode() == ISD::AND); + + // (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC) + EVT TruncVT = N->getValueType(0); + if (N->hasOneUse() && N->getOperand(0).hasOneUse() && + TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) { + SDValue N01 = N->getOperand(0).getOperand(1); + if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) { + SDLoc DL(N); + SDValue N00 = N->getOperand(0).getOperand(0); + SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00); + SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01); + AddToWorklist(Trunc00.getNode()); + AddToWorklist(Trunc01.getNode()); + return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitRotate(SDNode *N) { + SDLoc dl(N); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + unsigned Bitsize = VT.getScalarSizeInBits(); + + // fold (rot x, 0) -> x + if (isNullOrNullSplat(N1)) + return N0; + + // fold (rot x, c) -> x iff (c % BitSize) == 0 + if (isPowerOf2_32(Bitsize) && Bitsize > 1) { + APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1); + if (DAG.MaskedValueIsZero(N1, ModuloMask)) + return N0; + } + + // fold (rot x, c) -> (rot x, c % BitSize) + bool OutOfRange = false; + auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) { + OutOfRange |= C->getAPIntValue().uge(Bitsize); + return true; + }; + if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) { + EVT AmtVT = N1.getValueType(); + SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT); + if (SDValue Amt = + DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits})) + return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt); + } + + // rot i16 X, 8 --> bswap X + auto *RotAmtC = isConstOrConstSplat(N1); + if (RotAmtC && RotAmtC->getAPIntValue() == 8 && + VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT)) + return DAG.getNode(ISD::BSWAP, dl, VT, N0); + + // Simplify the operands using demanded-bits information. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))). + if (N1.getOpcode() == ISD::TRUNCATE && + N1.getOperand(0).getOpcode() == ISD::AND) { + if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) + return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1); + } + + unsigned NextOp = N0.getOpcode(); + // fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize) + if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) { + SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1); + SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)); + if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) { + EVT ShiftVT = C1->getValueType(0); + bool SameSide = (N->getOpcode() == NextOp); + unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB; + if (SDValue CombinedShift = DAG.FoldConstantArithmetic( + CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) { + SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT); + SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic( + ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC}); + return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0), + CombinedShiftNorm); + } + } + } + return SDValue(); +} + +SDValue DAGCombiner::visitSHL(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (SDValue V = DAG.simplifyShift(N0, N1)) + return V; + + EVT VT = N0.getValueType(); + EVT ShiftVT = N1.getValueType(); + unsigned OpSizeInBits = VT.getScalarSizeInBits(); + + // fold vector ops + if (VT.isVector()) { + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1); + // If setcc produces all-one true value then: + // (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV) + if (N1CV && N1CV->isConstant()) { + if (N0.getOpcode() == ISD::AND) { + SDValue N00 = N0->getOperand(0); + SDValue N01 = N0->getOperand(1); + BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01); + + if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC && + TLI.getBooleanContents(N00.getOperand(0).getValueType()) == + TargetLowering::ZeroOrNegativeOneBooleanContent) { + if (SDValue C = + DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1})) + return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C); + } + } + } + } + + ConstantSDNode *N1C = isConstOrConstSplat(N1); + + // fold (shl c1, c2) -> c1<<c2 + if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1})) + return C; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // if (shl x, c) is known to be zero, return 0 + if (DAG.MaskedValueIsZero(SDValue(N, 0), + APInt::getAllOnesValue(OpSizeInBits))) + return DAG.getConstant(0, SDLoc(N), VT); + + // fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))). + if (N1.getOpcode() == ISD::TRUNCATE && + N1.getOperand(0).getOpcode() == ISD::AND) { + if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) + return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1); + } + + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2)) + if (N0.getOpcode() == ISD::SHL) { + auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return (c1 + c2).uge(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) + return DAG.getConstant(0, SDLoc(N), VT); + + auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return (c1 + c2).ult(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { + SDLoc DL(N); + SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); + return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum); + } + } + + // fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2)) + // For this to be valid, the second form must not preserve any of the bits + // that are shifted out by the inner shift in the first form. This means + // the outer shift size must be >= the number of bits added by the ext. + // As a corollary, we don't care what kind of ext it is. + if ((N0.getOpcode() == ISD::ZERO_EXTEND || + N0.getOpcode() == ISD::ANY_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND) && + N0.getOperand(0).getOpcode() == ISD::SHL) { + SDValue N0Op0 = N0.getOperand(0); + SDValue InnerShiftAmt = N0Op0.getOperand(1); + EVT InnerVT = N0Op0.getValueType(); + uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits(); + + auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return c2.uge(OpSizeInBits - InnerBitwidth) && + (c1 + c2).uge(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange, + /*AllowUndefs*/ false, + /*AllowTypeMismatch*/ true)) + return DAG.getConstant(0, SDLoc(N), VT); + + auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return c2.uge(OpSizeInBits - InnerBitwidth) && + (c1 + c2).ult(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange, + /*AllowUndefs*/ false, + /*AllowTypeMismatch*/ true)) { + SDLoc DL(N); + SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0)); + SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT); + Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1); + return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum); + } + } + + // fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C)) + // Only fold this if the inner zext has no other uses to avoid increasing + // the total number of instructions. + if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() && + N0.getOperand(0).getOpcode() == ISD::SRL) { + SDValue N0Op0 = N0.getOperand(0); + SDValue InnerShiftAmt = N0Op0.getOperand(1); + + auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2); + return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2); + }; + if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual, + /*AllowUndefs*/ false, + /*AllowTypeMismatch*/ true)) { + SDLoc DL(N); + EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType(); + SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT); + NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL); + AddToWorklist(NewSHL.getNode()); + return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL); + } + } + + // fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2 + // fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2 + // TODO - support non-uniform vector shift amounts. + if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) && + N0->getFlags().hasExact()) { + if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { + uint64_t C1 = N0C1->getZExtValue(); + uint64_t C2 = N1C->getZExtValue(); + SDLoc DL(N); + if (C1 <= C2) + return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), + DAG.getConstant(C2 - C1, DL, ShiftVT)); + return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0), + DAG.getConstant(C1 - C2, DL, ShiftVT)); + } + } + + // fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or + // (and (srl x, (sub c1, c2), MASK) + // Only fold this if the inner shift has no other uses -- if it does, folding + // this will increase the total number of instructions. + // TODO - drop hasOneUse requirement if c1 == c2? + // TODO - support non-uniform vector shift amounts. + if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() && + TLI.shouldFoldConstantShiftPairToMask(N, Level)) { + if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) { + if (N0C1->getAPIntValue().ult(OpSizeInBits)) { + uint64_t c1 = N0C1->getZExtValue(); + uint64_t c2 = N1C->getZExtValue(); + APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1); + SDValue Shift; + if (c2 > c1) { + Mask <<= c2 - c1; + SDLoc DL(N); + Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), + DAG.getConstant(c2 - c1, DL, ShiftVT)); + } else { + Mask.lshrInPlace(c1 - c2); + SDLoc DL(N); + Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), + DAG.getConstant(c1 - c2, DL, ShiftVT)); + } + SDLoc DL(N0); + return DAG.getNode(ISD::AND, DL, VT, Shift, + DAG.getConstant(Mask, DL, VT)); + } + } + } + + // fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1)) + if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) && + isConstantOrConstantVector(N1, /* No Opaques */ true)) { + SDLoc DL(N); + SDValue AllBits = DAG.getAllOnesConstant(DL, VT); + SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1); + return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask); + } + + // fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2) + // fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2) + // Variant of version done on multiply, except mul by a power of 2 is turned + // into a shift. + if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) && + N0.getNode()->hasOneUse() && + isConstantOrConstantVector(N1, /* No Opaques */ true) && + isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) && + TLI.isDesirableToCommuteWithShift(N, Level)) { + SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1); + SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); + AddToWorklist(Shl0.getNode()); + AddToWorklist(Shl1.getNode()); + return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1); + } + + // fold (shl (mul x, c1), c2) -> (mul x, c1 << c2) + if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() && + isConstantOrConstantVector(N1, /* No Opaques */ true) && + isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) { + SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1); + if (isConstantOrConstantVector(Shl)) + return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl); + } + + if (N1C && !N1C->isOpaque()) + if (SDValue NewSHL = visitShiftByConstant(N)) + return NewSHL; + + // Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)). + if (N0.getOpcode() == ISD::VSCALE) + if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) { const APInt &C0 = N0.getConstantOperandAPInt(0); const APInt &C1 = NC1->getAPIntValue(); return DAG.getVScale(SDLoc(N), VT, C0 << C1); - } - - return SDValue(); -} - -// Transform a right shift of a multiply into a multiply-high. -// Examples: -// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) -// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) -static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, - const TargetLowering &TLI) { - assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && - "SRL or SRA node is required here!"); - - // Check the shift amount. Proceed with the transformation if the shift - // amount is constant. - ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); - if (!ShiftAmtSrc) - return SDValue(); - - SDLoc DL(N); - - // The operation feeding into the shift must be a multiply. - SDValue ShiftOperand = N->getOperand(0); - if (ShiftOperand.getOpcode() != ISD::MUL) - return SDValue(); - - // Both operands must be equivalent extend nodes. - SDValue LeftOp = ShiftOperand.getOperand(0); - SDValue RightOp = ShiftOperand.getOperand(1); - bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; - bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; - - if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) - return SDValue(); - - EVT WideVT1 = LeftOp.getValueType(); - EVT WideVT2 = RightOp.getValueType(); - (void)WideVT2; - // Proceed with the transformation if the wide types match. - assert((WideVT1 == WideVT2) && - "Cannot have a multiply node with two different operand types."); - - EVT NarrowVT = LeftOp.getOperand(0).getValueType(); - // Check that the two extend nodes are the same type. - if (NarrowVT != RightOp.getOperand(0).getValueType()) - return SDValue(); - - // Proceed with the transformation if the wide type is twice as large - // as the narrow type. - unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); - if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize) - return SDValue(); - - // Check the shift amount with the narrow type size. - // Proceed with the transformation if the shift amount is the width - // of the narrow type. - unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); - if (ShiftAmt != NarrowVTSize) - return SDValue(); - - // If the operation feeding into the MUL is a sign extend (sext), - // we use mulhs. Othewise, zero extends (zext) use mulhu. - unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; - + } + + return SDValue(); +} + +// Transform a right shift of a multiply into a multiply-high. +// Examples: +// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b) +// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b) +static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG, + const TargetLowering &TLI) { + assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && + "SRL or SRA node is required here!"); + + // Check the shift amount. Proceed with the transformation if the shift + // amount is constant. + ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1)); + if (!ShiftAmtSrc) + return SDValue(); + + SDLoc DL(N); + + // The operation feeding into the shift must be a multiply. + SDValue ShiftOperand = N->getOperand(0); + if (ShiftOperand.getOpcode() != ISD::MUL) + return SDValue(); + + // Both operands must be equivalent extend nodes. + SDValue LeftOp = ShiftOperand.getOperand(0); + SDValue RightOp = ShiftOperand.getOperand(1); + bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND; + bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND; + + if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode()) + return SDValue(); + + EVT WideVT1 = LeftOp.getValueType(); + EVT WideVT2 = RightOp.getValueType(); + (void)WideVT2; + // Proceed with the transformation if the wide types match. + assert((WideVT1 == WideVT2) && + "Cannot have a multiply node with two different operand types."); + + EVT NarrowVT = LeftOp.getOperand(0).getValueType(); + // Check that the two extend nodes are the same type. + if (NarrowVT != RightOp.getOperand(0).getValueType()) + return SDValue(); + + // Proceed with the transformation if the wide type is twice as large + // as the narrow type. + unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits(); + if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize) + return SDValue(); + + // Check the shift amount with the narrow type size. + // Proceed with the transformation if the shift amount is the width + // of the narrow type. + unsigned ShiftAmt = ShiftAmtSrc->getZExtValue(); + if (ShiftAmt != NarrowVTSize) + return SDValue(); + + // If the operation feeding into the MUL is a sign extend (sext), + // we use mulhs. Othewise, zero extends (zext) use mulhu. + unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU; + // Combine to mulh if mulh is legal/custom for the narrow type on the target. if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT)) return SDValue(); - SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), - RightOp.getOperand(0)); - return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1) - : DAG.getZExtOrTrunc(Result, DL, WideVT1)); -} - -SDValue DAGCombiner::visitSRA(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // Arithmetic shifting an all-sign-bit value is a no-op. - // fold (sra 0, x) -> 0 - // fold (sra -1, x) -> -1 - if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) - return N0; - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (sra c1, c2) -> (sra c1, c2) - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) - return C; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports - // sext_inreg. - if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { - unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); - EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); - if (VT.isVector()) - ExtVT = EVT::getVectorVT(*DAG.getContext(), - ExtVT, VT.getVectorNumElements()); - if (!LegalOperations || - TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == - TargetLowering::Legal) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, - N0.getOperand(0), DAG.getValueType(ExtVT)); - } - - // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) - // clamp (add c1, c2) to max shift. - if (N0.getOpcode() == ISD::SRA) { - SDLoc DL(N); - EVT ShiftVT = N1.getValueType(); - EVT ShiftSVT = ShiftVT.getScalarType(); - SmallVector<SDValue, 16> ShiftValues; - - auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - APInt Sum = c1 + c2; - unsigned ShiftSum = - Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); - ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); - return true; - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { - SDValue ShiftValue; - if (VT.isVector()) - ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); - else - ShiftValue = ShiftValues[0]; - return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); - } - } - - // fold (sra (shl X, m), (sub result_size, n)) - // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for - // result_size - n != m. - // If truncate is free for the target sext(shl) is likely to result in better - // code. - if (N0.getOpcode() == ISD::SHL && N1C) { - // Get the two constanst of the shifts, CN0 = m, CN = n. - const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); - if (N01C) { - LLVMContext &Ctx = *DAG.getContext(); - // Determine what the truncate's result bitsize and type would be. - EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); - - if (VT.isVector()) - TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); - - // Determine the residual right-shift amount. - int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); - - // If the shift is not a no-op (in which case this should be just a sign - // extend already), the truncated to type is legal, sign_extend is legal - // on that type, and the truncate to that type is both legal and free, - // perform the transform. - if ((ShiftAmt > 0) && - TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && - TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && - TLI.isTruncateFree(VT, TruncVT)) { - SDLoc DL(N); - SDValue Amt = DAG.getConstant(ShiftAmt, DL, - getShiftAmountTy(N0.getOperand(0).getValueType())); - SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, - N0.getOperand(0), Amt); - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, - Shift); - return DAG.getNode(ISD::SIGN_EXTEND, DL, - N->getValueType(0), Trunc); - } - } - } - - // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. - // sra (add (shl X, N1C), AddC), N1C --> - // sext (add (trunc X to (width - N1C)), AddC') - if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && - N0.getOperand(0).getOpcode() == ISD::SHL && - N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { - if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { - SDValue Shl = N0.getOperand(0); - // Determine what the truncate's type would be and ask the target if that - // is a free operation. - LLVMContext &Ctx = *DAG.getContext(); - unsigned ShiftAmt = N1C->getZExtValue(); - EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); - if (VT.isVector()) - TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); - - // TODO: The simple type check probably belongs in the default hook - // implementation and/or target-specific overrides (because - // non-simple types likely require masking when legalized), but that - // restriction may conflict with other transforms. - if (TruncVT.isSimple() && isTypeLegal(TruncVT) && - TLI.isTruncateFree(VT, TruncVT)) { - SDLoc DL(N); - SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); - SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). - trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); - SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); - return DAG.getSExtOrTrunc(Add, DL, VT); - } - } - } - - // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); - } - - // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) - // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) - // if c1 is equal to the number of bits the trunc removes - // TODO - support non-uniform vector shift amounts. - if (N0.getOpcode() == ISD::TRUNCATE && - (N0.getOperand(0).getOpcode() == ISD::SRL || - N0.getOperand(0).getOpcode() == ISD::SRA) && - N0.getOperand(0).hasOneUse() && - N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { - SDValue N0Op0 = N0.getOperand(0); - if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { - EVT LargeVT = N0Op0.getValueType(); - unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; - if (LargeShift->getAPIntValue() == TruncBits) { - SDLoc DL(N); - SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, - getShiftAmountTy(LargeVT)); - SDValue SRA = - DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); - return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); - } - } - } - - // Simplify, based on bits shifted out of the LHS. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // If the sign bit is known to be zero, switch this to a SRL. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSRA = visitShiftByConstant(N)) - return NewSRA; - - // Try to transform this shift into a multiply-high if - // it matches the appropriate pattern detected in combineShiftToMULH. - if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) - return MULH; - - return SDValue(); -} - -SDValue DAGCombiner::visitSRL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - if (SDValue V = DAG.simplifyShift(N0, N1)) - return V; - - EVT VT = N0.getValueType(); - unsigned OpSizeInBits = VT.getScalarSizeInBits(); - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - ConstantSDNode *N1C = isConstOrConstSplat(N1); - - // fold (srl c1, c2) -> c1 >>u c2 - if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) - return C; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // if (srl x, c) is known to be zero, return 0 - if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), - APInt::getAllOnesValue(OpSizeInBits))) - return DAG.getConstant(0, SDLoc(N), VT); - - // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) - if (N0.getOpcode() == ISD::SRL) { - auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).uge(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) - return DAG.getConstant(0, SDLoc(N), VT); - - auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, - ConstantSDNode *RHS) { - APInt c1 = LHS->getAPIntValue(); - APInt c2 = RHS->getAPIntValue(); - zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); - return (c1 + c2).ult(OpSizeInBits); - }; - if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { - SDLoc DL(N); - EVT ShiftVT = N1.getValueType(); - SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); - return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); - } - } - - if (N1C && N0.getOpcode() == ISD::TRUNCATE && - N0.getOperand(0).getOpcode() == ISD::SRL) { - SDValue InnerShift = N0.getOperand(0); - // TODO - support non-uniform vector shift amounts. - if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { - uint64_t c1 = N001C->getZExtValue(); - uint64_t c2 = N1C->getZExtValue(); - EVT InnerShiftVT = InnerShift.getValueType(); - EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); - uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); - // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) - // This is only valid if the OpSizeInBits + c1 = size of inner shift. - if (c1 + OpSizeInBits == InnerShiftSize) { - SDLoc DL(N); - if (c1 + c2 >= InnerShiftSize) - return DAG.getConstant(0, DL, VT); - SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); - SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, - InnerShift.getOperand(0), NewShiftAmt); - return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); - } - // In the more general case, we can clear the high bits after the shift: - // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) - if (N0.hasOneUse() && InnerShift.hasOneUse() && - c1 + c2 < InnerShiftSize) { - SDLoc DL(N); - SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); - SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, - InnerShift.getOperand(0), NewShiftAmt); - SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, - OpSizeInBits - c2), - DL, InnerShiftVT); - SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); - return DAG.getNode(ISD::TRUNCATE, DL, VT, And); - } - } - } - - // fold (srl (shl x, c), c) -> (and x, cst2) - // TODO - (srl (shl x, c1), c2). - if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && - isConstantOrConstantVector(N1, /* NoOpaques */ true)) { - SDLoc DL(N); - SDValue Mask = - DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); - AddToWorklist(Mask.getNode()); - return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); - } - - // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) - // TODO - support non-uniform vector shift amounts. - if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { - // Shifting in all undef bits? - EVT SmallVT = N0.getOperand(0).getValueType(); - unsigned BitSize = SmallVT.getScalarSizeInBits(); - if (N1C->getAPIntValue().uge(BitSize)) - return DAG.getUNDEF(VT); - - if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { - uint64_t ShiftAmt = N1C->getZExtValue(); - SDLoc DL0(N0); - SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, - N0.getOperand(0), - DAG.getConstant(ShiftAmt, DL0, - getShiftAmountTy(SmallVT))); - AddToWorklist(SmallShift.getNode()); - APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); - SDLoc DL(N); - return DAG.getNode(ISD::AND, DL, VT, - DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), - DAG.getConstant(Mask, DL, VT)); - } - } - - // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign - // bit, which is unmodified by sra. - if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { - if (N0.getOpcode() == ISD::SRA) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); - } - - // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). - if (N1C && N0.getOpcode() == ISD::CTLZ && - N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { - KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); - - // If any of the input bits are KnownOne, then the input couldn't be all - // zeros, thus the result of the srl will always be zero. - if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); - - // If all of the bits input the to ctlz node are known to be zero, then - // the result of the ctlz is "32" and the result of the shift is one. - APInt UnknownBits = ~Known.Zero; - if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); - - // Otherwise, check to see if there is exactly one bit input to the ctlz. - if (UnknownBits.isPowerOf2()) { - // Okay, we know that only that the single bit specified by UnknownBits - // could be set on input to the CTLZ node. If this bit is set, the SRL - // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair - // to an SRL/XOR pair, which is likely to simplify more. - unsigned ShAmt = UnknownBits.countTrailingZeros(); - SDValue Op = N0.getOperand(0); - - if (ShAmt) { - SDLoc DL(N0); - Op = DAG.getNode(ISD::SRL, DL, VT, Op, - DAG.getConstant(ShAmt, DL, - getShiftAmountTy(Op.getValueType()))); - AddToWorklist(Op.getNode()); - } - - SDLoc DL(N); - return DAG.getNode(ISD::XOR, DL, VT, - Op, DAG.getConstant(1, DL, VT)); - } - } - - // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). - if (N1.getOpcode() == ISD::TRUNCATE && - N1.getOperand(0).getOpcode() == ISD::AND) { - if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); - } - - // fold operands of srl based on knowledge that the low bits are not - // demanded. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - if (N1C && !N1C->isOpaque()) - if (SDValue NewSRL = visitShiftByConstant(N)) - return NewSRL; - - // Attempt to convert a srl of a load into a narrower zero-extending load. - if (SDValue NarrowLoad = ReduceLoadWidth(N)) - return NarrowLoad; - - // Here is a common situation. We want to optimize: - // - // %a = ... - // %b = and i32 %a, 2 - // %c = srl i32 %b, 1 - // brcond i32 %c ... - // - // into - // - // %a = ... - // %b = and %a, 2 - // %c = setcc eq %b, 0 - // brcond %c ... - // - // However when after the source operand of SRL is optimized into AND, the SRL - // itself may not be optimized further. Look for it and add the BRCOND into - // the worklist. - if (N->hasOneUse()) { - SDNode *Use = *N->use_begin(); - if (Use->getOpcode() == ISD::BRCOND) - AddToWorklist(Use); - else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { - // Also look pass the truncate. - Use = *Use->use_begin(); - if (Use->getOpcode() == ISD::BRCOND) - AddToWorklist(Use); - } - } - - // Try to transform this shift into a multiply-high if - // it matches the appropriate pattern detected in combineShiftToMULH. - if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) - return MULH; - - return SDValue(); -} - -SDValue DAGCombiner::visitFunnelShift(SDNode *N) { - EVT VT = N->getValueType(0); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - bool IsFSHL = N->getOpcode() == ISD::FSHL; - unsigned BitWidth = VT.getScalarSizeInBits(); - - // fold (fshl N0, N1, 0) -> N0 - // fold (fshr N0, N1, 0) -> N1 - if (isPowerOf2_32(BitWidth)) - if (DAG.MaskedValueIsZero( - N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) - return IsFSHL ? N0 : N1; - - auto IsUndefOrZero = [](SDValue V) { - return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); - }; - - // TODO - support non-uniform vector shift amounts. - if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { - EVT ShAmtTy = N2.getValueType(); - - // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) - if (Cst->getAPIntValue().uge(BitWidth)) { - uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, - DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); - } - - unsigned ShAmt = Cst->getZExtValue(); - if (ShAmt == 0) - return IsFSHL ? N0 : N1; - - // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) - // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) - // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) - // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) - if (IsUndefOrZero(N0)) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, - DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, - SDLoc(N), ShAmtTy)); - if (IsUndefOrZero(N1)) - return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, - DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, - SDLoc(N), ShAmtTy)); - - // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. - // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. - // TODO - bigendian support once we have test coverage. - // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? - // TODO - permit LHS EXTLOAD if extensions are shifted out. - if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && - !DAG.getDataLayout().isBigEndian()) { - auto *LHS = dyn_cast<LoadSDNode>(N0); - auto *RHS = dyn_cast<LoadSDNode>(N1); - if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && - LHS->getAddressSpace() == RHS->getAddressSpace() && - (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && - ISD::isNON_EXTLoad(LHS)) { - if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { - SDLoc DL(RHS); - uint64_t PtrOff = - IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); - Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); - bool Fast = false; - if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, - RHS->getAddressSpace(), NewAlign, - RHS->getMemOperand()->getFlags(), &Fast) && - Fast) { + SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0), + RightOp.getOperand(0)); + return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1) + : DAG.getZExtOrTrunc(Result, DL, WideVT1)); +} + +SDValue DAGCombiner::visitSRA(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (SDValue V = DAG.simplifyShift(N0, N1)) + return V; + + EVT VT = N0.getValueType(); + unsigned OpSizeInBits = VT.getScalarSizeInBits(); + + // Arithmetic shifting an all-sign-bit value is a no-op. + // fold (sra 0, x) -> 0 + // fold (sra -1, x) -> -1 + if (DAG.ComputeNumSignBits(N0) == OpSizeInBits) + return N0; + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + ConstantSDNode *N1C = isConstOrConstSplat(N1); + + // fold (sra c1, c2) -> (sra c1, c2) + if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1})) + return C; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports + // sext_inreg. + if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) { + unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue(); + EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits); + if (VT.isVector()) + ExtVT = EVT::getVectorVT(*DAG.getContext(), + ExtVT, VT.getVectorNumElements()); + if (!LegalOperations || + TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) == + TargetLowering::Legal) + return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, + N0.getOperand(0), DAG.getValueType(ExtVT)); + } + + // fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2)) + // clamp (add c1, c2) to max shift. + if (N0.getOpcode() == ISD::SRA) { + SDLoc DL(N); + EVT ShiftVT = N1.getValueType(); + EVT ShiftSVT = ShiftVT.getScalarType(); + SmallVector<SDValue, 16> ShiftValues; + + auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + APInt Sum = c1 + c2; + unsigned ShiftSum = + Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue(); + ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT)); + return true; + }; + if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) { + SDValue ShiftValue; + if (VT.isVector()) + ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues); + else + ShiftValue = ShiftValues[0]; + return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue); + } + } + + // fold (sra (shl X, m), (sub result_size, n)) + // -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for + // result_size - n != m. + // If truncate is free for the target sext(shl) is likely to result in better + // code. + if (N0.getOpcode() == ISD::SHL && N1C) { + // Get the two constanst of the shifts, CN0 = m, CN = n. + const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1)); + if (N01C) { + LLVMContext &Ctx = *DAG.getContext(); + // Determine what the truncate's result bitsize and type would be. + EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue()); + + if (VT.isVector()) + TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); + + // Determine the residual right-shift amount. + int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue(); + + // If the shift is not a no-op (in which case this should be just a sign + // extend already), the truncated to type is legal, sign_extend is legal + // on that type, and the truncate to that type is both legal and free, + // perform the transform. + if ((ShiftAmt > 0) && + TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) && + TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) && + TLI.isTruncateFree(VT, TruncVT)) { + SDLoc DL(N); + SDValue Amt = DAG.getConstant(ShiftAmt, DL, + getShiftAmountTy(N0.getOperand(0).getValueType())); + SDValue Shift = DAG.getNode(ISD::SRL, DL, VT, + N0.getOperand(0), Amt); + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, + Shift); + return DAG.getNode(ISD::SIGN_EXTEND, DL, + N->getValueType(0), Trunc); + } + } + } + + // We convert trunc/ext to opposing shifts in IR, but casts may be cheaper. + // sra (add (shl X, N1C), AddC), N1C --> + // sext (add (trunc X to (width - N1C)), AddC') + if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C && + N0.getOperand(0).getOpcode() == ISD::SHL && + N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) { + if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) { + SDValue Shl = N0.getOperand(0); + // Determine what the truncate's type would be and ask the target if that + // is a free operation. + LLVMContext &Ctx = *DAG.getContext(); + unsigned ShiftAmt = N1C->getZExtValue(); + EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt); + if (VT.isVector()) + TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorNumElements()); + + // TODO: The simple type check probably belongs in the default hook + // implementation and/or target-specific overrides (because + // non-simple types likely require masking when legalized), but that + // restriction may conflict with other transforms. + if (TruncVT.isSimple() && isTypeLegal(TruncVT) && + TLI.isTruncateFree(VT, TruncVT)) { + SDLoc DL(N); + SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT); + SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt). + trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT); + SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC); + return DAG.getSExtOrTrunc(Add, DL, VT); + } + } + } + + // fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))). + if (N1.getOpcode() == ISD::TRUNCATE && + N1.getOperand(0).getOpcode() == ISD::AND) { + if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) + return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1); + } + + // fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2)) + // fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2)) + // if c1 is equal to the number of bits the trunc removes + // TODO - support non-uniform vector shift amounts. + if (N0.getOpcode() == ISD::TRUNCATE && + (N0.getOperand(0).getOpcode() == ISD::SRL || + N0.getOperand(0).getOpcode() == ISD::SRA) && + N0.getOperand(0).hasOneUse() && + N0.getOperand(0).getOperand(1).hasOneUse() && N1C) { + SDValue N0Op0 = N0.getOperand(0); + if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) { + EVT LargeVT = N0Op0.getValueType(); + unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits; + if (LargeShift->getAPIntValue() == TruncBits) { + SDLoc DL(N); + SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL, + getShiftAmountTy(LargeVT)); + SDValue SRA = + DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt); + return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA); + } + } + } + + // Simplify, based on bits shifted out of the LHS. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // If the sign bit is known to be zero, switch this to a SRL. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1); + + if (N1C && !N1C->isOpaque()) + if (SDValue NewSRA = visitShiftByConstant(N)) + return NewSRA; + + // Try to transform this shift into a multiply-high if + // it matches the appropriate pattern detected in combineShiftToMULH. + if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) + return MULH; + + return SDValue(); +} + +SDValue DAGCombiner::visitSRL(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (SDValue V = DAG.simplifyShift(N0, N1)) + return V; + + EVT VT = N0.getValueType(); + unsigned OpSizeInBits = VT.getScalarSizeInBits(); + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + ConstantSDNode *N1C = isConstOrConstSplat(N1); + + // fold (srl c1, c2) -> c1 >>u c2 + if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1})) + return C; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // if (srl x, c) is known to be zero, return 0 + if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0), + APInt::getAllOnesValue(OpSizeInBits))) + return DAG.getConstant(0, SDLoc(N), VT); + + // fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2)) + if (N0.getOpcode() == ISD::SRL) { + auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return (c1 + c2).uge(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange)) + return DAG.getConstant(0, SDLoc(N), VT); + + auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS, + ConstantSDNode *RHS) { + APInt c1 = LHS->getAPIntValue(); + APInt c2 = RHS->getAPIntValue(); + zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */); + return (c1 + c2).ult(OpSizeInBits); + }; + if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) { + SDLoc DL(N); + EVT ShiftVT = N1.getValueType(); + SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1)); + return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum); + } + } + + if (N1C && N0.getOpcode() == ISD::TRUNCATE && + N0.getOperand(0).getOpcode() == ISD::SRL) { + SDValue InnerShift = N0.getOperand(0); + // TODO - support non-uniform vector shift amounts. + if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) { + uint64_t c1 = N001C->getZExtValue(); + uint64_t c2 = N1C->getZExtValue(); + EVT InnerShiftVT = InnerShift.getValueType(); + EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType(); + uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits(); + // srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2))) + // This is only valid if the OpSizeInBits + c1 = size of inner shift. + if (c1 + OpSizeInBits == InnerShiftSize) { + SDLoc DL(N); + if (c1 + c2 >= InnerShiftSize) + return DAG.getConstant(0, DL, VT); + SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); + SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, + InnerShift.getOperand(0), NewShiftAmt); + return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift); + } + // In the more general case, we can clear the high bits after the shift: + // srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask) + if (N0.hasOneUse() && InnerShift.hasOneUse() && + c1 + c2 < InnerShiftSize) { + SDLoc DL(N); + SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT); + SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT, + InnerShift.getOperand(0), NewShiftAmt); + SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize, + OpSizeInBits - c2), + DL, InnerShiftVT); + SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask); + return DAG.getNode(ISD::TRUNCATE, DL, VT, And); + } + } + } + + // fold (srl (shl x, c), c) -> (and x, cst2) + // TODO - (srl (shl x, c1), c2). + if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 && + isConstantOrConstantVector(N1, /* NoOpaques */ true)) { + SDLoc DL(N); + SDValue Mask = + DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1); + AddToWorklist(Mask.getNode()); + return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask); + } + + // fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask) + // TODO - support non-uniform vector shift amounts. + if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { + // Shifting in all undef bits? + EVT SmallVT = N0.getOperand(0).getValueType(); + unsigned BitSize = SmallVT.getScalarSizeInBits(); + if (N1C->getAPIntValue().uge(BitSize)) + return DAG.getUNDEF(VT); + + if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) { + uint64_t ShiftAmt = N1C->getZExtValue(); + SDLoc DL0(N0); + SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT, + N0.getOperand(0), + DAG.getConstant(ShiftAmt, DL0, + getShiftAmountTy(SmallVT))); + AddToWorklist(SmallShift.getNode()); + APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt); + SDLoc DL(N); + return DAG.getNode(ISD::AND, DL, VT, + DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift), + DAG.getConstant(Mask, DL, VT)); + } + } + + // fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign + // bit, which is unmodified by sra. + if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) { + if (N0.getOpcode() == ISD::SRA) + return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1); + } + + // fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit). + if (N1C && N0.getOpcode() == ISD::CTLZ && + N1C->getAPIntValue() == Log2_32(OpSizeInBits)) { + KnownBits Known = DAG.computeKnownBits(N0.getOperand(0)); + + // If any of the input bits are KnownOne, then the input couldn't be all + // zeros, thus the result of the srl will always be zero. + if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT); + + // If all of the bits input the to ctlz node are known to be zero, then + // the result of the ctlz is "32" and the result of the shift is one. + APInt UnknownBits = ~Known.Zero; + if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT); + + // Otherwise, check to see if there is exactly one bit input to the ctlz. + if (UnknownBits.isPowerOf2()) { + // Okay, we know that only that the single bit specified by UnknownBits + // could be set on input to the CTLZ node. If this bit is set, the SRL + // will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair + // to an SRL/XOR pair, which is likely to simplify more. + unsigned ShAmt = UnknownBits.countTrailingZeros(); + SDValue Op = N0.getOperand(0); + + if (ShAmt) { + SDLoc DL(N0); + Op = DAG.getNode(ISD::SRL, DL, VT, Op, + DAG.getConstant(ShAmt, DL, + getShiftAmountTy(Op.getValueType()))); + AddToWorklist(Op.getNode()); + } + + SDLoc DL(N); + return DAG.getNode(ISD::XOR, DL, VT, + Op, DAG.getConstant(1, DL, VT)); + } + } + + // fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))). + if (N1.getOpcode() == ISD::TRUNCATE && + N1.getOperand(0).getOpcode() == ISD::AND) { + if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode())) + return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1); + } + + // fold operands of srl based on knowledge that the low bits are not + // demanded. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + if (N1C && !N1C->isOpaque()) + if (SDValue NewSRL = visitShiftByConstant(N)) + return NewSRL; + + // Attempt to convert a srl of a load into a narrower zero-extending load. + if (SDValue NarrowLoad = ReduceLoadWidth(N)) + return NarrowLoad; + + // Here is a common situation. We want to optimize: + // + // %a = ... + // %b = and i32 %a, 2 + // %c = srl i32 %b, 1 + // brcond i32 %c ... + // + // into + // + // %a = ... + // %b = and %a, 2 + // %c = setcc eq %b, 0 + // brcond %c ... + // + // However when after the source operand of SRL is optimized into AND, the SRL + // itself may not be optimized further. Look for it and add the BRCOND into + // the worklist. + if (N->hasOneUse()) { + SDNode *Use = *N->use_begin(); + if (Use->getOpcode() == ISD::BRCOND) + AddToWorklist(Use); + else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) { + // Also look pass the truncate. + Use = *Use->use_begin(); + if (Use->getOpcode() == ISD::BRCOND) + AddToWorklist(Use); + } + } + + // Try to transform this shift into a multiply-high if + // it matches the appropriate pattern detected in combineShiftToMULH. + if (SDValue MULH = combineShiftToMULH(N, DAG, TLI)) + return MULH; + + return SDValue(); +} + +SDValue DAGCombiner::visitFunnelShift(SDNode *N) { + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + bool IsFSHL = N->getOpcode() == ISD::FSHL; + unsigned BitWidth = VT.getScalarSizeInBits(); + + // fold (fshl N0, N1, 0) -> N0 + // fold (fshr N0, N1, 0) -> N1 + if (isPowerOf2_32(BitWidth)) + if (DAG.MaskedValueIsZero( + N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1))) + return IsFSHL ? N0 : N1; + + auto IsUndefOrZero = [](SDValue V) { + return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true); + }; + + // TODO - support non-uniform vector shift amounts. + if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) { + EVT ShAmtTy = N2.getValueType(); + + // fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth) + if (Cst->getAPIntValue().uge(BitWidth)) { + uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth); + return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1, + DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy)); + } + + unsigned ShAmt = Cst->getZExtValue(); + if (ShAmt == 0) + return IsFSHL ? N0 : N1; + + // fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C) + // fold fshr(undef_or_zero, N1, C) -> lshr(N1, C) + // fold fshl(N0, undef_or_zero, C) -> shl(N0, C) + // fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C) + if (IsUndefOrZero(N0)) + return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, + DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt, + SDLoc(N), ShAmtTy)); + if (IsUndefOrZero(N1)) + return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, + DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt, + SDLoc(N), ShAmtTy)); + + // fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. + // fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive. + // TODO - bigendian support once we have test coverage. + // TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine? + // TODO - permit LHS EXTLOAD if extensions are shifted out. + if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() && + !DAG.getDataLayout().isBigEndian()) { + auto *LHS = dyn_cast<LoadSDNode>(N0); + auto *RHS = dyn_cast<LoadSDNode>(N1); + if (LHS && RHS && LHS->isSimple() && RHS->isSimple() && + LHS->getAddressSpace() == RHS->getAddressSpace() && + (LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) && + ISD::isNON_EXTLoad(LHS)) { + if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) { + SDLoc DL(RHS); + uint64_t PtrOff = + IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8); + Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff); + bool Fast = false; + if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, + RHS->getAddressSpace(), NewAlign, + RHS->getMemOperand()->getFlags(), &Fast) && + Fast) { SDValue NewPtr = DAG.getMemBasePlusOffset( RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL); - AddToWorklist(NewPtr.getNode()); - SDValue Load = DAG.getLoad( - VT, DL, RHS->getChain(), NewPtr, - RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, - RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); - // Replace the old load's chain with the new load's chain. - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); - return Load; - } - } - } - } - } - - // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) - // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) - // iff We know the shift amount is in range. - // TODO: when is it worth doing SUB(BW, N2) as well? - if (isPowerOf2_32(BitWidth)) { - APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); - if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) - return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); - if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) - return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); - } - - // fold (fshl N0, N0, N2) -> (rotl N0, N2) - // fold (fshr N0, N0, N2) -> (rotr N0, N2) - // TODO: Investigate flipping this rotate if only one is legal, if funnel shift - // is legal as well we might be better off avoiding non-constant (BW - N2). - unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; - if (N0 == N1 && hasOperation(RotOpc, VT)) - return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); - - // Simplify, based on bits shifted out of N0/N1. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitABS(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (abs c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); - // fold (abs (abs x)) -> (abs x) - if (N0.getOpcode() == ISD::ABS) - return N0; - // fold (abs x) -> x iff not-negative - if (DAG.SignBitIsZero(N0)) - return N0; - return SDValue(); -} - -SDValue DAGCombiner::visitBSWAP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (bswap c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); - // fold (bswap (bswap x)) -> x - if (N0.getOpcode() == ISD::BSWAP) - return N0->getOperand(0); - return SDValue(); -} - -SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (bitreverse c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); - // fold (bitreverse (bitreverse x)) -> x - if (N0.getOpcode() == ISD::BITREVERSE) - return N0.getOperand(0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTLZ(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctlz c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); - - // If the value is known never to be zero, switch to the undef version. - if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { - if (DAG.isKnownNeverZero(N0)) - return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctlz_zero_undef c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTTZ(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (cttz c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); - - // If the value is known never to be zero, switch to the undef version. - if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { - if (DAG.isKnownNeverZero(N0)) - return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (cttz_zero_undef c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); - return SDValue(); -} - -SDValue DAGCombiner::visitCTPOP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ctpop c1) -> c2 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); - return SDValue(); -} - -// FIXME: This should be checking for no signed zeros on individual operands, as -// well as no nans. -static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, - SDValue RHS, - const TargetLowering &TLI) { - const TargetOptions &Options = DAG.getTarget().Options; - EVT VT = LHS.getValueType(); - - return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && - TLI.isProfitableToCombineMinNumMaxNum(VT) && - DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); -} - -/// Generate Min/Max node -static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, - SDValue RHS, SDValue True, SDValue False, - ISD::CondCode CC, const TargetLowering &TLI, - SelectionDAG &DAG) { - if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) - return SDValue(); - - EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); - switch (CC) { - case ISD::SETOLT: - case ISD::SETOLE: - case ISD::SETLT: - case ISD::SETLE: - case ISD::SETULT: - case ISD::SETULE: { - // Since it's known never nan to get here already, either fminnum or - // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is - // expanded in terms of it. - unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; - if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) - return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); - - unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; - if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) - return DAG.getNode(Opcode, DL, VT, LHS, RHS); - return SDValue(); - } - case ISD::SETOGT: - case ISD::SETOGE: - case ISD::SETGT: - case ISD::SETGE: - case ISD::SETUGT: - case ISD::SETUGE: { - unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; - if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) - return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); - - unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; - if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) - return DAG.getNode(Opcode, DL, VT, LHS, RHS); - return SDValue(); - } - default: - return SDValue(); - } -} - -/// If a (v)select has a condition value that is a sign-bit test, try to smear -/// the condition operand sign-bit across the value width and use it as a mask. -static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { - SDValue Cond = N->getOperand(0); - SDValue C1 = N->getOperand(1); - SDValue C2 = N->getOperand(2); - assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && - "Expected select-of-constants"); - - EVT VT = N->getValueType(0); - if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || - VT != Cond.getOperand(0).getValueType()) - return SDValue(); - - // The inverted-condition + commuted-select variants of these patterns are - // canonicalized to these forms in IR. - SDValue X = Cond.getOperand(0); - SDValue CondC = Cond.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); - if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && - isAllOnesOrAllOnesSplat(C2)) { - // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 - SDLoc DL(N); - SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); - SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); - return DAG.getNode(ISD::OR, DL, VT, Sra, C1); - } - if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { - // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 - SDLoc DL(N); - SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); - SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); - return DAG.getNode(ISD::AND, DL, VT, Sra, C1); - } - return SDValue(); -} - -SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { - SDValue Cond = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - EVT CondVT = Cond.getValueType(); - SDLoc DL(N); - - if (!VT.isInteger()) - return SDValue(); - - auto *C1 = dyn_cast<ConstantSDNode>(N1); - auto *C2 = dyn_cast<ConstantSDNode>(N2); - if (!C1 || !C2) - return SDValue(); - - // Only do this before legalization to avoid conflicting with target-specific - // transforms in the other direction (create a select from a zext/sext). There - // is also a target-independent combine here in DAGCombiner in the other - // direction for (select Cond, -1, 0) when the condition is not i1. - if (CondVT == MVT::i1 && !LegalOperations) { - if (C1->isNullValue() && C2->isOne()) { - // select Cond, 0, 1 --> zext (!Cond) - SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); - if (VT != MVT::i1) - NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); - return NotCond; - } - if (C1->isNullValue() && C2->isAllOnesValue()) { - // select Cond, 0, -1 --> sext (!Cond) - SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); - if (VT != MVT::i1) - NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); - return NotCond; - } - if (C1->isOne() && C2->isNullValue()) { - // select Cond, 1, 0 --> zext (Cond) - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); - return Cond; - } - if (C1->isAllOnesValue() && C2->isNullValue()) { - // select Cond, -1, 0 --> sext (Cond) - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); - return Cond; - } - - // Use a target hook because some targets may prefer to transform in the - // other direction. - if (TLI.convertSelectOfConstantsToMath(VT)) { - // For any constants that differ by 1, we can transform the select into an - // extend and add. - const APInt &C1Val = C1->getAPIntValue(); - const APInt &C2Val = C2->getAPIntValue(); - if (C1Val - 1 == C2Val) { - // select Cond, C1, C1-1 --> add (zext Cond), C1-1 - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); - } - if (C1Val + 1 == C2Val) { - // select Cond, C1, C1+1 --> add (sext Cond), C1+1 - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); - } - - // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) - if (C1Val.isPowerOf2() && C2Val.isNullValue()) { - if (VT != MVT::i1) - Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); - SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); - return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); - } - - if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) - return V; - } - - return SDValue(); - } - - // fold (select Cond, 0, 1) -> (xor Cond, 1) - // We can't do this reliably if integer based booleans have different contents - // to floating point based booleans. This is because we can't tell whether we - // have an integer-based boolean or a floating-point-based boolean unless we - // can find the SETCC that produced it and inspect its operands. This is - // fairly easy if C is the SETCC node, but it can potentially be - // undiscoverable (or not reasonably discoverable). For example, it could be - // in another basic block or it could require searching a complicated - // expression. - if (CondVT.isInteger() && - TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == - TargetLowering::ZeroOrOneBooleanContent && - TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == - TargetLowering::ZeroOrOneBooleanContent && - C1->isNullValue() && C2->isOne()) { - SDValue NotCond = - DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); - if (VT.bitsEq(CondVT)) - return NotCond; - return DAG.getZExtOrTrunc(NotCond, DL, VT); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSELECT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - EVT VT0 = N0.getValueType(); - SDLoc DL(N); - SDNodeFlags Flags = N->getFlags(); - - if (SDValue V = DAG.simplifySelect(N0, N1, N2)) - return V; - - // fold (select X, X, Y) -> (or X, Y) - // fold (select X, 1, Y) -> (or C, Y) - if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) - return DAG.getNode(ISD::OR, DL, VT, N0, N2); - - if (SDValue V = foldSelectOfConstants(N)) - return V; - - // fold (select C, 0, X) -> (and (not C), X) - if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { - SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); - AddToWorklist(NOTNode.getNode()); - return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); - } - // fold (select C, X, 1) -> (or (not C), X) - if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { - SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); - AddToWorklist(NOTNode.getNode()); - return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); - } - // fold (select X, Y, X) -> (and X, Y) - // fold (select X, Y, 0) -> (and X, Y) - if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) - return DAG.getNode(ISD::AND, DL, VT, N0, N1); - - // If we can fold this based on the true/false value, do so. - if (SimplifySelectOps(N, N1, N2)) - return SDValue(N, 0); // Don't revisit N. - - if (VT0 == MVT::i1) { - // The code in this block deals with the following 2 equivalences: - // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) - // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) - // The target can specify its preferred form with the - // shouldNormalizeToSelectSequence() callback. However we always transform - // to the right anyway if we find the inner select exists in the DAG anyway - // and we always transform to the left side if we know that we can further - // optimize the combination of the conditions. - bool normalizeToSequence = - TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); - // select (and Cond0, Cond1), X, Y - // -> select Cond0, (select Cond1, X, Y), Y - if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { - SDValue Cond0 = N0->getOperand(0); - SDValue Cond1 = N0->getOperand(1); - SDValue InnerSelect = - DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); - if (normalizeToSequence || !InnerSelect.use_empty()) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, - InnerSelect, N2, Flags); - // Cleanup on failure. - if (InnerSelect.use_empty()) - recursivelyDeleteUnusedNodes(InnerSelect.getNode()); - } - // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) - if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { - SDValue Cond0 = N0->getOperand(0); - SDValue Cond1 = N0->getOperand(1); - SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), - Cond1, N1, N2, Flags); - if (normalizeToSequence || !InnerSelect.use_empty()) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, - InnerSelect, Flags); - // Cleanup on failure. - if (InnerSelect.use_empty()) - recursivelyDeleteUnusedNodes(InnerSelect.getNode()); - } - - // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y - if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { - SDValue N1_0 = N1->getOperand(0); - SDValue N1_1 = N1->getOperand(1); - SDValue N1_2 = N1->getOperand(2); - if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { - // Create the actual and node if we can generate good code for it. - if (!normalizeToSequence) { - SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, - N2, Flags); - } - // Otherwise see if we can optimize the "and" to a better pattern. - if (SDValue Combined = visitANDLike(N0, N1_0, N)) { - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, - N2, Flags); - } - } - } - // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y - if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { - SDValue N2_0 = N2->getOperand(0); - SDValue N2_1 = N2->getOperand(1); - SDValue N2_2 = N2->getOperand(2); - if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { - // Create the actual or node if we can generate good code for it. - if (!normalizeToSequence) { - SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, - N2_2, Flags); - } - // Otherwise see if we can optimize to a better pattern. - if (SDValue Combined = visitORLike(N0, N2_0, N)) - return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, - N2_2, Flags); - } - } - } - - // select (not Cond), N1, N2 -> select Cond, N2, N1 - if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { - SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); - SelectOp->setFlags(Flags); - return SelectOp; - } - - // Fold selects based on a setcc into other things, such as min/max/abs. - if (N0.getOpcode() == ISD::SETCC) { - SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - - // select (fcmp lt x, y), x, y -> fminnum x, y - // select (fcmp gt x, y), x, y -> fmaxnum x, y - // - // This is OK if we don't care what happens if either operand is a NaN. - if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) - if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, - CC, TLI, DAG)) - return FMinMax; - - // Use 'unsigned add with overflow' to optimize an unsigned saturating add. - // This is conservatively limited to pre-legal-operations to give targets - // a chance to reverse the transform if they want to do that. Also, it is - // unlikely that the pattern would be formed late, so it's probably not - // worth going through the other checks. - if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && - CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && - N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { - auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); - auto *NotC = dyn_cast<ConstantSDNode>(Cond1); - if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { - // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> - // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 - // - // The IR equivalent of this transform would have this form: - // %a = add %x, C - // %c = icmp ugt %x, ~C - // %r = select %c, -1, %a - // => - // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) - // %u0 = extractvalue %u, 0 - // %u1 = extractvalue %u, 1 - // %r = select %u1, -1, %u0 - SDVTList VTs = DAG.getVTList(VT, VT0); - SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); - return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); - } - } - - if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || - (!LegalOperations && - TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { - // Any flags available in a select/setcc fold will be on the setcc as they - // migrated from fcmp - Flags = N0.getNode()->getFlags(); - SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, - N2, N0.getOperand(2)); - SelectNode->setFlags(Flags); - return SelectNode; - } - - return SimplifySelect(DL, N0, N1, N2); - } - - return SDValue(); -} - -// This function assumes all the vselect's arguments are CONCAT_VECTOR -// nodes and that the condition is a BV of ConstantSDNodes (or undefs). -static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { - SDLoc DL(N); - SDValue Cond = N->getOperand(0); - SDValue LHS = N->getOperand(1); - SDValue RHS = N->getOperand(2); - EVT VT = N->getValueType(0); - int NumElems = VT.getVectorNumElements(); - assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && - RHS.getOpcode() == ISD::CONCAT_VECTORS && - Cond.getOpcode() == ISD::BUILD_VECTOR); - - // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about - // binary ones here. - if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) - return SDValue(); - - // We're sure we have an even number of elements due to the - // concat_vectors we have as arguments to vselect. - // Skip BV elements until we find one that's not an UNDEF - // After we find an UNDEF element, keep looping until we get to half the - // length of the BV and see if all the non-undef nodes are the same. - ConstantSDNode *BottomHalf = nullptr; - for (int i = 0; i < NumElems / 2; ++i) { - if (Cond->getOperand(i)->isUndef()) - continue; - - if (BottomHalf == nullptr) - BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); - else if (Cond->getOperand(i).getNode() != BottomHalf) - return SDValue(); - } - - // Do the same for the second half of the BuildVector - ConstantSDNode *TopHalf = nullptr; - for (int i = NumElems / 2; i < NumElems; ++i) { - if (Cond->getOperand(i)->isUndef()) - continue; - - if (TopHalf == nullptr) - TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); - else if (Cond->getOperand(i).getNode() != TopHalf) - return SDValue(); - } - - assert(TopHalf && BottomHalf && - "One half of the selector was all UNDEFs and the other was all the " - "same value. This should have been addressed before this function."); - return DAG.getNode( - ISD::CONCAT_VECTORS, DL, VT, - BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), - TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); -} - + AddToWorklist(NewPtr.getNode()); + SDValue Load = DAG.getLoad( + VT, DL, RHS->getChain(), NewPtr, + RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign, + RHS->getMemOperand()->getFlags(), RHS->getAAInfo()); + // Replace the old load's chain with the new load's chain. + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1)); + return Load; + } + } + } + } + } + + // fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2) + // fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2) + // iff We know the shift amount is in range. + // TODO: when is it worth doing SUB(BW, N2) as well? + if (isPowerOf2_32(BitWidth)) { + APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1); + if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) + return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2); + if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits)) + return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2); + } + + // fold (fshl N0, N0, N2) -> (rotl N0, N2) + // fold (fshr N0, N0, N2) -> (rotr N0, N2) + // TODO: Investigate flipping this rotate if only one is legal, if funnel shift + // is legal as well we might be better off avoiding non-constant (BW - N2). + unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR; + if (N0 == N1 && hasOperation(RotOpc, VT)) + return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2); + + // Simplify, based on bits shifted out of N0/N1. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + return SDValue(); +} + +SDValue DAGCombiner::visitABS(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (abs c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0); + // fold (abs (abs x)) -> (abs x) + if (N0.getOpcode() == ISD::ABS) + return N0; + // fold (abs x) -> x iff not-negative + if (DAG.SignBitIsZero(N0)) + return N0; + return SDValue(); +} + +SDValue DAGCombiner::visitBSWAP(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (bswap c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0); + // fold (bswap (bswap x)) -> x + if (N0.getOpcode() == ISD::BSWAP) + return N0->getOperand(0); + return SDValue(); +} + +SDValue DAGCombiner::visitBITREVERSE(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (bitreverse c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0); + // fold (bitreverse (bitreverse x)) -> x + if (N0.getOpcode() == ISD::BITREVERSE) + return N0.getOperand(0); + return SDValue(); +} + +SDValue DAGCombiner::visitCTLZ(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (ctlz c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0); + + // If the value is known never to be zero, switch to the undef version. + if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) { + if (DAG.isKnownNeverZero(N0)) + return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (ctlz_zero_undef c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0); + return SDValue(); +} + +SDValue DAGCombiner::visitCTTZ(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (cttz c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0); + + // If the value is known never to be zero, switch to the undef version. + if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) { + if (DAG.isKnownNeverZero(N0)) + return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (cttz_zero_undef c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0); + return SDValue(); +} + +SDValue DAGCombiner::visitCTPOP(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (ctpop c1) -> c2 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0); + return SDValue(); +} + +// FIXME: This should be checking for no signed zeros on individual operands, as +// well as no nans. +static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS, + SDValue RHS, + const TargetLowering &TLI) { + const TargetOptions &Options = DAG.getTarget().Options; + EVT VT = LHS.getValueType(); + + return Options.NoSignedZerosFPMath && VT.isFloatingPoint() && + TLI.isProfitableToCombineMinNumMaxNum(VT) && + DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS); +} + +/// Generate Min/Max node +static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS, + SDValue RHS, SDValue True, SDValue False, + ISD::CondCode CC, const TargetLowering &TLI, + SelectionDAG &DAG) { + if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) + return SDValue(); + + EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); + switch (CC) { + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETLT: + case ISD::SETLE: + case ISD::SETULT: + case ISD::SETULE: { + // Since it's known never nan to get here already, either fminnum or + // fminnum_ieee are OK. Try the ieee version first, since it's fminnum is + // expanded in terms of it. + unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; + if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) + return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); + + unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM; + if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) + return DAG.getNode(Opcode, DL, VT, LHS, RHS); + return SDValue(); + } + case ISD::SETOGT: + case ISD::SETOGE: + case ISD::SETGT: + case ISD::SETGE: + case ISD::SETUGT: + case ISD::SETUGE: { + unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; + if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT)) + return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS); + + unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM; + if (TLI.isOperationLegalOrCustom(Opcode, TransformVT)) + return DAG.getNode(Opcode, DL, VT, LHS, RHS); + return SDValue(); + } + default: + return SDValue(); + } +} + +/// If a (v)select has a condition value that is a sign-bit test, try to smear +/// the condition operand sign-bit across the value width and use it as a mask. +static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) { + SDValue Cond = N->getOperand(0); + SDValue C1 = N->getOperand(1); + SDValue C2 = N->getOperand(2); + assert(isConstantOrConstantVector(C1) && isConstantOrConstantVector(C2) && + "Expected select-of-constants"); + + EVT VT = N->getValueType(0); + if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() || + VT != Cond.getOperand(0).getValueType()) + return SDValue(); + + // The inverted-condition + commuted-select variants of these patterns are + // canonicalized to these forms in IR. + SDValue X = Cond.getOperand(0); + SDValue CondC = Cond.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) && + isAllOnesOrAllOnesSplat(C2)) { + // i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1 + SDLoc DL(N); + SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); + SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); + return DAG.getNode(ISD::OR, DL, VT, Sra, C1); + } + if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) { + // i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1 + SDLoc DL(N); + SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT); + SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC); + return DAG.getNode(ISD::AND, DL, VT, Sra, C1); + } + return SDValue(); +} + +SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) { + SDValue Cond = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + EVT VT = N->getValueType(0); + EVT CondVT = Cond.getValueType(); + SDLoc DL(N); + + if (!VT.isInteger()) + return SDValue(); + + auto *C1 = dyn_cast<ConstantSDNode>(N1); + auto *C2 = dyn_cast<ConstantSDNode>(N2); + if (!C1 || !C2) + return SDValue(); + + // Only do this before legalization to avoid conflicting with target-specific + // transforms in the other direction (create a select from a zext/sext). There + // is also a target-independent combine here in DAGCombiner in the other + // direction for (select Cond, -1, 0) when the condition is not i1. + if (CondVT == MVT::i1 && !LegalOperations) { + if (C1->isNullValue() && C2->isOne()) { + // select Cond, 0, 1 --> zext (!Cond) + SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); + if (VT != MVT::i1) + NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond); + return NotCond; + } + if (C1->isNullValue() && C2->isAllOnesValue()) { + // select Cond, 0, -1 --> sext (!Cond) + SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1); + if (VT != MVT::i1) + NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond); + return NotCond; + } + if (C1->isOne() && C2->isNullValue()) { + // select Cond, 1, 0 --> zext (Cond) + if (VT != MVT::i1) + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); + return Cond; + } + if (C1->isAllOnesValue() && C2->isNullValue()) { + // select Cond, -1, 0 --> sext (Cond) + if (VT != MVT::i1) + Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); + return Cond; + } + + // Use a target hook because some targets may prefer to transform in the + // other direction. + if (TLI.convertSelectOfConstantsToMath(VT)) { + // For any constants that differ by 1, we can transform the select into an + // extend and add. + const APInt &C1Val = C1->getAPIntValue(); + const APInt &C2Val = C2->getAPIntValue(); + if (C1Val - 1 == C2Val) { + // select Cond, C1, C1-1 --> add (zext Cond), C1-1 + if (VT != MVT::i1) + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); + return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); + } + if (C1Val + 1 == C2Val) { + // select Cond, C1, C1+1 --> add (sext Cond), C1+1 + if (VT != MVT::i1) + Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond); + return DAG.getNode(ISD::ADD, DL, VT, Cond, N2); + } + + // select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2) + if (C1Val.isPowerOf2() && C2Val.isNullValue()) { + if (VT != MVT::i1) + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond); + SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT); + return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC); + } + + if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) + return V; + } + + return SDValue(); + } + + // fold (select Cond, 0, 1) -> (xor Cond, 1) + // We can't do this reliably if integer based booleans have different contents + // to floating point based booleans. This is because we can't tell whether we + // have an integer-based boolean or a floating-point-based boolean unless we + // can find the SETCC that produced it and inspect its operands. This is + // fairly easy if C is the SETCC node, but it can potentially be + // undiscoverable (or not reasonably discoverable). For example, it could be + // in another basic block or it could require searching a complicated + // expression. + if (CondVT.isInteger() && + TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) == + TargetLowering::ZeroOrOneBooleanContent && + TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) == + TargetLowering::ZeroOrOneBooleanContent && + C1->isNullValue() && C2->isOne()) { + SDValue NotCond = + DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT)); + if (VT.bitsEq(CondVT)) + return NotCond; + return DAG.getZExtOrTrunc(NotCond, DL, VT); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitSELECT(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + EVT VT = N->getValueType(0); + EVT VT0 = N0.getValueType(); + SDLoc DL(N); + SDNodeFlags Flags = N->getFlags(); + + if (SDValue V = DAG.simplifySelect(N0, N1, N2)) + return V; + + // fold (select X, X, Y) -> (or X, Y) + // fold (select X, 1, Y) -> (or C, Y) + if (VT == VT0 && VT == MVT::i1 && (N0 == N1 || isOneConstant(N1))) + return DAG.getNode(ISD::OR, DL, VT, N0, N2); + + if (SDValue V = foldSelectOfConstants(N)) + return V; + + // fold (select C, 0, X) -> (and (not C), X) + if (VT == VT0 && VT == MVT::i1 && isNullConstant(N1)) { + SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); + AddToWorklist(NOTNode.getNode()); + return DAG.getNode(ISD::AND, DL, VT, NOTNode, N2); + } + // fold (select C, X, 1) -> (or (not C), X) + if (VT == VT0 && VT == MVT::i1 && isOneConstant(N2)) { + SDValue NOTNode = DAG.getNOT(SDLoc(N0), N0, VT); + AddToWorklist(NOTNode.getNode()); + return DAG.getNode(ISD::OR, DL, VT, NOTNode, N1); + } + // fold (select X, Y, X) -> (and X, Y) + // fold (select X, Y, 0) -> (and X, Y) + if (VT == VT0 && VT == MVT::i1 && (N0 == N2 || isNullConstant(N2))) + return DAG.getNode(ISD::AND, DL, VT, N0, N1); + + // If we can fold this based on the true/false value, do so. + if (SimplifySelectOps(N, N1, N2)) + return SDValue(N, 0); // Don't revisit N. + + if (VT0 == MVT::i1) { + // The code in this block deals with the following 2 equivalences: + // select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y)) + // select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y) + // The target can specify its preferred form with the + // shouldNormalizeToSelectSequence() callback. However we always transform + // to the right anyway if we find the inner select exists in the DAG anyway + // and we always transform to the left side if we know that we can further + // optimize the combination of the conditions. + bool normalizeToSequence = + TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT); + // select (and Cond0, Cond1), X, Y + // -> select Cond0, (select Cond1, X, Y), Y + if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) { + SDValue Cond0 = N0->getOperand(0); + SDValue Cond1 = N0->getOperand(1); + SDValue InnerSelect = + DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags); + if (normalizeToSequence || !InnerSelect.use_empty()) + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, + InnerSelect, N2, Flags); + // Cleanup on failure. + if (InnerSelect.use_empty()) + recursivelyDeleteUnusedNodes(InnerSelect.getNode()); + } + // select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y) + if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) { + SDValue Cond0 = N0->getOperand(0); + SDValue Cond1 = N0->getOperand(1); + SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(), + Cond1, N1, N2, Flags); + if (normalizeToSequence || !InnerSelect.use_empty()) + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1, + InnerSelect, Flags); + // Cleanup on failure. + if (InnerSelect.use_empty()) + recursivelyDeleteUnusedNodes(InnerSelect.getNode()); + } + + // select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y + if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) { + SDValue N1_0 = N1->getOperand(0); + SDValue N1_1 = N1->getOperand(1); + SDValue N1_2 = N1->getOperand(2); + if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) { + // Create the actual and node if we can generate good code for it. + if (!normalizeToSequence) { + SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0); + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1, + N2, Flags); + } + // Otherwise see if we can optimize the "and" to a better pattern. + if (SDValue Combined = visitANDLike(N0, N1_0, N)) { + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1, + N2, Flags); + } + } + } + // select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y + if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) { + SDValue N2_0 = N2->getOperand(0); + SDValue N2_1 = N2->getOperand(1); + SDValue N2_2 = N2->getOperand(2); + if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) { + // Create the actual or node if we can generate good code for it. + if (!normalizeToSequence) { + SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0); + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1, + N2_2, Flags); + } + // Otherwise see if we can optimize to a better pattern. + if (SDValue Combined = visitORLike(N0, N2_0, N)) + return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1, + N2_2, Flags); + } + } + } + + // select (not Cond), N1, N2 -> select Cond, N2, N1 + if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) { + SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1); + SelectOp->setFlags(Flags); + return SelectOp; + } + + // Fold selects based on a setcc into other things, such as min/max/abs. + if (N0.getOpcode() == ISD::SETCC) { + SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + + // select (fcmp lt x, y), x, y -> fminnum x, y + // select (fcmp gt x, y), x, y -> fmaxnum x, y + // + // This is OK if we don't care what happens if either operand is a NaN. + if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI)) + if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2, + CC, TLI, DAG)) + return FMinMax; + + // Use 'unsigned add with overflow' to optimize an unsigned saturating add. + // This is conservatively limited to pre-legal-operations to give targets + // a chance to reverse the transform if they want to do that. Also, it is + // unlikely that the pattern would be formed late, so it's probably not + // worth going through the other checks. + if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) && + CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) && + N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) { + auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1)); + auto *NotC = dyn_cast<ConstantSDNode>(Cond1); + if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) { + // select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) --> + // uaddo Cond0, C; select uaddo.1, -1, uaddo.0 + // + // The IR equivalent of this transform would have this form: + // %a = add %x, C + // %c = icmp ugt %x, ~C + // %r = select %c, -1, %a + // => + // %u = call {iN,i1} llvm.uadd.with.overflow(%x, C) + // %u0 = extractvalue %u, 0 + // %u1 = extractvalue %u, 1 + // %r = select %u1, -1, %u0 + SDVTList VTs = DAG.getVTList(VT, VT0); + SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1)); + return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0)); + } + } + + if (TLI.isOperationLegal(ISD::SELECT_CC, VT) || + (!LegalOperations && + TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) { + // Any flags available in a select/setcc fold will be on the setcc as they + // migrated from fcmp + Flags = N0.getNode()->getFlags(); + SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1, + N2, N0.getOperand(2)); + SelectNode->setFlags(Flags); + return SelectNode; + } + + return SimplifySelect(DL, N0, N1, N2); + } + + return SDValue(); +} + +// This function assumes all the vselect's arguments are CONCAT_VECTOR +// nodes and that the condition is a BV of ConstantSDNodes (or undefs). +static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) { + SDLoc DL(N); + SDValue Cond = N->getOperand(0); + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + EVT VT = N->getValueType(0); + int NumElems = VT.getVectorNumElements(); + assert(LHS.getOpcode() == ISD::CONCAT_VECTORS && + RHS.getOpcode() == ISD::CONCAT_VECTORS && + Cond.getOpcode() == ISD::BUILD_VECTOR); + + // CONCAT_VECTOR can take an arbitrary number of arguments. We only care about + // binary ones here. + if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2) + return SDValue(); + + // We're sure we have an even number of elements due to the + // concat_vectors we have as arguments to vselect. + // Skip BV elements until we find one that's not an UNDEF + // After we find an UNDEF element, keep looping until we get to half the + // length of the BV and see if all the non-undef nodes are the same. + ConstantSDNode *BottomHalf = nullptr; + for (int i = 0; i < NumElems / 2; ++i) { + if (Cond->getOperand(i)->isUndef()) + continue; + + if (BottomHalf == nullptr) + BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i)); + else if (Cond->getOperand(i).getNode() != BottomHalf) + return SDValue(); + } + + // Do the same for the second half of the BuildVector + ConstantSDNode *TopHalf = nullptr; + for (int i = NumElems / 2; i < NumElems; ++i) { + if (Cond->getOperand(i)->isUndef()) + continue; + + if (TopHalf == nullptr) + TopHalf = cast<ConstantSDNode>(Cond.getOperand(i)); + else if (Cond->getOperand(i).getNode() != TopHalf) + return SDValue(); + } + + assert(TopHalf && BottomHalf && + "One half of the selector was all UNDEFs and the other was all the " + "same value. This should have been addressed before this function."); + return DAG.getNode( + ISD::CONCAT_VECTORS, DL, VT, + BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0), + TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1)); +} + bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) { if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD) return false; @@ -9475,20 +9475,20 @@ bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index, return false; } -SDValue DAGCombiner::visitMSCATTER(SDNode *N) { - MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); - SDValue Mask = MSC->getMask(); - SDValue Chain = MSC->getChain(); +SDValue DAGCombiner::visitMSCATTER(SDNode *N) { + MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N); + SDValue Mask = MSC->getMask(); + SDValue Chain = MSC->getChain(); SDValue Index = MSC->getIndex(); SDValue Scale = MSC->getScale(); SDValue StoreVal = MSC->getValue(); SDValue BasePtr = MSC->getBasePtr(); - SDLoc DL(N); - - // Zap scatters with a zero mask. - if (ISD::isBuildVectorAllZeros(Mask.getNode())) - return Chain; - + SDLoc DL(N); + + // Zap scatters with a zero mask. + if (ISD::isBuildVectorAllZeros(Mask.getNode())) + return Chain; + if (refineUniformBase(BasePtr, Index, DAG)) { SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; return DAG.getMaskedScatter( @@ -9503,19 +9503,19 @@ SDValue DAGCombiner::visitMSCATTER(SDNode *N) { MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore()); } - return SDValue(); -} - -SDValue DAGCombiner::visitMSTORE(SDNode *N) { - MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); - SDValue Mask = MST->getMask(); - SDValue Chain = MST->getChain(); - SDLoc DL(N); - - // Zap masked stores with a zero mask. - if (ISD::isBuildVectorAllZeros(Mask.getNode())) - return Chain; - + return SDValue(); +} + +SDValue DAGCombiner::visitMSTORE(SDNode *N) { + MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); + SDValue Mask = MST->getMask(); + SDValue Chain = MST->getChain(); + SDLoc DL(N); + + // Zap masked stores with a zero mask. + if (ISD::isBuildVectorAllZeros(Mask.getNode())) + return Chain; + // If this is a masked load with an all ones mask, we can use a unmasked load. // FIXME: Can we do this for indexed, compressing, or truncating stores? if (ISD::isBuildVectorAllOnes(Mask.getNode()) && @@ -9524,27 +9524,27 @@ SDValue DAGCombiner::visitMSTORE(SDNode *N) { return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(), MST->getBasePtr(), MST->getMemOperand()); - // Try transforming N to an indexed store. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitMGATHER(SDNode *N) { - MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); - SDValue Mask = MGT->getMask(); + // Try transforming N to an indexed store. + if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) + return SDValue(N, 0); + + return SDValue(); +} + +SDValue DAGCombiner::visitMGATHER(SDNode *N) { + MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N); + SDValue Mask = MGT->getMask(); SDValue Chain = MGT->getChain(); SDValue Index = MGT->getIndex(); SDValue Scale = MGT->getScale(); SDValue PassThru = MGT->getPassThru(); SDValue BasePtr = MGT->getBasePtr(); - SDLoc DL(N); - - // Zap gathers with a zero mask. - if (ISD::isBuildVectorAllZeros(Mask.getNode())) + SDLoc DL(N); + + // Zap gathers with a zero mask. + if (ISD::isBuildVectorAllZeros(Mask.getNode())) return CombineTo(N, PassThru, MGT->getChain()); - + if (refineUniformBase(BasePtr, Index, DAG)) { SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other), @@ -9561,18 +9561,18 @@ SDValue DAGCombiner::visitMGATHER(SDNode *N) { MGT->getExtensionType()); } - return SDValue(); -} - -SDValue DAGCombiner::visitMLOAD(SDNode *N) { - MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); - SDValue Mask = MLD->getMask(); - SDLoc DL(N); - - // Zap masked loads with a zero mask. - if (ISD::isBuildVectorAllZeros(Mask.getNode())) - return CombineTo(N, MLD->getPassThru(), MLD->getChain()); - + return SDValue(); +} + +SDValue DAGCombiner::visitMLOAD(SDNode *N) { + MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N); + SDValue Mask = MLD->getMask(); + SDLoc DL(N); + + // Zap masked loads with a zero mask. + if (ISD::isBuildVectorAllZeros(Mask.getNode())) + return CombineTo(N, MLD->getPassThru(), MLD->getChain()); + // If this is a masked load with an all ones mask, we can use a unmasked load. // FIXME: Can we do this for indexed, expanding, or extending loads? if (ISD::isBuildVectorAllOnes(Mask.getNode()) && @@ -9583,165 +9583,165 @@ SDValue DAGCombiner::visitMLOAD(SDNode *N) { return CombineTo(N, NewLd, NewLd.getValue(1)); } - // Try transforming N to an indexed load. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - return SDValue(); -} - -/// A vector select of 2 constant vectors can be simplified to math/logic to -/// avoid a variable select instruction and possibly avoid constant loads. -SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { - SDValue Cond = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || - !TLI.convertSelectOfConstantsToMath(VT) || - !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || - !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) - return SDValue(); - - // Check if we can use the condition value to increment/decrement a single - // constant value. This simplifies a select to an add and removes a constant - // load/materialization from the general case. - bool AllAddOne = true; - bool AllSubOne = true; - unsigned Elts = VT.getVectorNumElements(); - for (unsigned i = 0; i != Elts; ++i) { - SDValue N1Elt = N1.getOperand(i); - SDValue N2Elt = N2.getOperand(i); - if (N1Elt.isUndef() || N2Elt.isUndef()) - continue; - if (N1Elt.getValueType() != N2Elt.getValueType()) - continue; - - const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); - const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); - if (C1 != C2 + 1) - AllAddOne = false; - if (C1 != C2 - 1) - AllSubOne = false; - } - - // Further simplifications for the extra-special cases where the constants are - // all 0 or all -1 should be implemented as folds of these patterns. - SDLoc DL(N); - if (AllAddOne || AllSubOne) { - // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C - // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C - auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; - SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); - return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); - } - - // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) - APInt Pow2C; - if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && - isNullOrNullSplat(N2)) { - SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); - SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); - return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); - } - - if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) - return V; - - // The general case for select-of-constants: - // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 - // ...but that only makes sense if a vselect is slower than 2 logic ops, so - // leave that to a machine-specific pass. - return SDValue(); -} - -SDValue DAGCombiner::visitVSELECT(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (SDValue V = DAG.simplifySelect(N0, N1, N2)) - return V; - - // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 - if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) - return DAG.getSelect(DL, VT, F, N2, N1); - - // Canonicalize integer abs. - // vselect (setg[te] X, 0), X, -X -> - // vselect (setgt X, -1), X, -X -> - // vselect (setl[te] X, 0), -X, X -> - // Y = sra (X, size(X)-1); xor (add (X, Y), Y) - if (N0.getOpcode() == ISD::SETCC) { - SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); - bool isAbs = false; - bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); - - if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || - (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && - N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) - isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); - else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && - N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) - isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); - - if (isAbs) { - if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) - return DAG.getNode(ISD::ABS, DL, VT, LHS); - - SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, - DAG.getConstant(VT.getScalarSizeInBits() - 1, - DL, getShiftAmountTy(VT))); - SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); - AddToWorklist(Shift.getNode()); - AddToWorklist(Add.getNode()); - return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); - } - - // vselect x, y (fcmp lt x, y) -> fminnum x, y - // vselect x, y (fcmp gt x, y) -> fmaxnum x, y - // - // This is OK if we don't care about what happens if either operand is a - // NaN. - // - if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { - if (SDValue FMinMax = - combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) - return FMinMax; - } - - // If this select has a condition (setcc) with narrower operands than the - // select, try to widen the compare to match the select width. - // TODO: This should be extended to handle any constant. - // TODO: This could be extended to handle non-loading patterns, but that - // requires thorough testing to avoid regressions. - if (isNullOrNullSplat(RHS)) { - EVT NarrowVT = LHS.getValueType(); - EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); - EVT SetCCVT = getSetCCResultType(LHS.getValueType()); - unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); - unsigned WideWidth = WideVT.getScalarSizeInBits(); - bool IsSigned = isSignedIntSetCC(CC); - auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; - if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && - SetCCWidth != 1 && SetCCWidth < WideWidth && - TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && - TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { - // Both compare operands can be widened for free. The LHS can use an - // extended load, and the RHS is a constant: - // vselect (ext (setcc load(X), C)), N1, N2 --> - // vselect (setcc extload(X), C'), N1, N2 - auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; - SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); - SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); - EVT WideSetCCVT = getSetCCResultType(WideVT); - SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); - return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); - } - } + // Try transforming N to an indexed load. + if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) + return SDValue(N, 0); + + return SDValue(); +} + +/// A vector select of 2 constant vectors can be simplified to math/logic to +/// avoid a variable select instruction and possibly avoid constant loads. +SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) { + SDValue Cond = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + EVT VT = N->getValueType(0); + if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 || + !TLI.convertSelectOfConstantsToMath(VT) || + !ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) || + !ISD::isBuildVectorOfConstantSDNodes(N2.getNode())) + return SDValue(); + + // Check if we can use the condition value to increment/decrement a single + // constant value. This simplifies a select to an add and removes a constant + // load/materialization from the general case. + bool AllAddOne = true; + bool AllSubOne = true; + unsigned Elts = VT.getVectorNumElements(); + for (unsigned i = 0; i != Elts; ++i) { + SDValue N1Elt = N1.getOperand(i); + SDValue N2Elt = N2.getOperand(i); + if (N1Elt.isUndef() || N2Elt.isUndef()) + continue; + if (N1Elt.getValueType() != N2Elt.getValueType()) + continue; + + const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue(); + const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue(); + if (C1 != C2 + 1) + AllAddOne = false; + if (C1 != C2 - 1) + AllSubOne = false; + } + + // Further simplifications for the extra-special cases where the constants are + // all 0 or all -1 should be implemented as folds of these patterns. + SDLoc DL(N); + if (AllAddOne || AllSubOne) { + // vselect <N x i1> Cond, C+1, C --> add (zext Cond), C + // vselect <N x i1> Cond, C-1, C --> add (sext Cond), C + auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; + SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond); + return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2); + } + + // select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C) + APInt Pow2C; + if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() && + isNullOrNullSplat(N2)) { + SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT); + SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT); + return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC); + } + + if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG)) + return V; + + // The general case for select-of-constants: + // vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2 + // ...but that only makes sense if a vselect is slower than 2 logic ops, so + // leave that to a machine-specific pass. + return SDValue(); +} + +SDValue DAGCombiner::visitVSELECT(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if (SDValue V = DAG.simplifySelect(N0, N1, N2)) + return V; + + // vselect (not Cond), N1, N2 -> vselect Cond, N2, N1 + if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) + return DAG.getSelect(DL, VT, F, N2, N1); + + // Canonicalize integer abs. + // vselect (setg[te] X, 0), X, -X -> + // vselect (setgt X, -1), X, -X -> + // vselect (setl[te] X, 0), -X, X -> + // Y = sra (X, size(X)-1); xor (add (X, Y), Y) + if (N0.getOpcode() == ISD::SETCC) { + SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + bool isAbs = false; + bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode()); + + if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) || + (ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) && + N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1)) + isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode()); + else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) && + N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1)) + isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode()); + + if (isAbs) { + if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) + return DAG.getNode(ISD::ABS, DL, VT, LHS); + + SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS, + DAG.getConstant(VT.getScalarSizeInBits() - 1, + DL, getShiftAmountTy(VT))); + SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift); + AddToWorklist(Shift.getNode()); + AddToWorklist(Add.getNode()); + return DAG.getNode(ISD::XOR, DL, VT, Add, Shift); + } + + // vselect x, y (fcmp lt x, y) -> fminnum x, y + // vselect x, y (fcmp gt x, y) -> fmaxnum x, y + // + // This is OK if we don't care about what happens if either operand is a + // NaN. + // + if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) { + if (SDValue FMinMax = + combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG)) + return FMinMax; + } + + // If this select has a condition (setcc) with narrower operands than the + // select, try to widen the compare to match the select width. + // TODO: This should be extended to handle any constant. + // TODO: This could be extended to handle non-loading patterns, but that + // requires thorough testing to avoid regressions. + if (isNullOrNullSplat(RHS)) { + EVT NarrowVT = LHS.getValueType(); + EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger(); + EVT SetCCVT = getSetCCResultType(LHS.getValueType()); + unsigned SetCCWidth = SetCCVT.getScalarSizeInBits(); + unsigned WideWidth = WideVT.getScalarSizeInBits(); + bool IsSigned = isSignedIntSetCC(CC); + auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD; + if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() && + SetCCWidth != 1 && SetCCWidth < WideWidth && + TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) && + TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) { + // Both compare operands can be widened for free. The LHS can use an + // extended load, and the RHS is a constant: + // vselect (ext (setcc load(X), C)), N1, N2 --> + // vselect (setcc extload(X), C'), N1, N2 + auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; + SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS); + SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS); + EVT WideSetCCVT = getSetCCResultType(WideVT); + SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC); + return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2); + } + } // Match VSELECTs into add with unsigned saturation. if (hasOperation(ISD::UADDSAT, VT)) { @@ -9849,882 +9849,882 @@ SDValue DAGCombiner::visitVSELECT(SDNode *N) { } } } - } - - if (SimplifySelectOps(N, N1, N2)) - return SDValue(N, 0); // Don't revisit N. - - // Fold (vselect (build_vector all_ones), N1, N2) -> N1 - if (ISD::isBuildVectorAllOnes(N0.getNode())) - return N1; - // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 - if (ISD::isBuildVectorAllZeros(N0.getNode())) - return N2; - - // The ConvertSelectToConcatVector function is assuming both the above - // checks for (vselect (build_vector all{ones,zeros) ...) have been made - // and addressed. - if (N1.getOpcode() == ISD::CONCAT_VECTORS && - N2.getOpcode() == ISD::CONCAT_VECTORS && - ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { - if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) - return CV; - } - - if (SDValue V = foldVSelectOfConstants(N)) - return V; - - return SDValue(); -} - -SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - SDValue N3 = N->getOperand(3); - SDValue N4 = N->getOperand(4); - ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); - - // fold select_cc lhs, rhs, x, x, cc -> x - if (N2 == N3) - return N2; - - // Determine if the condition we're dealing with is constant - if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, - CC, SDLoc(N), false)) { - AddToWorklist(SCC.getNode()); - - if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { - if (!SCCC->isNullValue()) - return N2; // cond always true -> true val - else - return N3; // cond always false -> false val - } else if (SCC->isUndef()) { - // When the condition is UNDEF, just return the first operand. This is - // coherent the DAG creation, no setcc node is created in this case - return N2; - } else if (SCC.getOpcode() == ISD::SETCC) { - // Fold to a simpler select_cc - SDValue SelectOp = DAG.getNode( - ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), - SCC.getOperand(1), N2, N3, SCC.getOperand(2)); - SelectOp->setFlags(SCC->getFlags()); - return SelectOp; - } - } - - // If we can fold this based on the true/false value, do so. - if (SimplifySelectOps(N, N2, N3)) - return SDValue(N, 0); // Don't revisit N. - - // fold select_cc into other things, such as min/max/abs - return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); -} - -SDValue DAGCombiner::visitSETCC(SDNode *N) { - // setcc is very commonly used as an argument to brcond. This pattern - // also lend itself to numerous combines and, as a result, it is desired - // we keep the argument to a brcond as a setcc as much as possible. - bool PreferSetCC = - N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; - - SDValue Combined = SimplifySetCC( - N->getValueType(0), N->getOperand(0), N->getOperand(1), - cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); - - if (!Combined) - return SDValue(); - - // If we prefer to have a setcc, and we don't, we'll try our best to - // recreate one using rebuildSetCC. - if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { - SDValue NewSetCC = rebuildSetCC(Combined); - - // We don't have anything interesting to combine to. - if (NewSetCC.getNode() == N) - return SDValue(); - - if (NewSetCC) - return NewSetCC; - } - - return Combined; -} - -SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - SDValue Carry = N->getOperand(2); - SDValue Cond = N->getOperand(3); - - // If Carry is false, fold to a regular SETCC. - if (isNullConstant(Carry)) - return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); - - return SDValue(); -} - -/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or -/// a build_vector of constants. -/// This function is called by the DAGCombiner when visiting sext/zext/aext -/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). -/// Vector extends are not folded if operations are legal; this is to -/// avoid introducing illegal build_vector dag nodes. -static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, - SelectionDAG &DAG, bool LegalTypes) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || - Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || - Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) - && "Expected EXTEND dag node in input!"); - - // fold (sext c1) -> c1 - // fold (zext c1) -> c1 - // fold (aext c1) -> c1 - if (isa<ConstantSDNode>(N0)) - return DAG.getNode(Opcode, DL, VT, N0); - - // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) - // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) - // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) - if (N0->getOpcode() == ISD::SELECT) { - SDValue Op1 = N0->getOperand(1); - SDValue Op2 = N0->getOperand(2); - if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && - (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { - // For any_extend, choose sign extension of the constants to allow a - // possible further transform to sign_extend_inreg.i.e. - // - // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> - // t2: i64 = any_extend t1 - // --> - // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> - // --> - // t4: i64 = sign_extend_inreg t3 - unsigned FoldOpc = Opcode; - if (FoldOpc == ISD::ANY_EXTEND) - FoldOpc = ISD::SIGN_EXTEND; - return DAG.getSelect(DL, VT, N0->getOperand(0), - DAG.getNode(FoldOpc, DL, VT, Op1), - DAG.getNode(FoldOpc, DL, VT, Op2)); - } - } - - // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) - // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) - // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) - EVT SVT = VT.getScalarType(); - if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && - ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) - return SDValue(); - - // We can fold this node into a build_vector. - unsigned VTBits = SVT.getSizeInBits(); - unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); - SmallVector<SDValue, 8> Elts; - unsigned NumElts = VT.getVectorNumElements(); - - // For zero-extensions, UNDEF elements still guarantee to have the upper - // bits set to zero. - bool IsZext = - Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; - - for (unsigned i = 0; i != NumElts; ++i) { - SDValue Op = N0.getOperand(i); - if (Op.isUndef()) { - Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); - continue; - } - - SDLoc DL(Op); - // Get the constant value and if needed trunc it to the size of the type. - // Nodes like build_vector might have constants wider than the scalar type. - APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); - if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) - Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); - else - Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); - } - - return DAG.getBuildVector(VT, DL, Elts); -} - -// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: -// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" -// transformation. Returns true if extension are possible and the above -// mentioned transformation is profitable. -static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, - unsigned ExtOpc, - SmallVectorImpl<SDNode *> &ExtendNodes, - const TargetLowering &TLI) { - bool HasCopyToRegUses = false; - bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); - for (SDNode::use_iterator UI = N0.getNode()->use_begin(), - UE = N0.getNode()->use_end(); - UI != UE; ++UI) { - SDNode *User = *UI; - if (User == N) - continue; - if (UI.getUse().getResNo() != N0.getResNo()) - continue; - // FIXME: Only extend SETCC N, N and SETCC N, c for now. - if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { - ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); - if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) - // Sign bits will be lost after a zext. - return false; - bool Add = false; - for (unsigned i = 0; i != 2; ++i) { - SDValue UseOp = User->getOperand(i); - if (UseOp == N0) - continue; - if (!isa<ConstantSDNode>(UseOp)) - return false; - Add = true; - } - if (Add) - ExtendNodes.push_back(User); - continue; - } - // If truncates aren't free and there are users we can't - // extend, it isn't worthwhile. - if (!isTruncFree) - return false; - // Remember if this value is live-out. - if (User->getOpcode() == ISD::CopyToReg) - HasCopyToRegUses = true; - } - - if (HasCopyToRegUses) { - bool BothLiveOut = false; - for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); - UI != UE; ++UI) { - SDUse &Use = UI.getUse(); - if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { - BothLiveOut = true; - break; - } - } - if (BothLiveOut) - // Both unextended and extended values are live out. There had better be - // a good reason for the transformation. - return ExtendNodes.size(); - } - return true; -} - -void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, - SDValue OrigLoad, SDValue ExtLoad, - ISD::NodeType ExtType) { - // Extend SetCC uses if necessary. - SDLoc DL(ExtLoad); - for (SDNode *SetCC : SetCCs) { - SmallVector<SDValue, 4> Ops; - - for (unsigned j = 0; j != 2; ++j) { - SDValue SOp = SetCC->getOperand(j); - if (SOp == OrigLoad) - Ops.push_back(ExtLoad); - else - Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); - } - - Ops.push_back(SetCC->getOperand(2)); - CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); - } -} - -// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). -SDValue DAGCombiner::CombineExtLoad(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT DstVT = N->getValueType(0); - EVT SrcVT = N0.getValueType(); - - assert((N->getOpcode() == ISD::SIGN_EXTEND || - N->getOpcode() == ISD::ZERO_EXTEND) && - "Unexpected node type (not an extend)!"); - - // fold (sext (load x)) to multiple smaller sextloads; same for zext. - // For example, on a target with legal v4i32, but illegal v8i32, turn: - // (v8i32 (sext (v8i16 (load x)))) - // into: - // (v8i32 (concat_vectors (v4i32 (sextload x)), - // (v4i32 (sextload (x + 16))))) - // Where uses of the original load, i.e.: - // (v8i16 (load x)) - // are replaced with: - // (v8i16 (truncate - // (v8i32 (concat_vectors (v4i32 (sextload x)), - // (v4i32 (sextload (x + 16))))))) - // - // This combine is only applicable to illegal, but splittable, vectors. - // All legal types, and illegal non-vector types, are handled elsewhere. - // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. - // - if (N0->getOpcode() != ISD::LOAD) - return SDValue(); - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - - if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || - !N0.hasOneUse() || !LN0->isSimple() || - !DstVT.isVector() || !DstVT.isPow2VectorType() || - !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) - return SDValue(); - - SmallVector<SDNode *, 4> SetCCs; - if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) - return SDValue(); - - ISD::LoadExtType ExtType = - N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; - - // Try to split the vector types to get down to legal types. - EVT SplitSrcVT = SrcVT; - EVT SplitDstVT = DstVT; - while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && - SplitSrcVT.getVectorNumElements() > 1) { - SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; - SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; - } - - if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) - return SDValue(); - - assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); - - SDLoc DL(N); - const unsigned NumSplits = - DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); - const unsigned Stride = SplitSrcVT.getStoreSize(); - SmallVector<SDValue, 4> Loads; - SmallVector<SDValue, 4> Chains; - - SDValue BasePtr = LN0->getBasePtr(); - for (unsigned Idx = 0; Idx < NumSplits; Idx++) { - const unsigned Offset = Idx * Stride; + } + + if (SimplifySelectOps(N, N1, N2)) + return SDValue(N, 0); // Don't revisit N. + + // Fold (vselect (build_vector all_ones), N1, N2) -> N1 + if (ISD::isBuildVectorAllOnes(N0.getNode())) + return N1; + // Fold (vselect (build_vector all_zeros), N1, N2) -> N2 + if (ISD::isBuildVectorAllZeros(N0.getNode())) + return N2; + + // The ConvertSelectToConcatVector function is assuming both the above + // checks for (vselect (build_vector all{ones,zeros) ...) have been made + // and addressed. + if (N1.getOpcode() == ISD::CONCAT_VECTORS && + N2.getOpcode() == ISD::CONCAT_VECTORS && + ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) { + if (SDValue CV = ConvertSelectToConcatVector(N, DAG)) + return CV; + } + + if (SDValue V = foldVSelectOfConstants(N)) + return V; + + return SDValue(); +} + +SDValue DAGCombiner::visitSELECT_CC(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + SDValue N3 = N->getOperand(3); + SDValue N4 = N->getOperand(4); + ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); + + // fold select_cc lhs, rhs, x, x, cc -> x + if (N2 == N3) + return N2; + + // Determine if the condition we're dealing with is constant + if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1, + CC, SDLoc(N), false)) { + AddToWorklist(SCC.getNode()); + + if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) { + if (!SCCC->isNullValue()) + return N2; // cond always true -> true val + else + return N3; // cond always false -> false val + } else if (SCC->isUndef()) { + // When the condition is UNDEF, just return the first operand. This is + // coherent the DAG creation, no setcc node is created in this case + return N2; + } else if (SCC.getOpcode() == ISD::SETCC) { + // Fold to a simpler select_cc + SDValue SelectOp = DAG.getNode( + ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0), + SCC.getOperand(1), N2, N3, SCC.getOperand(2)); + SelectOp->setFlags(SCC->getFlags()); + return SelectOp; + } + } + + // If we can fold this based on the true/false value, do so. + if (SimplifySelectOps(N, N2, N3)) + return SDValue(N, 0); // Don't revisit N. + + // fold select_cc into other things, such as min/max/abs + return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC); +} + +SDValue DAGCombiner::visitSETCC(SDNode *N) { + // setcc is very commonly used as an argument to brcond. This pattern + // also lend itself to numerous combines and, as a result, it is desired + // we keep the argument to a brcond as a setcc as much as possible. + bool PreferSetCC = + N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND; + + SDValue Combined = SimplifySetCC( + N->getValueType(0), N->getOperand(0), N->getOperand(1), + cast<CondCodeSDNode>(N->getOperand(2))->get(), SDLoc(N), !PreferSetCC); + + if (!Combined) + return SDValue(); + + // If we prefer to have a setcc, and we don't, we'll try our best to + // recreate one using rebuildSetCC. + if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) { + SDValue NewSetCC = rebuildSetCC(Combined); + + // We don't have anything interesting to combine to. + if (NewSetCC.getNode() == N) + return SDValue(); + + if (NewSetCC) + return NewSetCC; + } + + return Combined; +} + +SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) { + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + SDValue Carry = N->getOperand(2); + SDValue Cond = N->getOperand(3); + + // If Carry is false, fold to a regular SETCC. + if (isNullConstant(Carry)) + return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond); + + return SDValue(); +} + +/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or +/// a build_vector of constants. +/// This function is called by the DAGCombiner when visiting sext/zext/aext +/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND). +/// Vector extends are not folded if operations are legal; this is to +/// avoid introducing illegal build_vector dag nodes. +static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI, + SelectionDAG &DAG, bool LegalTypes) { + unsigned Opcode = N->getOpcode(); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND || + Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || + Opcode == ISD::ZERO_EXTEND_VECTOR_INREG) + && "Expected EXTEND dag node in input!"); + + // fold (sext c1) -> c1 + // fold (zext c1) -> c1 + // fold (aext c1) -> c1 + if (isa<ConstantSDNode>(N0)) + return DAG.getNode(Opcode, DL, VT, N0); + + // fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) + // fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2) + // fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2) + if (N0->getOpcode() == ISD::SELECT) { + SDValue Op1 = N0->getOperand(1); + SDValue Op2 = N0->getOperand(2); + if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) && + (Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) { + // For any_extend, choose sign extension of the constants to allow a + // possible further transform to sign_extend_inreg.i.e. + // + // t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0> + // t2: i64 = any_extend t1 + // --> + // t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0> + // --> + // t4: i64 = sign_extend_inreg t3 + unsigned FoldOpc = Opcode; + if (FoldOpc == ISD::ANY_EXTEND) + FoldOpc = ISD::SIGN_EXTEND; + return DAG.getSelect(DL, VT, N0->getOperand(0), + DAG.getNode(FoldOpc, DL, VT, Op1), + DAG.getNode(FoldOpc, DL, VT, Op2)); + } + } + + // fold (sext (build_vector AllConstants) -> (build_vector AllConstants) + // fold (zext (build_vector AllConstants) -> (build_vector AllConstants) + // fold (aext (build_vector AllConstants) -> (build_vector AllConstants) + EVT SVT = VT.getScalarType(); + if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) && + ISD::isBuildVectorOfConstantSDNodes(N0.getNode()))) + return SDValue(); + + // We can fold this node into a build_vector. + unsigned VTBits = SVT.getSizeInBits(); + unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits(); + SmallVector<SDValue, 8> Elts; + unsigned NumElts = VT.getVectorNumElements(); + + // For zero-extensions, UNDEF elements still guarantee to have the upper + // bits set to zero. + bool IsZext = + Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG; + + for (unsigned i = 0; i != NumElts; ++i) { + SDValue Op = N0.getOperand(i); + if (Op.isUndef()) { + Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT)); + continue; + } + + SDLoc DL(Op); + // Get the constant value and if needed trunc it to the size of the type. + // Nodes like build_vector might have constants wider than the scalar type. + APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits); + if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG) + Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT)); + else + Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT)); + } + + return DAG.getBuildVector(VT, DL, Elts); +} + +// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this: +// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))" +// transformation. Returns true if extension are possible and the above +// mentioned transformation is profitable. +static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0, + unsigned ExtOpc, + SmallVectorImpl<SDNode *> &ExtendNodes, + const TargetLowering &TLI) { + bool HasCopyToRegUses = false; + bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType()); + for (SDNode::use_iterator UI = N0.getNode()->use_begin(), + UE = N0.getNode()->use_end(); + UI != UE; ++UI) { + SDNode *User = *UI; + if (User == N) + continue; + if (UI.getUse().getResNo() != N0.getResNo()) + continue; + // FIXME: Only extend SETCC N, N and SETCC N, c for now. + if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) { + ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get(); + if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC)) + // Sign bits will be lost after a zext. + return false; + bool Add = false; + for (unsigned i = 0; i != 2; ++i) { + SDValue UseOp = User->getOperand(i); + if (UseOp == N0) + continue; + if (!isa<ConstantSDNode>(UseOp)) + return false; + Add = true; + } + if (Add) + ExtendNodes.push_back(User); + continue; + } + // If truncates aren't free and there are users we can't + // extend, it isn't worthwhile. + if (!isTruncFree) + return false; + // Remember if this value is live-out. + if (User->getOpcode() == ISD::CopyToReg) + HasCopyToRegUses = true; + } + + if (HasCopyToRegUses) { + bool BothLiveOut = false; + for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); + UI != UE; ++UI) { + SDUse &Use = UI.getUse(); + if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) { + BothLiveOut = true; + break; + } + } + if (BothLiveOut) + // Both unextended and extended values are live out. There had better be + // a good reason for the transformation. + return ExtendNodes.size(); + } + return true; +} + +void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs, + SDValue OrigLoad, SDValue ExtLoad, + ISD::NodeType ExtType) { + // Extend SetCC uses if necessary. + SDLoc DL(ExtLoad); + for (SDNode *SetCC : SetCCs) { + SmallVector<SDValue, 4> Ops; + + for (unsigned j = 0; j != 2; ++j) { + SDValue SOp = SetCC->getOperand(j); + if (SOp == OrigLoad) + Ops.push_back(ExtLoad); + else + Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp)); + } + + Ops.push_back(SetCC->getOperand(2)); + CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops)); + } +} + +// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?). +SDValue DAGCombiner::CombineExtLoad(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT DstVT = N->getValueType(0); + EVT SrcVT = N0.getValueType(); + + assert((N->getOpcode() == ISD::SIGN_EXTEND || + N->getOpcode() == ISD::ZERO_EXTEND) && + "Unexpected node type (not an extend)!"); + + // fold (sext (load x)) to multiple smaller sextloads; same for zext. + // For example, on a target with legal v4i32, but illegal v8i32, turn: + // (v8i32 (sext (v8i16 (load x)))) + // into: + // (v8i32 (concat_vectors (v4i32 (sextload x)), + // (v4i32 (sextload (x + 16))))) + // Where uses of the original load, i.e.: + // (v8i16 (load x)) + // are replaced with: + // (v8i16 (truncate + // (v8i32 (concat_vectors (v4i32 (sextload x)), + // (v4i32 (sextload (x + 16))))))) + // + // This combine is only applicable to illegal, but splittable, vectors. + // All legal types, and illegal non-vector types, are handled elsewhere. + // This combine is controlled by TargetLowering::isVectorLoadExtDesirable. + // + if (N0->getOpcode() != ISD::LOAD) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + + if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) || + !N0.hasOneUse() || !LN0->isSimple() || + !DstVT.isVector() || !DstVT.isPow2VectorType() || + !TLI.isVectorLoadExtDesirable(SDValue(N, 0))) + return SDValue(); + + SmallVector<SDNode *, 4> SetCCs; + if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI)) + return SDValue(); + + ISD::LoadExtType ExtType = + N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD; + + // Try to split the vector types to get down to legal types. + EVT SplitSrcVT = SrcVT; + EVT SplitDstVT = DstVT; + while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) && + SplitSrcVT.getVectorNumElements() > 1) { + SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first; + SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first; + } + + if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT)) + return SDValue(); + + assert(!DstVT.isScalableVector() && "Unexpected scalable vector type"); + + SDLoc DL(N); + const unsigned NumSplits = + DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements(); + const unsigned Stride = SplitSrcVT.getStoreSize(); + SmallVector<SDValue, 4> Loads; + SmallVector<SDValue, 4> Chains; + + SDValue BasePtr = LN0->getBasePtr(); + for (unsigned Idx = 0; Idx < NumSplits; Idx++) { + const unsigned Offset = Idx * Stride; const Align Align = commonAlignment(LN0->getAlign(), Offset); - - SDValue SplitLoad = DAG.getExtLoad( - ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, - LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - + + SDValue SplitLoad = DAG.getExtLoad( + ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr, + LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align, + LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); + BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL); - - Loads.push_back(SplitLoad.getValue(0)); - Chains.push_back(SplitLoad.getValue(1)); - } - - SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); - SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); - - // Simplify TF. - AddToWorklist(NewChain.getNode()); - - CombineTo(N, NewValue); - - // Replace uses of the original load (before extension) - // with a truncate of the concatenated sextloaded vectors. - SDValue Trunc = - DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); - ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); - CombineTo(N0.getNode(), Trunc, NewChain); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> -// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) -SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { - assert(N->getOpcode() == ISD::ZERO_EXTEND); - EVT VT = N->getValueType(0); - EVT OrigVT = N->getOperand(0).getValueType(); - if (TLI.isZExtFree(OrigVT, VT)) - return SDValue(); - - // and/or/xor - SDValue N0 = N->getOperand(0); - if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) || - N0.getOperand(1).getOpcode() != ISD::Constant || - (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) - return SDValue(); - - // shl/shr - SDValue N1 = N0->getOperand(0); - if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || - N1.getOperand(1).getOpcode() != ISD::Constant || - (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) - return SDValue(); - - // load - if (!isa<LoadSDNode>(N1.getOperand(0))) - return SDValue(); - LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); - EVT MemVT = Load->getMemoryVT(); - if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || - Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) - return SDValue(); - - - // If the shift op is SHL, the logic op must be AND, otherwise the result - // will be wrong. - if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) - return SDValue(); - - if (!N0.hasOneUse() || !N1.hasOneUse()) - return SDValue(); - - SmallVector<SDNode*, 4> SetCCs; - if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), - ISD::ZERO_EXTEND, SetCCs, TLI)) - return SDValue(); - - // Actually do the transformation. - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, - Load->getChain(), Load->getBasePtr(), - Load->getMemoryVT(), Load->getMemOperand()); - - SDLoc DL1(N1); - SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, - N1.getOperand(1)); - - APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); - SDLoc DL0(N0); - SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, - DAG.getConstant(Mask, DL0, VT)); - - ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); - CombineTo(N, And); - if (SDValue(Load, 0).hasOneUse()) { - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), - Load->getValueType(0), ExtLoad); - CombineTo(Load, Trunc, ExtLoad.getValue(1)); - } - - // N0 is dead at this point. - recursivelyDeleteUnusedNodes(N0.getNode()); - - return SDValue(N,0); // Return N so it doesn't get rechecked! -} - -/// If we're narrowing or widening the result of a vector select and the final -/// size is the same size as a setcc (compare) feeding the select, then try to -/// apply the cast operation to the select's operands because matching vector -/// sizes for a select condition and other operands should be more efficient. -SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { - unsigned CastOpcode = Cast->getOpcode(); - assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || - CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || - CastOpcode == ISD::FP_ROUND) && - "Unexpected opcode for vector select narrowing/widening"); - - // We only do this transform before legal ops because the pattern may be - // obfuscated by target-specific operations after legalization. Do not create - // an illegal select op, however, because that may be difficult to lower. - EVT VT = Cast->getValueType(0); - if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) - return SDValue(); - - SDValue VSel = Cast->getOperand(0); - if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || - VSel.getOperand(0).getOpcode() != ISD::SETCC) - return SDValue(); - - // Does the setcc have the same vector size as the casted select? - SDValue SetCC = VSel.getOperand(0); - EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); - if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) - SDValue A = VSel.getOperand(1); - SDValue B = VSel.getOperand(2); - SDValue CastA, CastB; - SDLoc DL(Cast); - if (CastOpcode == ISD::FP_ROUND) { - // FP_ROUND (fptrunc) has an extra flag operand to pass along. - CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); - CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); - } else { - CastA = DAG.getNode(CastOpcode, DL, VT, A); - CastB = DAG.getNode(CastOpcode, DL, VT, B); - } - return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); -} - -// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) -// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) -static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, - const TargetLowering &TLI, EVT VT, - bool LegalOperations, SDNode *N, - SDValue N0, ISD::LoadExtType ExtLoadType) { - SDNode *N0Node = N0.getNode(); - bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) - : ISD::isZEXTLoad(N0Node); - if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || - !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) - return SDValue(); - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - EVT MemVT = LN0->getMemoryVT(); - if ((LegalOperations || !LN0->isSimple() || - VT.isVector()) && - !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) - return SDValue(); - - SDValue ExtLoad = - DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), - LN0->getBasePtr(), MemVT, LN0->getMemOperand()); - Combiner.CombineTo(N, ExtLoad); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - if (LN0->use_empty()) - Combiner.recursivelyDeleteUnusedNodes(LN0); - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) -// Only generate vector extloads when 1) they're legal, and 2) they are -// deemed desirable by the target. -static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, - const TargetLowering &TLI, EVT VT, - bool LegalOperations, SDNode *N, SDValue N0, - ISD::LoadExtType ExtLoadType, - ISD::NodeType ExtOpc) { - if (!ISD::isNON_EXTLoad(N0.getNode()) || - !ISD::isUNINDEXEDLoad(N0.getNode()) || - ((LegalOperations || VT.isVector() || - !cast<LoadSDNode>(N0)->isSimple()) && - !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) - return {}; - - bool DoXform = true; - SmallVector<SDNode *, 4> SetCCs; - if (!N0.hasOneUse()) - DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); - if (VT.isVector()) - DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); - if (!DoXform) - return {}; - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), - LN0->getBasePtr(), N0.getValueType(), - LN0->getMemOperand()); - Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); - // If the load value is used only by N, replace it via CombineTo N. - bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); - Combiner.CombineTo(N, ExtLoad); - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - Combiner.recursivelyDeleteUnusedNodes(LN0); - } else { - SDValue Trunc = - DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); - Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! -} - -static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, - const TargetLowering &TLI, EVT VT, - SDNode *N, SDValue N0, - ISD::LoadExtType ExtLoadType, - ISD::NodeType ExtOpc) { - if (!N0.hasOneUse()) - return SDValue(); - - MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); - if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) - return SDValue(); - - if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) - return SDValue(); - - if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) - return SDValue(); - - SDLoc dl(Ld); - SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); - SDValue NewLoad = DAG.getMaskedLoad( - VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), - PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), - ExtLoadType, Ld->isExpandingLoad()); - DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); - return NewLoad; -} - -static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, - bool LegalOperations) { - assert((N->getOpcode() == ISD::SIGN_EXTEND || - N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); - - SDValue SetCC = N->getOperand(0); - if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || - !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) - return SDValue(); - - SDValue X = SetCC.getOperand(0); - SDValue Ones = SetCC.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); - EVT VT = N->getValueType(0); - EVT XVT = X.getValueType(); - // setge X, C is canonicalized to setgt, so we do not need to match that - // pattern. The setlt sibling is folded in SimplifySelectCC() because it does - // not require the 'not' op. - if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { - // Invert and smear/shift the sign bit: - // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) - // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) - SDLoc DL(N); - unsigned ShCt = VT.getSizeInBits() - 1; - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { - SDValue NotX = DAG.getNOT(DL, X, VT); - SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); - auto ShiftOpcode = - N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; - return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); - } - } - return SDValue(); -} - -SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - SDLoc DL(N); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (sext (sext x)) -> (sext x) - // fold (sext (aext x)) -> (sext x) - if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) - return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); - - if (N0.getOpcode() == ISD::TRUNCATE) { - // fold (sext (truncate (load x))) -> (sext (smaller load x)) - // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - // See if the value being truncated is already sign extended. If so, just - // eliminate the trunc/sext pair. - SDValue Op = N0.getOperand(0); - unsigned OpBits = Op.getScalarValueSizeInBits(); - unsigned MidBits = N0.getScalarValueSizeInBits(); - unsigned DestBits = VT.getScalarSizeInBits(); - unsigned NumSignBits = DAG.ComputeNumSignBits(Op); - - if (OpBits == DestBits) { - // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign - // bits, it is already ready. - if (NumSignBits > DestBits-MidBits) - return Op; - } else if (OpBits < DestBits) { - // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign - // bits, just sext from i32. - if (NumSignBits > OpBits-MidBits) - return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); - } else { - // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign - // bits, just truncate to i32. - if (NumSignBits > OpBits-MidBits) - return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); - } - - // fold (sext (truncate x)) -> (sextinreg x). - if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, - N0.getValueType())) { - if (OpBits < DestBits) - Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); - else if (OpBits > DestBits) - Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); - return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, - DAG.getValueType(N0.getValueType())); - } - } - - // Try to simplify (sext (load x)). - if (SDValue foldedExt = - tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, - ISD::SEXTLOAD, ISD::SIGN_EXTEND)) - return foldedExt; - - if (SDValue foldedExt = - tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, - ISD::SIGN_EXTEND)) - return foldedExt; - - // fold (sext (load x)) to multiple smaller sextloads. - // Only on illegal but splittable vectors. - if (SDValue ExtLoad = CombineExtLoad(N)) - return ExtLoad; - - // Try to simplify (sext (sextload x)). - if (SDValue foldedExt = tryToFoldExtOfExtload( - DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) - return foldedExt; - - // fold (sext (and/or/xor (load x), cst)) -> - // (and/or/xor (sextload x), (sext cst)) - if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) && - isa<LoadSDNode>(N0.getOperand(0)) && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { - LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); - EVT MemVT = LN00->getMemoryVT(); - if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && - LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { - SmallVector<SDNode*, 4> SetCCs; - bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), - ISD::SIGN_EXTEND, SetCCs, TLI); - if (DoXform) { - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, - LN00->getChain(), LN00->getBasePtr(), - LN00->getMemoryVT(), - LN00->getMemOperand()); - APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); - SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, - ExtLoad, DAG.getConstant(Mask, DL, VT)); - ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); - bool NoReplaceTruncAnd = !N0.hasOneUse(); - bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); - CombineTo(N, And); - // If N0 has multiple uses, change other uses as well. - if (NoReplaceTruncAnd) { - SDValue TruncAnd = - DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); - CombineTo(N0.getNode(), TruncAnd); - } - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), - LN00->getValueType(0), ExtLoad); - CombineTo(LN00, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N,0); // Return N so it doesn't get rechecked! - } - } - } - - if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) - return V; - - if (N0.getOpcode() == ISD::SETCC) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); + + Loads.push_back(SplitLoad.getValue(0)); + Chains.push_back(SplitLoad.getValue(1)); + } + + SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); + SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads); + + // Simplify TF. + AddToWorklist(NewChain.getNode()); + + CombineTo(N, NewValue); + + // Replace uses of the original load (before extension) + // with a truncate of the concatenated sextloaded vectors. + SDValue Trunc = + DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue); + ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode()); + CombineTo(N0.getNode(), Trunc, NewChain); + return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> +// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) +SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) { + assert(N->getOpcode() == ISD::ZERO_EXTEND); + EVT VT = N->getValueType(0); + EVT OrigVT = N->getOperand(0).getValueType(); + if (TLI.isZExtFree(OrigVT, VT)) + return SDValue(); + + // and/or/xor + SDValue N0 = N->getOperand(0); + if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || + N0.getOpcode() == ISD::XOR) || + N0.getOperand(1).getOpcode() != ISD::Constant || + (LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT))) + return SDValue(); + + // shl/shr + SDValue N1 = N0->getOperand(0); + if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) || + N1.getOperand(1).getOpcode() != ISD::Constant || + (LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT))) + return SDValue(); + + // load + if (!isa<LoadSDNode>(N1.getOperand(0))) + return SDValue(); + LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0)); + EVT MemVT = Load->getMemoryVT(); + if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) || + Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed()) + return SDValue(); + + + // If the shift op is SHL, the logic op must be AND, otherwise the result + // will be wrong. + if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND) + return SDValue(); + + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SmallVector<SDNode*, 4> SetCCs; + if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0), + ISD::ZERO_EXTEND, SetCCs, TLI)) + return SDValue(); + + // Actually do the transformation. + SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT, + Load->getChain(), Load->getBasePtr(), + Load->getMemoryVT(), Load->getMemOperand()); + + SDLoc DL1(N1); + SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad, + N1.getOperand(1)); + + APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); + SDLoc DL0(N0); + SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift, + DAG.getConstant(Mask, DL0, VT)); + + ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); + CombineTo(N, And); + if (SDValue(Load, 0).hasOneUse()) { + DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1)); + } else { + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load), + Load->getValueType(0), ExtLoad); + CombineTo(Load, Trunc, ExtLoad.getValue(1)); + } + + // N0 is dead at this point. + recursivelyDeleteUnusedNodes(N0.getNode()); + + return SDValue(N,0); // Return N so it doesn't get rechecked! +} + +/// If we're narrowing or widening the result of a vector select and the final +/// size is the same size as a setcc (compare) feeding the select, then try to +/// apply the cast operation to the select's operands because matching vector +/// sizes for a select condition and other operands should be more efficient. +SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) { + unsigned CastOpcode = Cast->getOpcode(); + assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND || + CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND || + CastOpcode == ISD::FP_ROUND) && + "Unexpected opcode for vector select narrowing/widening"); + + // We only do this transform before legal ops because the pattern may be + // obfuscated by target-specific operations after legalization. Do not create + // an illegal select op, however, because that may be difficult to lower. + EVT VT = Cast->getValueType(0); + if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT)) + return SDValue(); + + SDValue VSel = Cast->getOperand(0); + if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() || + VSel.getOperand(0).getOpcode() != ISD::SETCC) + return SDValue(); + + // Does the setcc have the same vector size as the casted select? + SDValue SetCC = VSel.getOperand(0); + EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType()); + if (SetCCVT.getSizeInBits() != VT.getSizeInBits()) + return SDValue(); + + // cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B) + SDValue A = VSel.getOperand(1); + SDValue B = VSel.getOperand(2); + SDValue CastA, CastB; + SDLoc DL(Cast); + if (CastOpcode == ISD::FP_ROUND) { + // FP_ROUND (fptrunc) has an extra flag operand to pass along. + CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1)); + CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1)); + } else { + CastA = DAG.getNode(CastOpcode, DL, VT, A); + CastB = DAG.getNode(CastOpcode, DL, VT, B); + } + return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB); +} + +// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) +// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x))) +static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner, + const TargetLowering &TLI, EVT VT, + bool LegalOperations, SDNode *N, + SDValue N0, ISD::LoadExtType ExtLoadType) { + SDNode *N0Node = N0.getNode(); + bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node) + : ISD::isZEXTLoad(N0Node); + if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) || + !ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse()) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + EVT MemVT = LN0->getMemoryVT(); + if ((LegalOperations || !LN0->isSimple() || + VT.isVector()) && + !TLI.isLoadExtLegal(ExtLoadType, VT, MemVT)) + return SDValue(); + + SDValue ExtLoad = + DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), + LN0->getBasePtr(), MemVT, LN0->getMemOperand()); + Combiner.CombineTo(N, ExtLoad); + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); + if (LN0->use_empty()) + Combiner.recursivelyDeleteUnusedNodes(LN0); + return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x))) +// Only generate vector extloads when 1) they're legal, and 2) they are +// deemed desirable by the target. +static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner, + const TargetLowering &TLI, EVT VT, + bool LegalOperations, SDNode *N, SDValue N0, + ISD::LoadExtType ExtLoadType, + ISD::NodeType ExtOpc) { + if (!ISD::isNON_EXTLoad(N0.getNode()) || + !ISD::isUNINDEXEDLoad(N0.getNode()) || + ((LegalOperations || VT.isVector() || + !cast<LoadSDNode>(N0)->isSimple()) && + !TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType()))) + return {}; + + bool DoXform = true; + SmallVector<SDNode *, 4> SetCCs; + if (!N0.hasOneUse()) + DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI); + if (VT.isVector()) + DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0)); + if (!DoXform) + return {}; + + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(), + LN0->getBasePtr(), N0.getValueType(), + LN0->getMemOperand()); + Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc); + // If the load value is used only by N, replace it via CombineTo N. + bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse(); + Combiner.CombineTo(N, ExtLoad); + if (NoReplaceTrunc) { + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); + Combiner.recursivelyDeleteUnusedNodes(LN0); + } else { + SDValue Trunc = + DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); + Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1)); + } + return SDValue(N, 0); // Return N so it doesn't get rechecked! +} + +static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG, + const TargetLowering &TLI, EVT VT, + SDNode *N, SDValue N0, + ISD::LoadExtType ExtLoadType, + ISD::NodeType ExtOpc) { + if (!N0.hasOneUse()) + return SDValue(); + + MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0); + if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD) + return SDValue(); + + if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0))) + return SDValue(); + + if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0))) + return SDValue(); + + SDLoc dl(Ld); + SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru()); + SDValue NewLoad = DAG.getMaskedLoad( + VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(), + PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(), + ExtLoadType, Ld->isExpandingLoad()); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1)); + return NewLoad; +} + +static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG, + bool LegalOperations) { + assert((N->getOpcode() == ISD::SIGN_EXTEND || + N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext"); + + SDValue SetCC = N->getOperand(0); + if (LegalOperations || SetCC.getOpcode() != ISD::SETCC || + !SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1) + return SDValue(); + + SDValue X = SetCC.getOperand(0); + SDValue Ones = SetCC.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + EVT VT = N->getValueType(0); + EVT XVT = X.getValueType(); + // setge X, C is canonicalized to setgt, so we do not need to match that + // pattern. The setlt sibling is folded in SimplifySelectCC() because it does + // not require the 'not' op. + if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) { + // Invert and smear/shift the sign bit: + // sext i1 (setgt iN X, -1) --> sra (not X), (N - 1) + // zext i1 (setgt iN X, -1) --> srl (not X), (N - 1) + SDLoc DL(N); + unsigned ShCt = VT.getSizeInBits() - 1; + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { + SDValue NotX = DAG.getNOT(DL, X, VT); + SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT); + auto ShiftOpcode = + N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL; + return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount); + } + } + return SDValue(); +} + +SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + SDLoc DL(N); + + if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) + return Res; + + // fold (sext (sext x)) -> (sext x) + // fold (sext (aext x)) -> (sext x) + if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) + return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0)); + + if (N0.getOpcode() == ISD::TRUNCATE) { + // fold (sext (truncate (load x))) -> (sext (smaller load x)) + // fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n))) + if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { + SDNode *oye = N0.getOperand(0).getNode(); + if (NarrowLoad.getNode() != N0.getNode()) { + CombineTo(N0.getNode(), NarrowLoad); + // CombineTo deleted the truncate, if needed, but not what's under it. + AddToWorklist(oye); + } + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + + // See if the value being truncated is already sign extended. If so, just + // eliminate the trunc/sext pair. + SDValue Op = N0.getOperand(0); + unsigned OpBits = Op.getScalarValueSizeInBits(); + unsigned MidBits = N0.getScalarValueSizeInBits(); + unsigned DestBits = VT.getScalarSizeInBits(); + unsigned NumSignBits = DAG.ComputeNumSignBits(Op); + + if (OpBits == DestBits) { + // Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign + // bits, it is already ready. + if (NumSignBits > DestBits-MidBits) + return Op; + } else if (OpBits < DestBits) { + // Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign + // bits, just sext from i32. + if (NumSignBits > OpBits-MidBits) + return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op); + } else { + // Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign + // bits, just truncate to i32. + if (NumSignBits > OpBits-MidBits) + return DAG.getNode(ISD::TRUNCATE, DL, VT, Op); + } + + // fold (sext (truncate x)) -> (sextinreg x). + if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, + N0.getValueType())) { + if (OpBits < DestBits) + Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op); + else if (OpBits > DestBits) + Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op); + return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op, + DAG.getValueType(N0.getValueType())); + } + } + + // Try to simplify (sext (load x)). + if (SDValue foldedExt = + tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, + ISD::SEXTLOAD, ISD::SIGN_EXTEND)) + return foldedExt; + + if (SDValue foldedExt = + tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD, + ISD::SIGN_EXTEND)) + return foldedExt; + + // fold (sext (load x)) to multiple smaller sextloads. + // Only on illegal but splittable vectors. + if (SDValue ExtLoad = CombineExtLoad(N)) + return ExtLoad; + + // Try to simplify (sext (sextload x)). + if (SDValue foldedExt = tryToFoldExtOfExtload( + DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD)) + return foldedExt; + + // fold (sext (and/or/xor (load x), cst)) -> + // (and/or/xor (sextload x), (sext cst)) + if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || + N0.getOpcode() == ISD::XOR) && + isa<LoadSDNode>(N0.getOperand(0)) && + N0.getOperand(1).getOpcode() == ISD::Constant && + (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { + LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); + EVT MemVT = LN00->getMemoryVT(); + if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) && + LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) { + SmallVector<SDNode*, 4> SetCCs; + bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), + ISD::SIGN_EXTEND, SetCCs, TLI); + if (DoXform) { + SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT, + LN00->getChain(), LN00->getBasePtr(), + LN00->getMemoryVT(), + LN00->getMemOperand()); + APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits()); + SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, + ExtLoad, DAG.getConstant(Mask, DL, VT)); + ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND); + bool NoReplaceTruncAnd = !N0.hasOneUse(); + bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); + CombineTo(N, And); + // If N0 has multiple uses, change other uses as well. + if (NoReplaceTruncAnd) { + SDValue TruncAnd = + DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); + CombineTo(N0.getNode(), TruncAnd); + } + if (NoReplaceTrunc) { + DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); + } else { + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), + LN00->getValueType(0), ExtLoad); + CombineTo(LN00, Trunc, ExtLoad.getValue(1)); + } + return SDValue(N,0); // Return N so it doesn't get rechecked! + } + } + } + + if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) + return V; + + if (N0.getOpcode() == ISD::SETCC) { + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); EVT N00VT = N00.getValueType(); - - // sext(setcc) -> sext_in_reg(vsetcc) for vectors. - // Only do this before legalize for now. - if (VT.isVector() && !LegalOperations && - TLI.getBooleanContents(N00VT) == - TargetLowering::ZeroOrNegativeOneBooleanContent) { - // On some architectures (such as SSE/NEON/etc) the SETCC result type is - // of the same size as the compared operands. Only optimize sext(setcc()) - // if this is the case. - EVT SVT = getSetCCResultType(N00VT); - - // If we already have the desired type, don't change it. - if (SVT != N0.getValueType()) { - // We know that the # elements of the results is the same as the - // # elements of the compare (and the # elements of the compare result - // for that matter). Check to see that they are the same size. If so, - // we know that the element size of the sext'd result matches the - // element size of the compare operands. - if (VT.getSizeInBits() == SVT.getSizeInBits()) - return DAG.getSetCC(DL, VT, N00, N01, CC); - - // If the desired elements are smaller or larger than the source - // elements, we can use a matching integer vector type and then - // truncate/sign extend. - EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); - if (SVT == MatchingVecType) { - SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); - return DAG.getSExtOrTrunc(VsetCC, DL, VT); - } - } - } - - // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) - // Here, T can be 1 or -1, depending on the type of the setcc and - // getBooleanContents(). - unsigned SetCCWidth = N0.getScalarValueSizeInBits(); - - // To determine the "true" side of the select, we need to know the high bit - // of the value returned by the setcc if it evaluates to true. - // If the type of the setcc is i1, then the true case of the select is just - // sext(i1 1), that is, -1. - // If the type of the setcc is larger (say, i8) then the value of the high - // bit depends on getBooleanContents(), so ask TLI for a real "true" value - // of the appropriate width. - SDValue ExtTrueVal = (SetCCWidth == 1) - ? DAG.getAllOnesConstant(DL, VT) - : DAG.getBoolConstant(true, DL, VT, N00VT); - SDValue Zero = DAG.getConstant(0, DL, VT); - if (SDValue SCC = - SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) - return SCC; - - if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { - EVT SetCCVT = getSetCCResultType(N00VT); - // Don't do this transform for i1 because there's a select transform - // that would reverse it. - // TODO: We should not do this transform at all without a target hook - // because a sext is likely cheaper than a select? - if (SetCCVT.getScalarSizeInBits() != 1 && - (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { - SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); - return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); - } - } - } - - // fold (sext x) -> (zext x) if the sign bit is known zero. - if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && - DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - // Eliminate this sign extend by doing a negation in the destination type: - // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) - if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && - isNullOrNullSplat(N0.getOperand(0)) && - N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && - TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { - SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); - return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); - } - // Eliminate this sign extend by doing a decrement in the destination type: - // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) - if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && - isAllOnesOrAllOnesSplat(N0.getOperand(1)) && - N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && - TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { - SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); - return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); - } - + + // sext(setcc) -> sext_in_reg(vsetcc) for vectors. + // Only do this before legalize for now. + if (VT.isVector() && !LegalOperations && + TLI.getBooleanContents(N00VT) == + TargetLowering::ZeroOrNegativeOneBooleanContent) { + // On some architectures (such as SSE/NEON/etc) the SETCC result type is + // of the same size as the compared operands. Only optimize sext(setcc()) + // if this is the case. + EVT SVT = getSetCCResultType(N00VT); + + // If we already have the desired type, don't change it. + if (SVT != N0.getValueType()) { + // We know that the # elements of the results is the same as the + // # elements of the compare (and the # elements of the compare result + // for that matter). Check to see that they are the same size. If so, + // we know that the element size of the sext'd result matches the + // element size of the compare operands. + if (VT.getSizeInBits() == SVT.getSizeInBits()) + return DAG.getSetCC(DL, VT, N00, N01, CC); + + // If the desired elements are smaller or larger than the source + // elements, we can use a matching integer vector type and then + // truncate/sign extend. + EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger(); + if (SVT == MatchingVecType) { + SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC); + return DAG.getSExtOrTrunc(VsetCC, DL, VT); + } + } + } + + // sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0) + // Here, T can be 1 or -1, depending on the type of the setcc and + // getBooleanContents(). + unsigned SetCCWidth = N0.getScalarValueSizeInBits(); + + // To determine the "true" side of the select, we need to know the high bit + // of the value returned by the setcc if it evaluates to true. + // If the type of the setcc is i1, then the true case of the select is just + // sext(i1 1), that is, -1. + // If the type of the setcc is larger (say, i8) then the value of the high + // bit depends on getBooleanContents(), so ask TLI for a real "true" value + // of the appropriate width. + SDValue ExtTrueVal = (SetCCWidth == 1) + ? DAG.getAllOnesConstant(DL, VT) + : DAG.getBoolConstant(true, DL, VT, N00VT); + SDValue Zero = DAG.getConstant(0, DL, VT); + if (SDValue SCC = + SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true)) + return SCC; + + if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) { + EVT SetCCVT = getSetCCResultType(N00VT); + // Don't do this transform for i1 because there's a select transform + // that would reverse it. + // TODO: We should not do this transform at all without a target hook + // because a sext is likely cheaper than a select? + if (SetCCVT.getScalarSizeInBits() != 1 && + (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) { + SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC); + return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero); + } + } + } + + // fold (sext x) -> (zext x) if the sign bit is known zero. + if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) && + DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0); + + if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) + return NewVSel; + + // Eliminate this sign extend by doing a negation in the destination type: + // sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64) + if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() && + isNullOrNullSplat(N0.getOperand(0)) && + N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND && + TLI.isOperationLegalOrCustom(ISD::SUB, VT)) { + SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT); + return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext); + } + // Eliminate this sign extend by doing a decrement in the destination type: + // sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1) + if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && + isAllOnesOrAllOnesSplat(N0.getOperand(1)) && + N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && + TLI.isOperationLegalOrCustom(ISD::ADD, VT)) { + SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT); + return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); + } + // fold sext (not i1 X) -> add (zext i1 X), -1 // TODO: This could be extended to handle bool vectors. if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() && @@ -10748,371 +10748,371 @@ SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) { return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT)); } - return SDValue(); -} - -// isTruncateOf - If N is a truncate of some other value, return true, record -// the value being truncated in Op and which of Op's bits are zero/one in Known. -// This function computes KnownBits to avoid a duplicated call to -// computeKnownBits in the caller. -static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, - KnownBits &Known) { - if (N->getOpcode() == ISD::TRUNCATE) { - Op = N->getOperand(0); - Known = DAG.computeKnownBits(Op); - return true; - } - - if (N.getOpcode() != ISD::SETCC || - N.getValueType().getScalarType() != MVT::i1 || - cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) - return false; - - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - assert(Op0.getValueType() == Op1.getValueType()); - - if (isNullOrNullSplat(Op0)) - Op = Op1; - else if (isNullOrNullSplat(Op1)) - Op = Op0; - else - return false; - - Known = DAG.computeKnownBits(Op); - - return (Known.Zero | 1).isAllOnesValue(); -} - -/// Given an extending node with a pop-count operand, if the target does not -/// support a pop-count in the narrow source type but does support it in the -/// destination type, widen the pop-count to the destination type. -static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { - assert((Extend->getOpcode() == ISD::ZERO_EXTEND || - Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); - - SDValue CtPop = Extend->getOperand(0); - if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) - return SDValue(); - - EVT VT = Extend->getValueType(0); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || - !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) - return SDValue(); - - // zext (ctpop X) --> ctpop (zext X) - SDLoc DL(Extend); - SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); - return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); -} - -SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (zext (zext x)) -> (zext x) - // fold (zext (aext x)) -> (zext x) - if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) - return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, - N0.getOperand(0)); - - // fold (zext (truncate x)) -> (zext x) or - // (zext (truncate x)) -> (truncate x) - // This is valid when the truncated bits of x are already zero. - SDValue Op; - KnownBits Known; - if (isTruncateOf(DAG, N0, Op, Known)) { - APInt TruncatedBits = - (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? - APInt(Op.getScalarValueSizeInBits(), 0) : - APInt::getBitsSet(Op.getScalarValueSizeInBits(), - N0.getScalarValueSizeInBits(), - std::min(Op.getScalarValueSizeInBits(), - VT.getScalarSizeInBits())); - if (TruncatedBits.isSubsetOf(Known.Zero)) - return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); - } - - // fold (zext (truncate x)) -> (and x, mask) - if (N0.getOpcode() == ISD::TRUNCATE) { - // fold (zext (truncate (load x))) -> (zext (smaller load x)) - // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - EVT SrcVT = N0.getOperand(0).getValueType(); - EVT MinVT = N0.getValueType(); - - // Try to mask before the extension to avoid having to generate a larger mask, - // possibly over several sub-vectors. - if (SrcVT.bitsLT(VT) && VT.isVector()) { - if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && - TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { - SDValue Op = N0.getOperand(0); - Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); - AddToWorklist(Op.getNode()); - SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); - // Transfer the debug info; the new node is equivalent to N0. - DAG.transferDbgValues(N0, ZExtOrTrunc); - return ZExtOrTrunc; - } - } - - if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { - SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); - AddToWorklist(Op.getNode()); - SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); - // We may safely transfer the debug info describing the truncate node over - // to the equivalent and operation. - DAG.transferDbgValues(N0, And); - return And; - } - } - - // Fold (zext (and (trunc x), cst)) -> (and x, cst), - // if either of the casts is not free. - if (N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::TRUNCATE && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), - N0.getValueType()) || - !TLI.isZExtFree(N0.getValueType(), VT))) { - SDValue X = N0.getOperand(0).getOperand(0); - X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); - APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); - SDLoc DL(N); - return DAG.getNode(ISD::AND, DL, VT, - X, DAG.getConstant(Mask, DL, VT)); - } - - // Try to simplify (zext (load x)). - if (SDValue foldedExt = - tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, - ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) - return foldedExt; - - if (SDValue foldedExt = - tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, - ISD::ZERO_EXTEND)) - return foldedExt; - - // fold (zext (load x)) to multiple smaller zextloads. - // Only on illegal but splittable vectors. - if (SDValue ExtLoad = CombineExtLoad(N)) - return ExtLoad; - - // fold (zext (and/or/xor (load x), cst)) -> - // (and/or/xor (zextload x), (zext cst)) - // Unless (and (load x) cst) will match as a zextload already and has - // additional users. - if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || - N0.getOpcode() == ISD::XOR) && - isa<LoadSDNode>(N0.getOperand(0)) && - N0.getOperand(1).getOpcode() == ISD::Constant && - (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { - LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); - EVT MemVT = LN00->getMemoryVT(); - if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && - LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { - bool DoXform = true; - SmallVector<SDNode*, 4> SetCCs; - if (!N0.hasOneUse()) { - if (N0.getOpcode() == ISD::AND) { - auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); - EVT LoadResultTy = AndC->getValueType(0); - EVT ExtVT; - if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) - DoXform = false; - } - } - if (DoXform) - DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), - ISD::ZERO_EXTEND, SetCCs, TLI); - if (DoXform) { - SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, - LN00->getChain(), LN00->getBasePtr(), - LN00->getMemoryVT(), - LN00->getMemOperand()); - APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); - SDLoc DL(N); - SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, - ExtLoad, DAG.getConstant(Mask, DL, VT)); - ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); - bool NoReplaceTruncAnd = !N0.hasOneUse(); - bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); - CombineTo(N, And); - // If N0 has multiple uses, change other uses as well. - if (NoReplaceTruncAnd) { - SDValue TruncAnd = - DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); - CombineTo(N0.getNode(), TruncAnd); - } - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); - } else { - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), - LN00->getValueType(0), ExtLoad); - CombineTo(LN00, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N,0); // Return N so it doesn't get rechecked! - } - } - } - - // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> - // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) - if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) - return ZExtLoad; - - // Try to simplify (zext (zextload x)). - if (SDValue foldedExt = tryToFoldExtOfExtload( - DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) - return foldedExt; - - if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) - return V; - - if (N0.getOpcode() == ISD::SETCC) { - // Only do this before legalize for now. - if (!LegalOperations && VT.isVector() && - N0.getValueType().getVectorElementType() == MVT::i1) { - EVT N00VT = N0.getOperand(0).getValueType(); - if (getSetCCResultType(N00VT) == N0.getValueType()) - return SDValue(); - - // We know that the # elements of the results is the same as the # - // elements of the compare (and the # elements of the compare result for - // that matter). Check to see that they are the same size. If so, we know - // that the element size of the sext'd result matches the element size of - // the compare operands. - SDLoc DL(N); - if (VT.getSizeInBits() == N00VT.getSizeInBits()) { - // zext(setcc) -> zext_in_reg(vsetcc) for vectors. - SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), - N0.getOperand(1), N0.getOperand(2)); - return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); - } - - // If the desired elements are smaller or larger than the source - // elements we can use a matching integer vector type and then - // truncate/any extend followed by zext_in_reg. - EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); - SDValue VsetCC = - DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), - N0.getOperand(1), N0.getOperand(2)); - return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, - N0.getValueType()); - } - + return SDValue(); +} + +// isTruncateOf - If N is a truncate of some other value, return true, record +// the value being truncated in Op and which of Op's bits are zero/one in Known. +// This function computes KnownBits to avoid a duplicated call to +// computeKnownBits in the caller. +static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op, + KnownBits &Known) { + if (N->getOpcode() == ISD::TRUNCATE) { + Op = N->getOperand(0); + Known = DAG.computeKnownBits(Op); + return true; + } + + if (N.getOpcode() != ISD::SETCC || + N.getValueType().getScalarType() != MVT::i1 || + cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE) + return false; + + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + assert(Op0.getValueType() == Op1.getValueType()); + + if (isNullOrNullSplat(Op0)) + Op = Op1; + else if (isNullOrNullSplat(Op1)) + Op = Op0; + else + return false; + + Known = DAG.computeKnownBits(Op); + + return (Known.Zero | 1).isAllOnesValue(); +} + +/// Given an extending node with a pop-count operand, if the target does not +/// support a pop-count in the narrow source type but does support it in the +/// destination type, widen the pop-count to the destination type. +static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) { + assert((Extend->getOpcode() == ISD::ZERO_EXTEND || + Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op"); + + SDValue CtPop = Extend->getOperand(0); + if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse()) + return SDValue(); + + EVT VT = Extend->getValueType(0); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) || + !TLI.isOperationLegalOrCustom(ISD::CTPOP, VT)) + return SDValue(); + + // zext (ctpop X) --> ctpop (zext X) + SDLoc DL(Extend); + SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT); + return DAG.getNode(ISD::CTPOP, DL, VT, NewZext); +} + +SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) + return Res; + + // fold (zext (zext x)) -> (zext x) + // fold (zext (aext x)) -> (zext x) + if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) + return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, + N0.getOperand(0)); + + // fold (zext (truncate x)) -> (zext x) or + // (zext (truncate x)) -> (truncate x) + // This is valid when the truncated bits of x are already zero. + SDValue Op; + KnownBits Known; + if (isTruncateOf(DAG, N0, Op, Known)) { + APInt TruncatedBits = + (Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ? + APInt(Op.getScalarValueSizeInBits(), 0) : + APInt::getBitsSet(Op.getScalarValueSizeInBits(), + N0.getScalarValueSizeInBits(), + std::min(Op.getScalarValueSizeInBits(), + VT.getScalarSizeInBits())); + if (TruncatedBits.isSubsetOf(Known.Zero)) + return DAG.getZExtOrTrunc(Op, SDLoc(N), VT); + } + + // fold (zext (truncate x)) -> (and x, mask) + if (N0.getOpcode() == ISD::TRUNCATE) { + // fold (zext (truncate (load x))) -> (zext (smaller load x)) + // fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n))) + if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { + SDNode *oye = N0.getOperand(0).getNode(); + if (NarrowLoad.getNode() != N0.getNode()) { + CombineTo(N0.getNode(), NarrowLoad); + // CombineTo deleted the truncate, if needed, but not what's under it. + AddToWorklist(oye); + } + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + + EVT SrcVT = N0.getOperand(0).getValueType(); + EVT MinVT = N0.getValueType(); + + // Try to mask before the extension to avoid having to generate a larger mask, + // possibly over several sub-vectors. + if (SrcVT.bitsLT(VT) && VT.isVector()) { + if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) && + TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) { + SDValue Op = N0.getOperand(0); + Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); + AddToWorklist(Op.getNode()); + SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT); + // Transfer the debug info; the new node is equivalent to N0. + DAG.transferDbgValues(N0, ZExtOrTrunc); + return ZExtOrTrunc; + } + } + + if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) { + SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); + AddToWorklist(Op.getNode()); + SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT); + // We may safely transfer the debug info describing the truncate node over + // to the equivalent and operation. + DAG.transferDbgValues(N0, And); + return And; + } + } + + // Fold (zext (and (trunc x), cst)) -> (and x, cst), + // if either of the casts is not free. + if (N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::TRUNCATE && + N0.getOperand(1).getOpcode() == ISD::Constant && + (!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), + N0.getValueType()) || + !TLI.isZExtFree(N0.getValueType(), VT))) { + SDValue X = N0.getOperand(0).getOperand(0); + X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT); + APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); + SDLoc DL(N); + return DAG.getNode(ISD::AND, DL, VT, + X, DAG.getConstant(Mask, DL, VT)); + } + + // Try to simplify (zext (load x)). + if (SDValue foldedExt = + tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0, + ISD::ZEXTLOAD, ISD::ZERO_EXTEND)) + return foldedExt; + + if (SDValue foldedExt = + tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD, + ISD::ZERO_EXTEND)) + return foldedExt; + + // fold (zext (load x)) to multiple smaller zextloads. + // Only on illegal but splittable vectors. + if (SDValue ExtLoad = CombineExtLoad(N)) + return ExtLoad; + + // fold (zext (and/or/xor (load x), cst)) -> + // (and/or/xor (zextload x), (zext cst)) + // Unless (and (load x) cst) will match as a zextload already and has + // additional users. + if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR || + N0.getOpcode() == ISD::XOR) && + isa<LoadSDNode>(N0.getOperand(0)) && + N0.getOperand(1).getOpcode() == ISD::Constant && + (!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) { + LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0)); + EVT MemVT = LN00->getMemoryVT(); + if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) && + LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) { + bool DoXform = true; + SmallVector<SDNode*, 4> SetCCs; + if (!N0.hasOneUse()) { + if (N0.getOpcode() == ISD::AND) { + auto *AndC = cast<ConstantSDNode>(N0.getOperand(1)); + EVT LoadResultTy = AndC->getValueType(0); + EVT ExtVT; + if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT)) + DoXform = false; + } + } + if (DoXform) + DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0), + ISD::ZERO_EXTEND, SetCCs, TLI); + if (DoXform) { + SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT, + LN00->getChain(), LN00->getBasePtr(), + LN00->getMemoryVT(), + LN00->getMemOperand()); + APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); + SDLoc DL(N); + SDValue And = DAG.getNode(N0.getOpcode(), DL, VT, + ExtLoad, DAG.getConstant(Mask, DL, VT)); + ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND); + bool NoReplaceTruncAnd = !N0.hasOneUse(); + bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse(); + CombineTo(N, And); + // If N0 has multiple uses, change other uses as well. + if (NoReplaceTruncAnd) { + SDValue TruncAnd = + DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And); + CombineTo(N0.getNode(), TruncAnd); + } + if (NoReplaceTrunc) { + DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1)); + } else { + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00), + LN00->getValueType(0), ExtLoad); + CombineTo(LN00, Trunc, ExtLoad.getValue(1)); + } + return SDValue(N,0); // Return N so it doesn't get rechecked! + } + } + } + + // fold (zext (and/or/xor (shl/shr (load x), cst), cst)) -> + // (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst)) + if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N)) + return ZExtLoad; + + // Try to simplify (zext (zextload x)). + if (SDValue foldedExt = tryToFoldExtOfExtload( + DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD)) + return foldedExt; + + if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations)) + return V; + + if (N0.getOpcode() == ISD::SETCC) { + // Only do this before legalize for now. + if (!LegalOperations && VT.isVector() && + N0.getValueType().getVectorElementType() == MVT::i1) { + EVT N00VT = N0.getOperand(0).getValueType(); + if (getSetCCResultType(N00VT) == N0.getValueType()) + return SDValue(); + + // We know that the # elements of the results is the same as the # + // elements of the compare (and the # elements of the compare result for + // that matter). Check to see that they are the same size. If so, we know + // that the element size of the sext'd result matches the element size of + // the compare operands. + SDLoc DL(N); + if (VT.getSizeInBits() == N00VT.getSizeInBits()) { + // zext(setcc) -> zext_in_reg(vsetcc) for vectors. + SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0), + N0.getOperand(1), N0.getOperand(2)); + return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType()); + } + + // If the desired elements are smaller or larger than the source + // elements we can use a matching integer vector type and then + // truncate/any extend followed by zext_in_reg. + EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); + SDValue VsetCC = + DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0), + N0.getOperand(1), N0.getOperand(2)); + return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL, + N0.getValueType()); + } + // zext(setcc x,y,cc) -> zext(select x, y, true, false, cc) - SDLoc DL(N); + SDLoc DL(N); EVT N0VT = N0.getValueType(); EVT N00VT = N0.getOperand(0).getValueType(); - if (SDValue SCC = SimplifySelectCC( + if (SDValue SCC = SimplifySelectCC( DL, N0.getOperand(0), N0.getOperand(1), DAG.getBoolConstant(true, DL, N0VT, N00VT), DAG.getBoolConstant(false, DL, N0VT, N00VT), - cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) + cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC); - } - - // (zext (shl (zext x), cst)) -> (shl (zext x), cst) - if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && - isa<ConstantSDNode>(N0.getOperand(1)) && - N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && - N0.hasOneUse()) { - SDValue ShAmt = N0.getOperand(1); - if (N0.getOpcode() == ISD::SHL) { - SDValue InnerZExt = N0.getOperand(0); - // If the original shl may be shifting out bits, do not perform this - // transformation. - unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - - InnerZExt.getOperand(0).getValueSizeInBits(); - if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) - return SDValue(); - } - - SDLoc DL(N); - - // Ensure that the shift amount is wide enough for the shifted value. - if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) - ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); - - return DAG.getNode(N0.getOpcode(), DL, VT, - DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), - ShAmt); - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - if (SDValue NewCtPop = widenCtPop(N, DAG)) - return NewCtPop; - - return SDValue(); -} - -SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - // fold (aext (aext x)) -> (aext x) - // fold (aext (zext x)) -> (zext x) - // fold (aext (sext x)) -> (sext x) - if (N0.getOpcode() == ISD::ANY_EXTEND || - N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND) - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); - - // fold (aext (truncate (load x))) -> (aext (smaller load x)) - // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) - if (N0.getOpcode() == ISD::TRUNCATE) { - if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { - SDNode *oye = N0.getOperand(0).getNode(); - if (NarrowLoad.getNode() != N0.getNode()) { - CombineTo(N0.getNode(), NarrowLoad); - // CombineTo deleted the truncate, if needed, but not what's under it. - AddToWorklist(oye); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (aext (truncate x)) - if (N0.getOpcode() == ISD::TRUNCATE) - return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); - - // Fold (aext (and (trunc x), cst)) -> (and x, cst) - // if the trunc is not free. - if (N0.getOpcode() == ISD::AND && - N0.getOperand(0).getOpcode() == ISD::TRUNCATE && - N0.getOperand(1).getOpcode() == ISD::Constant && - !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), - N0.getValueType())) { - SDLoc DL(N); - SDValue X = N0.getOperand(0).getOperand(0); - X = DAG.getAnyExtOrTrunc(X, DL, VT); - APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); - return DAG.getNode(ISD::AND, DL, VT, - X, DAG.getConstant(Mask, DL, VT)); - } - - // fold (aext (load x)) -> (aext (truncate (extload x))) - // None of the supported targets knows how to perform load and any_ext + } + + // (zext (shl (zext x), cst)) -> (shl (zext x), cst) + if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) && + isa<ConstantSDNode>(N0.getOperand(1)) && + N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND && + N0.hasOneUse()) { + SDValue ShAmt = N0.getOperand(1); + if (N0.getOpcode() == ISD::SHL) { + SDValue InnerZExt = N0.getOperand(0); + // If the original shl may be shifting out bits, do not perform this + // transformation. + unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() - + InnerZExt.getOperand(0).getValueSizeInBits(); + if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits)) + return SDValue(); + } + + SDLoc DL(N); + + // Ensure that the shift amount is wide enough for the shifted value. + if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits()) + ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt); + + return DAG.getNode(N0.getOpcode(), DL, VT, + DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)), + ShAmt); + } + + if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) + return NewVSel; + + if (SDValue NewCtPop = widenCtPop(N, DAG)) + return NewCtPop; + + return SDValue(); +} + +SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) + return Res; + + // fold (aext (aext x)) -> (aext x) + // fold (aext (zext x)) -> (zext x) + // fold (aext (sext x)) -> (sext x) + if (N0.getOpcode() == ISD::ANY_EXTEND || + N0.getOpcode() == ISD::ZERO_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND) + return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); + + // fold (aext (truncate (load x))) -> (aext (smaller load x)) + // fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n))) + if (N0.getOpcode() == ISD::TRUNCATE) { + if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) { + SDNode *oye = N0.getOperand(0).getNode(); + if (NarrowLoad.getNode() != N0.getNode()) { + CombineTo(N0.getNode(), NarrowLoad); + // CombineTo deleted the truncate, if needed, but not what's under it. + AddToWorklist(oye); + } + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + + // fold (aext (truncate x)) + if (N0.getOpcode() == ISD::TRUNCATE) + return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); + + // Fold (aext (and (trunc x), cst)) -> (and x, cst) + // if the trunc is not free. + if (N0.getOpcode() == ISD::AND && + N0.getOperand(0).getOpcode() == ISD::TRUNCATE && + N0.getOperand(1).getOpcode() == ISD::Constant && + !TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(), + N0.getValueType())) { + SDLoc DL(N); + SDValue X = N0.getOperand(0).getOperand(0); + X = DAG.getAnyExtOrTrunc(X, DL, VT); + APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits()); + return DAG.getNode(ISD::AND, DL, VT, + X, DAG.getConstant(Mask, DL, VT)); + } + + // fold (aext (load x)) -> (aext (truncate (extload x))) + // None of the supported targets knows how to perform load and any_ext // on vectors in one instruction, so attempt to fold to zext instead. if (VT.isVector()) { // Try to simplify (zext (load x)). @@ -11123,524 +11123,524 @@ SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) { } else if (ISD::isNON_EXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { - bool DoXform = true; + bool DoXform = true; SmallVector<SDNode *, 4> SetCCs; - if (!N0.hasOneUse()) + if (!N0.hasOneUse()) DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI); - if (DoXform) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, + if (DoXform) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, LN0->getChain(), LN0->getBasePtr(), N0.getValueType(), LN0->getMemOperand()); - ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); - // If the load value is used only by N, replace it via CombineTo N. - bool NoReplaceTrunc = N0.hasOneUse(); - CombineTo(N, ExtLoad); - if (NoReplaceTrunc) { - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - recursivelyDeleteUnusedNodes(LN0); - } else { + ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND); + // If the load value is used only by N, replace it via CombineTo N. + bool NoReplaceTrunc = N0.hasOneUse(); + CombineTo(N, ExtLoad); + if (NoReplaceTrunc) { + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); + recursivelyDeleteUnusedNodes(LN0); + } else { SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad); - CombineTo(LN0, Trunc, ExtLoad.getValue(1)); - } - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - // fold (aext (zextload x)) -> (aext (truncate (zextload x))) - // fold (aext (sextload x)) -> (aext (truncate (sextload x))) - // fold (aext ( extload x)) -> (aext (truncate (extload x))) - if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && - ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - ISD::LoadExtType ExtType = LN0->getExtensionType(); - EVT MemVT = LN0->getMemoryVT(); - if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { - SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), - VT, LN0->getChain(), LN0->getBasePtr(), - MemVT, LN0->getMemOperand()); - CombineTo(N, ExtLoad); - DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); - recursivelyDeleteUnusedNodes(LN0); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - - if (N0.getOpcode() == ISD::SETCC) { - // For vectors: - // aext(setcc) -> vsetcc - // aext(setcc) -> truncate(vsetcc) - // aext(setcc) -> aext(vsetcc) - // Only do this before legalize for now. - if (VT.isVector() && !LegalOperations) { - EVT N00VT = N0.getOperand(0).getValueType(); - if (getSetCCResultType(N00VT) == N0.getValueType()) - return SDValue(); - - // We know that the # elements of the results is the same as the - // # elements of the compare (and the # elements of the compare result - // for that matter). Check to see that they are the same size. If so, - // we know that the element size of the sext'd result matches the - // element size of the compare operands. - if (VT.getSizeInBits() == N00VT.getSizeInBits()) - return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), - N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - - // If the desired elements are smaller or larger than the source - // elements we can use a matching integer vector type and then - // truncate/any extend - EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); - SDValue VsetCC = - DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), - N0.getOperand(1), - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); - } - - // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc - SDLoc DL(N); - if (SDValue SCC = SimplifySelectCC( - DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), - DAG.getConstant(0, DL, VT), - cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) - return SCC; - } - - if (SDValue NewCtPop = widenCtPop(N, DAG)) - return NewCtPop; - - return SDValue(); -} - -SDValue DAGCombiner::visitAssertExt(SDNode *N) { - unsigned Opcode = N->getOpcode(); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT AssertVT = cast<VTSDNode>(N1)->getVT(); - - // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) - if (N0.getOpcode() == Opcode && - AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) - return N0; - - if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == Opcode) { - // We have an assert, truncate, assert sandwich. Make one stronger assert - // by asserting on the smallest asserted type to the larger source type. - // This eliminates the later assert: - // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN - // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN - SDValue BigA = N0.getOperand(0); - EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); - assert(BigA_AssertVT.bitsLE(N0.getValueType()) && - "Asserting zero/sign-extended bits to a type larger than the " - "truncated destination does not provide information"); - - SDLoc DL(N); - EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; - SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); - SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), - BigA.getOperand(0), MinAssertVTVal); - return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); - } - - // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller - // than X. Just move the AssertZext in front of the truncate and drop the - // AssertSExt. - if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::AssertSext && - Opcode == ISD::AssertZext) { - SDValue BigA = N0.getOperand(0); - EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); - assert(BigA_AssertVT.bitsLE(N0.getValueType()) && - "Asserting zero/sign-extended bits to a type larger than the " - "truncated destination does not provide information"); - - if (AssertVT.bitsLT(BigA_AssertVT)) { - SDLoc DL(N); - SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), - BigA.getOperand(0), N1); - return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitAssertAlign(SDNode *N) { - SDLoc DL(N); - - Align AL = cast<AssertAlignSDNode>(N)->getAlign(); - SDValue N0 = N->getOperand(0); - - // Fold (assertalign (assertalign x, AL0), AL1) -> - // (assertalign x, max(AL0, AL1)) - if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) - return DAG.getAssertAlign(DL, N0.getOperand(0), - std::max(AL, AAN->getAlign())); - - // In rare cases, there are trivial arithmetic ops in source operands. Sink - // this assert down to source operands so that those arithmetic ops could be - // exposed to the DAG combining. - switch (N0.getOpcode()) { - default: - break; - case ISD::ADD: - case ISD::SUB: { - unsigned AlignShift = Log2(AL); - SDValue LHS = N0.getOperand(0); - SDValue RHS = N0.getOperand(1); - unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); - unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); - if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { - if (LHSAlignShift < AlignShift) - LHS = DAG.getAssertAlign(DL, LHS, AL); - if (RHSAlignShift < AlignShift) - RHS = DAG.getAssertAlign(DL, RHS, AL); - return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); - } - break; - } - } - - return SDValue(); -} - -/// If the result of a wider load is shifted to right of N bits and then -/// truncated to a narrower type and where N is a multiple of number of bits of -/// the narrower type, transform it to a narrower load from address + N / num of -/// bits of new type. Also narrow the load if the result is masked with an AND -/// to effectively produce a smaller type. If the result is to be extended, also -/// fold the extension to form a extending load. -SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { - unsigned Opc = N->getOpcode(); - - ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT ExtVT = VT; - - // This transformation isn't valid for vector loads. - if (VT.isVector()) - return SDValue(); - - unsigned ShAmt = 0; - bool HasShiftedOffset = false; - // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then - // extended to VT. - if (Opc == ISD::SIGN_EXTEND_INREG) { - ExtType = ISD::SEXTLOAD; - ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); - } else if (Opc == ISD::SRL) { - // Another special-case: SRL is basically zero-extending a narrower value, - // or it maybe shifting a higher subword, half or byte into the lowest - // bits. - ExtType = ISD::ZEXTLOAD; - N0 = SDValue(N, 0); - - auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); - auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!N01 || !LN0) - return SDValue(); - - uint64_t ShiftAmt = N01->getZExtValue(); + CombineTo(LN0, Trunc, ExtLoad.getValue(1)); + } + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + + // fold (aext (zextload x)) -> (aext (truncate (zextload x))) + // fold (aext (sextload x)) -> (aext (truncate (sextload x))) + // fold (aext ( extload x)) -> (aext (truncate (extload x))) + if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) && + ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + ISD::LoadExtType ExtType = LN0->getExtensionType(); + EVT MemVT = LN0->getMemoryVT(); + if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) { + SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N), + VT, LN0->getChain(), LN0->getBasePtr(), + MemVT, LN0->getMemOperand()); + CombineTo(N, ExtLoad); + DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1)); + recursivelyDeleteUnusedNodes(LN0); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + + if (N0.getOpcode() == ISD::SETCC) { + // For vectors: + // aext(setcc) -> vsetcc + // aext(setcc) -> truncate(vsetcc) + // aext(setcc) -> aext(vsetcc) + // Only do this before legalize for now. + if (VT.isVector() && !LegalOperations) { + EVT N00VT = N0.getOperand(0).getValueType(); + if (getSetCCResultType(N00VT) == N0.getValueType()) + return SDValue(); + + // We know that the # elements of the results is the same as the + // # elements of the compare (and the # elements of the compare result + // for that matter). Check to see that they are the same size. If so, + // we know that the element size of the sext'd result matches the + // element size of the compare operands. + if (VT.getSizeInBits() == N00VT.getSizeInBits()) + return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0), + N0.getOperand(1), + cast<CondCodeSDNode>(N0.getOperand(2))->get()); + + // If the desired elements are smaller or larger than the source + // elements we can use a matching integer vector type and then + // truncate/any extend + EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger(); + SDValue VsetCC = + DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0), + N0.getOperand(1), + cast<CondCodeSDNode>(N0.getOperand(2))->get()); + return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT); + } + + // aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc + SDLoc DL(N); + if (SDValue SCC = SimplifySelectCC( + DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT), + DAG.getConstant(0, DL, VT), + cast<CondCodeSDNode>(N0.getOperand(2))->get(), true)) + return SCC; + } + + if (SDValue NewCtPop = widenCtPop(N, DAG)) + return NewCtPop; + + return SDValue(); +} + +SDValue DAGCombiner::visitAssertExt(SDNode *N) { + unsigned Opcode = N->getOpcode(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT AssertVT = cast<VTSDNode>(N1)->getVT(); + + // fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt) + if (N0.getOpcode() == Opcode && + AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT()) + return N0; + + if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && + N0.getOperand(0).getOpcode() == Opcode) { + // We have an assert, truncate, assert sandwich. Make one stronger assert + // by asserting on the smallest asserted type to the larger source type. + // This eliminates the later assert: + // assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN + // assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN + SDValue BigA = N0.getOperand(0); + EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); + assert(BigA_AssertVT.bitsLE(N0.getValueType()) && + "Asserting zero/sign-extended bits to a type larger than the " + "truncated destination does not provide information"); + + SDLoc DL(N); + EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT; + SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT); + SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), + BigA.getOperand(0), MinAssertVTVal); + return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); + } + + // If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller + // than X. Just move the AssertZext in front of the truncate and drop the + // AssertSExt. + if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && + N0.getOperand(0).getOpcode() == ISD::AssertSext && + Opcode == ISD::AssertZext) { + SDValue BigA = N0.getOperand(0); + EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT(); + assert(BigA_AssertVT.bitsLE(N0.getValueType()) && + "Asserting zero/sign-extended bits to a type larger than the " + "truncated destination does not provide information"); + + if (AssertVT.bitsLT(BigA_AssertVT)) { + SDLoc DL(N); + SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(), + BigA.getOperand(0), N1); + return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitAssertAlign(SDNode *N) { + SDLoc DL(N); + + Align AL = cast<AssertAlignSDNode>(N)->getAlign(); + SDValue N0 = N->getOperand(0); + + // Fold (assertalign (assertalign x, AL0), AL1) -> + // (assertalign x, max(AL0, AL1)) + if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0)) + return DAG.getAssertAlign(DL, N0.getOperand(0), + std::max(AL, AAN->getAlign())); + + // In rare cases, there are trivial arithmetic ops in source operands. Sink + // this assert down to source operands so that those arithmetic ops could be + // exposed to the DAG combining. + switch (N0.getOpcode()) { + default: + break; + case ISD::ADD: + case ISD::SUB: { + unsigned AlignShift = Log2(AL); + SDValue LHS = N0.getOperand(0); + SDValue RHS = N0.getOperand(1); + unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros(); + unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros(); + if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) { + if (LHSAlignShift < AlignShift) + LHS = DAG.getAssertAlign(DL, LHS, AL); + if (RHSAlignShift < AlignShift) + RHS = DAG.getAssertAlign(DL, RHS, AL); + return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS); + } + break; + } + } + + return SDValue(); +} + +/// If the result of a wider load is shifted to right of N bits and then +/// truncated to a narrower type and where N is a multiple of number of bits of +/// the narrower type, transform it to a narrower load from address + N / num of +/// bits of new type. Also narrow the load if the result is masked with an AND +/// to effectively produce a smaller type. If the result is to be extended, also +/// fold the extension to form a extending load. +SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) { + unsigned Opc = N->getOpcode(); + + ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT ExtVT = VT; + + // This transformation isn't valid for vector loads. + if (VT.isVector()) + return SDValue(); + + unsigned ShAmt = 0; + bool HasShiftedOffset = false; + // Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then + // extended to VT. + if (Opc == ISD::SIGN_EXTEND_INREG) { + ExtType = ISD::SEXTLOAD; + ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT(); + } else if (Opc == ISD::SRL) { + // Another special-case: SRL is basically zero-extending a narrower value, + // or it maybe shifting a higher subword, half or byte into the lowest + // bits. + ExtType = ISD::ZEXTLOAD; + N0 = SDValue(N, 0); + + auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0)); + auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!N01 || !LN0) + return SDValue(); + + uint64_t ShiftAmt = N01->getZExtValue(); uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits(); - if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) - ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); - else - ExtVT = EVT::getIntegerVT(*DAG.getContext(), + if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt) + ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt); + else + ExtVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() - ShiftAmt); - } else if (Opc == ISD::AND) { - // An AND with a constant mask is the same as a truncate + zero-extend. - auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); - if (!AndC) - return SDValue(); - - const APInt &Mask = AndC->getAPIntValue(); - unsigned ActiveBits = 0; - if (Mask.isMask()) { - ActiveBits = Mask.countTrailingOnes(); - } else if (Mask.isShiftedMask()) { - ShAmt = Mask.countTrailingZeros(); - APInt ShiftedMask = Mask.lshr(ShAmt); - ActiveBits = ShiftedMask.countTrailingOnes(); - HasShiftedOffset = true; - } else - return SDValue(); - - ExtType = ISD::ZEXTLOAD; - ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); - } - - if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { - SDValue SRL = N0; - if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { - ShAmt = ConstShift->getZExtValue(); + } else if (Opc == ISD::AND) { + // An AND with a constant mask is the same as a truncate + zero-extend. + auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!AndC) + return SDValue(); + + const APInt &Mask = AndC->getAPIntValue(); + unsigned ActiveBits = 0; + if (Mask.isMask()) { + ActiveBits = Mask.countTrailingOnes(); + } else if (Mask.isShiftedMask()) { + ShAmt = Mask.countTrailingZeros(); + APInt ShiftedMask = Mask.lshr(ShAmt); + ActiveBits = ShiftedMask.countTrailingOnes(); + HasShiftedOffset = true; + } else + return SDValue(); + + ExtType = ISD::ZEXTLOAD; + ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits); + } + + if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) { + SDValue SRL = N0; + if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) { + ShAmt = ConstShift->getZExtValue(); unsigned EVTBits = ExtVT.getScalarSizeInBits(); - // Is the shift amount a multiple of size of VT? - if ((ShAmt & (EVTBits-1)) == 0) { - N0 = N0.getOperand(0); - // Is the load width a multiple of size of VT? + // Is the shift amount a multiple of size of VT? + if ((ShAmt & (EVTBits-1)) == 0) { + N0 = N0.getOperand(0); + // Is the load width a multiple of size of VT? if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0) - return SDValue(); - } - - // At this point, we must have a load or else we can't do the transform. - auto *LN0 = dyn_cast<LoadSDNode>(N0); - if (!LN0) return SDValue(); - - // Because a SRL must be assumed to *need* to zero-extend the high bits - // (as opposed to anyext the high bits), we can't combine the zextload - // lowering of SRL and an sextload. - if (LN0->getExtensionType() == ISD::SEXTLOAD) - return SDValue(); - - // If the shift amount is larger than the input type then we're not - // accessing any of the loaded bytes. If the load was a zextload/extload - // then the result of the shift+trunc is zero/undef (handled elsewhere). - if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) - return SDValue(); - - // If the SRL is only used by a masking AND, we may be able to adjust - // the ExtVT to make the AND redundant. - SDNode *Mask = *(SRL->use_begin()); - if (Mask->getOpcode() == ISD::AND && - isa<ConstantSDNode>(Mask->getOperand(1))) { - const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); - if (ShiftMask.isMask()) { - EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), - ShiftMask.countTrailingOnes()); - // If the mask is smaller, recompute the type. + return SDValue(); + } + + // At this point, we must have a load or else we can't do the transform. + auto *LN0 = dyn_cast<LoadSDNode>(N0); + if (!LN0) return SDValue(); + + // Because a SRL must be assumed to *need* to zero-extend the high bits + // (as opposed to anyext the high bits), we can't combine the zextload + // lowering of SRL and an sextload. + if (LN0->getExtensionType() == ISD::SEXTLOAD) + return SDValue(); + + // If the shift amount is larger than the input type then we're not + // accessing any of the loaded bytes. If the load was a zextload/extload + // then the result of the shift+trunc is zero/undef (handled elsewhere). + if (ShAmt >= LN0->getMemoryVT().getSizeInBits()) + return SDValue(); + + // If the SRL is only used by a masking AND, we may be able to adjust + // the ExtVT to make the AND redundant. + SDNode *Mask = *(SRL->use_begin()); + if (Mask->getOpcode() == ISD::AND && + isa<ConstantSDNode>(Mask->getOperand(1))) { + const APInt& ShiftMask = Mask->getConstantOperandAPInt(1); + if (ShiftMask.isMask()) { + EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(), + ShiftMask.countTrailingOnes()); + // If the mask is smaller, recompute the type. if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) && - TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) - ExtVT = MaskedVT; - } - } - } - } - - // If the load is shifted left (and the result isn't shifted back right), - // we can fold the truncate through the shift. - unsigned ShLeftAmt = 0; - if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && - ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { - if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { - ShLeftAmt = N01->getZExtValue(); - N0 = N0.getOperand(0); - } - } - - // If we haven't found a load, we can't narrow it. - if (!isa<LoadSDNode>(N0)) - return SDValue(); - - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - // Reducing the width of a volatile load is illegal. For atomics, we may be - // able to reduce the width provided we never widen again. (see D66309) - if (!LN0->isSimple() || - !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) - return SDValue(); - - auto AdjustBigEndianShift = [&](unsigned ShAmt) { + TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT)) + ExtVT = MaskedVT; + } + } + } + } + + // If the load is shifted left (and the result isn't shifted back right), + // we can fold the truncate through the shift. + unsigned ShLeftAmt = 0; + if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() && + ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) { + if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { + ShLeftAmt = N01->getZExtValue(); + N0 = N0.getOperand(0); + } + } + + // If we haven't found a load, we can't narrow it. + if (!isa<LoadSDNode>(N0)) + return SDValue(); + + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + // Reducing the width of a volatile load is illegal. For atomics, we may be + // able to reduce the width provided we never widen again. (see D66309) + if (!LN0->isSimple() || + !isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt)) + return SDValue(); + + auto AdjustBigEndianShift = [&](unsigned ShAmt) { unsigned LVTStoreBits = LN0->getMemoryVT().getStoreSizeInBits().getFixedSize(); unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize(); - return LVTStoreBits - EVTStoreBits - ShAmt; - }; - - // For big endian targets, we need to adjust the offset to the pointer to - // load the correct bytes. - if (DAG.getDataLayout().isBigEndian()) - ShAmt = AdjustBigEndianShift(ShAmt); - - uint64_t PtrOff = ShAmt / 8; + return LVTStoreBits - EVTStoreBits - ShAmt; + }; + + // For big endian targets, we need to adjust the offset to the pointer to + // load the correct bytes. + if (DAG.getDataLayout().isBigEndian()) + ShAmt = AdjustBigEndianShift(ShAmt); + + uint64_t PtrOff = ShAmt / 8; Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff); - SDLoc DL(LN0); - // The original load itself didn't wrap, so an offset within it doesn't. - SDNodeFlags Flags; - Flags.setNoUnsignedWrap(true); + SDLoc DL(LN0); + // The original load itself didn't wrap, so an offset within it doesn't. + SDNodeFlags Flags; + Flags.setNoUnsignedWrap(true); SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(), TypeSize::Fixed(PtrOff), DL, Flags); - AddToWorklist(NewPtr.getNode()); - - SDValue Load; - if (ExtType == ISD::NON_EXTLOAD) - Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, - LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - else - Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, - LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, - NewAlign, LN0->getMemOperand()->getFlags(), - LN0->getAAInfo()); - - // Replace the old load's chain with the new load's chain. - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); - - // Shift the result left, if we've swallowed a left shift. - SDValue Result = Load; - if (ShLeftAmt != 0) { - EVT ShImmTy = getShiftAmountTy(Result.getValueType()); + AddToWorklist(NewPtr.getNode()); + + SDValue Load; + if (ExtType == ISD::NON_EXTLOAD) + Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr, + LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign, + LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); + else + Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr, + LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT, + NewAlign, LN0->getMemOperand()->getFlags(), + LN0->getAAInfo()); + + // Replace the old load's chain with the new load's chain. + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); + + // Shift the result left, if we've swallowed a left shift. + SDValue Result = Load; + if (ShLeftAmt != 0) { + EVT ShImmTy = getShiftAmountTy(Result.getValueType()); if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt)) - ShImmTy = VT; - // If the shift amount is as large as the result size (but, presumably, - // no larger than the source) then the useful bits of the result are - // zero; we can't simply return the shortened shift, because the result - // of that operation is undefined. + ShImmTy = VT; + // If the shift amount is as large as the result size (but, presumably, + // no larger than the source) then the useful bits of the result are + // zero; we can't simply return the shortened shift, because the result + // of that operation is undefined. if (ShLeftAmt >= VT.getScalarSizeInBits()) - Result = DAG.getConstant(0, DL, VT); - else - Result = DAG.getNode(ISD::SHL, DL, VT, - Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); - } - - if (HasShiftedOffset) { - // Recalculate the shift amount after it has been altered to calculate - // the offset. - if (DAG.getDataLayout().isBigEndian()) - ShAmt = AdjustBigEndianShift(ShAmt); - - // We're using a shifted mask, so the load now has an offset. This means - // that data has been loaded into the lower bytes than it would have been - // before, so we need to shl the loaded data into the correct position in the - // register. - SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); - Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); - } - - // Return the new loaded value. - return Result; -} - -SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - EVT ExtVT = cast<VTSDNode>(N1)->getVT(); - unsigned VTBits = VT.getScalarSizeInBits(); - unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); - - // sext_vector_inreg(undef) = 0 because the top bit will all be the same. - if (N0.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - // fold (sext_in_reg c1) -> c1 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); - - // If the input is already sign extended, just drop the extension. - if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) - return N0; - - // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 - if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && - ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), - N1); - - // fold (sext_in_reg (sext x)) -> (sext x) - // fold (sext_in_reg (aext x)) -> (sext x) - // if x is small enough or if we know that x has more than 1 sign bit and the - // sign_extend_inreg is extending from one of them. - if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { - SDValue N00 = N0.getOperand(0); - unsigned N00Bits = N00.getScalarValueSizeInBits(); - if ((N00Bits <= ExtVTBits || - (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && - (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) - return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); - } - - // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) - if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || - N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || - N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && - N0.getOperand(0).getScalarValueSizeInBits() == ExtVTBits) { - if (!LegalOperations || - TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) - return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, - N0.getOperand(0)); - } - - // fold (sext_in_reg (zext x)) -> (sext x) - // iff we are extending the source sign bit. - if (N0.getOpcode() == ISD::ZERO_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getScalarValueSizeInBits() == ExtVTBits && - (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) - return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); - } - - // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. - if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) - return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); - - // fold operands of sext_in_reg based on knowledge that the top bits are not - // demanded. - if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // fold (sext_in_reg (load x)) -> (smaller sextload x) - // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) - if (SDValue NarrowLoad = ReduceLoadWidth(N)) - return NarrowLoad; - - // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) - // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. - // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. - if (N0.getOpcode() == ISD::SRL) { - if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) - if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { - // We can turn this into an SRA iff the input to the SRL is already sign - // extended enough. - unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); - if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) - return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), - N0.getOperand(1)); - } - } - - // fold (sext_inreg (extload x)) -> (sextload x) - // If sextload is not supported by target, we can only do the combine when - // load has one use. Doing otherwise can block folding the extload with other - // extends that the target does support. - if (ISD::isEXTLoad(N0.getNode()) && - ISD::isUNINDEXEDLoad(N0.getNode()) && - ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && - ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && - N0.hasOneUse()) || - TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), ExtVT, - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - AddToWorklist(ExtLoad.getNode()); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use - if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && - N0.hasOneUse() && - ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && - ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && - TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), ExtVT, - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - + Result = DAG.getConstant(0, DL, VT); + else + Result = DAG.getNode(ISD::SHL, DL, VT, + Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy)); + } + + if (HasShiftedOffset) { + // Recalculate the shift amount after it has been altered to calculate + // the offset. + if (DAG.getDataLayout().isBigEndian()) + ShAmt = AdjustBigEndianShift(ShAmt); + + // We're using a shifted mask, so the load now has an offset. This means + // that data has been loaded into the lower bytes than it would have been + // before, so we need to shl the loaded data into the correct position in the + // register. + SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT); + Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result); + } + + // Return the new loaded value. + return Result; +} + +SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + EVT ExtVT = cast<VTSDNode>(N1)->getVT(); + unsigned VTBits = VT.getScalarSizeInBits(); + unsigned ExtVTBits = ExtVT.getScalarSizeInBits(); + + // sext_vector_inreg(undef) = 0 because the top bit will all be the same. + if (N0.isUndef()) + return DAG.getConstant(0, SDLoc(N), VT); + + // fold (sext_in_reg c1) -> c1 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) + return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1); + + // If the input is already sign extended, just drop the extension. + if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1)) + return N0; + + // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 + if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && + ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT())) + return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0), + N1); + + // fold (sext_in_reg (sext x)) -> (sext x) + // fold (sext_in_reg (aext x)) -> (sext x) + // if x is small enough or if we know that x has more than 1 sign bit and the + // sign_extend_inreg is extending from one of them. + if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) { + SDValue N00 = N0.getOperand(0); + unsigned N00Bits = N00.getScalarValueSizeInBits(); + if ((N00Bits <= ExtVTBits || + (N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) && + (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) + return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00); + } + + // fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x) + if ((N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG || + N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG || + N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) && + N0.getOperand(0).getScalarValueSizeInBits() == ExtVTBits) { + if (!LegalOperations || + TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)) + return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, + N0.getOperand(0)); + } + + // fold (sext_in_reg (zext x)) -> (sext x) + // iff we are extending the source sign bit. + if (N0.getOpcode() == ISD::ZERO_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (N00.getScalarValueSizeInBits() == ExtVTBits && + (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT))) + return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1); + } + + // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero. + if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1))) + return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT); + + // fold operands of sext_in_reg based on knowledge that the top bits are not + // demanded. + if (SimplifyDemandedBits(SDValue(N, 0))) + return SDValue(N, 0); + + // fold (sext_in_reg (load x)) -> (smaller sextload x) + // fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits)) + if (SDValue NarrowLoad = ReduceLoadWidth(N)) + return NarrowLoad; + + // fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24) + // fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible. + // We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above. + if (N0.getOpcode() == ISD::SRL) { + if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1))) + if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) { + // We can turn this into an SRA iff the input to the SRL is already sign + // extended enough. + unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0)); + if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits) + return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0), + N0.getOperand(1)); + } + } + + // fold (sext_inreg (extload x)) -> (sextload x) + // If sextload is not supported by target, we can only do the combine when + // load has one use. Doing otherwise can block folding the extload with other + // extends that the target does support. + if (ISD::isEXTLoad(N0.getNode()) && + ISD::isUNINDEXEDLoad(N0.getNode()) && + ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && + ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() && + N0.hasOneUse()) || + TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, + LN0->getChain(), + LN0->getBasePtr(), ExtVT, + LN0->getMemOperand()); + CombineTo(N, ExtLoad); + CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); + AddToWorklist(ExtLoad.getNode()); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use + if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) && + N0.hasOneUse() && + ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() && + ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) && + TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT, + LN0->getChain(), + LN0->getBasePtr(), ExtVT, + LN0->getMemOperand()); + CombineTo(N, ExtLoad); + CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1)); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + // fold (sext_inreg (masked_load x)) -> (sext_masked_load x) // ignore it if the masked load is already sign extended if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) { @@ -11676,998 +11676,998 @@ SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { } } - // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) - if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { - if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), - N0.getOperand(1), false)) - return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // sext_vector_inreg(undef) = 0 because the top bit will all be the same. - if (N0.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // zext_vector_inreg(undef) = 0 because the top bits will be zero. - if (N0.isUndef()) - return DAG.getConstant(0, SDLoc(N), VT); - - if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) - return Res; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT SrcVT = N0.getValueType(); - bool isLE = DAG.getDataLayout().isLittleEndian(); - - // noop truncate - if (SrcVT == VT) - return N0; - - // fold (truncate (truncate x)) -> (truncate x) - if (N0.getOpcode() == ISD::TRUNCATE) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); - - // fold (truncate c1) -> c1 - if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { - SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); - if (C.getNode() != N) - return C; - } - - // fold (truncate (ext x)) -> (ext x) or (truncate x) or x - if (N0.getOpcode() == ISD::ZERO_EXTEND || - N0.getOpcode() == ISD::SIGN_EXTEND || - N0.getOpcode() == ISD::ANY_EXTEND) { - // if the source is smaller than the dest, we still need an extend. - if (N0.getOperand(0).getValueType().bitsLT(VT)) - return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); - // if the source is larger than the dest, than we just need the truncate. - if (N0.getOperand(0).getValueType().bitsGT(VT)) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); - // if the source and dest are the same type, we can drop both the extend - // and the truncate. - return N0.getOperand(0); - } - - // If this is anyext(trunc), don't fold it, allow ourselves to be folded. - if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) - return SDValue(); - - // Fold extract-and-trunc into a narrow extract. For example: - // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) - // i32 y = TRUNCATE(i64 x) - // -- becomes -- - // v16i8 b = BITCAST (v2i64 val) - // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) - // - // Note: We only run this optimization after type legalization (which often - // creates this pattern) and before operation legalization after which - // we need to be more careful about the vector instructions that we generate. - if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { - EVT VecTy = N0.getOperand(0).getValueType(); - EVT ExTy = N0.getValueType(); - EVT TrTy = N->getValueType(0); - + // Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16)) + if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) { + if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0), + N0.getOperand(1), false)) + return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitSIGN_EXTEND_VECTOR_INREG(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // sext_vector_inreg(undef) = 0 because the top bit will all be the same. + if (N0.isUndef()) + return DAG.getConstant(0, SDLoc(N), VT); + + if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) + return Res; + + if (SimplifyDemandedVectorElts(SDValue(N, 0))) + return SDValue(N, 0); + + return SDValue(); +} + +SDValue DAGCombiner::visitZERO_EXTEND_VECTOR_INREG(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // zext_vector_inreg(undef) = 0 because the top bits will be zero. + if (N0.isUndef()) + return DAG.getConstant(0, SDLoc(N), VT); + + if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes)) + return Res; + + if (SimplifyDemandedVectorElts(SDValue(N, 0))) + return SDValue(N, 0); + + return SDValue(); +} + +SDValue DAGCombiner::visitTRUNCATE(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT SrcVT = N0.getValueType(); + bool isLE = DAG.getDataLayout().isLittleEndian(); + + // noop truncate + if (SrcVT == VT) + return N0; + + // fold (truncate (truncate x)) -> (truncate x) + if (N0.getOpcode() == ISD::TRUNCATE) + return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); + + // fold (truncate c1) -> c1 + if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) { + SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0); + if (C.getNode() != N) + return C; + } + + // fold (truncate (ext x)) -> (ext x) or (truncate x) or x + if (N0.getOpcode() == ISD::ZERO_EXTEND || + N0.getOpcode() == ISD::SIGN_EXTEND || + N0.getOpcode() == ISD::ANY_EXTEND) { + // if the source is smaller than the dest, we still need an extend. + if (N0.getOperand(0).getValueType().bitsLT(VT)) + return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0)); + // if the source is larger than the dest, than we just need the truncate. + if (N0.getOperand(0).getValueType().bitsGT(VT)) + return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0)); + // if the source and dest are the same type, we can drop both the extend + // and the truncate. + return N0.getOperand(0); + } + + // If this is anyext(trunc), don't fold it, allow ourselves to be folded. + if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND)) + return SDValue(); + + // Fold extract-and-trunc into a narrow extract. For example: + // i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1) + // i32 y = TRUNCATE(i64 x) + // -- becomes -- + // v16i8 b = BITCAST (v2i64 val) + // i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8) + // + // Note: We only run this optimization after type legalization (which often + // creates this pattern) and before operation legalization after which + // we need to be more careful about the vector instructions that we generate. + if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) { + EVT VecTy = N0.getOperand(0).getValueType(); + EVT ExTy = N0.getValueType(); + EVT TrTy = N->getValueType(0); + auto EltCnt = VecTy.getVectorElementCount(); - unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); + unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits(); auto NewEltCnt = EltCnt * SizeRatio; - + EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt); - assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); - - SDValue EltNo = N0->getOperand(1); - if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { - int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); - int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); - - SDLoc DL(N); - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, - DAG.getBitcast(NVT, N0.getOperand(0)), - DAG.getVectorIdxConstant(Index, DL)); - } - } - - // trunc (select c, a, b) -> select c, (trunc a), (trunc b) - if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { - if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && - TLI.isTruncateFree(SrcVT, VT)) { - SDLoc SL(N0); - SDValue Cond = N0.getOperand(0); - SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); - SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); - return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); - } - } - - // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() - if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && - (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && - TLI.isTypeDesirableForOp(ISD::SHL, VT)) { - SDValue Amt = N0.getOperand(1); - KnownBits Known = DAG.computeKnownBits(Amt); - unsigned Size = VT.getScalarSizeInBits(); - if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { - SDLoc SL(N); - EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); - - SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); - if (AmtVT != Amt.getValueType()) { - Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); - AddToWorklist(Amt.getNode()); - } - return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); - } - } - - // Attempt to pre-truncate BUILD_VECTOR sources. - if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && - TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && - // Avoid creating illegal types if running after type legalizer. - (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { - SDLoc DL(N); - EVT SVT = VT.getScalarType(); - SmallVector<SDValue, 8> TruncOps; - for (const SDValue &Op : N0->op_values()) { - SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); - TruncOps.push_back(TruncOp); - } - return DAG.getBuildVector(VT, DL, TruncOps); - } - - // Fold a series of buildvector, bitcast, and truncate if possible. - // For example fold - // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to - // (2xi32 (buildvector x, y)). - if (Level == AfterLegalizeVectorOps && VT.isVector() && - N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && - N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && - N0.getOperand(0).hasOneUse()) { - SDValue BuildVect = N0.getOperand(0); - EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); - EVT TruncVecEltTy = VT.getVectorElementType(); - - // Check that the element types match. - if (BuildVectEltTy == TruncVecEltTy) { - // Now we only need to compute the offset of the truncated elements. - unsigned BuildVecNumElts = BuildVect.getNumOperands(); - unsigned TruncVecNumElts = VT.getVectorNumElements(); - unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; - - assert((BuildVecNumElts % TruncVecNumElts) == 0 && - "Invalid number of elements"); - - SmallVector<SDValue, 8> Opnds; - for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) - Opnds.push_back(BuildVect.getOperand(i)); - - return DAG.getBuildVector(VT, SDLoc(N), Opnds); - } - } - - // See if we can simplify the input to this truncate through knowledge that - // only the low bits are being used. - // For example "trunc (or (shl x, 8), y)" // -> trunc y - // Currently we only perform this optimization on scalars because vectors - // may have different active low bits. - if (!VT.isVector()) { - APInt Mask = - APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); - if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); - } - - // fold (truncate (load x)) -> (smaller load x) - // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) - if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { - if (SDValue Reduced = ReduceLoadWidth(N)) - return Reduced; - - // Handle the case where the load remains an extending load even - // after truncation. - if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); + assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size"); + + SDValue EltNo = N0->getOperand(1); + if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) { + int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue(); + int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1)); + + SDLoc DL(N); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy, + DAG.getBitcast(NVT, N0.getOperand(0)), + DAG.getVectorIdxConstant(Index, DL)); + } + } + + // trunc (select c, a, b) -> select c, (trunc a), (trunc b) + if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) { + if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) && + TLI.isTruncateFree(SrcVT, VT)) { + SDLoc SL(N0); + SDValue Cond = N0.getOperand(0); + SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); + SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2)); + return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1); + } + } + + // trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits() + if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() && + (!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) && + TLI.isTypeDesirableForOp(ISD::SHL, VT)) { + SDValue Amt = N0.getOperand(1); + KnownBits Known = DAG.computeKnownBits(Amt); + unsigned Size = VT.getScalarSizeInBits(); + if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { + SDLoc SL(N); + EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); + + SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); + if (AmtVT != Amt.getValueType()) { + Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT); + AddToWorklist(Amt.getNode()); + } + return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt); + } + } + + // Attempt to pre-truncate BUILD_VECTOR sources. + if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations && + TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) && + // Avoid creating illegal types if running after type legalizer. + (!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) { + SDLoc DL(N); + EVT SVT = VT.getScalarType(); + SmallVector<SDValue, 8> TruncOps; + for (const SDValue &Op : N0->op_values()) { + SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op); + TruncOps.push_back(TruncOp); + } + return DAG.getBuildVector(VT, DL, TruncOps); + } + + // Fold a series of buildvector, bitcast, and truncate if possible. + // For example fold + // (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to + // (2xi32 (buildvector x, y)). + if (Level == AfterLegalizeVectorOps && VT.isVector() && + N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && + N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR && + N0.getOperand(0).hasOneUse()) { + SDValue BuildVect = N0.getOperand(0); + EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType(); + EVT TruncVecEltTy = VT.getVectorElementType(); + + // Check that the element types match. + if (BuildVectEltTy == TruncVecEltTy) { + // Now we only need to compute the offset of the truncated elements. + unsigned BuildVecNumElts = BuildVect.getNumOperands(); + unsigned TruncVecNumElts = VT.getVectorNumElements(); + unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts; + + assert((BuildVecNumElts % TruncVecNumElts) == 0 && + "Invalid number of elements"); + + SmallVector<SDValue, 8> Opnds; + for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset) + Opnds.push_back(BuildVect.getOperand(i)); + + return DAG.getBuildVector(VT, SDLoc(N), Opnds); + } + } + + // See if we can simplify the input to this truncate through knowledge that + // only the low bits are being used. + // For example "trunc (or (shl x, 8), y)" // -> trunc y + // Currently we only perform this optimization on scalars because vectors + // may have different active low bits. + if (!VT.isVector()) { + APInt Mask = + APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits()); + if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask)) + return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter); + } + + // fold (truncate (load x)) -> (smaller load x) + // fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits)) + if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) { + if (SDValue Reduced = ReduceLoadWidth(N)) + return Reduced; + + // Handle the case where the load remains an extending load even + // after truncation. + if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) { - SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), - VT, LN0->getChain(), LN0->getBasePtr(), - LN0->getMemoryVT(), - LN0->getMemOperand()); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); - return NewLoad; - } - } - } - - // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), - // where ... are all 'undef'. - if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { - SmallVector<EVT, 8> VTs; - SDValue V; - unsigned Idx = 0; - unsigned NumDefs = 0; - - for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { - SDValue X = N0.getOperand(i); - if (!X.isUndef()) { - V = X; - Idx = i; - NumDefs++; - } - // Stop if more than one members are non-undef. - if (NumDefs > 1) - break; - - VTs.push_back(EVT::getVectorVT(*DAG.getContext(), - VT.getVectorElementType(), - X.getValueType().getVectorElementCount())); - } - - if (NumDefs == 0) - return DAG.getUNDEF(VT); - - if (NumDefs == 1) { - assert(V.getNode() && "The single defined operand is empty!"); - SmallVector<SDValue, 8> Opnds; - for (unsigned i = 0, e = VTs.size(); i != e; ++i) { - if (i != Idx) { - Opnds.push_back(DAG.getUNDEF(VTs[i])); - continue; - } - SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); - AddToWorklist(NV.getNode()); - Opnds.push_back(NV); - } - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); - } - } - - // Fold truncate of a bitcast of a vector to an extract of the low vector - // element. - // - // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx - if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { - SDValue VecSrc = N0.getOperand(0); - EVT VecSrcVT = VecSrc.getValueType(); - if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && - (!LegalOperations || - TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { - SDLoc SL(N); - - unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, - DAG.getVectorIdxConstant(Idx, SL)); - } - } - - // Simplify the operands using demanded-bits information. + SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0), + VT, LN0->getChain(), LN0->getBasePtr(), + LN0->getMemoryVT(), + LN0->getMemOperand()); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1)); + return NewLoad; + } + } + } + + // fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)), + // where ... are all 'undef'. + if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) { + SmallVector<EVT, 8> VTs; + SDValue V; + unsigned Idx = 0; + unsigned NumDefs = 0; + + for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) { + SDValue X = N0.getOperand(i); + if (!X.isUndef()) { + V = X; + Idx = i; + NumDefs++; + } + // Stop if more than one members are non-undef. + if (NumDefs > 1) + break; + + VTs.push_back(EVT::getVectorVT(*DAG.getContext(), + VT.getVectorElementType(), + X.getValueType().getVectorElementCount())); + } + + if (NumDefs == 0) + return DAG.getUNDEF(VT); + + if (NumDefs == 1) { + assert(V.getNode() && "The single defined operand is empty!"); + SmallVector<SDValue, 8> Opnds; + for (unsigned i = 0, e = VTs.size(); i != e; ++i) { + if (i != Idx) { + Opnds.push_back(DAG.getUNDEF(VTs[i])); + continue; + } + SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V); + AddToWorklist(NV.getNode()); + Opnds.push_back(NV); + } + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds); + } + } + + // Fold truncate of a bitcast of a vector to an extract of the low vector + // element. + // + // e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx + if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) { + SDValue VecSrc = N0.getOperand(0); + EVT VecSrcVT = VecSrc.getValueType(); + if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT && + (!LegalOperations || + TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) { + SDLoc SL(N); + + unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1; + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc, + DAG.getVectorIdxConstant(Idx, SL)); + } + } + + // Simplify the operands using demanded-bits information. if (SimplifyDemandedBits(SDValue(N, 0))) - return SDValue(N, 0); - - // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) - // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) - // When the adde's carry is not used. - if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && - N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && - // We only do for addcarry before legalize operation - ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || - TLI.isOperationLegal(N0.getOpcode(), VT))) { - SDLoc SL(N); - auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); - auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); - auto VTs = DAG.getVTList(VT, N0->getValueType(1)); - return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); - } - - // fold (truncate (extract_subvector(ext x))) -> - // (extract_subvector x) - // TODO: This can be generalized to cover cases where the truncate and extract - // do not fully cancel each other out. - if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::SIGN_EXTEND || - N00.getOpcode() == ISD::ZERO_EXTEND || - N00.getOpcode() == ISD::ANY_EXTEND) { - if (N00.getOperand(0)->getValueType(0).getVectorElementType() == - VT.getVectorElementType()) - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, - N00.getOperand(0), N0.getOperand(1)); - } - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - // Narrow a suitable binary operation with a non-opaque constant operand by - // moving it ahead of the truncate. This is limited to pre-legalization - // because targets may prefer a wider type during later combines and invert - // this transform. - switch (N0.getOpcode()) { - case ISD::ADD: - case ISD::SUB: - case ISD::MUL: - case ISD::AND: - case ISD::OR: - case ISD::XOR: - if (!LegalOperations && N0.hasOneUse() && - (isConstantOrConstantVector(N0.getOperand(0), true) || - isConstantOrConstantVector(N0.getOperand(1), true))) { - // TODO: We already restricted this to pre-legalization, but for vectors - // we are extra cautious to not create an unsupported operation. - // Target-specific changes are likely needed to avoid regressions here. - if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { - SDLoc DL(N); - SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); - SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); - return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); - } - } - } - - return SDValue(); -} - -static SDNode *getBuildPairElt(SDNode *N, unsigned i) { - SDValue Elt = N->getOperand(i); - if (Elt.getOpcode() != ISD::MERGE_VALUES) - return Elt.getNode(); - return Elt.getOperand(Elt.getResNo()).getNode(); -} - -/// build_pair (load, load) -> load -/// if load locations are consecutive. -SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { - assert(N->getOpcode() == ISD::BUILD_PAIR); - - LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); - LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); - - // A BUILD_PAIR is always having the least significant part in elt 0 and the - // most significant part in elt 1. So when combining into one large load, we - // need to consider the endianness. - if (DAG.getDataLayout().isBigEndian()) - std::swap(LD1, LD2); - - if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || - LD1->getAddressSpace() != LD2->getAddressSpace()) - return SDValue(); - EVT LD1VT = LD1->getValueType(0); - unsigned LD1Bytes = LD1VT.getStoreSize(); - if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && - DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { - Align Alignment = LD1->getAlign(); - Align NewAlign = DAG.getDataLayout().getABITypeAlign( - VT.getTypeForEVT(*DAG.getContext())); - - if (NewAlign <= Alignment && - (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) - return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), - LD1->getPointerInfo(), Alignment); - } - - return SDValue(); -} - -static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { - // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi - // and Lo parts; on big-endian machines it doesn't. - return DAG.getDataLayout().isBigEndian() ? 1 : 0; -} - -static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, - const TargetLowering &TLI) { - // If this is not a bitcast to an FP type or if the target doesn't have - // IEEE754-compliant FP logic, we're done. - EVT VT = N->getValueType(0); - if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) - return SDValue(); - - // TODO: Handle cases where the integer constant is a different scalar - // bitwidth to the FP. - SDValue N0 = N->getOperand(0); - EVT SourceVT = N0.getValueType(); - if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) - return SDValue(); - - unsigned FPOpcode; - APInt SignMask; - switch (N0.getOpcode()) { - case ISD::AND: - FPOpcode = ISD::FABS; - SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - case ISD::XOR: - FPOpcode = ISD::FNEG; - SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - case ISD::OR: - FPOpcode = ISD::FABS; - SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); - break; - default: - return SDValue(); - } - - // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X - // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X - // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> - // fneg (fabs X) - SDValue LogicOp0 = N0.getOperand(0); - ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); - if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && - LogicOp0.getOpcode() == ISD::BITCAST && - LogicOp0.getOperand(0).getValueType() == VT) { - SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); - NumFPLogicOpsConv++; - if (N0.getOpcode() == ISD::OR) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); - return FPOp; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitBITCAST(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - // If the input is a BUILD_VECTOR with all constant elements, fold this now. - // Only do this before legalize types, unless both types are integer and the - // scalar type is legal. Only do this before legalize ops, since the target - // maybe depending on the bitcast. - // First check to see if this is all constant. - // TODO: Support FP bitcasts after legalize types. - if (VT.isVector() && - (!LegalTypes || - (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && - TLI.isTypeLegal(VT.getVectorElementType()))) && - N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && - cast<BuildVectorSDNode>(N0)->isConstant()) - return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), - VT.getVectorElementType()); - - // If the input is a constant, let getNode fold it. - if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { - // If we can't allow illegal operations, we need to check that this is just - // a fp -> int or int -> conversion and that the resulting operation will - // be legal. - if (!LegalOperations || - (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && - TLI.isOperationLegal(ISD::ConstantFP, VT)) || - (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && - TLI.isOperationLegal(ISD::Constant, VT))) { - SDValue C = DAG.getBitcast(VT, N0); - if (C.getNode() != N) - return C; - } - } - - // (conv (conv x, t1), t2) -> (conv x, t2) - if (N0.getOpcode() == ISD::BITCAST) - return DAG.getBitcast(VT, N0.getOperand(0)); - - // fold (conv (load x)) -> (load (conv*)x) - // If the resultant load doesn't need a higher alignment than the original! - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - // Do not remove the cast if the types differ in endian layout. - TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == - TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && - // If the load is volatile, we only want to change the load type if the - // resulting load is legal. Otherwise we might increase the number of - // memory accesses. We don't care if the original type was legal or not - // as we assume software couldn't rely on the number of accesses of an - // illegal type. - ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || - TLI.isOperationLegal(ISD::LOAD, VT))) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - - if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, - *LN0->getMemOperand())) { - SDValue Load = - DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), + return SDValue(N, 0); + + // (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry) + // (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry) + // When the adde's carry is not used. + if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) && + N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) && + // We only do for addcarry before legalize operation + ((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) || + TLI.isOperationLegal(N0.getOpcode(), VT))) { + SDLoc SL(N); + auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0)); + auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1)); + auto VTs = DAG.getVTList(VT, N0->getValueType(1)); + return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2)); + } + + // fold (truncate (extract_subvector(ext x))) -> + // (extract_subvector x) + // TODO: This can be generalized to cover cases where the truncate and extract + // do not fully cancel each other out. + if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == ISD::SIGN_EXTEND || + N00.getOpcode() == ISD::ZERO_EXTEND || + N00.getOpcode() == ISD::ANY_EXTEND) { + if (N00.getOperand(0)->getValueType(0).getVectorElementType() == + VT.getVectorElementType()) + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT, + N00.getOperand(0), N0.getOperand(1)); + } + } + + if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) + return NewVSel; + + // Narrow a suitable binary operation with a non-opaque constant operand by + // moving it ahead of the truncate. This is limited to pre-legalization + // because targets may prefer a wider type during later combines and invert + // this transform. + switch (N0.getOpcode()) { + case ISD::ADD: + case ISD::SUB: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + if (!LegalOperations && N0.hasOneUse() && + (isConstantOrConstantVector(N0.getOperand(0), true) || + isConstantOrConstantVector(N0.getOperand(1), true))) { + // TODO: We already restricted this to pre-legalization, but for vectors + // we are extra cautious to not create an unsupported operation. + // Target-specific changes are likely needed to avoid regressions here. + if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) { + SDLoc DL(N); + SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0)); + SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1)); + return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR); + } + } + } + + return SDValue(); +} + +static SDNode *getBuildPairElt(SDNode *N, unsigned i) { + SDValue Elt = N->getOperand(i); + if (Elt.getOpcode() != ISD::MERGE_VALUES) + return Elt.getNode(); + return Elt.getOperand(Elt.getResNo()).getNode(); +} + +/// build_pair (load, load) -> load +/// if load locations are consecutive. +SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) { + assert(N->getOpcode() == ISD::BUILD_PAIR); + + LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0)); + LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1)); + + // A BUILD_PAIR is always having the least significant part in elt 0 and the + // most significant part in elt 1. So when combining into one large load, we + // need to consider the endianness. + if (DAG.getDataLayout().isBigEndian()) + std::swap(LD1, LD2); + + if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() || + LD1->getAddressSpace() != LD2->getAddressSpace()) + return SDValue(); + EVT LD1VT = LD1->getValueType(0); + unsigned LD1Bytes = LD1VT.getStoreSize(); + if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() && + DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) { + Align Alignment = LD1->getAlign(); + Align NewAlign = DAG.getDataLayout().getABITypeAlign( + VT.getTypeForEVT(*DAG.getContext())); + + if (NewAlign <= Alignment && + (!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT))) + return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(), + LD1->getPointerInfo(), Alignment); + } + + return SDValue(); +} + +static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) { + // On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi + // and Lo parts; on big-endian machines it doesn't. + return DAG.getDataLayout().isBigEndian() ? 1 : 0; +} + +static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG, + const TargetLowering &TLI) { + // If this is not a bitcast to an FP type or if the target doesn't have + // IEEE754-compliant FP logic, we're done. + EVT VT = N->getValueType(0); + if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT)) + return SDValue(); + + // TODO: Handle cases where the integer constant is a different scalar + // bitwidth to the FP. + SDValue N0 = N->getOperand(0); + EVT SourceVT = N0.getValueType(); + if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits()) + return SDValue(); + + unsigned FPOpcode; + APInt SignMask; + switch (N0.getOpcode()) { + case ISD::AND: + FPOpcode = ISD::FABS; + SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits()); + break; + case ISD::XOR: + FPOpcode = ISD::FNEG; + SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); + break; + case ISD::OR: + FPOpcode = ISD::FABS; + SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits()); + break; + default: + return SDValue(); + } + + // Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X + // Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X + // Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) -> + // fneg (fabs X) + SDValue LogicOp0 = N0.getOperand(0); + ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true); + if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask && + LogicOp0.getOpcode() == ISD::BITCAST && + LogicOp0.getOperand(0).getValueType() == VT) { + SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0)); + NumFPLogicOpsConv++; + if (N0.getOpcode() == ISD::OR) + return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp); + return FPOp; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitBITCAST(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (N0.isUndef()) + return DAG.getUNDEF(VT); + + // If the input is a BUILD_VECTOR with all constant elements, fold this now. + // Only do this before legalize types, unless both types are integer and the + // scalar type is legal. Only do this before legalize ops, since the target + // maybe depending on the bitcast. + // First check to see if this is all constant. + // TODO: Support FP bitcasts after legalize types. + if (VT.isVector() && + (!LegalTypes || + (!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() && + TLI.isTypeLegal(VT.getVectorElementType()))) && + N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() && + cast<BuildVectorSDNode>(N0)->isConstant()) + return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(), + VT.getVectorElementType()); + + // If the input is a constant, let getNode fold it. + if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { + // If we can't allow illegal operations, we need to check that this is just + // a fp -> int or int -> conversion and that the resulting operation will + // be legal. + if (!LegalOperations || + (isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() && + TLI.isOperationLegal(ISD::ConstantFP, VT)) || + (isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() && + TLI.isOperationLegal(ISD::Constant, VT))) { + SDValue C = DAG.getBitcast(VT, N0); + if (C.getNode() != N) + return C; + } + } + + // (conv (conv x, t1), t2) -> (conv x, t2) + if (N0.getOpcode() == ISD::BITCAST) + return DAG.getBitcast(VT, N0.getOperand(0)); + + // fold (conv (load x)) -> (load (conv*)x) + // If the resultant load doesn't need a higher alignment than the original! + if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && + // Do not remove the cast if the types differ in endian layout. + TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) == + TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) && + // If the load is volatile, we only want to change the load type if the + // resulting load is legal. Otherwise we might increase the number of + // memory accesses. We don't care if the original type was legal or not + // as we assume software couldn't rely on the number of accesses of an + // illegal type. + ((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) || + TLI.isOperationLegal(ISD::LOAD, VT))) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + + if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG, + *LN0->getMemOperand())) { + SDValue Load = + DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), LN0->getPointerInfo(), LN0->getAlign(), - LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); - return Load; - } - } - - if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) - return V; - - // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) - // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) - // - // For ppc_fp128: - // fold (bitcast (fneg x)) -> - // flipbit = signbit - // (xor (bitcast x) (build_pair flipbit, flipbit)) - // - // fold (bitcast (fabs x)) -> - // flipbit = (and (extract_element (bitcast x), 0), signbit) - // (xor (bitcast x) (build_pair flipbit, flipbit)) - // This often reduces constant pool loads. - if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || - (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && - N0.getNode()->hasOneUse() && VT.isInteger() && - !VT.isVector() && !N0.getValueType().isVector()) { - SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); - AddToWorklist(NewConv.getNode()); - - SDLoc DL(N); - if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { - assert(VT.getSizeInBits() == 128); - SDValue SignBit = DAG.getConstant( - APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); - SDValue FlipBit; - if (N0.getOpcode() == ISD::FNEG) { - FlipBit = SignBit; - AddToWorklist(FlipBit.getNode()); - } else { - assert(N0.getOpcode() == ISD::FABS); - SDValue Hi = - DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, - DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), - SDLoc(NewConv))); - AddToWorklist(Hi.getNode()); - FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); - AddToWorklist(FlipBit.getNode()); - } - SDValue FlipBits = - DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); - AddToWorklist(FlipBits.getNode()); - return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); - } - APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); - if (N0.getOpcode() == ISD::FNEG) - return DAG.getNode(ISD::XOR, DL, VT, - NewConv, DAG.getConstant(SignBit, DL, VT)); - assert(N0.getOpcode() == ISD::FABS); - return DAG.getNode(ISD::AND, DL, VT, - NewConv, DAG.getConstant(~SignBit, DL, VT)); - } - - // fold (bitconvert (fcopysign cst, x)) -> - // (or (and (bitconvert x), sign), (and cst, (not sign))) - // Note that we don't handle (copysign x, cst) because this can always be - // folded to an fneg or fabs. - // - // For ppc_fp128: - // fold (bitcast (fcopysign cst, x)) -> - // flipbit = (and (extract_element - // (xor (bitcast cst), (bitcast x)), 0), - // signbit) - // (xor (bitcast cst) (build_pair flipbit, flipbit)) - if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && - isa<ConstantFPSDNode>(N0.getOperand(0)) && - VT.isInteger() && !VT.isVector()) { - unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); - EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); - if (isTypeLegal(IntXVT)) { - SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); - AddToWorklist(X.getNode()); - - // If X has a different width than the result/lhs, sext it or truncate it. - unsigned VTWidth = VT.getSizeInBits(); - if (OrigXWidth < VTWidth) { - X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); - AddToWorklist(X.getNode()); - } else if (OrigXWidth > VTWidth) { - // To get the sign bit in the right place, we have to shift it right - // before truncating. - SDLoc DL(X); - X = DAG.getNode(ISD::SRL, DL, - X.getValueType(), X, - DAG.getConstant(OrigXWidth-VTWidth, DL, - X.getValueType())); - AddToWorklist(X.getNode()); - X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); - AddToWorklist(X.getNode()); - } - - if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { - APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); - SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); - AddToWorklist(Cst.getNode()); - SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); - AddToWorklist(X.getNode()); - SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); - AddToWorklist(XorResult.getNode()); - SDValue XorResult64 = DAG.getNode( - ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, - DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), - SDLoc(XorResult))); - AddToWorklist(XorResult64.getNode()); - SDValue FlipBit = - DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, - DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); - AddToWorklist(FlipBit.getNode()); - SDValue FlipBits = - DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); - AddToWorklist(FlipBits.getNode()); - return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); - } - APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); - X = DAG.getNode(ISD::AND, SDLoc(X), VT, - X, DAG.getConstant(SignBit, SDLoc(X), VT)); - AddToWorklist(X.getNode()); - - SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); - Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, - Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); - AddToWorklist(Cst.getNode()); - - return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); - } - } - - // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. - if (N0.getOpcode() == ISD::BUILD_PAIR) - if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) - return CombineLD; - - // Remove double bitcasts from shuffles - this is often a legacy of - // XformToShuffleWithZero being used to combine bitmaskings (of - // float vectors bitcast to integer vectors) into shuffles. - // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) - if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && - N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && - VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && - !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); - - // If operands are a bitcast, peek through if it casts the original VT. - // If operands are a constant, just bitcast back to original VT. - auto PeekThroughBitcast = [&](SDValue Op) { - if (Op.getOpcode() == ISD::BITCAST && - Op.getOperand(0).getValueType() == VT) - return SDValue(Op.getOperand(0)); - if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || - ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) - return DAG.getBitcast(VT, Op); - return SDValue(); - }; - - // FIXME: If either input vector is bitcast, try to convert the shuffle to - // the result type of this bitcast. This would eliminate at least one - // bitcast. See the transform in InstCombine. - SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); - SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); - if (!(SV0 && SV1)) - return SDValue(); - - int MaskScale = - VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); - SmallVector<int, 8> NewMask; - for (int M : SVN->getMask()) - for (int i = 0; i != MaskScale; ++i) - NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); - - SDValue LegalShuffle = - TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); - if (LegalShuffle) - return LegalShuffle; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { - EVT VT = N->getValueType(0); - return CombineConsecutiveLoads(N, VT); -} - -SDValue DAGCombiner::visitFREEZE(SDNode *N) { - SDValue N0 = N->getOperand(0); - - // (freeze (freeze x)) -> (freeze x) - if (N0.getOpcode() == ISD::FREEZE) - return N0; - - // If the input is a constant, return it. - if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) - return N0; - - return SDValue(); -} - -/// We know that BV is a build_vector node with Constant, ConstantFP or Undef -/// operands. DstEltVT indicates the destination element value type. -SDValue DAGCombiner:: -ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { - EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); - - // If this is already the right type, we're done. - if (SrcEltVT == DstEltVT) return SDValue(BV, 0); - - unsigned SrcBitSize = SrcEltVT.getSizeInBits(); - unsigned DstBitSize = DstEltVT.getSizeInBits(); - - // If this is a conversion of N elements of one type to N elements of another - // type, convert each element. This handles FP<->INT cases. - if (SrcBitSize == DstBitSize) { - SmallVector<SDValue, 8> Ops; - for (SDValue Op : BV->op_values()) { - // If the vector element type is not legal, the BUILD_VECTOR operands - // are promoted and implicitly truncated. Make that explicit here. - if (Op.getValueType() != SrcEltVT) - Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); - Ops.push_back(DAG.getBitcast(DstEltVT, Op)); - AddToWorklist(Ops.back().getNode()); - } - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, - BV->getValueType(0).getVectorNumElements()); - return DAG.getBuildVector(VT, SDLoc(BV), Ops); - } - - // Otherwise, we're growing or shrinking the elements. To avoid having to - // handle annoying details of growing/shrinking FP values, we convert them to - // int first. - if (SrcEltVT.isFloatingPoint()) { - // Convert the input float vector to a int vector where the elements are the - // same sizes. - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); - BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); - SrcEltVT = IntVT; - } - - // Now we know the input is an integer vector. If the output is a FP type, - // convert to integer first, then to FP of the right size. - if (DstEltVT.isFloatingPoint()) { - EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); - SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); - - // Next, convert to FP elements of the same size. - return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); - } - - SDLoc DL(BV); - - // Okay, we know the src/dst types are both integers of differing types. - // Handling growing first. - assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); - if (SrcBitSize < DstBitSize) { - unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; - - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0, e = BV->getNumOperands(); i != e; - i += NumInputsPerOutput) { - bool isLE = DAG.getDataLayout().isLittleEndian(); - APInt NewBits = APInt(DstBitSize, 0); - bool EltIsUndef = true; - for (unsigned j = 0; j != NumInputsPerOutput; ++j) { - // Shift the previously computed bits over. - NewBits <<= SrcBitSize; - SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); - if (Op.isUndef()) continue; - EltIsUndef = false; - - NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). - zextOrTrunc(SrcBitSize).zext(DstBitSize); - } - - if (EltIsUndef) - Ops.push_back(DAG.getUNDEF(DstEltVT)); - else - Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); - } - - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); - return DAG.getBuildVector(VT, DL, Ops); - } - - // Finally, this must be the case where we are shrinking elements: each input - // turns into multiple outputs. - unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; - EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, - NumOutputsPerInput*BV->getNumOperands()); - SmallVector<SDValue, 8> Ops; - - for (const SDValue &Op : BV->op_values()) { - if (Op.isUndef()) { - Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); - continue; - } - - APInt OpVal = cast<ConstantSDNode>(Op)-> - getAPIntValue().zextOrTrunc(SrcBitSize); - - for (unsigned j = 0; j != NumOutputsPerInput; ++j) { - APInt ThisVal = OpVal.trunc(DstBitSize); - Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); - OpVal.lshrInPlace(DstBitSize); - } - - // For big endian targets, swap the order of the pieces of each element. - if (DAG.getDataLayout().isBigEndian()) - std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); - } - - return DAG.getBuildVector(VT, DL, Ops); -} - -static bool isContractable(SDNode *N) { - SDNodeFlags F = N->getFlags(); - return F.hasAllowContract() || F.hasAllowReassociation(); -} - -/// Try to perform FMA combining on a given FADD node. -SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - - const TargetOptions &Options = DAG.getTarget().Options; - - // Floating-point multiply-add with intermediate rounding. - bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - bool CanFuse = Options.UnsafeFPMath || isContractable(N); - bool CanReassociate = - Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); - bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || - CanFuse || HasFMAD); - // If the addition is not contractable, do not combine. - if (!AllowFusionGlobally && !isContractable(N)) - return SDValue(); - - if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - - // Is the node an FMUL and contractable either due to global flags or - // SDNodeFlags. - auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { - if (N.getOpcode() != ISD::FMUL) - return false; - return AllowFusionGlobally || isContractable(N.getNode()); - }; - // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), - // prefer to fold the multiply with fewer uses. - if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { - if (N0.getNode()->use_size() > N1.getNode()->use_size()) - std::swap(N0, N1); - } - - // fold (fadd (fmul x, y), z) -> (fma x, y, z) - if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { + LN0->getMemOperand()->getFlags(), LN0->getAAInfo()); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1)); + return Load; + } + } + + if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI)) + return V; + + // fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit) + // fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit)) + // + // For ppc_fp128: + // fold (bitcast (fneg x)) -> + // flipbit = signbit + // (xor (bitcast x) (build_pair flipbit, flipbit)) + // + // fold (bitcast (fabs x)) -> + // flipbit = (and (extract_element (bitcast x), 0), signbit) + // (xor (bitcast x) (build_pair flipbit, flipbit)) + // This often reduces constant pool loads. + if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) || + (N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) && + N0.getNode()->hasOneUse() && VT.isInteger() && + !VT.isVector() && !N0.getValueType().isVector()) { + SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0)); + AddToWorklist(NewConv.getNode()); + + SDLoc DL(N); + if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { + assert(VT.getSizeInBits() == 128); + SDValue SignBit = DAG.getConstant( + APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64); + SDValue FlipBit; + if (N0.getOpcode() == ISD::FNEG) { + FlipBit = SignBit; + AddToWorklist(FlipBit.getNode()); + } else { + assert(N0.getOpcode() == ISD::FABS); + SDValue Hi = + DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv, + DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), + SDLoc(NewConv))); + AddToWorklist(Hi.getNode()); + FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit); + AddToWorklist(FlipBit.getNode()); + } + SDValue FlipBits = + DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); + AddToWorklist(FlipBits.getNode()); + return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits); + } + APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); + if (N0.getOpcode() == ISD::FNEG) + return DAG.getNode(ISD::XOR, DL, VT, + NewConv, DAG.getConstant(SignBit, DL, VT)); + assert(N0.getOpcode() == ISD::FABS); + return DAG.getNode(ISD::AND, DL, VT, + NewConv, DAG.getConstant(~SignBit, DL, VT)); + } + + // fold (bitconvert (fcopysign cst, x)) -> + // (or (and (bitconvert x), sign), (and cst, (not sign))) + // Note that we don't handle (copysign x, cst) because this can always be + // folded to an fneg or fabs. + // + // For ppc_fp128: + // fold (bitcast (fcopysign cst, x)) -> + // flipbit = (and (extract_element + // (xor (bitcast cst), (bitcast x)), 0), + // signbit) + // (xor (bitcast cst) (build_pair flipbit, flipbit)) + if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() && + isa<ConstantFPSDNode>(N0.getOperand(0)) && + VT.isInteger() && !VT.isVector()) { + unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits(); + EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth); + if (isTypeLegal(IntXVT)) { + SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1)); + AddToWorklist(X.getNode()); + + // If X has a different width than the result/lhs, sext it or truncate it. + unsigned VTWidth = VT.getSizeInBits(); + if (OrigXWidth < VTWidth) { + X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X); + AddToWorklist(X.getNode()); + } else if (OrigXWidth > VTWidth) { + // To get the sign bit in the right place, we have to shift it right + // before truncating. + SDLoc DL(X); + X = DAG.getNode(ISD::SRL, DL, + X.getValueType(), X, + DAG.getConstant(OrigXWidth-VTWidth, DL, + X.getValueType())); + AddToWorklist(X.getNode()); + X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X); + AddToWorklist(X.getNode()); + } + + if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) { + APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2); + SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); + AddToWorklist(Cst.getNode()); + SDValue X = DAG.getBitcast(VT, N0.getOperand(1)); + AddToWorklist(X.getNode()); + SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X); + AddToWorklist(XorResult.getNode()); + SDValue XorResult64 = DAG.getNode( + ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult, + DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG), + SDLoc(XorResult))); + AddToWorklist(XorResult64.getNode()); + SDValue FlipBit = + DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64, + DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64)); + AddToWorklist(FlipBit.getNode()); + SDValue FlipBits = + DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit); + AddToWorklist(FlipBits.getNode()); + return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits); + } + APInt SignBit = APInt::getSignMask(VT.getSizeInBits()); + X = DAG.getNode(ISD::AND, SDLoc(X), VT, + X, DAG.getConstant(SignBit, SDLoc(X), VT)); + AddToWorklist(X.getNode()); + + SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0)); + Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT, + Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT)); + AddToWorklist(Cst.getNode()); + + return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst); + } + } + + // bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive. + if (N0.getOpcode() == ISD::BUILD_PAIR) + if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT)) + return CombineLD; + + // Remove double bitcasts from shuffles - this is often a legacy of + // XformToShuffleWithZero being used to combine bitmaskings (of + // float vectors bitcast to integer vectors) into shuffles. + // bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1) + if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() && + N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() && + VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() && + !(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) { + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0); + + // If operands are a bitcast, peek through if it casts the original VT. + // If operands are a constant, just bitcast back to original VT. + auto PeekThroughBitcast = [&](SDValue Op) { + if (Op.getOpcode() == ISD::BITCAST && + Op.getOperand(0).getValueType() == VT) + return SDValue(Op.getOperand(0)); + if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) || + ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode())) + return DAG.getBitcast(VT, Op); + return SDValue(); + }; + + // FIXME: If either input vector is bitcast, try to convert the shuffle to + // the result type of this bitcast. This would eliminate at least one + // bitcast. See the transform in InstCombine. + SDValue SV0 = PeekThroughBitcast(N0->getOperand(0)); + SDValue SV1 = PeekThroughBitcast(N0->getOperand(1)); + if (!(SV0 && SV1)) + return SDValue(); + + int MaskScale = + VT.getVectorNumElements() / N0.getValueType().getVectorNumElements(); + SmallVector<int, 8> NewMask; + for (int M : SVN->getMask()) + for (int i = 0; i != MaskScale; ++i) + NewMask.push_back(M < 0 ? -1 : M * MaskScale + i); + + SDValue LegalShuffle = + TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG); + if (LegalShuffle) + return LegalShuffle; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) { + EVT VT = N->getValueType(0); + return CombineConsecutiveLoads(N, VT); +} + +SDValue DAGCombiner::visitFREEZE(SDNode *N) { + SDValue N0 = N->getOperand(0); + + // (freeze (freeze x)) -> (freeze x) + if (N0.getOpcode() == ISD::FREEZE) + return N0; + + // If the input is a constant, return it. + if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) + return N0; + + return SDValue(); +} + +/// We know that BV is a build_vector node with Constant, ConstantFP or Undef +/// operands. DstEltVT indicates the destination element value type. +SDValue DAGCombiner:: +ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) { + EVT SrcEltVT = BV->getValueType(0).getVectorElementType(); + + // If this is already the right type, we're done. + if (SrcEltVT == DstEltVT) return SDValue(BV, 0); + + unsigned SrcBitSize = SrcEltVT.getSizeInBits(); + unsigned DstBitSize = DstEltVT.getSizeInBits(); + + // If this is a conversion of N elements of one type to N elements of another + // type, convert each element. This handles FP<->INT cases. + if (SrcBitSize == DstBitSize) { + SmallVector<SDValue, 8> Ops; + for (SDValue Op : BV->op_values()) { + // If the vector element type is not legal, the BUILD_VECTOR operands + // are promoted and implicitly truncated. Make that explicit here. + if (Op.getValueType() != SrcEltVT) + Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op); + Ops.push_back(DAG.getBitcast(DstEltVT, Op)); + AddToWorklist(Ops.back().getNode()); + } + EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, + BV->getValueType(0).getVectorNumElements()); + return DAG.getBuildVector(VT, SDLoc(BV), Ops); + } + + // Otherwise, we're growing or shrinking the elements. To avoid having to + // handle annoying details of growing/shrinking FP values, we convert them to + // int first. + if (SrcEltVT.isFloatingPoint()) { + // Convert the input float vector to a int vector where the elements are the + // same sizes. + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits()); + BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode(); + SrcEltVT = IntVT; + } + + // Now we know the input is an integer vector. If the output is a FP type, + // convert to integer first, then to FP of the right size. + if (DstEltVT.isFloatingPoint()) { + EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits()); + SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode(); + + // Next, convert to FP elements of the same size. + return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT); + } + + SDLoc DL(BV); + + // Okay, we know the src/dst types are both integers of differing types. + // Handling growing first. + assert(SrcEltVT.isInteger() && DstEltVT.isInteger()); + if (SrcBitSize < DstBitSize) { + unsigned NumInputsPerOutput = DstBitSize/SrcBitSize; + + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0, e = BV->getNumOperands(); i != e; + i += NumInputsPerOutput) { + bool isLE = DAG.getDataLayout().isLittleEndian(); + APInt NewBits = APInt(DstBitSize, 0); + bool EltIsUndef = true; + for (unsigned j = 0; j != NumInputsPerOutput; ++j) { + // Shift the previously computed bits over. + NewBits <<= SrcBitSize; + SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j)); + if (Op.isUndef()) continue; + EltIsUndef = false; + + NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue(). + zextOrTrunc(SrcBitSize).zext(DstBitSize); + } + + if (EltIsUndef) + Ops.push_back(DAG.getUNDEF(DstEltVT)); + else + Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT)); + } + + EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size()); + return DAG.getBuildVector(VT, DL, Ops); + } + + // Finally, this must be the case where we are shrinking elements: each input + // turns into multiple outputs. + unsigned NumOutputsPerInput = SrcBitSize/DstBitSize; + EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, + NumOutputsPerInput*BV->getNumOperands()); + SmallVector<SDValue, 8> Ops; + + for (const SDValue &Op : BV->op_values()) { + if (Op.isUndef()) { + Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT)); + continue; + } + + APInt OpVal = cast<ConstantSDNode>(Op)-> + getAPIntValue().zextOrTrunc(SrcBitSize); + + for (unsigned j = 0; j != NumOutputsPerInput; ++j) { + APInt ThisVal = OpVal.trunc(DstBitSize); + Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT)); + OpVal.lshrInPlace(DstBitSize); + } + + // For big endian targets, swap the order of the pieces of each element. + if (DAG.getDataLayout().isBigEndian()) + std::reverse(Ops.end()-NumOutputsPerInput, Ops.end()); + } + + return DAG.getBuildVector(VT, DL, Ops); +} + +static bool isContractable(SDNode *N) { + SDNodeFlags F = N->getFlags(); + return F.hasAllowContract() || F.hasAllowReassociation(); +} + +/// Try to perform FMA combining on a given FADD node. +SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc SL(N); + + const TargetOptions &Options = DAG.getTarget().Options; + + // Floating-point multiply-add with intermediate rounding. + bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); + + // Floating-point multiply-add without intermediate rounding. + bool HasFMA = + TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + + // No valid opcode, do not combine. + if (!HasFMAD && !HasFMA) + return SDValue(); + + bool CanFuse = Options.UnsafeFPMath || isContractable(N); + bool CanReassociate = + Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); + bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || + CanFuse || HasFMAD); + // If the addition is not contractable, do not combine. + if (!AllowFusionGlobally && !isContractable(N)) + return SDValue(); + + if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) + return SDValue(); + + // Always prefer FMAD to FMA for precision. + unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; + bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + + // Is the node an FMUL and contractable either due to global flags or + // SDNodeFlags. + auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { + if (N.getOpcode() != ISD::FMUL) + return false; + return AllowFusionGlobally || isContractable(N.getNode()); + }; + // If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) { + if (N0.getNode()->use_size() > N1.getNode()->use_size()) + std::swap(N0, N1); + } + + // fold (fadd (fmul x, y), z) -> (fma x, y, z) + if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), N1); - } - - // fold (fadd x, (fmul y, z)) -> (fma y, z, x) - // Note: Commutes FADD operands. - if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { + } + + // fold (fadd x, (fmul y, z)) -> (fma y, z, x) + // Note: Commutes FADD operands. + if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0), N1.getOperand(1), N0); - } - - // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) - // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) - // This requires reassociation because it changes the order of operations. - SDValue FMA, E; - if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode && - N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && - N0.getOperand(2).hasOneUse()) { - FMA = N0; - E = N1; - } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode && - N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && - N1.getOperand(2).hasOneUse()) { - FMA = N1; - E = N0; - } - if (FMA && E) { - SDValue A = FMA.getOperand(0); - SDValue B = FMA.getOperand(1); - SDValue C = FMA.getOperand(2).getOperand(0); - SDValue D = FMA.getOperand(2).getOperand(1); + } + + // fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E) + // fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E) + // This requires reassociation because it changes the order of operations. + SDValue FMA, E; + if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode && + N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() && + N0.getOperand(2).hasOneUse()) { + FMA = N0; + E = N1; + } else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode && + N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() && + N1.getOperand(2).hasOneUse()) { + FMA = N1; + E = N0; + } + if (FMA && E) { + SDValue A = FMA.getOperand(0); + SDValue B = FMA.getOperand(1); + SDValue C = FMA.getOperand(2).getOperand(0); + SDValue D = FMA.getOperand(2).getOperand(1); SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E); return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE); - } - - // Look through FP_EXTEND nodes to do more combining. - - // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (isContractableFMUL(N00) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N00.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, + } + + // Look through FP_EXTEND nodes to do more combining. + + // fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z) + if (N0.getOpcode() == ISD::FP_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (isContractableFMUL(N00) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N00.getValueType())) { + return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), N1); - } - } - - // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) - // Note: Commutes FADD operands. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (isContractableFMUL(N10) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N10.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, + } + } + + // fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x) + // Note: Commutes FADD operands. + if (N1.getOpcode() == ISD::FP_EXTEND) { + SDValue N10 = N1.getOperand(0); + if (isContractableFMUL(N10) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N10.getValueType())) { + return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); - } - } - - // More folding opportunities when target permits. - if (Aggressive) { - // fold (fadd (fma x, y, (fpext (fmul u, v))), z) - // -> (fma x, y, (fma (fpext u), (fpext v), z)) + } + } + + // More folding opportunities when target permits. + if (Aggressive) { + // fold (fadd (fma x, y, (fpext (fmul u, v))), z) + // -> (fma x, y, (fma (fpext u), (fpext v), z)) auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, - DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FP_EXTEND, SL, VT, U), - DAG.getNode(ISD::FP_EXTEND, SL, VT, V), + return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y, + DAG.getNode(PreferredFusedOpcode, SL, VT, + DAG.getNode(ISD::FP_EXTEND, SL, VT, U), + DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); - }; - if (N0.getOpcode() == PreferredFusedOpcode) { - SDValue N02 = N0.getOperand(2); - if (N02.getOpcode() == ISD::FP_EXTEND) { - SDValue N020 = N02.getOperand(0); - if (isContractableFMUL(N020) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N020.getValueType())) { - return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), - N020.getOperand(0), N020.getOperand(1), + }; + if (N0.getOpcode() == PreferredFusedOpcode) { + SDValue N02 = N0.getOperand(2); + if (N02.getOpcode() == ISD::FP_EXTEND) { + SDValue N020 = N02.getOperand(0); + if (isContractableFMUL(N020) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N020.getValueType())) { + return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1), + N020.getOperand(0), N020.getOperand(1), N1); - } - } - } - - // fold (fadd (fpext (fma x, y, (fmul u, v))), z) - // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. + } + } + } + + // fold (fadd (fpext (fma x, y, (fmul u, v))), z) + // -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z)) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V, SDValue Z) { return DAG.getNode( @@ -12676,272 +12676,272 @@ SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) { DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, U), DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z)); - }; - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == PreferredFusedOpcode) { - SDValue N002 = N00.getOperand(2); - if (isContractableFMUL(N002) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N00.getValueType())) { - return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), - N002.getOperand(0), N002.getOperand(1), + }; + if (N0.getOpcode() == ISD::FP_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == PreferredFusedOpcode) { + SDValue N002 = N00.getOperand(2); + if (isContractableFMUL(N002) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N00.getValueType())) { + return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1), + N002.getOperand(0), N002.getOperand(1), N1); - } - } - } - - // fold (fadd x, (fma y, z, (fpext (fmul u, v))) - // -> (fma y, z, (fma (fpext u), (fpext v), x)) - if (N1.getOpcode() == PreferredFusedOpcode) { - SDValue N12 = N1.getOperand(2); - if (N12.getOpcode() == ISD::FP_EXTEND) { - SDValue N120 = N12.getOperand(0); - if (isContractableFMUL(N120) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N120.getValueType())) { - return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), - N120.getOperand(0), N120.getOperand(1), + } + } + } + + // fold (fadd x, (fma y, z, (fpext (fmul u, v))) + // -> (fma y, z, (fma (fpext u), (fpext v), x)) + if (N1.getOpcode() == PreferredFusedOpcode) { + SDValue N12 = N1.getOperand(2); + if (N12.getOpcode() == ISD::FP_EXTEND) { + SDValue N120 = N12.getOperand(0); + if (isContractableFMUL(N120) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N120.getValueType())) { + return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1), + N120.getOperand(0), N120.getOperand(1), N0); - } - } - } - - // fold (fadd x, (fpext (fma y, z, (fmul u, v))) - // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (N10.getOpcode() == PreferredFusedOpcode) { - SDValue N102 = N10.getOperand(2); - if (isContractableFMUL(N102) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N10.getValueType())) { - return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), - N102.getOperand(0), N102.getOperand(1), + } + } + } + + // fold (fadd x, (fpext (fma y, z, (fmul u, v))) + // -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x)) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. + if (N1.getOpcode() == ISD::FP_EXTEND) { + SDValue N10 = N1.getOperand(0); + if (N10.getOpcode() == PreferredFusedOpcode) { + SDValue N102 = N10.getOperand(2); + if (isContractableFMUL(N102) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N10.getValueType())) { + return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1), + N102.getOperand(0), N102.getOperand(1), N0); - } - } - } - } - - return SDValue(); -} - -/// Try to perform FMA combining on a given FSUB node. -SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - - const TargetOptions &Options = DAG.getTarget().Options; - // Floating-point multiply-add with intermediate rounding. - bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - const SDNodeFlags Flags = N->getFlags(); - bool CanFuse = Options.UnsafeFPMath || isContractable(N); - bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || - CanFuse || HasFMAD); - - // If the subtraction is not contractable, do not combine. - if (!AllowFusionGlobally && !isContractable(N)) - return SDValue(); - - if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); - - // Is the node an FMUL and contractable either due to global flags or - // SDNodeFlags. - auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { - if (N.getOpcode() != ISD::FMUL) - return false; - return AllowFusionGlobally || isContractable(N.getNode()); - }; - - // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) - auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { - if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), + } + } + } + } + + return SDValue(); +} + +/// Try to perform FMA combining on a given FSUB node. +SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc SL(N); + + const TargetOptions &Options = DAG.getTarget().Options; + // Floating-point multiply-add with intermediate rounding. + bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N)); + + // Floating-point multiply-add without intermediate rounding. + bool HasFMA = + TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + + // No valid opcode, do not combine. + if (!HasFMAD && !HasFMA) + return SDValue(); + + const SDNodeFlags Flags = N->getFlags(); + bool CanFuse = Options.UnsafeFPMath || isContractable(N); + bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast || + CanFuse || HasFMAD); + + // If the subtraction is not contractable, do not combine. + if (!AllowFusionGlobally && !isContractable(N)) + return SDValue(); + + if (STI && STI->generateFMAsInMachineCombiner(OptLevel)) + return SDValue(); + + // Always prefer FMAD to FMA for precision. + unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; + bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros(); + + // Is the node an FMUL and contractable either due to global flags or + // SDNodeFlags. + auto isContractableFMUL = [AllowFusionGlobally](SDValue N) { + if (N.getOpcode() != ISD::FMUL) + return false; + return AllowFusionGlobally || isContractable(N.getNode()); + }; + + // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) + auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) { + if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) { + return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0), XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z)); - } - return SDValue(); - }; - - // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) - // Note: Commutes FSUB operands. - auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { - if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), + } + return SDValue(); + }; + + // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) + // Note: Commutes FSUB operands. + auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) { + if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) { + return DAG.getNode(PreferredFusedOpcode, SL, VT, + DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)), YZ.getOperand(1), X); - } - return SDValue(); - }; - - // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), - // prefer to fold the multiply with fewer uses. - if (isContractableFMUL(N0) && isContractableFMUL(N1) && - (N0.getNode()->use_size() > N1.getNode()->use_size())) { - // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) - if (SDValue V = tryToFoldXSubYZ(N0, N1)) - return V; - // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) - if (SDValue V = tryToFoldXYSubZ(N0, N1)) - return V; - } else { - // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) - if (SDValue V = tryToFoldXYSubZ(N0, N1)) - return V; - // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) - if (SDValue V = tryToFoldXSubYZ(N0, N1)) - return V; - } - - // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) - if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && - (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { - SDValue N00 = N0.getOperand(0).getOperand(0); - SDValue N01 = N0.getOperand(0).getOperand(1); - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, N00), N01, + } + return SDValue(); + }; + + // If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)), + // prefer to fold the multiply with fewer uses. + if (isContractableFMUL(N0) && isContractableFMUL(N1) && + (N0.getNode()->use_size() > N1.getNode()->use_size())) { + // fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b)) + if (SDValue V = tryToFoldXSubYZ(N0, N1)) + return V; + // fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d))) + if (SDValue V = tryToFoldXYSubZ(N0, N1)) + return V; + } else { + // fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z)) + if (SDValue V = tryToFoldXYSubZ(N0, N1)) + return V; + // fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x) + if (SDValue V = tryToFoldXSubYZ(N0, N1)) + return V; + } + + // fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z)) + if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) && + (Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) { + SDValue N00 = N0.getOperand(0).getOperand(0); + SDValue N01 = N0.getOperand(0).getOperand(1); + return DAG.getNode(PreferredFusedOpcode, SL, VT, + DAG.getNode(ISD::FNEG, SL, VT, N00), N01, DAG.getNode(ISD::FNEG, SL, VT, N1)); - } - - // Look through FP_EXTEND nodes to do more combining. - - // fold (fsub (fpext (fmul x, y)), z) - // -> (fma (fpext x), (fpext y), (fneg z)) - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (isContractableFMUL(N00) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N00.getValueType())) { - return DAG.getNode(PreferredFusedOpcode, SL, VT, + } + + // Look through FP_EXTEND nodes to do more combining. + + // fold (fsub (fpext (fmul x, y)), z) + // -> (fma (fpext x), (fpext y), (fneg z)) + if (N0.getOpcode() == ISD::FP_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (isContractableFMUL(N00) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N00.getValueType())) { + return DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1)); - } - } - - // fold (fsub x, (fpext (fmul y, z))) - // -> (fma (fneg (fpext y)), (fpext z), x) - // Note: Commutes FSUB operands. - if (N1.getOpcode() == ISD::FP_EXTEND) { - SDValue N10 = N1.getOperand(0); - if (isContractableFMUL(N10) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N10.getValueType())) { + } + } + + // fold (fsub x, (fpext (fmul y, z))) + // -> (fma (fneg (fpext y)), (fpext z), x) + // Note: Commutes FSUB operands. + if (N1.getOpcode() == ISD::FP_EXTEND) { + SDValue N10 = N1.getOperand(0); + if (isContractableFMUL(N10) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N10.getValueType())) { return DAG.getNode( PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))), DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0); - } - } - - // fold (fsub (fpext (fneg (fmul, x, y))), z) - // -> (fneg (fma (fpext x), (fpext y), z)) - // Note: This could be removed with appropriate canonicalization of the - // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the - // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent - // from implementing the canonicalization in visitFSUB. - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::FNEG) { - SDValue N000 = N00.getOperand(0); - if (isContractableFMUL(N000) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N00.getValueType())) { + } + } + + // fold (fsub (fpext (fneg (fmul, x, y))), z) + // -> (fneg (fma (fpext x), (fpext y), z)) + // Note: This could be removed with appropriate canonicalization of the + // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the + // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent + // from implementing the canonicalization in visitFSUB. + if (N0.getOpcode() == ISD::FP_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == ISD::FNEG) { + SDValue N000 = N00.getOperand(0); + if (isContractableFMUL(N000) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N00.getValueType())) { return DAG.getNode( ISD::FNEG, SL, VT, DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), N1)); - } - } - } - - // fold (fsub (fneg (fpext (fmul, x, y))), z) - // -> (fneg (fma (fpext x)), (fpext y), z) - // Note: This could be removed with appropriate canonicalization of the - // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the - // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent - // from implementing the canonicalization in visitFSUB. - if (N0.getOpcode() == ISD::FNEG) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == ISD::FP_EXTEND) { - SDValue N000 = N00.getOperand(0); - if (isContractableFMUL(N000) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N000.getValueType())) { + } + } + } + + // fold (fsub (fneg (fpext (fmul, x, y))), z) + // -> (fneg (fma (fpext x)), (fpext y), z) + // Note: This could be removed with appropriate canonicalization of the + // input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the + // orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent + // from implementing the canonicalization in visitFSUB. + if (N0.getOpcode() == ISD::FNEG) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == ISD::FP_EXTEND) { + SDValue N000 = N00.getOperand(0); + if (isContractableFMUL(N000) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N000.getValueType())) { return DAG.getNode( ISD::FNEG, SL, VT, DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)), N1)); - } - } - } - - // More folding opportunities when target permits. - if (Aggressive) { - // fold (fsub (fma x, y, (fmul u, v)), z) - // -> (fma x, y (fma u, v, (fneg z))) - if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && - isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && - N0.getOperand(2)->hasOneUse()) { + } + } + } + + // More folding opportunities when target permits. + if (Aggressive) { + // fold (fsub (fma x, y, (fmul u, v)), z) + // -> (fma x, y (fma u, v, (fneg z))) + if (CanFuse && N0.getOpcode() == PreferredFusedOpcode && + isContractableFMUL(N0.getOperand(2)) && N0->hasOneUse() && + N0.getOperand(2)->hasOneUse()) { return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), - DAG.getNode(PreferredFusedOpcode, SL, VT, - N0.getOperand(2).getOperand(0), - N0.getOperand(2).getOperand(1), + DAG.getNode(PreferredFusedOpcode, SL, VT, + N0.getOperand(2).getOperand(0), + N0.getOperand(2).getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, N1))); - } - - // fold (fsub x, (fma y, z, (fmul u, v))) - // -> (fma (fneg y), z, (fma (fneg u), v, x)) - if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && - isContractableFMUL(N1.getOperand(2)) && - N1->hasOneUse() && NoSignedZero) { - SDValue N20 = N1.getOperand(2).getOperand(0); - SDValue N21 = N1.getOperand(2).getOperand(1); + } + + // fold (fsub x, (fma y, z, (fmul u, v))) + // -> (fma (fneg y), z, (fma (fneg u), v, x)) + if (CanFuse && N1.getOpcode() == PreferredFusedOpcode && + isContractableFMUL(N1.getOperand(2)) && + N1->hasOneUse() && NoSignedZero) { + SDValue N20 = N1.getOperand(2).getOperand(0); + SDValue N21 = N1.getOperand(2).getOperand(1); return DAG.getNode( PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), DAG.getNode(PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0)); - } - - - // fold (fsub (fma x, y, (fpext (fmul u, v))), z) - // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) - if (N0.getOpcode() == PreferredFusedOpcode && - N0->hasOneUse()) { - SDValue N02 = N0.getOperand(2); - if (N02.getOpcode() == ISD::FP_EXTEND) { - SDValue N020 = N02.getOperand(0); - if (isContractableFMUL(N020) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N020.getValueType())) { + } + + + // fold (fsub (fma x, y, (fpext (fmul u, v))), z) + // -> (fma x, y (fma (fpext u), (fpext v), (fneg z))) + if (N0.getOpcode() == PreferredFusedOpcode && + N0->hasOneUse()) { + SDValue N02 = N0.getOperand(2); + if (N02.getOpcode() == ISD::FP_EXTEND) { + SDValue N020 = N02.getOperand(0); + if (isContractableFMUL(N020) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N020.getValueType())) { return DAG.getNode( PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1), DAG.getNode( @@ -12949,23 +12949,23 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1))); - } - } - } - - // fold (fsub (fpext (fma x, y, (fmul u, v))), z) - // -> (fma (fpext x), (fpext y), - // (fma (fpext u), (fpext v), (fneg z))) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N0.getOpcode() == ISD::FP_EXTEND) { - SDValue N00 = N0.getOperand(0); - if (N00.getOpcode() == PreferredFusedOpcode) { - SDValue N002 = N00.getOperand(2); - if (isContractableFMUL(N002) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N00.getValueType())) { + } + } + } + + // fold (fsub (fpext (fma x, y, (fmul u, v))), z) + // -> (fma (fpext x), (fpext y), + // (fma (fpext u), (fpext v), (fneg z))) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. + if (N0.getOpcode() == ISD::FP_EXTEND) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == PreferredFusedOpcode) { + SDValue N002 = N00.getOperand(2); + if (isContractableFMUL(N002) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N00.getValueType())) { return DAG.getNode( PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)), @@ -12975,21 +12975,21 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)), DAG.getNode(ISD::FNEG, SL, VT, N1))); - } - } - } - - // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) - // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) - if (N1.getOpcode() == PreferredFusedOpcode && - N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && - N1->hasOneUse()) { - SDValue N120 = N1.getOperand(2).getOperand(0); - if (isContractableFMUL(N120) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - N120.getValueType())) { - SDValue N1200 = N120.getOperand(0); - SDValue N1201 = N120.getOperand(1); + } + } + } + + // fold (fsub x, (fma y, z, (fpext (fmul u, v)))) + // -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x)) + if (N1.getOpcode() == PreferredFusedOpcode && + N1.getOperand(2).getOpcode() == ISD::FP_EXTEND && + N1->hasOneUse()) { + SDValue N120 = N1.getOperand(2).getOperand(0); + if (isContractableFMUL(N120) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + N120.getValueType())) { + SDValue N1200 = N120.getOperand(0); + SDValue N1201 = N120.getOperand(1); return DAG.getNode( PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1), @@ -12997,26 +12997,26 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0)); - } - } - - // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) - // -> (fma (fneg (fpext y)), (fpext z), - // (fma (fneg (fpext u)), (fpext v), x)) - // FIXME: This turns two single-precision and one double-precision - // operation into two double-precision operations, which might not be - // interesting for all targets, especially GPUs. - if (N1.getOpcode() == ISD::FP_EXTEND && - N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { - SDValue CvtSrc = N1.getOperand(0); - SDValue N100 = CvtSrc.getOperand(0); - SDValue N101 = CvtSrc.getOperand(1); - SDValue N102 = CvtSrc.getOperand(2); - if (isContractableFMUL(N102) && - TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, - CvtSrc.getValueType())) { - SDValue N1020 = N102.getOperand(0); - SDValue N1021 = N102.getOperand(1); + } + } + + // fold (fsub x, (fpext (fma y, z, (fmul u, v)))) + // -> (fma (fneg (fpext y)), (fpext z), + // (fma (fneg (fpext u)), (fpext v), x)) + // FIXME: This turns two single-precision and one double-precision + // operation into two double-precision operations, which might not be + // interesting for all targets, especially GPUs. + if (N1.getOpcode() == ISD::FP_EXTEND && + N1.getOperand(0).getOpcode() == PreferredFusedOpcode) { + SDValue CvtSrc = N1.getOperand(0); + SDValue N100 = CvtSrc.getOperand(0); + SDValue N101 = CvtSrc.getOperand(1); + SDValue N102 = CvtSrc.getOperand(2); + if (isContractableFMUL(N102) && + TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT, + CvtSrc.getValueType())) { + SDValue N1020 = N102.getOperand(0); + SDValue N1021 = N102.getOperand(1); return DAG.getNode( PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FNEG, SL, VT, @@ -13026,288 +13026,288 @@ SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) { DAG.getNode(ISD::FNEG, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)), DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0)); - } - } - } - - return SDValue(); -} - -/// Try to perform FMA combining on a given FMUL node based on the distributive -/// law x * (y + 1) = x * y + x and variants thereof (commuted versions, -/// subtraction instead of addition). -SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - SDLoc SL(N); - - assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); - - const TargetOptions &Options = DAG.getTarget().Options; - - // The transforms below are incorrect when x == 0 and y == inf, because the - // intermediate multiplication produces a nan. - if (!Options.NoInfsFPMath) - return SDValue(); - - // Floating-point multiply-add without intermediate rounding. - bool HasFMA = - (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && - TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); - - // Floating-point multiply-add with intermediate rounding. This can result - // in a less precise result due to the changed rounding order. - bool HasFMAD = Options.UnsafeFPMath && - (LegalOperations && TLI.isFMADLegal(DAG, N)); - - // No valid opcode, do not combine. - if (!HasFMAD && !HasFMA) - return SDValue(); - - // Always prefer FMAD to FMA for precision. - unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; - bool Aggressive = TLI.enableAggressiveFMAFusion(VT); - - // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) - // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) + } + } + } + + return SDValue(); +} + +/// Try to perform FMA combining on a given FMUL node based on the distributive +/// law x * (y + 1) = x * y + x and variants thereof (commuted versions, +/// subtraction instead of addition). +SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + SDLoc SL(N); + + assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation"); + + const TargetOptions &Options = DAG.getTarget().Options; + + // The transforms below are incorrect when x == 0 and y == inf, because the + // intermediate multiplication produces a nan. + if (!Options.NoInfsFPMath) + return SDValue(); + + // Floating-point multiply-add without intermediate rounding. + bool HasFMA = + (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) && + TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT)); + + // Floating-point multiply-add with intermediate rounding. This can result + // in a less precise result due to the changed rounding order. + bool HasFMAD = Options.UnsafeFPMath && + (LegalOperations && TLI.isFMADLegal(DAG, N)); + + // No valid opcode, do not combine. + if (!HasFMAD && !HasFMA) + return SDValue(); + + // Always prefer FMAD to FMA for precision. + unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA; + bool Aggressive = TLI.enableAggressiveFMAFusion(VT); + + // fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y) + // fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y)) auto FuseFADD = [&](SDValue X, SDValue Y) { - if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { - if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { - if (C->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, + if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) { + if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) { + if (C->isExactlyValue(+1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); - if (C->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, + if (C->isExactlyValue(-1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); - } - } - return SDValue(); - }; - + } + } + return SDValue(); + }; + if (SDValue FMA = FuseFADD(N0, N1)) - return FMA; + return FMA; if (SDValue FMA = FuseFADD(N1, N0)) - return FMA; - - // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) - // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) - // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) - // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) + return FMA; + + // fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y) + // fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y)) + // fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y)) + // fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y) auto FuseFSUB = [&](SDValue X, SDValue Y) { - if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { - if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { - if (C0->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, + if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) { + if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) { + if (C0->isExactlyValue(+1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, + DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, Y); - if (C0->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, - DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, + if (C0->isExactlyValue(-1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, + DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); - } - if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { - if (C1->isExactlyValue(+1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, + } + if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) { + if (C1->isExactlyValue(+1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, DAG.getNode(ISD::FNEG, SL, VT, Y)); - if (C1->isExactlyValue(-1.0)) - return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, + if (C1->isExactlyValue(-1.0)) + return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y, Y); - } - } - return SDValue(); - }; - + } + } + return SDValue(); + }; + if (SDValue FMA = FuseFSUB(N0, N1)) - return FMA; + return FMA; if (SDValue FMA = FuseFSUB(N1, N0)) - return FMA; - - return SDValue(); -} - -SDValue DAGCombiner::visitFADD(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); + return FMA; + + return SDValue(); +} + +SDValue DAGCombiner::visitFADD(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; + EVT VT = N->getValueType(0); + SDLoc DL(N); + const TargetOptions &Options = DAG.getTarget().Options; SDNodeFlags Flags = N->getFlags(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) - return R; - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fadd c1, c2) -> c1 + c2 - if (N0CFP && N1CFP) + + if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) + return R; + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (fadd c1, c2) -> c1 + c2 + if (N0CFP && N1CFP) return DAG.getNode(ISD::FADD, DL, VT, N0, N1); - - // canonicalize constant to RHS - if (N0CFP && !N1CFP) + + // canonicalize constant to RHS + if (N0CFP && !N1CFP) return DAG.getNode(ISD::FADD, DL, VT, N1, N0); - - // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) - ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); - if (N1C && N1C->isZero()) - if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) - return N0; - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // fold (fadd A, (fneg B)) -> (fsub A, B) - if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) - if (SDValue NegN1 = TLI.getCheaperNegatedExpression( - N1, DAG, LegalOperations, ForCodeSize)) + + // N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math) + ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true); + if (N1C && N1C->isZero()) + if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) + return N0; + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // fold (fadd A, (fneg B)) -> (fsub A, B) + if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) + if (SDValue NegN1 = TLI.getCheaperNegatedExpression( + N1, DAG, LegalOperations, ForCodeSize)) return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1); - - // fold (fadd (fneg A), B) -> (fsub B, A) - if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) - if (SDValue NegN0 = TLI.getCheaperNegatedExpression( - N0, DAG, LegalOperations, ForCodeSize)) + + // fold (fadd (fneg A), B) -> (fsub B, A) + if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT)) + if (SDValue NegN0 = TLI.getCheaperNegatedExpression( + N0, DAG, LegalOperations, ForCodeSize)) return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0); - - auto isFMulNegTwo = [](SDValue FMul) { - if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) - return false; - auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); - return C && C->isExactlyValue(-2.0); - }; - - // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) - if (isFMulNegTwo(N0)) { - SDValue B = N0.getOperand(0); + + auto isFMulNegTwo = [](SDValue FMul) { + if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL) + return false; + auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true); + return C && C->isExactlyValue(-2.0); + }; + + // fadd (fmul B, -2.0), A --> fsub A, (fadd B, B) + if (isFMulNegTwo(N0)) { + SDValue B = N0.getOperand(0); SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); return DAG.getNode(ISD::FSUB, DL, VT, N1, Add); - } - // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) - if (isFMulNegTwo(N1)) { - SDValue B = N1.getOperand(0); + } + // fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B) + if (isFMulNegTwo(N1)) { + SDValue B = N1.getOperand(0); SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B); return DAG.getNode(ISD::FSUB, DL, VT, N0, Add); - } - - // No FP constant should be created after legalization as Instruction - // Selection pass has a hard time dealing with FP constants. - bool AllowNewConst = (Level < AfterLegalizeDAG); - - // If nnan is enabled, fold lots of things. - if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { - // If allowed, fold (fadd (fneg x), x) -> 0.0 - if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) - return DAG.getConstantFP(0.0, DL, VT); - - // If allowed, fold (fadd x, (fneg x)) -> 0.0 - if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) - return DAG.getConstantFP(0.0, DL, VT); - } - - // If 'unsafe math' or reassoc and nsz, fold lots of things. - // TODO: break out portions of the transformations below for which Unsafe is - // considered and which do not require both nsz and reassoc - if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || - (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && - AllowNewConst) { - // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 - if (N1CFP && N0.getOpcode() == ISD::FADD && + } + + // No FP constant should be created after legalization as Instruction + // Selection pass has a hard time dealing with FP constants. + bool AllowNewConst = (Level < AfterLegalizeDAG); + + // If nnan is enabled, fold lots of things. + if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) { + // If allowed, fold (fadd (fneg x), x) -> 0.0 + if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1) + return DAG.getConstantFP(0.0, DL, VT); + + // If allowed, fold (fadd x, (fneg x)) -> 0.0 + if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0) + return DAG.getConstantFP(0.0, DL, VT); + } + + // If 'unsafe math' or reassoc and nsz, fold lots of things. + // TODO: break out portions of the transformations below for which Unsafe is + // considered and which do not require both nsz and reassoc + if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || + (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && + AllowNewConst) { + // fadd (fadd x, c1), c2 -> fadd x, c1 + c2 + if (N1CFP && N0.getOpcode() == ISD::FADD && DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1); return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC); - } - - // We can fold chains of FADD's of the same value into multiplications. - // This transform is not safe in general because we are reducing the number - // of rounding steps. - if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { - if (N0.getOpcode() == ISD::FMUL) { + } + + // We can fold chains of FADD's of the same value into multiplications. + // This transform is not safe in general because we are reducing the number + // of rounding steps. + if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) { + if (N0.getOpcode() == ISD::FMUL) { bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1)); - - // (fadd (fmul x, c), x) -> (fmul x, c+1) - if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), + + // (fadd (fmul x, c), x) -> (fmul x, c+1) + if (CFP01 && !CFP00 && N0.getOperand(0) == N1) { + SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), DAG.getConstantFP(1.0, DL, VT)); return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP); - } - - // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) - if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && - N1.getOperand(0) == N1.getOperand(1) && - N0.getOperand(0) == N1.getOperand(0)) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), + } + + // (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2) + if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD && + N1.getOperand(0) == N1.getOperand(1) && + N0.getOperand(0) == N1.getOperand(0)) { + SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), DAG.getConstantFP(2.0, DL, VT)); return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP); - } - } - - if (N1.getOpcode() == ISD::FMUL) { + } + } + + if (N1.getOpcode() == ISD::FMUL) { bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1)); - - // (fadd x, (fmul x, c)) -> (fmul x, c+1) - if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), + + // (fadd x, (fmul x, c)) -> (fmul x, c+1) + if (CFP11 && !CFP10 && N1.getOperand(0) == N0) { + SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), DAG.getConstantFP(1.0, DL, VT)); return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP); - } - - // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) - if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && - N0.getOperand(0) == N0.getOperand(1) && - N1.getOperand(0) == N0.getOperand(0)) { - SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), + } + + // (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2) + if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD && + N0.getOperand(0) == N0.getOperand(1) && + N1.getOperand(0) == N0.getOperand(0)) { + SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1), DAG.getConstantFP(2.0, DL, VT)); return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP); - } - } - - if (N0.getOpcode() == ISD::FADD) { + } + } + + if (N0.getOpcode() == ISD::FADD) { bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0)); - // (fadd (fadd x, x), x) -> (fmul x, 3.0) - if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && - (N0.getOperand(0) == N1)) { + // (fadd (fadd x, x), x) -> (fmul x, 3.0) + if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) && + (N0.getOperand(0) == N1)) { return DAG.getNode(ISD::FMUL, DL, VT, N1, DAG.getConstantFP(3.0, DL, VT)); - } - } - - if (N1.getOpcode() == ISD::FADD) { + } + } + + if (N1.getOpcode() == ISD::FADD) { bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0)); - // (fadd x, (fadd x, x)) -> (fmul x, 3.0) - if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && - N1.getOperand(0) == N0) { + // (fadd x, (fadd x, x)) -> (fmul x, 3.0) + if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) && + N1.getOperand(0) == N0) { return DAG.getNode(ISD::FMUL, DL, VT, N0, DAG.getConstantFP(3.0, DL, VT)); - } - } - - // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) - if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && - N0.getOperand(0) == N0.getOperand(1) && - N1.getOperand(0) == N1.getOperand(1) && - N0.getOperand(0) == N1.getOperand(0)) { - return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), + } + } + + // (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0) + if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD && + N0.getOperand(0) == N0.getOperand(1) && + N1.getOperand(0) == N1.getOperand(1) && + N0.getOperand(0) == N1.getOperand(0)) { + return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), DAG.getConstantFP(4.0, DL, VT)); - } - } - } // enable-unsafe-fp-math - - // FADD -> FMA combines: - if (SDValue Fused = visitFADDForFMACombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - return SDValue(); -} - + } + } + } // enable-unsafe-fp-math + + // FADD -> FMA combines: + if (SDValue Fused = visitFADDForFMACombine(N)) { + AddToWorklist(Fused.getNode()); + return Fused; + } + return SDValue(); +} + SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { SDValue Chain = N->getOperand(0); SDValue N0 = N->getOperand(1); @@ -13335,50 +13335,50 @@ SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) { return SDValue(); } -SDValue DAGCombiner::visitFSUB(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); - ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - const SDNodeFlags Flags = N->getFlags(); +SDValue DAGCombiner::visitFSUB(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); + ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); + EVT VT = N->getValueType(0); + SDLoc DL(N); + const TargetOptions &Options = DAG.getTarget().Options; + const SDNodeFlags Flags = N->getFlags(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) - return R; - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fsub c1, c2) -> c1-c2 - if (N0CFP && N1CFP) + + if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) + return R; + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (fsub c1, c2) -> c1-c2 + if (N0CFP && N1CFP) return DAG.getNode(ISD::FSUB, DL, VT, N0, N1); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - // (fsub A, 0) -> A - if (N1CFP && N1CFP->isZero()) { - if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || - Flags.hasNoSignedZeros()) { - return N0; - } - } - - if (N0 == N1) { - // (fsub x, x) -> 0.0 - if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) - return DAG.getConstantFP(0.0f, DL, VT); - } - - // (fsub -0.0, N1) -> -N1 - if (N0CFP && N0CFP->isZero()) { - if (N0CFP->isNegative() || - (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + // (fsub A, 0) -> A + if (N1CFP && N1CFP->isZero()) { + if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath || + Flags.hasNoSignedZeros()) { + return N0; + } + } + + if (N0 == N1) { + // (fsub x, x) -> 0.0 + if (Options.NoNaNsFPMath || Flags.hasNoNaNs()) + return DAG.getConstantFP(0.0f, DL, VT); + } + + // (fsub -0.0, N1) -> -N1 + if (N0CFP && N0CFP->isZero()) { + if (N0CFP->isNegative() || + (Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) { // We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are // flushed to zero, unless all users treat denorms as zero (DAZ). // FIXME: This transform will change the sign of a NaN and the behavior @@ -13391,330 +13391,330 @@ SDValue DAGCombiner::visitFSUB(SDNode *N) { if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) return DAG.getNode(ISD::FNEG, DL, VT, N1); } - } - } - - if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || - (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && - N1.getOpcode() == ISD::FADD) { - // X - (X + Y) -> -Y - if (N0 == N1->getOperand(0)) + } + } + + if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) || + (Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) && + N1.getOpcode() == ISD::FADD) { + // X - (X + Y) -> -Y + if (N0 == N1->getOperand(0)) return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1)); - // X - (Y + X) -> -Y - if (N0 == N1->getOperand(1)) + // X - (Y + X) -> -Y + if (N0 == N1->getOperand(1)) return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0)); - } - - // fold (fsub A, (fneg B)) -> (fadd A, B) - if (SDValue NegN1 = - TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) + } + + // fold (fsub A, (fneg B)) -> (fadd A, B) + if (SDValue NegN1 = + TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize)) return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1); - - // FSUB -> FMA combines: - if (SDValue Fused = visitFSUBForFMACombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFMUL(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); - ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - const SDNodeFlags Flags = N->getFlags(); + + // FSUB -> FMA combines: + if (SDValue Fused = visitFSUBForFMACombine(N)) { + AddToWorklist(Fused.getNode()); + return Fused; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitFMUL(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true); + ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true); + EVT VT = N->getValueType(0); + SDLoc DL(N); + const TargetOptions &Options = DAG.getTarget().Options; + const SDNodeFlags Flags = N->getFlags(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) - return R; - - // fold vector ops - if (VT.isVector()) { - // This just handles C1 * C2 for vectors. Other vector folds are below. - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - } - - // fold (fmul c1, c2) -> c1*c2 - if (N0CFP && N1CFP) + + if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) + return R; + + // fold vector ops + if (VT.isVector()) { + // This just handles C1 * C2 for vectors. Other vector folds are below. + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + } + + // fold (fmul c1, c2) -> c1*c2 + if (N0CFP && N1CFP) return DAG.getNode(ISD::FMUL, DL, VT, N0, N1); - - // canonicalize constant to RHS + + // canonicalize constant to RHS if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && !DAG.isConstantFPBuildVectorOrConstantFP(N1)) return DAG.getNode(ISD::FMUL, DL, VT, N1, N0); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { - // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) { + // fmul (fmul X, C1), C2 -> fmul X, C1 * C2 if (DAG.isConstantFPBuildVectorOrConstantFP(N1) && - N0.getOpcode() == ISD::FMUL) { - SDValue N00 = N0.getOperand(0); - SDValue N01 = N0.getOperand(1); - // Avoid an infinite loop by making sure that N00 is not a constant - // (the inner multiply has not been constant folded yet). + N0.getOpcode() == ISD::FMUL) { + SDValue N00 = N0.getOperand(0); + SDValue N01 = N0.getOperand(1); + // Avoid an infinite loop by making sure that N00 is not a constant + // (the inner multiply has not been constant folded yet). if (DAG.isConstantFPBuildVectorOrConstantFP(N01) && !DAG.isConstantFPBuildVectorOrConstantFP(N00)) { SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1); return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts); - } - } - - // Match a special-case: we convert X * 2.0 into fadd. - // fmul (fadd X, X), C -> fmul X, 2.0 * C - if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && - N0.getOperand(0) == N0.getOperand(1)) { - const SDValue Two = DAG.getConstantFP(2.0, DL, VT); + } + } + + // Match a special-case: we convert X * 2.0 into fadd. + // fmul (fadd X, X), C -> fmul X, 2.0 * C + if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() && + N0.getOperand(0) == N0.getOperand(1)) { + const SDValue Two = DAG.getConstantFP(2.0, DL, VT); SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1); return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts); - } - } - - // fold (fmul X, 2.0) -> (fadd X, X) - if (N1CFP && N1CFP->isExactlyValue(+2.0)) + } + } + + // fold (fmul X, 2.0) -> (fadd X, X) + if (N1CFP && N1CFP->isExactlyValue(+2.0)) return DAG.getNode(ISD::FADD, DL, VT, N0, N0); - - // fold (fmul X, -1.0) -> (fneg X) - if (N1CFP && N1CFP->isExactlyValue(-1.0)) - if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, DL, VT, N0); - - // -N0 * -N1 --> N0 * N1 - TargetLowering::NegatibleCost CostN0 = - TargetLowering::NegatibleCost::Expensive; - TargetLowering::NegatibleCost CostN1 = - TargetLowering::NegatibleCost::Expensive; - SDValue NegN0 = - TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); - SDValue NegN1 = - TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); - if (NegN0 && NegN1 && - (CostN0 == TargetLowering::NegatibleCost::Cheaper || - CostN1 == TargetLowering::NegatibleCost::Cheaper)) + + // fold (fmul X, -1.0) -> (fneg X) + if (N1CFP && N1CFP->isExactlyValue(-1.0)) + if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) + return DAG.getNode(ISD::FNEG, DL, VT, N0); + + // -N0 * -N1 --> N0 * N1 + TargetLowering::NegatibleCost CostN0 = + TargetLowering::NegatibleCost::Expensive; + TargetLowering::NegatibleCost CostN1 = + TargetLowering::NegatibleCost::Expensive; + SDValue NegN0 = + TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); + SDValue NegN1 = + TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); + if (NegN0 && NegN1 && + (CostN0 == TargetLowering::NegatibleCost::Cheaper || + CostN1 == TargetLowering::NegatibleCost::Cheaper)) return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1); - - // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) - // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) - if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && - (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && - TLI.isOperationLegal(ISD::FABS, VT)) { - SDValue Select = N0, X = N1; - if (Select.getOpcode() != ISD::SELECT) - std::swap(Select, X); - - SDValue Cond = Select.getOperand(0); - auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); - auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); - - if (TrueOpnd && FalseOpnd && - Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && - isa<ConstantFPSDNode>(Cond.getOperand(1)) && - cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { - ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); - switch (CC) { - default: break; - case ISD::SETOLT: - case ISD::SETULT: - case ISD::SETOLE: - case ISD::SETULE: - case ISD::SETLT: - case ISD::SETLE: - std::swap(TrueOpnd, FalseOpnd); - LLVM_FALLTHROUGH; - case ISD::SETOGT: - case ISD::SETUGT: - case ISD::SETOGE: - case ISD::SETUGE: - case ISD::SETGT: - case ISD::SETGE: - if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && - TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, DL, VT, - DAG.getNode(ISD::FABS, DL, VT, X)); - if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) - return DAG.getNode(ISD::FABS, DL, VT, X); - - break; - } - } - } - - // FMUL -> FMA combines: - if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { - AddToWorklist(Fused.getNode()); - return Fused; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFMA(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - // FMA nodes have flags that propagate to the created nodes. + + // fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X)) + // fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X) + if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() && + (N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) && + TLI.isOperationLegal(ISD::FABS, VT)) { + SDValue Select = N0, X = N1; + if (Select.getOpcode() != ISD::SELECT) + std::swap(Select, X); + + SDValue Cond = Select.getOperand(0); + auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1)); + auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2)); + + if (TrueOpnd && FalseOpnd && + Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X && + isa<ConstantFPSDNode>(Cond.getOperand(1)) && + cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + switch (CC) { + default: break; + case ISD::SETOLT: + case ISD::SETULT: + case ISD::SETOLE: + case ISD::SETULE: + case ISD::SETLT: + case ISD::SETLE: + std::swap(TrueOpnd, FalseOpnd); + LLVM_FALLTHROUGH; + case ISD::SETOGT: + case ISD::SETUGT: + case ISD::SETOGE: + case ISD::SETUGE: + case ISD::SETGT: + case ISD::SETGE: + if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) && + TLI.isOperationLegal(ISD::FNEG, VT)) + return DAG.getNode(ISD::FNEG, DL, VT, + DAG.getNode(ISD::FABS, DL, VT, X)); + if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0)) + return DAG.getNode(ISD::FABS, DL, VT, X); + + break; + } + } + } + + // FMUL -> FMA combines: + if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) { + AddToWorklist(Fused.getNode()); + return Fused; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitFMA(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + const TargetOptions &Options = DAG.getTarget().Options; + // FMA nodes have flags that propagate to the created nodes. SelectionDAG::FlagInserter FlagsInserter(DAG, N); - + bool UnsafeFPMath = Options.UnsafeFPMath || N->getFlags().hasAllowReassociation(); - // Constant fold FMA. - if (isa<ConstantFPSDNode>(N0) && - isa<ConstantFPSDNode>(N1) && - isa<ConstantFPSDNode>(N2)) { - return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); - } - - // (-N0 * -N1) + N2 --> (N0 * N1) + N2 - TargetLowering::NegatibleCost CostN0 = - TargetLowering::NegatibleCost::Expensive; - TargetLowering::NegatibleCost CostN1 = - TargetLowering::NegatibleCost::Expensive; - SDValue NegN0 = - TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); - SDValue NegN1 = - TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); - if (NegN0 && NegN1 && - (CostN0 == TargetLowering::NegatibleCost::Cheaper || - CostN1 == TargetLowering::NegatibleCost::Cheaper)) + // Constant fold FMA. + if (isa<ConstantFPSDNode>(N0) && + isa<ConstantFPSDNode>(N1) && + isa<ConstantFPSDNode>(N2)) { + return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2); + } + + // (-N0 * -N1) + N2 --> (N0 * N1) + N2 + TargetLowering::NegatibleCost CostN0 = + TargetLowering::NegatibleCost::Expensive; + TargetLowering::NegatibleCost CostN1 = + TargetLowering::NegatibleCost::Expensive; + SDValue NegN0 = + TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); + SDValue NegN1 = + TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); + if (NegN0 && NegN1 && + (CostN0 == TargetLowering::NegatibleCost::Cheaper || + CostN1 == TargetLowering::NegatibleCost::Cheaper)) return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2); - - if (UnsafeFPMath) { - if (N0CFP && N0CFP->isZero()) - return N2; - if (N1CFP && N1CFP->isZero()) - return N2; - } - - if (N0CFP && N0CFP->isExactlyValue(1.0)) - return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); - if (N1CFP && N1CFP->isExactlyValue(1.0)) - return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); - - // Canonicalize (fma c, x, y) -> (fma x, c, y) + + if (UnsafeFPMath) { + if (N0CFP && N0CFP->isZero()) + return N2; + if (N1CFP && N1CFP->isZero()) + return N2; + } + + if (N0CFP && N0CFP->isExactlyValue(1.0)) + return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2); + if (N1CFP && N1CFP->isExactlyValue(1.0)) + return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2); + + // Canonicalize (fma c, x, y) -> (fma x, c, y) if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && !DAG.isConstantFPBuildVectorOrConstantFP(N1)) - return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); - - if (UnsafeFPMath) { - // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) - if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && + return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2); + + if (UnsafeFPMath) { + // (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2) + if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) && DAG.isConstantFPBuildVectorOrConstantFP(N1) && DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) { - return DAG.getNode(ISD::FMUL, DL, VT, N0, + return DAG.getNode(ISD::FMUL, DL, VT, N0, DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1))); - } - - // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) - if (N0.getOpcode() == ISD::FMUL && + } + + // (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y) + if (N0.getOpcode() == ISD::FMUL && DAG.isConstantFPBuildVectorOrConstantFP(N1) && DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) { return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)), - N2); - } - } - - // (fma x, -1, y) -> (fadd (fneg x), y) - if (N1CFP) { - if (N1CFP->isExactlyValue(1.0)) - return DAG.getNode(ISD::FADD, DL, VT, N0, N2); - - if (N1CFP->isExactlyValue(-1.0) && - (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { - SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); - AddToWorklist(RHSNeg.getNode()); - return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); - } - - // fma (fneg x), K, y -> fma x -K, y - if (N0.getOpcode() == ISD::FNEG && - (TLI.isOperationLegal(ISD::ConstantFP, VT) || - (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, - ForCodeSize)))) { - return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), + N2); + } + } + + // (fma x, -1, y) -> (fadd (fneg x), y) + if (N1CFP) { + if (N1CFP->isExactlyValue(1.0)) + return DAG.getNode(ISD::FADD, DL, VT, N0, N2); + + if (N1CFP->isExactlyValue(-1.0) && + (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) { + SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0); + AddToWorklist(RHSNeg.getNode()); + return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg); + } + + // fma (fneg x), K, y -> fma x -K, y + if (N0.getOpcode() == ISD::FNEG && + (TLI.isOperationLegal(ISD::ConstantFP, VT) || + (N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT, + ForCodeSize)))) { + return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0), DAG.getNode(ISD::FNEG, DL, VT, N1), N2); - } - } - - if (UnsafeFPMath) { - // (fma x, c, x) -> (fmul x, (c+1)) - if (N1CFP && N0 == N2) { + } + } + + if (UnsafeFPMath) { + // (fma x, c, x) -> (fmul x, (c+1)) + if (N1CFP && N0 == N2) { return DAG.getNode( ISD::FMUL, DL, VT, N0, DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT))); - } - - // (fma x, c, (fneg x)) -> (fmul x, (c-1)) - if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { + } + + // (fma x, c, (fneg x)) -> (fmul x, (c-1)) + if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) { return DAG.getNode( ISD::FMUL, DL, VT, N0, DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT))); - } - } - - // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) - // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) - if (!TLI.isFNegFree(VT)) - if (SDValue Neg = TLI.getCheaperNegatedExpression( - SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) + } + } + + // fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z)) + // fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z)) + if (!TLI.isFNegFree(VT)) + if (SDValue Neg = TLI.getCheaperNegatedExpression( + SDValue(N, 0), DAG, LegalOperations, ForCodeSize)) return DAG.getNode(ISD::FNEG, DL, VT, Neg); - return SDValue(); -} - -// Combine multiple FDIVs with the same divisor into multiple FMULs by the -// reciprocal. -// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) -// Notice that this is not always beneficial. One reason is different targets -// may have different costs for FDIV and FMUL, so sometimes the cost of two -// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason -// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". -SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { - // TODO: Limit this transform based on optsize/minsize - it always creates at - // least 1 extra instruction. But the perf win may be substantial enough - // that only minsize should restrict this. - bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; - const SDNodeFlags Flags = N->getFlags(); - if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) - return SDValue(); - - // Skip if current node is a reciprocal/fneg-reciprocal. + return SDValue(); +} + +// Combine multiple FDIVs with the same divisor into multiple FMULs by the +// reciprocal. +// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip) +// Notice that this is not always beneficial. One reason is different targets +// may have different costs for FDIV and FMUL, so sometimes the cost of two +// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason +// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL". +SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { + // TODO: Limit this transform based on optsize/minsize - it always creates at + // least 1 extra instruction. But the perf win may be substantial enough + // that only minsize should restrict this. + bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath; + const SDNodeFlags Flags = N->getFlags(); + if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal())) + return SDValue(); + + // Skip if current node is a reciprocal/fneg-reciprocal. SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); - if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) - return SDValue(); - - // Exit early if the target does not want this transform or if there can't - // possibly be enough uses of the divisor to make the transform worthwhile. - unsigned MinUses = TLI.combineRepeatedFPDivisors(); - - // For splat vectors, scale the number of uses by the splat factor. If we can - // convert the division into a scalar op, that will likely be much faster. - unsigned NumElts = 1; - EVT VT = N->getValueType(0); - if (VT.isVector() && DAG.isSplatValue(N1)) - NumElts = VT.getVectorNumElements(); - - if (!MinUses || (N1->use_size() * NumElts) < MinUses) - return SDValue(); - - // Find all FDIV users of the same divisor. - // Use a set because duplicates may be present in the user list. - SetVector<SDNode *> Users; - for (auto *U : N1->uses()) { - if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { + ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true); + if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0))) + return SDValue(); + + // Exit early if the target does not want this transform or if there can't + // possibly be enough uses of the divisor to make the transform worthwhile. + unsigned MinUses = TLI.combineRepeatedFPDivisors(); + + // For splat vectors, scale the number of uses by the splat factor. If we can + // convert the division into a scalar op, that will likely be much faster. + unsigned NumElts = 1; + EVT VT = N->getValueType(0); + if (VT.isVector() && DAG.isSplatValue(N1)) + NumElts = VT.getVectorNumElements(); + + if (!MinUses || (N1->use_size() * NumElts) < MinUses) + return SDValue(); + + // Find all FDIV users of the same divisor. + // Use a set because duplicates may be present in the user list. + SetVector<SDNode *> Users; + for (auto *U : N1->uses()) { + if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) { // Skip X/sqrt(X) that has not been simplified to sqrt(X) yet. if (U->getOperand(1).getOpcode() == ISD::FSQRT && U->getOperand(0) == U->getOperand(1).getOperand(0) && @@ -13722,123 +13722,123 @@ SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) { U->getFlags().hasNoSignedZeros()) continue; - // This division is eligible for optimization only if global unsafe math - // is enabled or if this division allows reciprocal formation. - if (UnsafeMath || U->getFlags().hasAllowReciprocal()) - Users.insert(U); - } - } - - // Now that we have the actual number of divisor uses, make sure it meets - // the minimum threshold specified by the target. - if ((Users.size() * NumElts) < MinUses) - return SDValue(); - - SDLoc DL(N); - SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); - SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); - - // Dividend / Divisor -> Dividend * Reciprocal - for (auto *U : Users) { - SDValue Dividend = U->getOperand(0); - if (Dividend != FPOne) { - SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, - Reciprocal, Flags); - CombineTo(U, NewNode); - } else if (U != Reciprocal.getNode()) { - // In the absence of fast-math-flags, this user node is always the - // same node as Reciprocal, but with FMF they may be different nodes. - CombineTo(U, Reciprocal); - } - } - return SDValue(N, 0); // N was replaced. -} - -SDValue DAGCombiner::visitFDIV(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - SDLoc DL(N); - const TargetOptions &Options = DAG.getTarget().Options; - SDNodeFlags Flags = N->getFlags(); + // This division is eligible for optimization only if global unsafe math + // is enabled or if this division allows reciprocal formation. + if (UnsafeMath || U->getFlags().hasAllowReciprocal()) + Users.insert(U); + } + } + + // Now that we have the actual number of divisor uses, make sure it meets + // the minimum threshold specified by the target. + if ((Users.size() * NumElts) < MinUses) + return SDValue(); + + SDLoc DL(N); + SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); + SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags); + + // Dividend / Divisor -> Dividend * Reciprocal + for (auto *U : Users) { + SDValue Dividend = U->getOperand(0); + if (Dividend != FPOne) { + SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend, + Reciprocal, Flags); + CombineTo(U, NewNode); + } else if (U != Reciprocal.getNode()) { + // In the absence of fast-math-flags, this user node is always the + // same node as Reciprocal, but with FMF they may be different nodes. + CombineTo(U, Reciprocal); + } + } + return SDValue(N, 0); // N was replaced. +} + +SDValue DAGCombiner::visitFDIV(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + EVT VT = N->getValueType(0); + SDLoc DL(N); + const TargetOptions &Options = DAG.getTarget().Options; + SDNodeFlags Flags = N->getFlags(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) - return R; - - // fold vector ops - if (VT.isVector()) - if (SDValue FoldedVOp = SimplifyVBinOp(N)) - return FoldedVOp; - - // fold (fdiv c1, c2) -> c1/c2 - if (N0CFP && N1CFP) + + if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) + return R; + + // fold vector ops + if (VT.isVector()) + if (SDValue FoldedVOp = SimplifyVBinOp(N)) + return FoldedVOp; + + // fold (fdiv c1, c2) -> c1/c2 + if (N0CFP && N1CFP) return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - if (SDValue V = combineRepeatedFPDivisors(N)) - return V; - - if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { - // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. - if (N1CFP) { - // Compute the reciprocal 1.0 / c2. - const APFloat &N1APF = N1CFP->getValueAPF(); - APFloat Recip(N1APF.getSemantics(), 1); // 1.0 - APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); - // Only do the transform if the reciprocal is a legal fp immediate that - // isn't too nasty (eg NaN, denormal, ...). - if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty - (!LegalOperations || - // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM - // backend)... we should handle this gracefully after Legalize. - // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || - TLI.isOperationLegal(ISD::ConstantFP, VT) || - TLI.isFPImmLegal(Recip, VT, ForCodeSize))) - return DAG.getNode(ISD::FMUL, DL, VT, N0, + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + if (SDValue V = combineRepeatedFPDivisors(N)) + return V; + + if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) { + // fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable. + if (N1CFP) { + // Compute the reciprocal 1.0 / c2. + const APFloat &N1APF = N1CFP->getValueAPF(); + APFloat Recip(N1APF.getSemantics(), 1); // 1.0 + APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven); + // Only do the transform if the reciprocal is a legal fp immediate that + // isn't too nasty (eg NaN, denormal, ...). + if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty + (!LegalOperations || + // FIXME: custom lowering of ConstantFP might fail (see e.g. ARM + // backend)... we should handle this gracefully after Legalize. + // TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) || + TLI.isOperationLegal(ISD::ConstantFP, VT) || + TLI.isFPImmLegal(Recip, VT, ForCodeSize))) + return DAG.getNode(ISD::FMUL, DL, VT, N0, DAG.getConstantFP(Recip, DL, VT)); - } - - // If this FDIV is part of a reciprocal square root, it may be folded - // into a target-specific square root estimate instruction. - if (N1.getOpcode() == ISD::FSQRT) { - if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) + } + + // If this FDIV is part of a reciprocal square root, it may be folded + // into a target-specific square root estimate instruction. + if (N1.getOpcode() == ISD::FSQRT) { + if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags)) return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); - } else if (N1.getOpcode() == ISD::FP_EXTEND && - N1.getOperand(0).getOpcode() == ISD::FSQRT) { + } else if (N1.getOpcode() == ISD::FP_EXTEND && + N1.getOperand(0).getOpcode() == ISD::FSQRT) { if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { - RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); - AddToWorklist(RV.getNode()); + RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV); + AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); - } - } else if (N1.getOpcode() == ISD::FP_ROUND && - N1.getOperand(0).getOpcode() == ISD::FSQRT) { + } + } else if (N1.getOpcode() == ISD::FP_ROUND && + N1.getOperand(0).getOpcode() == ISD::FSQRT) { if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) { - RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); - AddToWorklist(RV.getNode()); + RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1)); + AddToWorklist(RV.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, RV); - } - } else if (N1.getOpcode() == ISD::FMUL) { - // Look through an FMUL. Even though this won't remove the FDIV directly, - // it's still worthwhile to get rid of the FSQRT if possible. - SDValue Sqrt, Y; - if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { - Sqrt = N1.getOperand(0); - Y = N1.getOperand(1); - } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { - Sqrt = N1.getOperand(1); - Y = N1.getOperand(0); - } - if (Sqrt.getNode()) { - // If the other multiply operand is known positive, pull it into the + } + } else if (N1.getOpcode() == ISD::FMUL) { + // Look through an FMUL. Even though this won't remove the FDIV directly, + // it's still worthwhile to get rid of the FSQRT if possible. + SDValue Sqrt, Y; + if (N1.getOperand(0).getOpcode() == ISD::FSQRT) { + Sqrt = N1.getOperand(0); + Y = N1.getOperand(1); + } else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) { + Sqrt = N1.getOperand(1); + Y = N1.getOperand(0); + } + if (Sqrt.getNode()) { + // If the other multiply operand is known positive, pull it into the // sqrt. That will eliminate the division if we convert to an estimate. - if (Flags.hasAllowReassociation() && N1.hasOneUse() && + if (Flags.hasAllowReassociation() && N1.hasOneUse() && N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) { SDValue A; if (Y.getOpcode() == ISD::FABS && Y.hasOneUse()) @@ -13853,643 +13853,643 @@ SDValue DAGCombiner::visitFDIV(SDNode *N) { DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0)); if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags)) return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt); - + // Estimate creation failed. Clean up speculatively created nodes. recursivelyDeleteUnusedNodes(AAZ.getNode()); } - } - - // We found a FSQRT, so try to make this fold: - // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) - if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { + } + + // We found a FSQRT, so try to make this fold: + // X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y) + if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) { SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y); - AddToWorklist(Div.getNode()); + AddToWorklist(Div.getNode()); return DAG.getNode(ISD::FMUL, DL, VT, N0, Div); - } - } - } - - // Fold into a reciprocal estimate and multiply instead of a real divide. - if (Options.NoInfsFPMath || Flags.hasNoInfs()) - if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) - return RV; - } - + } + } + } + + // Fold into a reciprocal estimate and multiply instead of a real divide. + if (Options.NoInfsFPMath || Flags.hasNoInfs()) + if (SDValue RV = BuildDivEstimate(N0, N1, Flags)) + return RV; + } + // Fold X/Sqrt(X) -> Sqrt(X) if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) && (Options.UnsafeFPMath || Flags.hasAllowReassociation())) if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0)) return N1; - // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) - TargetLowering::NegatibleCost CostN0 = - TargetLowering::NegatibleCost::Expensive; - TargetLowering::NegatibleCost CostN1 = - TargetLowering::NegatibleCost::Expensive; - SDValue NegN0 = - TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); - SDValue NegN1 = - TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); - if (NegN0 && NegN1 && - (CostN0 == TargetLowering::NegatibleCost::Cheaper || - CostN1 == TargetLowering::NegatibleCost::Cheaper)) + // (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y) + TargetLowering::NegatibleCost CostN0 = + TargetLowering::NegatibleCost::Expensive; + TargetLowering::NegatibleCost CostN1 = + TargetLowering::NegatibleCost::Expensive; + SDValue NegN0 = + TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0); + SDValue NegN1 = + TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1); + if (NegN0 && NegN1 && + (CostN0 == TargetLowering::NegatibleCost::Cheaper || + CostN1 == TargetLowering::NegatibleCost::Cheaper)) return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1); - - return SDValue(); -} - -SDValue DAGCombiner::visitFREM(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); - EVT VT = N->getValueType(0); - SDNodeFlags Flags = N->getFlags(); + + return SDValue(); +} + +SDValue DAGCombiner::visitFREM(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); + ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); + EVT VT = N->getValueType(0); + SDNodeFlags Flags = N->getFlags(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) - return R; - - // fold (frem c1, c2) -> fmod(c1,c2) - if (N0CFP && N1CFP) + + if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags)) + return R; + + // fold (frem c1, c2) -> fmod(c1,c2) + if (N0CFP && N1CFP) return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1); - - if (SDValue NewSel = foldBinOpIntoSelect(N)) - return NewSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFSQRT(SDNode *N) { - SDNodeFlags Flags = N->getFlags(); - const TargetOptions &Options = DAG.getTarget().Options; - - // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: - // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN + + if (SDValue NewSel = foldBinOpIntoSelect(N)) + return NewSel; + + return SDValue(); +} + +SDValue DAGCombiner::visitFSQRT(SDNode *N) { + SDNodeFlags Flags = N->getFlags(); + const TargetOptions &Options = DAG.getTarget().Options; + + // Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as: + // sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN if (!Flags.hasApproximateFuncs() || - (!Options.NoInfsFPMath && !Flags.hasNoInfs())) - return SDValue(); - - SDValue N0 = N->getOperand(0); - if (TLI.isFsqrtCheap(N0, DAG)) - return SDValue(); - - // FSQRT nodes have flags that propagate to the created nodes. + (!Options.NoInfsFPMath && !Flags.hasNoInfs())) + return SDValue(); + + SDValue N0 = N->getOperand(0); + if (TLI.isFsqrtCheap(N0, DAG)) + return SDValue(); + + // FSQRT nodes have flags that propagate to the created nodes. // TODO: If this is N0/sqrt(N0), and we reach this node before trying to // transform the fdiv, we may produce a sub-optimal estimate sequence // because the reciprocal calculation may not have to filter out a // 0.0 input. - return buildSqrtEstimate(N0, Flags); -} - -/// copysign(x, fp_extend(y)) -> copysign(x, y) -/// copysign(x, fp_round(y)) -> copysign(x, y) -static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { - SDValue N1 = N->getOperand(1); - if ((N1.getOpcode() == ISD::FP_EXTEND || - N1.getOpcode() == ISD::FP_ROUND)) { - // Do not optimize out type conversion of f128 type yet. - // For some targets like x86_64, configuration is changed to keep one f128 - // value in one SSE register, but instruction selection cannot handle - // FCOPYSIGN on SSE registers yet. - EVT N1VT = N1->getValueType(0); - EVT N1Op0VT = N1->getOperand(0).getValueType(); - return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); - } - return false; -} - -SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); + return buildSqrtEstimate(N0, Flags); +} + +/// copysign(x, fp_extend(y)) -> copysign(x, y) +/// copysign(x, fp_round(y)) -> copysign(x, y) +static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) { + SDValue N1 = N->getOperand(1); + if ((N1.getOpcode() == ISD::FP_EXTEND || + N1.getOpcode() == ISD::FP_ROUND)) { + // Do not optimize out type conversion of f128 type yet. + // For some targets like x86_64, configuration is changed to keep one f128 + // value in one SSE register, but instruction selection cannot handle + // FCOPYSIGN on SSE registers yet. + EVT N1VT = N1->getValueType(0); + EVT N1Op0VT = N1->getOperand(0).getValueType(); + return (N1VT == N1Op0VT || N1Op0VT != MVT::f128); + } + return false; +} + +SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0); bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1); - EVT VT = N->getValueType(0); - - if (N0CFP && N1CFP) // Constant fold - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); - - if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { - const APFloat &V = N1C->getValueAPF(); - // copysign(x, c1) -> fabs(x) iff ispos(c1) - // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) - if (!V.isNegative()) { - if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - } else { - if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, - DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); - } - } - - // copysign(fabs(x), y) -> copysign(x, y) - // copysign(fneg(x), y) -> copysign(x, y) - // copysign(copysign(x,z), y) -> copysign(x, y) - if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || - N0.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); - - // copysign(x, abs(y)) -> abs(x) - if (N1.getOpcode() == ISD::FABS) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - - // copysign(x, copysign(y,z)) -> copysign(x, z) - if (N1.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); - - // copysign(x, fp_extend(y)) -> copysign(x, y) - // copysign(x, fp_round(y)) -> copysign(x, y) - if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitFPOW(SDNode *N) { - ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); - if (!ExponentC) - return SDValue(); + EVT VT = N->getValueType(0); + + if (N0CFP && N1CFP) // Constant fold + return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1); + + if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) { + const APFloat &V = N1C->getValueAPF(); + // copysign(x, c1) -> fabs(x) iff ispos(c1) + // copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1) + if (!V.isNegative()) { + if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT)) + return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); + } else { + if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT)) + return DAG.getNode(ISD::FNEG, SDLoc(N), VT, + DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0)); + } + } + + // copysign(fabs(x), y) -> copysign(x, y) + // copysign(fneg(x), y) -> copysign(x, y) + // copysign(copysign(x,z), y) -> copysign(x, y) + if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG || + N0.getOpcode() == ISD::FCOPYSIGN) + return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1); + + // copysign(x, abs(y)) -> abs(x) + if (N1.getOpcode() == ISD::FABS) + return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); + + // copysign(x, copysign(y,z)) -> copysign(x, z) + if (N1.getOpcode() == ISD::FCOPYSIGN) + return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1)); + + // copysign(x, fp_extend(y)) -> copysign(x, y) + // copysign(x, fp_round(y)) -> copysign(x, y) + if (CanCombineFCOPYSIGN_EXTEND_ROUND(N)) + return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0)); + + return SDValue(); +} + +SDValue DAGCombiner::visitFPOW(SDNode *N) { + ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1)); + if (!ExponentC) + return SDValue(); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - // Try to convert x ** (1/3) into cube root. - // TODO: Handle the various flavors of long double. - // TODO: Since we're approximating, we don't need an exact 1/3 exponent. - // Some range near 1/3 should be fine. - EVT VT = N->getValueType(0); - if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || - (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { - // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. - // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. - // pow(-val, 1/3) = nan; cbrt(-val) = -num. - // For regular numbers, rounding may cause the results to differ. - // Therefore, we require { nsz ninf nnan afn } for this transform. - // TODO: We could select out the special cases if we don't have nsz/ninf. - SDNodeFlags Flags = N->getFlags(); - if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || - !Flags.hasApproximateFuncs()) - return SDValue(); - - // Do not create a cbrt() libcall if the target does not have it, and do not - // turn a pow that has lowering support into a cbrt() libcall. - if (!DAG.getLibInfo().has(LibFunc_cbrt) || - (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && - DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) - return SDValue(); - + + // Try to convert x ** (1/3) into cube root. + // TODO: Handle the various flavors of long double. + // TODO: Since we're approximating, we don't need an exact 1/3 exponent. + // Some range near 1/3 should be fine. + EVT VT = N->getValueType(0); + if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) || + (VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) { + // pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0. + // pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf. + // pow(-val, 1/3) = nan; cbrt(-val) = -num. + // For regular numbers, rounding may cause the results to differ. + // Therefore, we require { nsz ninf nnan afn } for this transform. + // TODO: We could select out the special cases if we don't have nsz/ninf. + SDNodeFlags Flags = N->getFlags(); + if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() || + !Flags.hasApproximateFuncs()) + return SDValue(); + + // Do not create a cbrt() libcall if the target does not have it, and do not + // turn a pow that has lowering support into a cbrt() libcall. + if (!DAG.getLibInfo().has(LibFunc_cbrt) || + (!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) && + DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT))) + return SDValue(); + return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0)); - } - - // Try to convert x ** (1/4) and x ** (3/4) into square roots. - // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. - // TODO: This could be extended (using a target hook) to handle smaller - // power-of-2 fractional exponents. - bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); - bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); - if (ExponentIs025 || ExponentIs075) { - // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. - // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. - // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. - // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. - // For regular numbers, rounding may cause the results to differ. - // Therefore, we require { nsz ninf afn } for this transform. - // TODO: We could select out the special cases if we don't have nsz/ninf. - SDNodeFlags Flags = N->getFlags(); - - // We only need no signed zeros for the 0.25 case. - if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || - !Flags.hasApproximateFuncs()) - return SDValue(); - - // Don't double the number of libcalls. We are trying to inline fast code. - if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) - return SDValue(); - - // Assume that libcalls are the smallest code. - // TODO: This restriction should probably be lifted for vectors. - if (ForCodeSize) - return SDValue(); - - // pow(X, 0.25) --> sqrt(sqrt(X)) - SDLoc DL(N); + } + + // Try to convert x ** (1/4) and x ** (3/4) into square roots. + // x ** (1/2) is canonicalized to sqrt, so we do not bother with that case. + // TODO: This could be extended (using a target hook) to handle smaller + // power-of-2 fractional exponents. + bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25); + bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75); + if (ExponentIs025 || ExponentIs075) { + // pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0. + // pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN. + // pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0. + // pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN. + // For regular numbers, rounding may cause the results to differ. + // Therefore, we require { nsz ninf afn } for this transform. + // TODO: We could select out the special cases if we don't have nsz/ninf. + SDNodeFlags Flags = N->getFlags(); + + // We only need no signed zeros for the 0.25 case. + if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() || + !Flags.hasApproximateFuncs()) + return SDValue(); + + // Don't double the number of libcalls. We are trying to inline fast code. + if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT)) + return SDValue(); + + // Assume that libcalls are the smallest code. + // TODO: This restriction should probably be lifted for vectors. + if (ForCodeSize) + return SDValue(); + + // pow(X, 0.25) --> sqrt(sqrt(X)) + SDLoc DL(N); SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0)); SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt); - if (ExponentIs025) - return SqrtSqrt; - // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) + if (ExponentIs025) + return SqrtSqrt; + // pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X)) return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt); - } - - return SDValue(); -} - -static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, - const TargetLowering &TLI) { - // This optimization is guarded by a function attribute because it may produce - // unexpected results. Ie, programs may be relying on the platform-specific - // undefined behavior when the float-to-int conversion overflows. - const Function &F = DAG.getMachineFunction().getFunction(); - Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); - if (StrictOverflow.getValueAsString().equals("false")) - return SDValue(); - - // We only do this if the target has legal ftrunc. Otherwise, we'd likely be - // replacing casts with a libcall. We also must be allowed to ignore -0.0 - // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer - // conversions would return +0.0. - // FIXME: We should be able to use node-level FMF here. - // TODO: If strict math, should we use FABS (+ range check for signed cast)? - EVT VT = N->getValueType(0); - if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || - !DAG.getTarget().Options.NoSignedZerosFPMath) - return SDValue(); - - // fptosi/fptoui round towards zero, so converting from FP to integer and - // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X - SDValue N0 = N->getOperand(0); - if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && - N0.getOperand(0).getValueType() == VT) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); - - if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && - N0.getOperand(0).getValueType() == VT) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); - - return SDValue(); -} - -SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT OpVT = N0.getValueType(); - - // [us]itofp(undef) = 0, because the result value is bounded. - if (N0.isUndef()) - return DAG.getConstantFP(0.0, SDLoc(N), VT); - - // fold (sint_to_fp c1) -> c1fp - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - // ...but only if the target supports immediate floating-point values - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) - return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); - - // If the input is a legal type, and SINT_TO_FP is not legal on this target, - // but UINT_TO_FP is legal on this target, try to convert. - if (!hasOperation(ISD::SINT_TO_FP, OpVT) && - hasOperation(ISD::UINT_TO_FP, OpVT)) { - // If the sign bit is known to be zero, we can change this to UINT_TO_FP. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); - } - - // The next optimizations are desirable only if SELECT_CC can be lowered. - // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) - if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && - !VT.isVector() && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), - DAG.getConstantFP(0.0, DL, VT)); - } - - // fold (sint_to_fp (zext (setcc x, y, cc))) -> - // (select (setcc x, y, cc), 1.0, 0.0) - if (N0.getOpcode() == ISD::ZERO_EXTEND && - N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - return DAG.getSelect(DL, VT, N0.getOperand(0), - DAG.getConstantFP(1.0, DL, VT), - DAG.getConstantFP(0.0, DL, VT)); - } - - if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) - return FTrunc; - - return SDValue(); -} - -SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - EVT OpVT = N0.getValueType(); - - // [us]itofp(undef) = 0, because the result value is bounded. - if (N0.isUndef()) - return DAG.getConstantFP(0.0, SDLoc(N), VT); - - // fold (uint_to_fp c1) -> c1fp - if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && - // ...but only if the target supports immediate floating-point values - (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) - return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); - - // If the input is a legal type, and UINT_TO_FP is not legal on this target, - // but SINT_TO_FP is legal on this target, try to convert. - if (!hasOperation(ISD::UINT_TO_FP, OpVT) && - hasOperation(ISD::SINT_TO_FP, OpVT)) { - // If the sign bit is known to be zero, we can change this to SINT_TO_FP. - if (DAG.SignBitIsZero(N0)) - return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); - } - - // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) - if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && - (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { - SDLoc DL(N); - return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), - DAG.getConstantFP(0.0, DL, VT)); - } - - if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) - return FTrunc; - - return SDValue(); -} - -// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x -static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) - return SDValue(); - - SDValue Src = N0.getOperand(0); - EVT SrcVT = Src.getValueType(); - bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; - bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; - - // We can safely assume the conversion won't overflow the output range, - // because (for example) (uint8_t)18293.f is undefined behavior. - - // Since we can assume the conversion won't overflow, our decision as to - // whether the input will fit in the float should depend on the minimum - // of the input range and output range. - - // This means this is also safe for a signed input and unsigned output, since - // a negative input would lead to undefined behavior. - unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; - unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; - unsigned ActualSize = std::min(InputSize, OutputSize); - const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); - - // We can only fold away the float conversion if the input range can be - // represented exactly in the float range. - if (APFloat::semanticsPrecision(sem) >= ActualSize) { - if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { - unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND - : ISD::ZERO_EXTEND; - return DAG.getNode(ExtOp, SDLoc(N), VT, Src); - } - if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) - return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); - return DAG.getBitcast(VT, Src); - } - return SDValue(); -} - -SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fp_to_sint undef) -> undef - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - // fold (fp_to_sint c1fp) -> c1 + } + + return SDValue(); +} + +static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG, + const TargetLowering &TLI) { + // This optimization is guarded by a function attribute because it may produce + // unexpected results. Ie, programs may be relying on the platform-specific + // undefined behavior when the float-to-int conversion overflows. + const Function &F = DAG.getMachineFunction().getFunction(); + Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow"); + if (StrictOverflow.getValueAsString().equals("false")) + return SDValue(); + + // We only do this if the target has legal ftrunc. Otherwise, we'd likely be + // replacing casts with a libcall. We also must be allowed to ignore -0.0 + // because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer + // conversions would return +0.0. + // FIXME: We should be able to use node-level FMF here. + // TODO: If strict math, should we use FABS (+ range check for signed cast)? + EVT VT = N->getValueType(0); + if (!TLI.isOperationLegal(ISD::FTRUNC, VT) || + !DAG.getTarget().Options.NoSignedZerosFPMath) + return SDValue(); + + // fptosi/fptoui round towards zero, so converting from FP to integer and + // back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X + SDValue N0 = N->getOperand(0); + if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT && + N0.getOperand(0).getValueType() == VT) + return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); + + if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT && + N0.getOperand(0).getValueType() == VT) + return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0)); + + return SDValue(); +} + +SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT OpVT = N0.getValueType(); + + // [us]itofp(undef) = 0, because the result value is bounded. + if (N0.isUndef()) + return DAG.getConstantFP(0.0, SDLoc(N), VT); + + // fold (sint_to_fp c1) -> c1fp + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + // ...but only if the target supports immediate floating-point values + (!LegalOperations || + TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) + return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); + + // If the input is a legal type, and SINT_TO_FP is not legal on this target, + // but UINT_TO_FP is legal on this target, try to convert. + if (!hasOperation(ISD::SINT_TO_FP, OpVT) && + hasOperation(ISD::UINT_TO_FP, OpVT)) { + // If the sign bit is known to be zero, we can change this to UINT_TO_FP. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); + } + + // The next optimizations are desirable only if SELECT_CC can be lowered. + // fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0) + if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 && + !VT.isVector() && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { + SDLoc DL(N); + return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT), + DAG.getConstantFP(0.0, DL, VT)); + } + + // fold (sint_to_fp (zext (setcc x, y, cc))) -> + // (select (setcc x, y, cc), 1.0, 0.0) + if (N0.getOpcode() == ISD::ZERO_EXTEND && + N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { + SDLoc DL(N); + return DAG.getSelect(DL, VT, N0.getOperand(0), + DAG.getConstantFP(1.0, DL, VT), + DAG.getConstantFP(0.0, DL, VT)); + } + + if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) + return FTrunc; + + return SDValue(); +} + +SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + EVT OpVT = N0.getValueType(); + + // [us]itofp(undef) = 0, because the result value is bounded. + if (N0.isUndef()) + return DAG.getConstantFP(0.0, SDLoc(N), VT); + + // fold (uint_to_fp c1) -> c1fp + if (DAG.isConstantIntBuildVectorOrConstantInt(N0) && + // ...but only if the target supports immediate floating-point values + (!LegalOperations || + TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) + return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0); + + // If the input is a legal type, and UINT_TO_FP is not legal on this target, + // but SINT_TO_FP is legal on this target, try to convert. + if (!hasOperation(ISD::UINT_TO_FP, OpVT) && + hasOperation(ISD::SINT_TO_FP, OpVT)) { + // If the sign bit is known to be zero, we can change this to SINT_TO_FP. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0); + } + + // fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0) + if (N0.getOpcode() == ISD::SETCC && !VT.isVector() && + (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) { + SDLoc DL(N); + return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT), + DAG.getConstantFP(0.0, DL, VT)); + } + + if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI)) + return FTrunc; + + return SDValue(); +} + +// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x +static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP) + return SDValue(); + + SDValue Src = N0.getOperand(0); + EVT SrcVT = Src.getValueType(); + bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP; + bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT; + + // We can safely assume the conversion won't overflow the output range, + // because (for example) (uint8_t)18293.f is undefined behavior. + + // Since we can assume the conversion won't overflow, our decision as to + // whether the input will fit in the float should depend on the minimum + // of the input range and output range. + + // This means this is also safe for a signed input and unsigned output, since + // a negative input would lead to undefined behavior. + unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned; + unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned; + unsigned ActualSize = std::min(InputSize, OutputSize); + const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType()); + + // We can only fold away the float conversion if the input range can be + // represented exactly in the float range. + if (APFloat::semanticsPrecision(sem) >= ActualSize) { + if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) { + unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND + : ISD::ZERO_EXTEND; + return DAG.getNode(ExtOp, SDLoc(N), VT, Src); + } + if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits()) + return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src); + return DAG.getBitcast(VT, Src); + } + return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (fp_to_sint undef) -> undef + if (N0.isUndef()) + return DAG.getUNDEF(VT); + + // fold (fp_to_sint c1fp) -> c1 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); - - return FoldIntToFPToInt(N, DAG); -} - -SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fp_to_uint undef) -> undef - if (N0.isUndef()) - return DAG.getUNDEF(VT); - - // fold (fp_to_uint c1fp) -> c1 + return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0); + + return FoldIntToFPToInt(N, DAG); +} + +SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (fp_to_uint undef) -> undef + if (N0.isUndef()) + return DAG.getUNDEF(VT); + + // fold (fp_to_uint c1fp) -> c1 if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); - - return FoldIntToFPToInt(N, DAG); -} - -SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); - EVT VT = N->getValueType(0); - - // fold (fp_round c1fp) -> c1fp - if (N0CFP) - return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); - - // fold (fp_round (fp_extend x)) -> x - if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) - return N0.getOperand(0); - - // fold (fp_round (fp_round x)) -> (fp_round x) - if (N0.getOpcode() == ISD::FP_ROUND) { - const bool NIsTrunc = N->getConstantOperandVal(1) == 1; - const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; - - // Skip this folding if it results in an fp_round from f80 to f16. - // - // f80 to f16 always generates an expensive (and as yet, unimplemented) - // libcall to __truncxfhf2 instead of selecting native f16 conversion - // instructions from f32 or f64. Moreover, the first (value-preserving) - // fp_round from f80 to either f32 or f64 may become a NOP in platforms like - // x86. - if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) - return SDValue(); - - // If the first fp_round isn't a value preserving truncation, it might - // introduce a tie in the second fp_round, that wouldn't occur in the - // single-step fp_round we want to fold to. - // In other words, double rounding isn't the same as rounding. - // Also, this is a value preserving truncation iff both fp_round's are. - if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { - SDLoc DL(N); - return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), - DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); - } - } - - // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) - if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { - SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, - N0.getOperand(0), N1); - AddToWorklist(Tmp.getNode()); - return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, - Tmp, N0.getOperand(1)); - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. - if (N->hasOneUse() && - N->use_begin()->getOpcode() == ISD::FP_ROUND) - return SDValue(); - - // fold (fp_extend c1fp) -> c1fp + return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0); + + return FoldIntToFPToInt(N, DAG); +} + +SDValue DAGCombiner::visitFP_ROUND(SDNode *N) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); + EVT VT = N->getValueType(0); + + // fold (fp_round c1fp) -> c1fp + if (N0CFP) + return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1); + + // fold (fp_round (fp_extend x)) -> x + if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType()) + return N0.getOperand(0); + + // fold (fp_round (fp_round x)) -> (fp_round x) + if (N0.getOpcode() == ISD::FP_ROUND) { + const bool NIsTrunc = N->getConstantOperandVal(1) == 1; + const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1; + + // Skip this folding if it results in an fp_round from f80 to f16. + // + // f80 to f16 always generates an expensive (and as yet, unimplemented) + // libcall to __truncxfhf2 instead of selecting native f16 conversion + // instructions from f32 or f64. Moreover, the first (value-preserving) + // fp_round from f80 to either f32 or f64 may become a NOP in platforms like + // x86. + if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16) + return SDValue(); + + // If the first fp_round isn't a value preserving truncation, it might + // introduce a tie in the second fp_round, that wouldn't occur in the + // single-step fp_round we want to fold to. + // In other words, double rounding isn't the same as rounding. + // Also, this is a value preserving truncation iff both fp_round's are. + if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) { + SDLoc DL(N); + return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0), + DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL)); + } + } + + // fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y) + if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) { + SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT, + N0.getOperand(0), N1); + AddToWorklist(Tmp.getNode()); + return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, + Tmp, N0.getOperand(1)); + } + + if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) + return NewVSel; + + return SDValue(); +} + +SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. + if (N->hasOneUse() && + N->use_begin()->getOpcode() == ISD::FP_ROUND) + return SDValue(); + + // fold (fp_extend c1fp) -> c1fp if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); - - // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) - if (N0.getOpcode() == ISD::FP16_TO_FP && - TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) - return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); - - // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the - // value of X. - if (N0.getOpcode() == ISD::FP_ROUND - && N0.getConstantOperandVal(1) == 1) { - SDValue In = N0.getOperand(0); - if (In.getValueType() == VT) return In; - if (VT.bitsLT(In.getValueType())) - return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, - In, N0.getOperand(1)); - return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); - } - - // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { - LoadSDNode *LN0 = cast<LoadSDNode>(N0); - SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, - LN0->getChain(), - LN0->getBasePtr(), N0.getValueType(), - LN0->getMemOperand()); - CombineTo(N, ExtLoad); - CombineTo(N0.getNode(), - DAG.getNode(ISD::FP_ROUND, SDLoc(N0), - N0.getValueType(), ExtLoad, - DAG.getIntPtrConstant(1, SDLoc(N0))), - ExtLoad.getValue(1)); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - - if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) - return NewVSel; - - return SDValue(); -} - -SDValue DAGCombiner::visitFCEIL(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fceil c1) -> fceil(c1) + return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0); + + // fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op) + if (N0.getOpcode() == ISD::FP16_TO_FP && + TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal) + return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0)); + + // Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the + // value of X. + if (N0.getOpcode() == ISD::FP_ROUND + && N0.getConstantOperandVal(1) == 1) { + SDValue In = N0.getOperand(0); + if (In.getValueType() == VT) return In; + if (VT.bitsLT(In.getValueType())) + return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, + In, N0.getOperand(1)); + return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In); + } + + // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) + if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && + TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) { + LoadSDNode *LN0 = cast<LoadSDNode>(N0); + SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, + LN0->getChain(), + LN0->getBasePtr(), N0.getValueType(), + LN0->getMemOperand()); + CombineTo(N, ExtLoad); + CombineTo(N0.getNode(), + DAG.getNode(ISD::FP_ROUND, SDLoc(N0), + N0.getValueType(), ExtLoad, + DAG.getIntPtrConstant(1, SDLoc(N0))), + ExtLoad.getValue(1)); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + + if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N)) + return NewVSel; + + return SDValue(); +} + +SDValue DAGCombiner::visitFCEIL(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (fceil c1) -> fceil(c1) if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFTRUNC(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ftrunc c1) -> ftrunc(c1) + return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0); + + return SDValue(); +} + +SDValue DAGCombiner::visitFTRUNC(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (ftrunc c1) -> ftrunc(c1) if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); - - // fold ftrunc (known rounded int x) -> x - // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is - // likely to be generated to extract integer from a rounded floating value. - switch (N0.getOpcode()) { - default: break; - case ISD::FRINT: - case ISD::FTRUNC: - case ISD::FNEARBYINT: - case ISD::FFLOOR: - case ISD::FCEIL: - return N0; - } - - return SDValue(); -} - -SDValue DAGCombiner::visitFFLOOR(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (ffloor c1) -> ffloor(c1) + return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0); + + // fold ftrunc (known rounded int x) -> x + // ftrunc is a part of fptosi/fptoui expansion on some targets, so this is + // likely to be generated to extract integer from a rounded floating value. + switch (N0.getOpcode()) { + default: break; + case ISD::FRINT: + case ISD::FTRUNC: + case ISD::FNEARBYINT: + case ISD::FFLOOR: + case ISD::FCEIL: + return N0; + } + + return SDValue(); +} + +SDValue DAGCombiner::visitFFLOOR(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (ffloor c1) -> ffloor(c1) if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFNEG(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); + return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0); + + return SDValue(); +} + +SDValue DAGCombiner::visitFNEG(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - // Constant fold FNEG. + + // Constant fold FNEG. if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); - - if (SDValue NegN0 = - TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) - return NegN0; - - // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 - // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't - // know it was called from a context with a nsz flag if the input fsub does - // not. - if (N0.getOpcode() == ISD::FSUB && - (DAG.getTarget().Options.NoSignedZerosFPMath || - N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { - return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), + return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0); + + if (SDValue NegN0 = + TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize)) + return NegN0; + + // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0 + // FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't + // know it was called from a context with a nsz flag if the input fsub does + // not. + if (N0.getOpcode() == ISD::FSUB && + (DAG.getTarget().Options.NoSignedZerosFPMath || + N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) { + return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1), N0.getOperand(0)); - } - + } + if (SDValue Cast = foldSignChangeInBitcast(N)) return Cast; - - return SDValue(); -} - -static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, - APFloat (*Op)(const APFloat &, const APFloat &)) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - EVT VT = N->getValueType(0); - const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); - const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); + + return SDValue(); +} + +static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, + APFloat (*Op)(const APFloat &, const APFloat &)) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + EVT VT = N->getValueType(0); + const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0); + const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1); const SDNodeFlags Flags = N->getFlags(); unsigned Opc = N->getOpcode(); bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM; bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM; SelectionDAG::FlagInserter FlagsInserter(DAG, N); - - if (N0CFP && N1CFP) { - const APFloat &C0 = N0CFP->getValueAPF(); - const APFloat &C1 = N1CFP->getValueAPF(); - return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); - } - - // Canonicalize to constant on RHS. + + if (N0CFP && N1CFP) { + const APFloat &C0 = N0CFP->getValueAPF(); + const APFloat &C1 = N1CFP->getValueAPF(); + return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT); + } + + // Canonicalize to constant on RHS. if (DAG.isConstantFPBuildVectorOrConstantFP(N0) && !DAG.isConstantFPBuildVectorOrConstantFP(N1)) - return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); - + return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0); + if (N1CFP) { const APFloat &AF = N1CFP->getValueAPF(); @@ -14519,53 +14519,53 @@ static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N, } } - return SDValue(); -} - -SDValue DAGCombiner::visitFMINNUM(SDNode *N) { - return visitFMinMax(DAG, N, minnum); -} - -SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { - return visitFMinMax(DAG, N, maxnum); -} - -SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { - return visitFMinMax(DAG, N, minimum); -} - -SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { - return visitFMinMax(DAG, N, maximum); -} - -SDValue DAGCombiner::visitFABS(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N->getValueType(0); - - // fold (fabs c1) -> fabs(c1) + return SDValue(); +} + +SDValue DAGCombiner::visitFMINNUM(SDNode *N) { + return visitFMinMax(DAG, N, minnum); +} + +SDValue DAGCombiner::visitFMAXNUM(SDNode *N) { + return visitFMinMax(DAG, N, maxnum); +} + +SDValue DAGCombiner::visitFMINIMUM(SDNode *N) { + return visitFMinMax(DAG, N, minimum); +} + +SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) { + return visitFMinMax(DAG, N, maximum); +} + +SDValue DAGCombiner::visitFABS(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + + // fold (fabs c1) -> fabs(c1) if (DAG.isConstantFPBuildVectorOrConstantFP(N0)) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); - - // fold (fabs (fabs x)) -> (fabs x) - if (N0.getOpcode() == ISD::FABS) - return N->getOperand(0); - - // fold (fabs (fneg x)) -> (fabs x) - // fold (fabs (fcopysign x, y)) -> (fabs x) - if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) - return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); - + return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0); + + // fold (fabs (fabs x)) -> (fabs x) + if (N0.getOpcode() == ISD::FABS) + return N->getOperand(0); + + // fold (fabs (fneg x)) -> (fabs x) + // fold (fabs (fcopysign x, y)) -> (fabs x) + if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN) + return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0)); + if (SDValue Cast = foldSignChangeInBitcast(N)) return Cast; - - return SDValue(); -} - -SDValue DAGCombiner::visitBRCOND(SDNode *N) { - SDValue Chain = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - + + return SDValue(); +} + +SDValue DAGCombiner::visitBRCOND(SDNode *N) { + SDValue Chain = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + // BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are // nondeterministic jumps). if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) { @@ -14573,654 +14573,654 @@ SDValue DAGCombiner::visitBRCOND(SDNode *N) { N1->getOperand(0), N2); } - // If N is a constant we could fold this into a fallthrough or unconditional - // branch. However that doesn't happen very often in normal code, because - // Instcombine/SimplifyCFG should have handled the available opportunities. - // If we did this folding here, it would be necessary to update the - // MachineBasicBlock CFG, which is awkward. - - // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal - // on the target. - if (N1.getOpcode() == ISD::SETCC && - TLI.isOperationLegalOrCustom(ISD::BR_CC, - N1.getOperand(0).getValueType())) { - return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, - Chain, N1.getOperand(2), - N1.getOperand(0), N1.getOperand(1), N2); - } - - if (N1.hasOneUse()) { - // rebuildSetCC calls visitXor which may change the Chain when there is a - // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. - HandleSDNode ChainHandle(Chain); - if (SDValue NewN1 = rebuildSetCC(N1)) - return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, - ChainHandle.getValue(), NewN1, N2); - } - - return SDValue(); -} - -SDValue DAGCombiner::rebuildSetCC(SDValue N) { - if (N.getOpcode() == ISD::SRL || - (N.getOpcode() == ISD::TRUNCATE && - (N.getOperand(0).hasOneUse() && - N.getOperand(0).getOpcode() == ISD::SRL))) { - // Look pass the truncate. - if (N.getOpcode() == ISD::TRUNCATE) - N = N.getOperand(0); - - // Match this pattern so that we can generate simpler code: - // - // %a = ... - // %b = and i32 %a, 2 - // %c = srl i32 %b, 1 - // brcond i32 %c ... - // - // into - // - // %a = ... - // %b = and i32 %a, 2 - // %c = setcc eq %b, 0 - // brcond %c ... - // - // This applies only when the AND constant value has one bit set and the - // SRL constant is equal to the log2 of the AND constant. The back-end is - // smart enough to convert the result into a TEST/JMP sequence. - SDValue Op0 = N.getOperand(0); - SDValue Op1 = N.getOperand(1); - - if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { - SDValue AndOp1 = Op0.getOperand(1); - - if (AndOp1.getOpcode() == ISD::Constant) { - const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); - - if (AndConst.isPowerOf2() && - cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { - SDLoc DL(N); - return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), - Op0, DAG.getConstant(0, DL, Op0.getValueType()), - ISD::SETNE); - } - } - } - } - - // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) - // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) - if (N.getOpcode() == ISD::XOR) { - // Because we may call this on a speculatively constructed - // SimplifiedSetCC Node, we need to simplify this node first. - // Ideally this should be folded into SimplifySetCC and not - // here. For now, grab a handle to N so we don't lose it from - // replacements interal to the visit. - HandleSDNode XORHandle(N); - while (N.getOpcode() == ISD::XOR) { - SDValue Tmp = visitXOR(N.getNode()); - // No simplification done. - if (!Tmp.getNode()) - break; - // Returning N is form in-visit replacement that may invalidated - // N. Grab value from Handle. - if (Tmp.getNode() == N.getNode()) - N = XORHandle.getValue(); - else // Node simplified. Try simplifying again. - N = Tmp; - } - - if (N.getOpcode() != ISD::XOR) - return N; - - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - - if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { - bool Equal = false; - // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) - if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && - Op0.getValueType() == MVT::i1) { - N = Op0; - Op0 = N->getOperand(0); - Op1 = N->getOperand(1); - Equal = true; - } - - EVT SetCCVT = N.getValueType(); - if (LegalTypes) - SetCCVT = getSetCCResultType(SetCCVT); - // Replace the uses of XOR with SETCC - return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, - Equal ? ISD::SETEQ : ISD::SETNE); - } - } - - return SDValue(); -} - -// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. -// -SDValue DAGCombiner::visitBR_CC(SDNode *N) { - CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); - SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); - - // If N is a constant we could fold this into a fallthrough or unconditional - // branch. However that doesn't happen very often in normal code, because - // Instcombine/SimplifyCFG should have handled the available opportunities. - // If we did this folding here, it would be necessary to update the - // MachineBasicBlock CFG, which is awkward. - - // Use SimplifySetCC to simplify SETCC's. - SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), - CondLHS, CondRHS, CC->get(), SDLoc(N), - false); - if (Simp.getNode()) AddToWorklist(Simp.getNode()); - - // fold to a simpler setcc - if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) - return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, - N->getOperand(0), Simp.getOperand(2), - Simp.getOperand(0), Simp.getOperand(1), - N->getOperand(4)); - - return SDValue(); -} - -static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, - bool &IsLoad, bool &IsMasked, SDValue &Ptr, - const TargetLowering &TLI) { - if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { - if (LD->isIndexed()) - return false; - EVT VT = LD->getMemoryVT(); - if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) - return false; - Ptr = LD->getBasePtr(); - } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { - if (ST->isIndexed()) - return false; - EVT VT = ST->getMemoryVT(); - if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) - return false; - Ptr = ST->getBasePtr(); - IsLoad = false; - } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { - if (LD->isIndexed()) - return false; - EVT VT = LD->getMemoryVT(); - if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && - !TLI.isIndexedMaskedLoadLegal(Dec, VT)) - return false; - Ptr = LD->getBasePtr(); - IsMasked = true; - } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { - if (ST->isIndexed()) - return false; - EVT VT = ST->getMemoryVT(); - if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && - !TLI.isIndexedMaskedStoreLegal(Dec, VT)) - return false; - Ptr = ST->getBasePtr(); - IsLoad = false; - IsMasked = true; - } else { - return false; - } - return true; -} - -/// Try turning a load/store into a pre-indexed load/store when the base -/// pointer is an add or subtract and it has other uses besides the load/store. -/// After the transformation, the new indexed load/store has effectively folded -/// the add/subtract in and all of its other uses are redirected to the -/// new load/store. -bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - bool IsLoad = true; - bool IsMasked = false; - SDValue Ptr; - if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, - Ptr, TLI)) - return false; - - // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail - // out. There is no reason to make this a preinc/predec. - if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || - Ptr.getNode()->hasOneUse()) - return false; - - // Ask the target to do addressing mode selection. - SDValue BasePtr; - SDValue Offset; - ISD::MemIndexedMode AM = ISD::UNINDEXED; - if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) - return false; - - // Backends without true r+i pre-indexed forms may need to pass a - // constant base with a variable offset so that constant coercion - // will work with the patterns in canonical form. - bool Swapped = false; - if (isa<ConstantSDNode>(BasePtr)) { - std::swap(BasePtr, Offset); - Swapped = true; - } - - // Don't create a indexed load / store with zero offset. - if (isNullConstant(Offset)) - return false; - - // Try turning it into a pre-indexed load / store except when: - // 1) The new base ptr is a frame index. - // 2) If N is a store and the new base ptr is either the same as or is a - // predecessor of the value being stored. - // 3) Another use of old base ptr is a predecessor of N. If ptr is folded - // that would create a cycle. - // 4) All uses are load / store ops that use it as old base ptr. - - // Check #1. Preinc'ing a frame index would require copying the stack pointer - // (plus the implicit offset) to a register to preinc anyway. - if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) - return false; - - // Check #2. - if (!IsLoad) { - SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() - : cast<StoreSDNode>(N)->getValue(); - - // Would require a copy. - if (Val == BasePtr) - return false; - - // Would create a cycle. - if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) - return false; - } - - // Caches for hasPredecessorHelper. - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 16> Worklist; - Worklist.push_back(N); - - // If the offset is a constant, there may be other adds of constants that - // can be folded with this one. We should do this to avoid having to keep - // a copy of the original base pointer. - SmallVector<SDNode *, 16> OtherUses; - if (isa<ConstantSDNode>(Offset)) - for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), - UE = BasePtr.getNode()->use_end(); - UI != UE; ++UI) { - SDUse &Use = UI.getUse(); - // Skip the use that is Ptr and uses of other results from BasePtr's - // node (important for nodes that return multiple results). - if (Use.getUser() == Ptr.getNode() || Use != BasePtr) - continue; - - if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) - continue; - - if (Use.getUser()->getOpcode() != ISD::ADD && - Use.getUser()->getOpcode() != ISD::SUB) { - OtherUses.clear(); - break; - } - - SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); - if (!isa<ConstantSDNode>(Op1)) { - OtherUses.clear(); - break; - } - - // FIXME: In some cases, we can be smarter about this. - if (Op1.getValueType() != Offset.getValueType()) { - OtherUses.clear(); - break; - } - - OtherUses.push_back(Use.getUser()); - } - - if (Swapped) - std::swap(BasePtr, Offset); - - // Now check for #3 and #4. - bool RealUse = false; - - for (SDNode *Use : Ptr.getNode()->uses()) { - if (Use == N) - continue; - if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) - return false; - - // If Ptr may be folded in addressing mode of other use, then it's - // not profitable to do this transformation. - if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) - RealUse = true; - } - - if (!RealUse) - return false; - - SDValue Result; - if (!IsMasked) { - if (IsLoad) - Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); - else - Result = - DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); - } else { - if (IsLoad) - Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, - Offset, AM); - else - Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, - Offset, AM); - } - ++PreIndexedNodes; - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; - Result.getNode()->dump(&DAG); dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - if (IsLoad) { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); - } else { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); - } - - // Finally, since the node is now dead, remove it from the graph. - deleteAndRecombine(N); - - if (Swapped) - std::swap(BasePtr, Offset); - - // Replace other uses of BasePtr that can be updated to use Ptr - for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { - unsigned OffsetIdx = 1; - if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) - OffsetIdx = 0; - assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == - BasePtr.getNode() && "Expected BasePtr operand"); - - // We need to replace ptr0 in the following expression: - // x0 * offset0 + y0 * ptr0 = t0 - // knowing that - // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) - // - // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the - // indexed load/store and the expression that needs to be re-written. - // - // Therefore, we have: - // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 - + // If N is a constant we could fold this into a fallthrough or unconditional + // branch. However that doesn't happen very often in normal code, because + // Instcombine/SimplifyCFG should have handled the available opportunities. + // If we did this folding here, it would be necessary to update the + // MachineBasicBlock CFG, which is awkward. + + // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal + // on the target. + if (N1.getOpcode() == ISD::SETCC && + TLI.isOperationLegalOrCustom(ISD::BR_CC, + N1.getOperand(0).getValueType())) { + return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, + Chain, N1.getOperand(2), + N1.getOperand(0), N1.getOperand(1), N2); + } + + if (N1.hasOneUse()) { + // rebuildSetCC calls visitXor which may change the Chain when there is a + // STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes. + HandleSDNode ChainHandle(Chain); + if (SDValue NewN1 = rebuildSetCC(N1)) + return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, + ChainHandle.getValue(), NewN1, N2); + } + + return SDValue(); +} + +SDValue DAGCombiner::rebuildSetCC(SDValue N) { + if (N.getOpcode() == ISD::SRL || + (N.getOpcode() == ISD::TRUNCATE && + (N.getOperand(0).hasOneUse() && + N.getOperand(0).getOpcode() == ISD::SRL))) { + // Look pass the truncate. + if (N.getOpcode() == ISD::TRUNCATE) + N = N.getOperand(0); + + // Match this pattern so that we can generate simpler code: + // + // %a = ... + // %b = and i32 %a, 2 + // %c = srl i32 %b, 1 + // brcond i32 %c ... + // + // into + // + // %a = ... + // %b = and i32 %a, 2 + // %c = setcc eq %b, 0 + // brcond %c ... + // + // This applies only when the AND constant value has one bit set and the + // SRL constant is equal to the log2 of the AND constant. The back-end is + // smart enough to convert the result into a TEST/JMP sequence. + SDValue Op0 = N.getOperand(0); + SDValue Op1 = N.getOperand(1); + + if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) { + SDValue AndOp1 = Op0.getOperand(1); + + if (AndOp1.getOpcode() == ISD::Constant) { + const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue(); + + if (AndConst.isPowerOf2() && + cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) { + SDLoc DL(N); + return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()), + Op0, DAG.getConstant(0, DL, Op0.getValueType()), + ISD::SETNE); + } + } + } + } + + // Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne)) + // Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq)) + if (N.getOpcode() == ISD::XOR) { + // Because we may call this on a speculatively constructed + // SimplifiedSetCC Node, we need to simplify this node first. + // Ideally this should be folded into SimplifySetCC and not + // here. For now, grab a handle to N so we don't lose it from + // replacements interal to the visit. + HandleSDNode XORHandle(N); + while (N.getOpcode() == ISD::XOR) { + SDValue Tmp = visitXOR(N.getNode()); + // No simplification done. + if (!Tmp.getNode()) + break; + // Returning N is form in-visit replacement that may invalidated + // N. Grab value from Handle. + if (Tmp.getNode() == N.getNode()) + N = XORHandle.getValue(); + else // Node simplified. Try simplifying again. + N = Tmp; + } + + if (N.getOpcode() != ISD::XOR) + return N; + + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + + if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) { + bool Equal = false; + // (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq)) + if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR && + Op0.getValueType() == MVT::i1) { + N = Op0; + Op0 = N->getOperand(0); + Op1 = N->getOperand(1); + Equal = true; + } + + EVT SetCCVT = N.getValueType(); + if (LegalTypes) + SetCCVT = getSetCCResultType(SetCCVT); + // Replace the uses of XOR with SETCC + return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1, + Equal ? ISD::SETEQ : ISD::SETNE); + } + } + + return SDValue(); +} + +// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. +// +SDValue DAGCombiner::visitBR_CC(SDNode *N) { + CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); + SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); + + // If N is a constant we could fold this into a fallthrough or unconditional + // branch. However that doesn't happen very often in normal code, because + // Instcombine/SimplifyCFG should have handled the available opportunities. + // If we did this folding here, it would be necessary to update the + // MachineBasicBlock CFG, which is awkward. + + // Use SimplifySetCC to simplify SETCC's. + SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()), + CondLHS, CondRHS, CC->get(), SDLoc(N), + false); + if (Simp.getNode()) AddToWorklist(Simp.getNode()); + + // fold to a simpler setcc + if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC) + return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other, + N->getOperand(0), Simp.getOperand(2), + Simp.getOperand(0), Simp.getOperand(1), + N->getOperand(4)); + + return SDValue(); +} + +static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec, + bool &IsLoad, bool &IsMasked, SDValue &Ptr, + const TargetLowering &TLI) { + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + if (LD->isIndexed()) + return false; + EVT VT = LD->getMemoryVT(); + if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT)) + return false; + Ptr = LD->getBasePtr(); + } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + if (ST->isIndexed()) + return false; + EVT VT = ST->getMemoryVT(); + if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT)) + return false; + Ptr = ST->getBasePtr(); + IsLoad = false; + } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) { + if (LD->isIndexed()) + return false; + EVT VT = LD->getMemoryVT(); + if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) && + !TLI.isIndexedMaskedLoadLegal(Dec, VT)) + return false; + Ptr = LD->getBasePtr(); + IsMasked = true; + } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) { + if (ST->isIndexed()) + return false; + EVT VT = ST->getMemoryVT(); + if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) && + !TLI.isIndexedMaskedStoreLegal(Dec, VT)) + return false; + Ptr = ST->getBasePtr(); + IsLoad = false; + IsMasked = true; + } else { + return false; + } + return true; +} + +/// Try turning a load/store into a pre-indexed load/store when the base +/// pointer is an add or subtract and it has other uses besides the load/store. +/// After the transformation, the new indexed load/store has effectively folded +/// the add/subtract in and all of its other uses are redirected to the +/// new load/store. +bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) { + if (Level < AfterLegalizeDAG) + return false; + + bool IsLoad = true; + bool IsMasked = false; + SDValue Ptr; + if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked, + Ptr, TLI)) + return false; + + // If the pointer is not an add/sub, or if it doesn't have multiple uses, bail + // out. There is no reason to make this a preinc/predec. + if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) || + Ptr.getNode()->hasOneUse()) + return false; + + // Ask the target to do addressing mode selection. + SDValue BasePtr; + SDValue Offset; + ISD::MemIndexedMode AM = ISD::UNINDEXED; + if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG)) + return false; + + // Backends without true r+i pre-indexed forms may need to pass a + // constant base with a variable offset so that constant coercion + // will work with the patterns in canonical form. + bool Swapped = false; + if (isa<ConstantSDNode>(BasePtr)) { + std::swap(BasePtr, Offset); + Swapped = true; + } + + // Don't create a indexed load / store with zero offset. + if (isNullConstant(Offset)) + return false; + + // Try turning it into a pre-indexed load / store except when: + // 1) The new base ptr is a frame index. + // 2) If N is a store and the new base ptr is either the same as or is a + // predecessor of the value being stored. + // 3) Another use of old base ptr is a predecessor of N. If ptr is folded + // that would create a cycle. + // 4) All uses are load / store ops that use it as old base ptr. + + // Check #1. Preinc'ing a frame index would require copying the stack pointer + // (plus the implicit offset) to a register to preinc anyway. + if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) + return false; + + // Check #2. + if (!IsLoad) { + SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue() + : cast<StoreSDNode>(N)->getValue(); + + // Would require a copy. + if (Val == BasePtr) + return false; + + // Would create a cycle. + if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode())) + return false; + } + + // Caches for hasPredecessorHelper. + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 16> Worklist; + Worklist.push_back(N); + + // If the offset is a constant, there may be other adds of constants that + // can be folded with this one. We should do this to avoid having to keep + // a copy of the original base pointer. + SmallVector<SDNode *, 16> OtherUses; + if (isa<ConstantSDNode>(Offset)) + for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(), + UE = BasePtr.getNode()->use_end(); + UI != UE; ++UI) { + SDUse &Use = UI.getUse(); + // Skip the use that is Ptr and uses of other results from BasePtr's + // node (important for nodes that return multiple results). + if (Use.getUser() == Ptr.getNode() || Use != BasePtr) + continue; + + if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist)) + continue; + + if (Use.getUser()->getOpcode() != ISD::ADD && + Use.getUser()->getOpcode() != ISD::SUB) { + OtherUses.clear(); + break; + } + + SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1); + if (!isa<ConstantSDNode>(Op1)) { + OtherUses.clear(); + break; + } + + // FIXME: In some cases, we can be smarter about this. + if (Op1.getValueType() != Offset.getValueType()) { + OtherUses.clear(); + break; + } + + OtherUses.push_back(Use.getUser()); + } + + if (Swapped) + std::swap(BasePtr, Offset); + + // Now check for #3 and #4. + bool RealUse = false; + + for (SDNode *Use : Ptr.getNode()->uses()) { + if (Use == N) + continue; + if (SDNode::hasPredecessorHelper(Use, Visited, Worklist)) + return false; + + // If Ptr may be folded in addressing mode of other use, then it's + // not profitable to do this transformation. + if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI)) + RealUse = true; + } + + if (!RealUse) + return false; + + SDValue Result; + if (!IsMasked) { + if (IsLoad) + Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); + else + Result = + DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM); + } else { + if (IsLoad) + Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr, + Offset, AM); + else + Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr, + Offset, AM); + } + ++PreIndexedNodes; + ++NodesCombined; + LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: "; + Result.getNode()->dump(&DAG); dbgs() << '\n'); + WorklistRemover DeadNodes(*this); + if (IsLoad) { + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); + } else { + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); + } + + // Finally, since the node is now dead, remove it from the graph. + deleteAndRecombine(N); + + if (Swapped) + std::swap(BasePtr, Offset); + + // Replace other uses of BasePtr that can be updated to use Ptr + for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) { + unsigned OffsetIdx = 1; + if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode()) + OffsetIdx = 0; + assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() == + BasePtr.getNode() && "Expected BasePtr operand"); + + // We need to replace ptr0 in the following expression: + // x0 * offset0 + y0 * ptr0 = t0 + // knowing that + // x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store) + // + // where x0, x1, y0 and y1 in {-1, 1} are given by the types of the + // indexed load/store and the expression that needs to be re-written. + // + // Therefore, we have: + // t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1 + auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx)); - const APInt &Offset0 = CN->getAPIntValue(); + const APInt &Offset0 = CN->getAPIntValue(); const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue(); int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1; int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1; int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1; int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1; - - unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; - - APInt CNV = Offset0; - if (X0 < 0) CNV = -CNV; - if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; - else CNV = CNV - Offset1; - - SDLoc DL(OtherUses[i]); - - // We can now generate the new expression. - SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); - SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); - - SDValue NewUse = DAG.getNode(Opcode, - DL, - OtherUses[i]->getValueType(0), NewOp1, NewOp2); - DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); - deleteAndRecombine(OtherUses[i]); - } - - // Replace the uses of Ptr with uses of the updated base value. - DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); - deleteAndRecombine(Ptr.getNode()); - AddToWorklist(Result.getNode()); - - return true; -} - -static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, - SDValue &BasePtr, SDValue &Offset, - ISD::MemIndexedMode &AM, - SelectionDAG &DAG, - const TargetLowering &TLI) { - if (PtrUse == N || - (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) - return false; - - if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) - return false; - - // Don't create a indexed load / store with zero offset. - if (isNullConstant(Offset)) - return false; - - if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) - return false; - - SmallPtrSet<const SDNode *, 32> Visited; - for (SDNode *Use : BasePtr.getNode()->uses()) { - if (Use == Ptr.getNode()) - continue; - - // No if there's a later user which could perform the index instead. - if (isa<MemSDNode>(Use)) { - bool IsLoad = true; - bool IsMasked = false; - SDValue OtherPtr; - if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, - IsMasked, OtherPtr, TLI)) { - SmallVector<const SDNode *, 2> Worklist; - Worklist.push_back(Use); - if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) - return false; - } - } - - // If all the uses are load / store addresses, then don't do the - // transformation. - if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { - for (SDNode *UseUse : Use->uses()) - if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) - return false; - } - } - return true; -} - -static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, - bool &IsMasked, SDValue &Ptr, - SDValue &BasePtr, SDValue &Offset, - ISD::MemIndexedMode &AM, - SelectionDAG &DAG, - const TargetLowering &TLI) { - if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, - IsMasked, Ptr, TLI) || - Ptr.getNode()->hasOneUse()) - return nullptr; - - // Try turning it into a post-indexed load / store except when - // 1) All uses are load / store ops that use it as base ptr (and - // it may be folded as addressing mmode). - // 2) Op must be independent of N, i.e. Op is neither a predecessor - // nor a successor of N. Otherwise, if Op is folded that would - // create a cycle. - for (SDNode *Op : Ptr->uses()) { - // Check for #1. - if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) - continue; - - // Check for #2. - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 8> Worklist; - // Ptr is predecessor to both N and Op. - Visited.insert(Ptr.getNode()); - Worklist.push_back(N); - Worklist.push_back(Op); - if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && - !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) - return Op; - } - return nullptr; -} - -/// Try to combine a load/store with a add/sub of the base pointer node into a -/// post-indexed load/store. The transformation folded the add/subtract into the -/// new indexed load/store effectively and all of its uses are redirected to the -/// new load/store. -bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - bool IsLoad = true; - bool IsMasked = false; - SDValue Ptr; - SDValue BasePtr; - SDValue Offset; - ISD::MemIndexedMode AM = ISD::UNINDEXED; - SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, - Offset, AM, DAG, TLI); - if (!Op) - return false; - - SDValue Result; - if (!IsMasked) - Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, - Offset, AM) - : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), - BasePtr, Offset, AM); - else - Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), - BasePtr, Offset, AM) - : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), - BasePtr, Offset, AM); - ++PostIndexedNodes; - ++NodesCombined; - LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); - dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); - dbgs() << '\n'); - WorklistRemover DeadNodes(*this); - if (IsLoad) { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); - } else { - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); - } - - // Finally, since the node is now dead, remove it from the graph. - deleteAndRecombine(N); - - // Replace the uses of Use with uses of the updated base value. - DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), - Result.getValue(IsLoad ? 1 : 0)); - deleteAndRecombine(Op); - return true; -} - -/// Return the base-pointer arithmetic from an indexed \p LD. -SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { - ISD::MemIndexedMode AM = LD->getAddressingMode(); - assert(AM != ISD::UNINDEXED); - SDValue BP = LD->getOperand(1); - SDValue Inc = LD->getOperand(2); - - // Some backends use TargetConstants for load offsets, but don't expect - // TargetConstants in general ADD nodes. We can convert these constants into - // regular Constants (if the constant is not opaque). - assert((Inc.getOpcode() != ISD::TargetConstant || - !cast<ConstantSDNode>(Inc)->isOpaque()) && - "Cannot split out indexing using opaque target constants"); - if (Inc.getOpcode() == ISD::TargetConstant) { - ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); - Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), - ConstInc->getValueType(0)); - } - - unsigned Opc = - (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); - return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); -} - + + unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD; + + APInt CNV = Offset0; + if (X0 < 0) CNV = -CNV; + if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1; + else CNV = CNV - Offset1; + + SDLoc DL(OtherUses[i]); + + // We can now generate the new expression. + SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0)); + SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0); + + SDValue NewUse = DAG.getNode(Opcode, + DL, + OtherUses[i]->getValueType(0), NewOp1, NewOp2); + DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse); + deleteAndRecombine(OtherUses[i]); + } + + // Replace the uses of Ptr with uses of the updated base value. + DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0)); + deleteAndRecombine(Ptr.getNode()); + AddToWorklist(Result.getNode()); + + return true; +} + +static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse, + SDValue &BasePtr, SDValue &Offset, + ISD::MemIndexedMode &AM, + SelectionDAG &DAG, + const TargetLowering &TLI) { + if (PtrUse == N || + (PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB)) + return false; + + if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG)) + return false; + + // Don't create a indexed load / store with zero offset. + if (isNullConstant(Offset)) + return false; + + if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr)) + return false; + + SmallPtrSet<const SDNode *, 32> Visited; + for (SDNode *Use : BasePtr.getNode()->uses()) { + if (Use == Ptr.getNode()) + continue; + + // No if there's a later user which could perform the index instead. + if (isa<MemSDNode>(Use)) { + bool IsLoad = true; + bool IsMasked = false; + SDValue OtherPtr; + if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad, + IsMasked, OtherPtr, TLI)) { + SmallVector<const SDNode *, 2> Worklist; + Worklist.push_back(Use); + if (SDNode::hasPredecessorHelper(N, Visited, Worklist)) + return false; + } + } + + // If all the uses are load / store addresses, then don't do the + // transformation. + if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) { + for (SDNode *UseUse : Use->uses()) + if (canFoldInAddressingMode(Use, UseUse, DAG, TLI)) + return false; + } + } + return true; +} + +static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad, + bool &IsMasked, SDValue &Ptr, + SDValue &BasePtr, SDValue &Offset, + ISD::MemIndexedMode &AM, + SelectionDAG &DAG, + const TargetLowering &TLI) { + if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad, + IsMasked, Ptr, TLI) || + Ptr.getNode()->hasOneUse()) + return nullptr; + + // Try turning it into a post-indexed load / store except when + // 1) All uses are load / store ops that use it as base ptr (and + // it may be folded as addressing mmode). + // 2) Op must be independent of N, i.e. Op is neither a predecessor + // nor a successor of N. Otherwise, if Op is folded that would + // create a cycle. + for (SDNode *Op : Ptr->uses()) { + // Check for #1. + if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI)) + continue; + + // Check for #2. + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 8> Worklist; + // Ptr is predecessor to both N and Op. + Visited.insert(Ptr.getNode()); + Worklist.push_back(N); + Worklist.push_back(Op); + if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) && + !SDNode::hasPredecessorHelper(Op, Visited, Worklist)) + return Op; + } + return nullptr; +} + +/// Try to combine a load/store with a add/sub of the base pointer node into a +/// post-indexed load/store. The transformation folded the add/subtract into the +/// new indexed load/store effectively and all of its uses are redirected to the +/// new load/store. +bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) { + if (Level < AfterLegalizeDAG) + return false; + + bool IsLoad = true; + bool IsMasked = false; + SDValue Ptr; + SDValue BasePtr; + SDValue Offset; + ISD::MemIndexedMode AM = ISD::UNINDEXED; + SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr, + Offset, AM, DAG, TLI); + if (!Op) + return false; + + SDValue Result; + if (!IsMasked) + Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, + Offset, AM) + : DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), + BasePtr, Offset, AM); + else + Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), + BasePtr, Offset, AM) + : DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), + BasePtr, Offset, AM); + ++PostIndexedNodes; + ++NodesCombined; + LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG); + dbgs() << "\nWith: "; Result.getNode()->dump(&DAG); + dbgs() << '\n'); + WorklistRemover DeadNodes(*this); + if (IsLoad) { + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0)); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2)); + } else { + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1)); + } + + // Finally, since the node is now dead, remove it from the graph. + deleteAndRecombine(N); + + // Replace the uses of Use with uses of the updated base value. + DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0), + Result.getValue(IsLoad ? 1 : 0)); + deleteAndRecombine(Op); + return true; +} + +/// Return the base-pointer arithmetic from an indexed \p LD. +SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) { + ISD::MemIndexedMode AM = LD->getAddressingMode(); + assert(AM != ISD::UNINDEXED); + SDValue BP = LD->getOperand(1); + SDValue Inc = LD->getOperand(2); + + // Some backends use TargetConstants for load offsets, but don't expect + // TargetConstants in general ADD nodes. We can convert these constants into + // regular Constants (if the constant is not opaque). + assert((Inc.getOpcode() != ISD::TargetConstant || + !cast<ConstantSDNode>(Inc)->isOpaque()) && + "Cannot split out indexing using opaque target constants"); + if (Inc.getOpcode() == ISD::TargetConstant) { + ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc); + Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc), + ConstInc->getValueType(0)); + } + + unsigned Opc = + (AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB); + return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc); +} + static inline ElementCount numVectorEltsOrZero(EVT T) { return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0); -} - -bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { - Val = ST->getValue(); - EVT STType = Val.getValueType(); - EVT STMemType = ST->getMemoryVT(); - if (STType == STMemType) - return true; - if (isTypeLegal(STMemType)) - return false; // fail. - if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && - TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { - Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); - return true; - } - if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && - STType.isInteger() && STMemType.isInteger()) { - Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); - return true; - } - if (STType.getSizeInBits() == STMemType.getSizeInBits()) { - Val = DAG.getBitcast(STMemType, Val); - return true; - } - return false; // fail. -} - -bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { - EVT LDMemType = LD->getMemoryVT(); - EVT LDType = LD->getValueType(0); - assert(Val.getValueType() == LDMemType && - "Attempting to extend value of non-matching type"); - if (LDType == LDMemType) - return true; - if (LDMemType.isInteger() && LDType.isInteger()) { - switch (LD->getExtensionType()) { - case ISD::NON_EXTLOAD: - Val = DAG.getBitcast(LDType, Val); - return true; - case ISD::EXTLOAD: - Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); - return true; - case ISD::SEXTLOAD: - Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); - return true; - case ISD::ZEXTLOAD: - Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); - return true; - } - } - return false; -} - -SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { - if (OptLevel == CodeGenOpt::None || !LD->isSimple()) - return SDValue(); - SDValue Chain = LD->getOperand(0); - StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); - // TODO: Relax this restriction for unordered atomics (see D66309) - if (!ST || !ST->isSimple()) - return SDValue(); - - EVT LDType = LD->getValueType(0); - EVT LDMemType = LD->getMemoryVT(); - EVT STMemType = ST->getMemoryVT(); - EVT STType = ST->getValue().getValueType(); - +} + +bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) { + Val = ST->getValue(); + EVT STType = Val.getValueType(); + EVT STMemType = ST->getMemoryVT(); + if (STType == STMemType) + return true; + if (isTypeLegal(STMemType)) + return false; // fail. + if (STType.isFloatingPoint() && STMemType.isFloatingPoint() && + TLI.isOperationLegal(ISD::FTRUNC, STMemType)) { + Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val); + return true; + } + if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) && + STType.isInteger() && STMemType.isInteger()) { + Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val); + return true; + } + if (STType.getSizeInBits() == STMemType.getSizeInBits()) { + Val = DAG.getBitcast(STMemType, Val); + return true; + } + return false; // fail. +} + +bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) { + EVT LDMemType = LD->getMemoryVT(); + EVT LDType = LD->getValueType(0); + assert(Val.getValueType() == LDMemType && + "Attempting to extend value of non-matching type"); + if (LDType == LDMemType) + return true; + if (LDMemType.isInteger() && LDType.isInteger()) { + switch (LD->getExtensionType()) { + case ISD::NON_EXTLOAD: + Val = DAG.getBitcast(LDType, Val); + return true; + case ISD::EXTLOAD: + Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val); + return true; + case ISD::SEXTLOAD: + Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val); + return true; + case ISD::ZEXTLOAD: + Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val); + return true; + } + } + return false; +} + +SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { + if (OptLevel == CodeGenOpt::None || !LD->isSimple()) + return SDValue(); + SDValue Chain = LD->getOperand(0); + StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode()); + // TODO: Relax this restriction for unordered atomics (see D66309) + if (!ST || !ST->isSimple()) + return SDValue(); + + EVT LDType = LD->getValueType(0); + EVT LDMemType = LD->getMemoryVT(); + EVT STMemType = ST->getMemoryVT(); + EVT STType = ST->getValue().getValueType(); + // There are two cases to consider here: // 1. The store is fixed width and the load is scalable. In this case we // don't know at compile time if the store completely envelops the load @@ -15239,25 +15239,25 @@ SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { if (LdStScalable && DAG.getDataLayout().isBigEndian()) return SDValue(); - BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); - BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); - int64_t Offset; - if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) - return SDValue(); - - // Normalize for Endianness. After this Offset=0 will denote that the least - // significant bit in the loaded value maps to the least significant bit in - // the stored value). With Offset=n (for n > 0) the loaded value starts at the - // n:th least significant byte of the stored value. - if (DAG.getDataLayout().isBigEndian()) + BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG); + BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG); + int64_t Offset; + if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset)) + return SDValue(); + + // Normalize for Endianness. After this Offset=0 will denote that the least + // significant bit in the loaded value maps to the least significant bit in + // the stored value). With Offset=n (for n > 0) the loaded value starts at the + // n:th least significant byte of the stored value. + if (DAG.getDataLayout().isBigEndian()) Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() - (int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) / 8 - Offset; - - // Check that the stored value cover all bits that are loaded. + + // Check that the stored value cover all bits that are loaded. bool STCoversLD; - + TypeSize LdMemSize = LDMemType.getSizeInBits(); TypeSize StMemSize = STMemType.getSizeInBits(); if (LdStScalable) @@ -15266,1366 +15266,1366 @@ SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) { STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <= StMemSize.getFixedSize()); - auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { - if (LD->isIndexed()) { - // Cannot handle opaque target constants and we must respect the user's - // request not to split indexes from loads. - if (!canSplitIdx(LD)) - return SDValue(); - SDValue Idx = SplitIndexingFromLoad(LD); - SDValue Ops[] = {Val, Idx, Chain}; - return CombineTo(LD, Ops, 3); - } - return CombineTo(LD, Val, Chain); - }; - - if (!STCoversLD) - return SDValue(); - - // Memory as copy space (potentially masked). - if (Offset == 0 && LDType == STType && STMemType == LDMemType) { - // Simple case: Direct non-truncating forwarding + auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue { + if (LD->isIndexed()) { + // Cannot handle opaque target constants and we must respect the user's + // request not to split indexes from loads. + if (!canSplitIdx(LD)) + return SDValue(); + SDValue Idx = SplitIndexingFromLoad(LD); + SDValue Ops[] = {Val, Idx, Chain}; + return CombineTo(LD, Ops, 3); + } + return CombineTo(LD, Val, Chain); + }; + + if (!STCoversLD) + return SDValue(); + + // Memory as copy space (potentially masked). + if (Offset == 0 && LDType == STType && STMemType == LDMemType) { + // Simple case: Direct non-truncating forwarding if (LDType.getSizeInBits() == LdMemSize) - return ReplaceLd(LD, ST->getValue(), Chain); - // Can we model the truncate and extension with an and mask? - if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && - !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { - // Mask to size of LDMemType - auto Mask = + return ReplaceLd(LD, ST->getValue(), Chain); + // Can we model the truncate and extension with an and mask? + if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() && + !LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) { + // Mask to size of LDMemType + auto Mask = DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(), StMemSize.getFixedSize()), - SDLoc(ST), STType); - auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); - return ReplaceLd(LD, Val, Chain); - } - } - - // TODO: Deal with nonzero offset. - if (LD->getBasePtr().isUndef() || Offset != 0) - return SDValue(); - // Model necessary truncations / extenstions. - SDValue Val; - // Truncate Value To Stored Memory Size. - do { - if (!getTruncatedStoreValue(ST, Val)) - continue; - if (!isTypeLegal(LDMemType)) - continue; - if (STMemType != LDMemType) { - // TODO: Support vectors? This requires extract_subvector/bitcast. - if (!STMemType.isVector() && !LDMemType.isVector() && - STMemType.isInteger() && LDMemType.isInteger()) - Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); - else - continue; - } - if (!extendLoadedValueToExtension(LD, Val)) - continue; - return ReplaceLd(LD, Val, Chain); - } while (false); - - // On failure, cleanup dead nodes we may have created. - if (Val->use_empty()) - deleteAndRecombine(Val.getNode()); - return SDValue(); -} - -SDValue DAGCombiner::visitLOAD(SDNode *N) { - LoadSDNode *LD = cast<LoadSDNode>(N); - SDValue Chain = LD->getChain(); - SDValue Ptr = LD->getBasePtr(); - - // If load is not volatile and there are no uses of the loaded value (and - // the updated indexed value in case of indexed loads), change uses of the - // chain value into uses of the chain input (i.e. delete the dead load). - // TODO: Allow this for unordered atomics (see D66309) - if (LD->isSimple()) { - if (N->getValueType(1) == MVT::Other) { - // Unindexed loads. - if (!N->hasAnyUseOfValue(0)) { - // It's not safe to use the two value CombineTo variant here. e.g. - // v1, chain2 = load chain1, loc - // v2, chain3 = load chain2, loc - // v3 = add v2, c - // Now we replace use of chain2 with chain1. This makes the second load - // isomorphic to the one we are deleting, and thus makes this load live. - LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); - dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); - dbgs() << "\n"); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); - AddUsersToWorklist(Chain.getNode()); - if (N->use_empty()) - deleteAndRecombine(N); - - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } else { - // Indexed loads. - assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); - - // If this load has an opaque TargetConstant offset, then we cannot split - // the indexing into an add/sub directly (that TargetConstant may not be - // valid for a different type of node, and we cannot convert an opaque - // target constant into a regular constant). - bool CanSplitIdx = canSplitIdx(LD); - - if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { - SDValue Undef = DAG.getUNDEF(N->getValueType(0)); - SDValue Index; - if (N->hasAnyUseOfValue(1) && CanSplitIdx) { - Index = SplitIndexingFromLoad(LD); - // Try to fold the base pointer arithmetic into subsequent loads and - // stores. - AddUsersToWorklist(N); - } else - Index = DAG.getUNDEF(N->getValueType(1)); - LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); - dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); - dbgs() << " and 2 other values\n"); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); - deleteAndRecombine(N); - return SDValue(N, 0); // Return N so it doesn't get rechecked! - } - } - } - - // If this load is directly stored, replace the load value with the stored - // value. - if (auto V = ForwardStoreValueToDirectLoad(LD)) - return V; - - // Try to infer better alignment information than the load already has. - if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { - if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { - if (*Alignment > LD->getAlign() && - isAligned(*Alignment, LD->getSrcValueOffset())) { - SDValue NewLoad = DAG.getExtLoad( - LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, - LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - // NewLoad will always be N as we are only refining the alignment - assert(NewLoad.getNode() == N); - (void)NewLoad; - } - } - } - - if (LD->isUnindexed()) { - // Walk up chain skipping non-aliasing memory nodes. - SDValue BetterChain = FindBetterChain(LD, Chain); - - // If there is a better chain. - if (Chain != BetterChain) { - SDValue ReplLoad; - - // Replace the chain to void dependency. - if (LD->getExtensionType() == ISD::NON_EXTLOAD) { - ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), - BetterChain, Ptr, LD->getMemOperand()); - } else { - ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), - LD->getValueType(0), - BetterChain, Ptr, LD->getMemoryVT(), - LD->getMemOperand()); - } - - // Create token factor to keep old chain connected. - SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), - MVT::Other, Chain, ReplLoad.getValue(1)); - - // Replace uses with load result and token factor - return CombineTo(N, ReplLoad.getValue(0), Token); - } - } - - // Try transforming N to an indexed load. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - // Try to slice up N to more direct loads if the slices are mapped to - // different register banks or pairing can take place. - if (SliceUpLoad(N)) - return SDValue(N, 0); - - return SDValue(); -} - -namespace { - -/// Helper structure used to slice a load in smaller loads. -/// Basically a slice is obtained from the following sequence: -/// Origin = load Ty1, Base -/// Shift = srl Ty1 Origin, CstTy Amount -/// Inst = trunc Shift to Ty2 -/// -/// Then, it will be rewritten into: -/// Slice = load SliceTy, Base + SliceOffset -/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 -/// -/// SliceTy is deduced from the number of bits that are actually used to -/// build Inst. -struct LoadedSlice { - /// Helper structure used to compute the cost of a slice. - struct Cost { - /// Are we optimizing for code size. - bool ForCodeSize = false; - - /// Various cost. - unsigned Loads = 0; - unsigned Truncates = 0; - unsigned CrossRegisterBanksCopies = 0; - unsigned ZExts = 0; - unsigned Shift = 0; - - explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} - - /// Get the cost of one isolated slice. - Cost(const LoadedSlice &LS, bool ForCodeSize) - : ForCodeSize(ForCodeSize), Loads(1) { - EVT TruncType = LS.Inst->getValueType(0); - EVT LoadedType = LS.getLoadedType(); - if (TruncType != LoadedType && - !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) - ZExts = 1; - } - - /// Account for slicing gain in the current cost. - /// Slicing provide a few gains like removing a shift or a - /// truncate. This method allows to grow the cost of the original - /// load with the gain from this slice. - void addSliceGain(const LoadedSlice &LS) { - // Each slice saves a truncate. - const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); - if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), - LS.Inst->getValueType(0))) - ++Truncates; - // If there is a shift amount, this slice gets rid of it. - if (LS.Shift) - ++Shift; - // If this slice can merge a cross register bank copy, account for it. - if (LS.canMergeExpensiveCrossRegisterBankCopy()) - ++CrossRegisterBanksCopies; - } - - Cost &operator+=(const Cost &RHS) { - Loads += RHS.Loads; - Truncates += RHS.Truncates; - CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; - ZExts += RHS.ZExts; - Shift += RHS.Shift; - return *this; - } - - bool operator==(const Cost &RHS) const { - return Loads == RHS.Loads && Truncates == RHS.Truncates && - CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && - ZExts == RHS.ZExts && Shift == RHS.Shift; - } - - bool operator!=(const Cost &RHS) const { return !(*this == RHS); } - - bool operator<(const Cost &RHS) const { - // Assume cross register banks copies are as expensive as loads. - // FIXME: Do we want some more target hooks? - unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; - unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; - // Unless we are optimizing for code size, consider the - // expensive operation first. - if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) - return ExpensiveOpsLHS < ExpensiveOpsRHS; - return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < - (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); - } - - bool operator>(const Cost &RHS) const { return RHS < *this; } - - bool operator<=(const Cost &RHS) const { return !(RHS < *this); } - - bool operator>=(const Cost &RHS) const { return !(*this < RHS); } - }; - - // The last instruction that represent the slice. This should be a - // truncate instruction. - SDNode *Inst; - - // The original load instruction. - LoadSDNode *Origin; - - // The right shift amount in bits from the original load. - unsigned Shift; - - // The DAG from which Origin came from. - // This is used to get some contextual information about legal types, etc. - SelectionDAG *DAG; - - LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, - unsigned Shift = 0, SelectionDAG *DAG = nullptr) - : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} - - /// Get the bits used in a chunk of bits \p BitWidth large. - /// \return Result is \p BitWidth and has used bits set to 1 and - /// not used bits set to 0. - APInt getUsedBits() const { - // Reproduce the trunc(lshr) sequence: - // - Start from the truncated value. - // - Zero extend to the desired bit width. - // - Shift left. - assert(Origin && "No original load to compare against."); - unsigned BitWidth = Origin->getValueSizeInBits(0); - assert(Inst && "This slice is not bound to an instruction"); - assert(Inst->getValueSizeInBits(0) <= BitWidth && - "Extracted slice is bigger than the whole type!"); - APInt UsedBits(Inst->getValueSizeInBits(0), 0); - UsedBits.setAllBits(); - UsedBits = UsedBits.zext(BitWidth); - UsedBits <<= Shift; - return UsedBits; - } - - /// Get the size of the slice to be loaded in bytes. - unsigned getLoadedSize() const { - unsigned SliceSize = getUsedBits().countPopulation(); - assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); - return SliceSize / 8; - } - - /// Get the type that will be loaded for this slice. - /// Note: This may not be the final type for the slice. - EVT getLoadedType() const { - assert(DAG && "Missing context"); - LLVMContext &Ctxt = *DAG->getContext(); - return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); - } - - /// Get the alignment of the load used for this slice. - Align getAlign() const { - Align Alignment = Origin->getAlign(); - uint64_t Offset = getOffsetFromBase(); - if (Offset != 0) - Alignment = commonAlignment(Alignment, Alignment.value() + Offset); - return Alignment; - } - - /// Check if this slice can be rewritten with legal operations. - bool isLegal() const { - // An invalid slice is not legal. - if (!Origin || !Inst || !DAG) - return false; - - // Offsets are for indexed load only, we do not handle that. - if (!Origin->getOffset().isUndef()) - return false; - - const TargetLowering &TLI = DAG->getTargetLoweringInfo(); - - // Check that the type is legal. - EVT SliceType = getLoadedType(); - if (!TLI.isTypeLegal(SliceType)) - return false; - - // Check that the load is legal for this type. - if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) - return false; - - // Check that the offset can be computed. - // 1. Check its type. - EVT PtrType = Origin->getBasePtr().getValueType(); - if (PtrType == MVT::Untyped || PtrType.isExtended()) - return false; - - // 2. Check that it fits in the immediate. - if (!TLI.isLegalAddImmediate(getOffsetFromBase())) - return false; - - // 3. Check that the computation is legal. - if (!TLI.isOperationLegal(ISD::ADD, PtrType)) - return false; - - // Check that the zext is legal if it needs one. - EVT TruncateType = Inst->getValueType(0); - if (TruncateType != SliceType && - !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) - return false; - - return true; - } - - /// Get the offset in bytes of this slice in the original chunk of - /// bits. - /// \pre DAG != nullptr. - uint64_t getOffsetFromBase() const { - assert(DAG && "Missing context."); - bool IsBigEndian = DAG->getDataLayout().isBigEndian(); - assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); - uint64_t Offset = Shift / 8; - unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; - assert(!(Origin->getValueSizeInBits(0) & 0x7) && - "The size of the original loaded type is not a multiple of a" - " byte."); - // If Offset is bigger than TySizeInBytes, it means we are loading all - // zeros. This should have been optimized before in the process. - assert(TySizeInBytes > Offset && - "Invalid shift amount for given loaded size"); - if (IsBigEndian) - Offset = TySizeInBytes - Offset - getLoadedSize(); - return Offset; - } - - /// Generate the sequence of instructions to load the slice - /// represented by this object and redirect the uses of this slice to - /// this new sequence of instructions. - /// \pre this->Inst && this->Origin are valid Instructions and this - /// object passed the legal check: LoadedSlice::isLegal returned true. - /// \return The last instruction of the sequence used to load the slice. - SDValue loadSlice() const { - assert(Inst && Origin && "Unable to replace a non-existing slice."); - const SDValue &OldBaseAddr = Origin->getBasePtr(); - SDValue BaseAddr = OldBaseAddr; - // Get the offset in that chunk of bytes w.r.t. the endianness. - int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); - assert(Offset >= 0 && "Offset too big to fit in int64_t!"); - if (Offset) { - // BaseAddr = BaseAddr + Offset. - EVT ArithType = BaseAddr.getValueType(); - SDLoc DL(Origin); - BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, - DAG->getConstant(Offset, DL, ArithType)); - } - - // Create the type of the loaded slice according to its size. - EVT SliceType = getLoadedType(); - - // Create the load for the slice. - SDValue LastInst = - DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, - Origin->getPointerInfo().getWithOffset(Offset), getAlign(), - Origin->getMemOperand()->getFlags()); - // If the final type is not the same as the loaded type, this means that - // we have to pad with zero. Create a zero extend for that. - EVT FinalType = Inst->getValueType(0); - if (SliceType != FinalType) - LastInst = - DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); - return LastInst; - } - - /// Check if this slice can be merged with an expensive cross register - /// bank copy. E.g., - /// i = load i32 - /// f = bitcast i32 i to float - bool canMergeExpensiveCrossRegisterBankCopy() const { - if (!Inst || !Inst->hasOneUse()) - return false; - SDNode *Use = *Inst->use_begin(); - if (Use->getOpcode() != ISD::BITCAST) - return false; - assert(DAG && "Missing context"); - const TargetLowering &TLI = DAG->getTargetLoweringInfo(); - EVT ResVT = Use->getValueType(0); - const TargetRegisterClass *ResRC = - TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); - const TargetRegisterClass *ArgRC = - TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), - Use->getOperand(0)->isDivergent()); - if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) - return false; - - // At this point, we know that we perform a cross-register-bank copy. - // Check if it is expensive. - const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); - // Assume bitcasts are cheap, unless both register classes do not - // explicitly share a common sub class. - if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) - return false; - - // Check if it will be merged with the load. - // 1. Check the alignment constraint. - Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign( - ResVT.getTypeForEVT(*DAG->getContext())); - - if (RequiredAlignment > getAlign()) - return false; - - // 2. Check that the load is a legal operation for that type. - if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) - return false; - - // 3. Check that we do not have a zext in the way. - if (Inst->getValueType(0) != getLoadedType()) - return false; - - return true; - } -}; - -} // end anonymous namespace - -/// Check that all bits set in \p UsedBits form a dense region, i.e., -/// \p UsedBits looks like 0..0 1..1 0..0. -static bool areUsedBitsDense(const APInt &UsedBits) { - // If all the bits are one, this is dense! - if (UsedBits.isAllOnesValue()) - return true; - - // Get rid of the unused bits on the right. - APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); - // Get rid of the unused bits on the left. - if (NarrowedUsedBits.countLeadingZeros()) - NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); - // Check that the chunk of bits is completely used. - return NarrowedUsedBits.isAllOnesValue(); -} - -/// Check whether or not \p First and \p Second are next to each other -/// in memory. This means that there is no hole between the bits loaded -/// by \p First and the bits loaded by \p Second. -static bool areSlicesNextToEachOther(const LoadedSlice &First, - const LoadedSlice &Second) { - assert(First.Origin == Second.Origin && First.Origin && - "Unable to match different memory origins."); - APInt UsedBits = First.getUsedBits(); - assert((UsedBits & Second.getUsedBits()) == 0 && - "Slices are not supposed to overlap."); - UsedBits |= Second.getUsedBits(); - return areUsedBitsDense(UsedBits); -} - -/// Adjust the \p GlobalLSCost according to the target -/// paring capabilities and the layout of the slices. -/// \pre \p GlobalLSCost should account for at least as many loads as -/// there is in the slices in \p LoadedSlices. -static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, - LoadedSlice::Cost &GlobalLSCost) { - unsigned NumberOfSlices = LoadedSlices.size(); - // If there is less than 2 elements, no pairing is possible. - if (NumberOfSlices < 2) - return; - - // Sort the slices so that elements that are likely to be next to each - // other in memory are next to each other in the list. - llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { - assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); - return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); - }); - const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); - // First (resp. Second) is the first (resp. Second) potentially candidate - // to be placed in a paired load. - const LoadedSlice *First = nullptr; - const LoadedSlice *Second = nullptr; - for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, - // Set the beginning of the pair. - First = Second) { - Second = &LoadedSlices[CurrSlice]; - - // If First is NULL, it means we start a new pair. - // Get to the next slice. - if (!First) - continue; - - EVT LoadedType = First->getLoadedType(); - - // If the types of the slices are different, we cannot pair them. - if (LoadedType != Second->getLoadedType()) - continue; - - // Check if the target supplies paired loads for this type. - Align RequiredAlignment; - if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { - // move to the next pair, this type is hopeless. - Second = nullptr; - continue; - } - // Check if we meet the alignment requirement. - if (First->getAlign() < RequiredAlignment) - continue; - - // Check that both loads are next to each other in memory. - if (!areSlicesNextToEachOther(*First, *Second)) - continue; - - assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); - --GlobalLSCost.Loads; - // Move to the next pair. - Second = nullptr; - } -} - -/// Check the profitability of all involved LoadedSlice. -/// Currently, it is considered profitable if there is exactly two -/// involved slices (1) which are (2) next to each other in memory, and -/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). -/// -/// Note: The order of the elements in \p LoadedSlices may be modified, but not -/// the elements themselves. -/// -/// FIXME: When the cost model will be mature enough, we can relax -/// constraints (1) and (2). -static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, - const APInt &UsedBits, bool ForCodeSize) { - unsigned NumberOfSlices = LoadedSlices.size(); - if (StressLoadSlicing) - return NumberOfSlices > 1; - - // Check (1). - if (NumberOfSlices != 2) - return false; - - // Check (2). - if (!areUsedBitsDense(UsedBits)) - return false; - - // Check (3). - LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); - // The original code has one big load. - OrigCost.Loads = 1; - for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { - const LoadedSlice &LS = LoadedSlices[CurrSlice]; - // Accumulate the cost of all the slices. - LoadedSlice::Cost SliceCost(LS, ForCodeSize); - GlobalSlicingCost += SliceCost; - - // Account as cost in the original configuration the gain obtained - // with the current slices. - OrigCost.addSliceGain(LS); - } - - // If the target supports paired load, adjust the cost accordingly. - adjustCostForPairing(LoadedSlices, GlobalSlicingCost); - return OrigCost > GlobalSlicingCost; -} - -/// If the given load, \p LI, is used only by trunc or trunc(lshr) -/// operations, split it in the various pieces being extracted. -/// -/// This sort of thing is introduced by SROA. -/// This slicing takes care not to insert overlapping loads. -/// \pre LI is a simple load (i.e., not an atomic or volatile load). -bool DAGCombiner::SliceUpLoad(SDNode *N) { - if (Level < AfterLegalizeDAG) - return false; - - LoadSDNode *LD = cast<LoadSDNode>(N); - if (!LD->isSimple() || !ISD::isNormalLoad(LD) || - !LD->getValueType(0).isInteger()) - return false; - - // The algorithm to split up a load of a scalable vector into individual - // elements currently requires knowing the length of the loaded type, - // so will need adjusting to work on scalable vectors. - if (LD->getValueType(0).isScalableVector()) - return false; - - // Keep track of already used bits to detect overlapping values. - // In that case, we will just abort the transformation. - APInt UsedBits(LD->getValueSizeInBits(0), 0); - - SmallVector<LoadedSlice, 4> LoadedSlices; - - // Check if this load is used as several smaller chunks of bits. - // Basically, look for uses in trunc or trunc(lshr) and record a new chain - // of computation for each trunc. - for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); - UI != UIEnd; ++UI) { - // Skip the uses of the chain. - if (UI.getUse().getResNo() != 0) - continue; - - SDNode *User = *UI; - unsigned Shift = 0; - - // Check if this is a trunc(lshr). - if (User->getOpcode() == ISD::SRL && User->hasOneUse() && - isa<ConstantSDNode>(User->getOperand(1))) { - Shift = User->getConstantOperandVal(1); - User = *User->use_begin(); - } - - // At this point, User is a Truncate, iff we encountered, trunc or - // trunc(lshr). - if (User->getOpcode() != ISD::TRUNCATE) - return false; - - // The width of the type must be a power of 2 and greater than 8-bits. - // Otherwise the load cannot be represented in LLVM IR. - // Moreover, if we shifted with a non-8-bits multiple, the slice - // will be across several bytes. We do not support that. - unsigned Width = User->getValueSizeInBits(0); - if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) - return false; - - // Build the slice for this chain of computations. - LoadedSlice LS(User, LD, Shift, &DAG); - APInt CurrentUsedBits = LS.getUsedBits(); - - // Check if this slice overlaps with another. - if ((CurrentUsedBits & UsedBits) != 0) - return false; - // Update the bits used globally. - UsedBits |= CurrentUsedBits; - - // Check if the new slice would be legal. - if (!LS.isLegal()) - return false; - - // Record the slice. - LoadedSlices.push_back(LS); - } - - // Abort slicing if it does not seem to be profitable. - if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) - return false; - - ++SlicedLoads; - - // Rewrite each chain to use an independent load. - // By construction, each chain can be represented by a unique load. - - // Prepare the argument for the new token factor for all the slices. - SmallVector<SDValue, 8> ArgChains; - for (SmallVectorImpl<LoadedSlice>::const_iterator - LSIt = LoadedSlices.begin(), - LSItEnd = LoadedSlices.end(); - LSIt != LSItEnd; ++LSIt) { - SDValue SliceInst = LSIt->loadSlice(); - CombineTo(LSIt->Inst, SliceInst, true); - if (SliceInst.getOpcode() != ISD::LOAD) - SliceInst = SliceInst.getOperand(0); - assert(SliceInst->getOpcode() == ISD::LOAD && - "It takes more than a zext to get to the loaded slice!!"); - ArgChains.push_back(SliceInst.getValue(1)); - } - - SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, - ArgChains); - DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); - AddToWorklist(Chain.getNode()); - return true; -} - -/// Check to see if V is (and load (ptr), imm), where the load is having -/// specific bytes cleared out. If so, return the byte size being masked out -/// and the shift amount. -static std::pair<unsigned, unsigned> -CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { - std::pair<unsigned, unsigned> Result(0, 0); - - // Check for the structure we're looking for. - if (V->getOpcode() != ISD::AND || - !isa<ConstantSDNode>(V->getOperand(1)) || - !ISD::isNormalLoad(V->getOperand(0).getNode())) - return Result; - - // Check the chain and pointer. - LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); - if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. - - // This only handles simple types. - if (V.getValueType() != MVT::i16 && - V.getValueType() != MVT::i32 && - V.getValueType() != MVT::i64) - return Result; - - // Check the constant mask. Invert it so that the bits being masked out are - // 0 and the bits being kept are 1. Use getSExtValue so that leading bits - // follow the sign bit for uniformity. - uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); - unsigned NotMaskLZ = countLeadingZeros(NotMask); - if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. - unsigned NotMaskTZ = countTrailingZeros(NotMask); - if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. - if (NotMaskLZ == 64) return Result; // All zero mask. - - // See if we have a continuous run of bits. If so, we have 0*1+0* - if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) - return Result; - - // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. - if (V.getValueType() != MVT::i64 && NotMaskLZ) - NotMaskLZ -= 64-V.getValueSizeInBits(); - - unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; - switch (MaskedBytes) { - case 1: - case 2: - case 4: break; - default: return Result; // All one mask, or 5-byte mask. - } - - // Verify that the first bit starts at a multiple of mask so that the access - // is aligned the same as the access width. - if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; - - // For narrowing to be valid, it must be the case that the load the - // immediately preceding memory operation before the store. - if (LD == Chain.getNode()) - ; // ok. - else if (Chain->getOpcode() == ISD::TokenFactor && - SDValue(LD, 1).hasOneUse()) { - // LD has only 1 chain use so they are no indirect dependencies. - if (!LD->isOperandOf(Chain.getNode())) - return Result; - } else - return Result; // Fail. - - Result.first = MaskedBytes; - Result.second = NotMaskTZ/8; - return Result; -} - -/// Check to see if IVal is something that provides a value as specified by -/// MaskInfo. If so, replace the specified store with a narrower store of -/// truncated IVal. -static SDValue -ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, - SDValue IVal, StoreSDNode *St, - DAGCombiner *DC) { - unsigned NumBytes = MaskInfo.first; - unsigned ByteShift = MaskInfo.second; - SelectionDAG &DAG = DC->getDAG(); - - // Check to see if IVal is all zeros in the part being masked in by the 'or' - // that uses this. If not, this is not a replacement. - APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), - ByteShift*8, (ByteShift+NumBytes)*8); - if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); - - // Check that it is legal on the target to do this. It is legal if the new - // VT we're shrinking to (i8/i16/i32) is legal or we're still before type - // legalization (and the target doesn't explicitly think this is a bad idea). - MVT VT = MVT::getIntegerVT(NumBytes * 8); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!DC->isTypeLegal(VT)) - return SDValue(); - if (St->getMemOperand() && - !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, - *St->getMemOperand())) - return SDValue(); - - // Okay, we can do this! Replace the 'St' store with a store of IVal that is - // shifted by ByteShift and truncated down to NumBytes. - if (ByteShift) { - SDLoc DL(IVal); - IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, - DAG.getConstant(ByteShift*8, DL, - DC->getShiftAmountTy(IVal.getValueType()))); - } - - // Figure out the offset for the store and the alignment of the access. - unsigned StOffset; - if (DAG.getDataLayout().isLittleEndian()) - StOffset = ByteShift; - else - StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; - - SDValue Ptr = St->getBasePtr(); - if (StOffset) { - SDLoc DL(IVal); + SDLoc(ST), STType); + auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask); + return ReplaceLd(LD, Val, Chain); + } + } + + // TODO: Deal with nonzero offset. + if (LD->getBasePtr().isUndef() || Offset != 0) + return SDValue(); + // Model necessary truncations / extenstions. + SDValue Val; + // Truncate Value To Stored Memory Size. + do { + if (!getTruncatedStoreValue(ST, Val)) + continue; + if (!isTypeLegal(LDMemType)) + continue; + if (STMemType != LDMemType) { + // TODO: Support vectors? This requires extract_subvector/bitcast. + if (!STMemType.isVector() && !LDMemType.isVector() && + STMemType.isInteger() && LDMemType.isInteger()) + Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val); + else + continue; + } + if (!extendLoadedValueToExtension(LD, Val)) + continue; + return ReplaceLd(LD, Val, Chain); + } while (false); + + // On failure, cleanup dead nodes we may have created. + if (Val->use_empty()) + deleteAndRecombine(Val.getNode()); + return SDValue(); +} + +SDValue DAGCombiner::visitLOAD(SDNode *N) { + LoadSDNode *LD = cast<LoadSDNode>(N); + SDValue Chain = LD->getChain(); + SDValue Ptr = LD->getBasePtr(); + + // If load is not volatile and there are no uses of the loaded value (and + // the updated indexed value in case of indexed loads), change uses of the + // chain value into uses of the chain input (i.e. delete the dead load). + // TODO: Allow this for unordered atomics (see D66309) + if (LD->isSimple()) { + if (N->getValueType(1) == MVT::Other) { + // Unindexed loads. + if (!N->hasAnyUseOfValue(0)) { + // It's not safe to use the two value CombineTo variant here. e.g. + // v1, chain2 = load chain1, loc + // v2, chain3 = load chain2, loc + // v3 = add v2, c + // Now we replace use of chain2 with chain1. This makes the second load + // isomorphic to the one we are deleting, and thus makes this load live. + LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG); + dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG); + dbgs() << "\n"); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); + AddUsersToWorklist(Chain.getNode()); + if (N->use_empty()) + deleteAndRecombine(N); + + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } else { + // Indexed loads. + assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?"); + + // If this load has an opaque TargetConstant offset, then we cannot split + // the indexing into an add/sub directly (that TargetConstant may not be + // valid for a different type of node, and we cannot convert an opaque + // target constant into a regular constant). + bool CanSplitIdx = canSplitIdx(LD); + + if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) { + SDValue Undef = DAG.getUNDEF(N->getValueType(0)); + SDValue Index; + if (N->hasAnyUseOfValue(1) && CanSplitIdx) { + Index = SplitIndexingFromLoad(LD); + // Try to fold the base pointer arithmetic into subsequent loads and + // stores. + AddUsersToWorklist(N); + } else + Index = DAG.getUNDEF(N->getValueType(1)); + LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG); + dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG); + dbgs() << " and 2 other values\n"); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain); + deleteAndRecombine(N); + return SDValue(N, 0); // Return N so it doesn't get rechecked! + } + } + } + + // If this load is directly stored, replace the load value with the stored + // value. + if (auto V = ForwardStoreValueToDirectLoad(LD)) + return V; + + // Try to infer better alignment information than the load already has. + if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) { + if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { + if (*Alignment > LD->getAlign() && + isAligned(*Alignment, LD->getSrcValueOffset())) { + SDValue NewLoad = DAG.getExtLoad( + LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr, + LD->getPointerInfo(), LD->getMemoryVT(), *Alignment, + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + // NewLoad will always be N as we are only refining the alignment + assert(NewLoad.getNode() == N); + (void)NewLoad; + } + } + } + + if (LD->isUnindexed()) { + // Walk up chain skipping non-aliasing memory nodes. + SDValue BetterChain = FindBetterChain(LD, Chain); + + // If there is a better chain. + if (Chain != BetterChain) { + SDValue ReplLoad; + + // Replace the chain to void dependency. + if (LD->getExtensionType() == ISD::NON_EXTLOAD) { + ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD), + BetterChain, Ptr, LD->getMemOperand()); + } else { + ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), + LD->getValueType(0), + BetterChain, Ptr, LD->getMemoryVT(), + LD->getMemOperand()); + } + + // Create token factor to keep old chain connected. + SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N), + MVT::Other, Chain, ReplLoad.getValue(1)); + + // Replace uses with load result and token factor + return CombineTo(N, ReplLoad.getValue(0), Token); + } + } + + // Try transforming N to an indexed load. + if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) + return SDValue(N, 0); + + // Try to slice up N to more direct loads if the slices are mapped to + // different register banks or pairing can take place. + if (SliceUpLoad(N)) + return SDValue(N, 0); + + return SDValue(); +} + +namespace { + +/// Helper structure used to slice a load in smaller loads. +/// Basically a slice is obtained from the following sequence: +/// Origin = load Ty1, Base +/// Shift = srl Ty1 Origin, CstTy Amount +/// Inst = trunc Shift to Ty2 +/// +/// Then, it will be rewritten into: +/// Slice = load SliceTy, Base + SliceOffset +/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2 +/// +/// SliceTy is deduced from the number of bits that are actually used to +/// build Inst. +struct LoadedSlice { + /// Helper structure used to compute the cost of a slice. + struct Cost { + /// Are we optimizing for code size. + bool ForCodeSize = false; + + /// Various cost. + unsigned Loads = 0; + unsigned Truncates = 0; + unsigned CrossRegisterBanksCopies = 0; + unsigned ZExts = 0; + unsigned Shift = 0; + + explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {} + + /// Get the cost of one isolated slice. + Cost(const LoadedSlice &LS, bool ForCodeSize) + : ForCodeSize(ForCodeSize), Loads(1) { + EVT TruncType = LS.Inst->getValueType(0); + EVT LoadedType = LS.getLoadedType(); + if (TruncType != LoadedType && + !LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType)) + ZExts = 1; + } + + /// Account for slicing gain in the current cost. + /// Slicing provide a few gains like removing a shift or a + /// truncate. This method allows to grow the cost of the original + /// load with the gain from this slice. + void addSliceGain(const LoadedSlice &LS) { + // Each slice saves a truncate. + const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo(); + if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(), + LS.Inst->getValueType(0))) + ++Truncates; + // If there is a shift amount, this slice gets rid of it. + if (LS.Shift) + ++Shift; + // If this slice can merge a cross register bank copy, account for it. + if (LS.canMergeExpensiveCrossRegisterBankCopy()) + ++CrossRegisterBanksCopies; + } + + Cost &operator+=(const Cost &RHS) { + Loads += RHS.Loads; + Truncates += RHS.Truncates; + CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies; + ZExts += RHS.ZExts; + Shift += RHS.Shift; + return *this; + } + + bool operator==(const Cost &RHS) const { + return Loads == RHS.Loads && Truncates == RHS.Truncates && + CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies && + ZExts == RHS.ZExts && Shift == RHS.Shift; + } + + bool operator!=(const Cost &RHS) const { return !(*this == RHS); } + + bool operator<(const Cost &RHS) const { + // Assume cross register banks copies are as expensive as loads. + // FIXME: Do we want some more target hooks? + unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies; + unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies; + // Unless we are optimizing for code size, consider the + // expensive operation first. + if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS) + return ExpensiveOpsLHS < ExpensiveOpsRHS; + return (Truncates + ZExts + Shift + ExpensiveOpsLHS) < + (RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS); + } + + bool operator>(const Cost &RHS) const { return RHS < *this; } + + bool operator<=(const Cost &RHS) const { return !(RHS < *this); } + + bool operator>=(const Cost &RHS) const { return !(*this < RHS); } + }; + + // The last instruction that represent the slice. This should be a + // truncate instruction. + SDNode *Inst; + + // The original load instruction. + LoadSDNode *Origin; + + // The right shift amount in bits from the original load. + unsigned Shift; + + // The DAG from which Origin came from. + // This is used to get some contextual information about legal types, etc. + SelectionDAG *DAG; + + LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr, + unsigned Shift = 0, SelectionDAG *DAG = nullptr) + : Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {} + + /// Get the bits used in a chunk of bits \p BitWidth large. + /// \return Result is \p BitWidth and has used bits set to 1 and + /// not used bits set to 0. + APInt getUsedBits() const { + // Reproduce the trunc(lshr) sequence: + // - Start from the truncated value. + // - Zero extend to the desired bit width. + // - Shift left. + assert(Origin && "No original load to compare against."); + unsigned BitWidth = Origin->getValueSizeInBits(0); + assert(Inst && "This slice is not bound to an instruction"); + assert(Inst->getValueSizeInBits(0) <= BitWidth && + "Extracted slice is bigger than the whole type!"); + APInt UsedBits(Inst->getValueSizeInBits(0), 0); + UsedBits.setAllBits(); + UsedBits = UsedBits.zext(BitWidth); + UsedBits <<= Shift; + return UsedBits; + } + + /// Get the size of the slice to be loaded in bytes. + unsigned getLoadedSize() const { + unsigned SliceSize = getUsedBits().countPopulation(); + assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte."); + return SliceSize / 8; + } + + /// Get the type that will be loaded for this slice. + /// Note: This may not be the final type for the slice. + EVT getLoadedType() const { + assert(DAG && "Missing context"); + LLVMContext &Ctxt = *DAG->getContext(); + return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8); + } + + /// Get the alignment of the load used for this slice. + Align getAlign() const { + Align Alignment = Origin->getAlign(); + uint64_t Offset = getOffsetFromBase(); + if (Offset != 0) + Alignment = commonAlignment(Alignment, Alignment.value() + Offset); + return Alignment; + } + + /// Check if this slice can be rewritten with legal operations. + bool isLegal() const { + // An invalid slice is not legal. + if (!Origin || !Inst || !DAG) + return false; + + // Offsets are for indexed load only, we do not handle that. + if (!Origin->getOffset().isUndef()) + return false; + + const TargetLowering &TLI = DAG->getTargetLoweringInfo(); + + // Check that the type is legal. + EVT SliceType = getLoadedType(); + if (!TLI.isTypeLegal(SliceType)) + return false; + + // Check that the load is legal for this type. + if (!TLI.isOperationLegal(ISD::LOAD, SliceType)) + return false; + + // Check that the offset can be computed. + // 1. Check its type. + EVT PtrType = Origin->getBasePtr().getValueType(); + if (PtrType == MVT::Untyped || PtrType.isExtended()) + return false; + + // 2. Check that it fits in the immediate. + if (!TLI.isLegalAddImmediate(getOffsetFromBase())) + return false; + + // 3. Check that the computation is legal. + if (!TLI.isOperationLegal(ISD::ADD, PtrType)) + return false; + + // Check that the zext is legal if it needs one. + EVT TruncateType = Inst->getValueType(0); + if (TruncateType != SliceType && + !TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType)) + return false; + + return true; + } + + /// Get the offset in bytes of this slice in the original chunk of + /// bits. + /// \pre DAG != nullptr. + uint64_t getOffsetFromBase() const { + assert(DAG && "Missing context."); + bool IsBigEndian = DAG->getDataLayout().isBigEndian(); + assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported."); + uint64_t Offset = Shift / 8; + unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8; + assert(!(Origin->getValueSizeInBits(0) & 0x7) && + "The size of the original loaded type is not a multiple of a" + " byte."); + // If Offset is bigger than TySizeInBytes, it means we are loading all + // zeros. This should have been optimized before in the process. + assert(TySizeInBytes > Offset && + "Invalid shift amount for given loaded size"); + if (IsBigEndian) + Offset = TySizeInBytes - Offset - getLoadedSize(); + return Offset; + } + + /// Generate the sequence of instructions to load the slice + /// represented by this object and redirect the uses of this slice to + /// this new sequence of instructions. + /// \pre this->Inst && this->Origin are valid Instructions and this + /// object passed the legal check: LoadedSlice::isLegal returned true. + /// \return The last instruction of the sequence used to load the slice. + SDValue loadSlice() const { + assert(Inst && Origin && "Unable to replace a non-existing slice."); + const SDValue &OldBaseAddr = Origin->getBasePtr(); + SDValue BaseAddr = OldBaseAddr; + // Get the offset in that chunk of bytes w.r.t. the endianness. + int64_t Offset = static_cast<int64_t>(getOffsetFromBase()); + assert(Offset >= 0 && "Offset too big to fit in int64_t!"); + if (Offset) { + // BaseAddr = BaseAddr + Offset. + EVT ArithType = BaseAddr.getValueType(); + SDLoc DL(Origin); + BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr, + DAG->getConstant(Offset, DL, ArithType)); + } + + // Create the type of the loaded slice according to its size. + EVT SliceType = getLoadedType(); + + // Create the load for the slice. + SDValue LastInst = + DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr, + Origin->getPointerInfo().getWithOffset(Offset), getAlign(), + Origin->getMemOperand()->getFlags()); + // If the final type is not the same as the loaded type, this means that + // we have to pad with zero. Create a zero extend for that. + EVT FinalType = Inst->getValueType(0); + if (SliceType != FinalType) + LastInst = + DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst); + return LastInst; + } + + /// Check if this slice can be merged with an expensive cross register + /// bank copy. E.g., + /// i = load i32 + /// f = bitcast i32 i to float + bool canMergeExpensiveCrossRegisterBankCopy() const { + if (!Inst || !Inst->hasOneUse()) + return false; + SDNode *Use = *Inst->use_begin(); + if (Use->getOpcode() != ISD::BITCAST) + return false; + assert(DAG && "Missing context"); + const TargetLowering &TLI = DAG->getTargetLoweringInfo(); + EVT ResVT = Use->getValueType(0); + const TargetRegisterClass *ResRC = + TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent()); + const TargetRegisterClass *ArgRC = + TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(), + Use->getOperand(0)->isDivergent()); + if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT)) + return false; + + // At this point, we know that we perform a cross-register-bank copy. + // Check if it is expensive. + const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo(); + // Assume bitcasts are cheap, unless both register classes do not + // explicitly share a common sub class. + if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC)) + return false; + + // Check if it will be merged with the load. + // 1. Check the alignment constraint. + Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign( + ResVT.getTypeForEVT(*DAG->getContext())); + + if (RequiredAlignment > getAlign()) + return false; + + // 2. Check that the load is a legal operation for that type. + if (!TLI.isOperationLegal(ISD::LOAD, ResVT)) + return false; + + // 3. Check that we do not have a zext in the way. + if (Inst->getValueType(0) != getLoadedType()) + return false; + + return true; + } +}; + +} // end anonymous namespace + +/// Check that all bits set in \p UsedBits form a dense region, i.e., +/// \p UsedBits looks like 0..0 1..1 0..0. +static bool areUsedBitsDense(const APInt &UsedBits) { + // If all the bits are one, this is dense! + if (UsedBits.isAllOnesValue()) + return true; + + // Get rid of the unused bits on the right. + APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros()); + // Get rid of the unused bits on the left. + if (NarrowedUsedBits.countLeadingZeros()) + NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits()); + // Check that the chunk of bits is completely used. + return NarrowedUsedBits.isAllOnesValue(); +} + +/// Check whether or not \p First and \p Second are next to each other +/// in memory. This means that there is no hole between the bits loaded +/// by \p First and the bits loaded by \p Second. +static bool areSlicesNextToEachOther(const LoadedSlice &First, + const LoadedSlice &Second) { + assert(First.Origin == Second.Origin && First.Origin && + "Unable to match different memory origins."); + APInt UsedBits = First.getUsedBits(); + assert((UsedBits & Second.getUsedBits()) == 0 && + "Slices are not supposed to overlap."); + UsedBits |= Second.getUsedBits(); + return areUsedBitsDense(UsedBits); +} + +/// Adjust the \p GlobalLSCost according to the target +/// paring capabilities and the layout of the slices. +/// \pre \p GlobalLSCost should account for at least as many loads as +/// there is in the slices in \p LoadedSlices. +static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices, + LoadedSlice::Cost &GlobalLSCost) { + unsigned NumberOfSlices = LoadedSlices.size(); + // If there is less than 2 elements, no pairing is possible. + if (NumberOfSlices < 2) + return; + + // Sort the slices so that elements that are likely to be next to each + // other in memory are next to each other in the list. + llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) { + assert(LHS.Origin == RHS.Origin && "Different bases not implemented."); + return LHS.getOffsetFromBase() < RHS.getOffsetFromBase(); + }); + const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo(); + // First (resp. Second) is the first (resp. Second) potentially candidate + // to be placed in a paired load. + const LoadedSlice *First = nullptr; + const LoadedSlice *Second = nullptr; + for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice, + // Set the beginning of the pair. + First = Second) { + Second = &LoadedSlices[CurrSlice]; + + // If First is NULL, it means we start a new pair. + // Get to the next slice. + if (!First) + continue; + + EVT LoadedType = First->getLoadedType(); + + // If the types of the slices are different, we cannot pair them. + if (LoadedType != Second->getLoadedType()) + continue; + + // Check if the target supplies paired loads for this type. + Align RequiredAlignment; + if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) { + // move to the next pair, this type is hopeless. + Second = nullptr; + continue; + } + // Check if we meet the alignment requirement. + if (First->getAlign() < RequiredAlignment) + continue; + + // Check that both loads are next to each other in memory. + if (!areSlicesNextToEachOther(*First, *Second)) + continue; + + assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!"); + --GlobalLSCost.Loads; + // Move to the next pair. + Second = nullptr; + } +} + +/// Check the profitability of all involved LoadedSlice. +/// Currently, it is considered profitable if there is exactly two +/// involved slices (1) which are (2) next to each other in memory, and +/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3). +/// +/// Note: The order of the elements in \p LoadedSlices may be modified, but not +/// the elements themselves. +/// +/// FIXME: When the cost model will be mature enough, we can relax +/// constraints (1) and (2). +static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices, + const APInt &UsedBits, bool ForCodeSize) { + unsigned NumberOfSlices = LoadedSlices.size(); + if (StressLoadSlicing) + return NumberOfSlices > 1; + + // Check (1). + if (NumberOfSlices != 2) + return false; + + // Check (2). + if (!areUsedBitsDense(UsedBits)) + return false; + + // Check (3). + LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize); + // The original code has one big load. + OrigCost.Loads = 1; + for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) { + const LoadedSlice &LS = LoadedSlices[CurrSlice]; + // Accumulate the cost of all the slices. + LoadedSlice::Cost SliceCost(LS, ForCodeSize); + GlobalSlicingCost += SliceCost; + + // Account as cost in the original configuration the gain obtained + // with the current slices. + OrigCost.addSliceGain(LS); + } + + // If the target supports paired load, adjust the cost accordingly. + adjustCostForPairing(LoadedSlices, GlobalSlicingCost); + return OrigCost > GlobalSlicingCost; +} + +/// If the given load, \p LI, is used only by trunc or trunc(lshr) +/// operations, split it in the various pieces being extracted. +/// +/// This sort of thing is introduced by SROA. +/// This slicing takes care not to insert overlapping loads. +/// \pre LI is a simple load (i.e., not an atomic or volatile load). +bool DAGCombiner::SliceUpLoad(SDNode *N) { + if (Level < AfterLegalizeDAG) + return false; + + LoadSDNode *LD = cast<LoadSDNode>(N); + if (!LD->isSimple() || !ISD::isNormalLoad(LD) || + !LD->getValueType(0).isInteger()) + return false; + + // The algorithm to split up a load of a scalable vector into individual + // elements currently requires knowing the length of the loaded type, + // so will need adjusting to work on scalable vectors. + if (LD->getValueType(0).isScalableVector()) + return false; + + // Keep track of already used bits to detect overlapping values. + // In that case, we will just abort the transformation. + APInt UsedBits(LD->getValueSizeInBits(0), 0); + + SmallVector<LoadedSlice, 4> LoadedSlices; + + // Check if this load is used as several smaller chunks of bits. + // Basically, look for uses in trunc or trunc(lshr) and record a new chain + // of computation for each trunc. + for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end(); + UI != UIEnd; ++UI) { + // Skip the uses of the chain. + if (UI.getUse().getResNo() != 0) + continue; + + SDNode *User = *UI; + unsigned Shift = 0; + + // Check if this is a trunc(lshr). + if (User->getOpcode() == ISD::SRL && User->hasOneUse() && + isa<ConstantSDNode>(User->getOperand(1))) { + Shift = User->getConstantOperandVal(1); + User = *User->use_begin(); + } + + // At this point, User is a Truncate, iff we encountered, trunc or + // trunc(lshr). + if (User->getOpcode() != ISD::TRUNCATE) + return false; + + // The width of the type must be a power of 2 and greater than 8-bits. + // Otherwise the load cannot be represented in LLVM IR. + // Moreover, if we shifted with a non-8-bits multiple, the slice + // will be across several bytes. We do not support that. + unsigned Width = User->getValueSizeInBits(0); + if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7)) + return false; + + // Build the slice for this chain of computations. + LoadedSlice LS(User, LD, Shift, &DAG); + APInt CurrentUsedBits = LS.getUsedBits(); + + // Check if this slice overlaps with another. + if ((CurrentUsedBits & UsedBits) != 0) + return false; + // Update the bits used globally. + UsedBits |= CurrentUsedBits; + + // Check if the new slice would be legal. + if (!LS.isLegal()) + return false; + + // Record the slice. + LoadedSlices.push_back(LS); + } + + // Abort slicing if it does not seem to be profitable. + if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize)) + return false; + + ++SlicedLoads; + + // Rewrite each chain to use an independent load. + // By construction, each chain can be represented by a unique load. + + // Prepare the argument for the new token factor for all the slices. + SmallVector<SDValue, 8> ArgChains; + for (SmallVectorImpl<LoadedSlice>::const_iterator + LSIt = LoadedSlices.begin(), + LSItEnd = LoadedSlices.end(); + LSIt != LSItEnd; ++LSIt) { + SDValue SliceInst = LSIt->loadSlice(); + CombineTo(LSIt->Inst, SliceInst, true); + if (SliceInst.getOpcode() != ISD::LOAD) + SliceInst = SliceInst.getOperand(0); + assert(SliceInst->getOpcode() == ISD::LOAD && + "It takes more than a zext to get to the loaded slice!!"); + ArgChains.push_back(SliceInst.getValue(1)); + } + + SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other, + ArgChains); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain); + AddToWorklist(Chain.getNode()); + return true; +} + +/// Check to see if V is (and load (ptr), imm), where the load is having +/// specific bytes cleared out. If so, return the byte size being masked out +/// and the shift amount. +static std::pair<unsigned, unsigned> +CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) { + std::pair<unsigned, unsigned> Result(0, 0); + + // Check for the structure we're looking for. + if (V->getOpcode() != ISD::AND || + !isa<ConstantSDNode>(V->getOperand(1)) || + !ISD::isNormalLoad(V->getOperand(0).getNode())) + return Result; + + // Check the chain and pointer. + LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0)); + if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer. + + // This only handles simple types. + if (V.getValueType() != MVT::i16 && + V.getValueType() != MVT::i32 && + V.getValueType() != MVT::i64) + return Result; + + // Check the constant mask. Invert it so that the bits being masked out are + // 0 and the bits being kept are 1. Use getSExtValue so that leading bits + // follow the sign bit for uniformity. + uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue(); + unsigned NotMaskLZ = countLeadingZeros(NotMask); + if (NotMaskLZ & 7) return Result; // Must be multiple of a byte. + unsigned NotMaskTZ = countTrailingZeros(NotMask); + if (NotMaskTZ & 7) return Result; // Must be multiple of a byte. + if (NotMaskLZ == 64) return Result; // All zero mask. + + // See if we have a continuous run of bits. If so, we have 0*1+0* + if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64) + return Result; + + // Adjust NotMaskLZ down to be from the actual size of the int instead of i64. + if (V.getValueType() != MVT::i64 && NotMaskLZ) + NotMaskLZ -= 64-V.getValueSizeInBits(); + + unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8; + switch (MaskedBytes) { + case 1: + case 2: + case 4: break; + default: return Result; // All one mask, or 5-byte mask. + } + + // Verify that the first bit starts at a multiple of mask so that the access + // is aligned the same as the access width. + if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result; + + // For narrowing to be valid, it must be the case that the load the + // immediately preceding memory operation before the store. + if (LD == Chain.getNode()) + ; // ok. + else if (Chain->getOpcode() == ISD::TokenFactor && + SDValue(LD, 1).hasOneUse()) { + // LD has only 1 chain use so they are no indirect dependencies. + if (!LD->isOperandOf(Chain.getNode())) + return Result; + } else + return Result; // Fail. + + Result.first = MaskedBytes; + Result.second = NotMaskTZ/8; + return Result; +} + +/// Check to see if IVal is something that provides a value as specified by +/// MaskInfo. If so, replace the specified store with a narrower store of +/// truncated IVal. +static SDValue +ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo, + SDValue IVal, StoreSDNode *St, + DAGCombiner *DC) { + unsigned NumBytes = MaskInfo.first; + unsigned ByteShift = MaskInfo.second; + SelectionDAG &DAG = DC->getDAG(); + + // Check to see if IVal is all zeros in the part being masked in by the 'or' + // that uses this. If not, this is not a replacement. + APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(), + ByteShift*8, (ByteShift+NumBytes)*8); + if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue(); + + // Check that it is legal on the target to do this. It is legal if the new + // VT we're shrinking to (i8/i16/i32) is legal or we're still before type + // legalization (and the target doesn't explicitly think this is a bad idea). + MVT VT = MVT::getIntegerVT(NumBytes * 8); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!DC->isTypeLegal(VT)) + return SDValue(); + if (St->getMemOperand() && + !TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT, + *St->getMemOperand())) + return SDValue(); + + // Okay, we can do this! Replace the 'St' store with a store of IVal that is + // shifted by ByteShift and truncated down to NumBytes. + if (ByteShift) { + SDLoc DL(IVal); + IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal, + DAG.getConstant(ByteShift*8, DL, + DC->getShiftAmountTy(IVal.getValueType()))); + } + + // Figure out the offset for the store and the alignment of the access. + unsigned StOffset; + if (DAG.getDataLayout().isLittleEndian()) + StOffset = ByteShift; + else + StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes; + + SDValue Ptr = St->getBasePtr(); + if (StOffset) { + SDLoc DL(IVal); Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL); - } - - // Truncate down to the new size. - IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); - - ++OpsNarrowed; - return DAG - .getStore(St->getChain(), SDLoc(St), IVal, Ptr, + } + + // Truncate down to the new size. + IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal); + + ++OpsNarrowed; + return DAG + .getStore(St->getChain(), SDLoc(St), IVal, Ptr, St->getPointerInfo().getWithOffset(StOffset), St->getOriginalAlign()); -} - -/// Look for sequence of load / op / store where op is one of 'or', 'xor', and -/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try -/// narrowing the load and store if it would end up being a win for performance -/// or code size. -SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - if (!ST->isSimple()) - return SDValue(); - - SDValue Chain = ST->getChain(); - SDValue Value = ST->getValue(); - SDValue Ptr = ST->getBasePtr(); - EVT VT = Value.getValueType(); - - if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) - return SDValue(); - - unsigned Opc = Value.getOpcode(); - - // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst - // is a byte mask indicating a consecutive number of bytes, check to see if - // Y is known to provide just those bytes. If so, we try to replace the - // load + replace + store sequence with a single (narrower) store, which makes - // the load dead. - if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { - std::pair<unsigned, unsigned> MaskedLoad; - MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); - if (MaskedLoad.first) - if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, - Value.getOperand(1), ST,this)) - return NewST; - - // Or is commutative, so try swapping X and Y. - MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); - if (MaskedLoad.first) - if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, - Value.getOperand(0), ST,this)) - return NewST; - } - - if (!EnableReduceLoadOpStoreWidth) - return SDValue(); - - if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || - Value.getOperand(1).getOpcode() != ISD::Constant) - return SDValue(); - - SDValue N0 = Value.getOperand(0); - if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && - Chain == SDValue(N0.getNode(), 1)) { - LoadSDNode *LD = cast<LoadSDNode>(N0); - if (LD->getBasePtr() != Ptr || - LD->getPointerInfo().getAddrSpace() != - ST->getPointerInfo().getAddrSpace()) - return SDValue(); - - // Find the type to narrow it the load / op / store to. - SDValue N1 = Value.getOperand(1); - unsigned BitWidth = N1.getValueSizeInBits(); - APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); - if (Opc == ISD::AND) - Imm ^= APInt::getAllOnesValue(BitWidth); - if (Imm == 0 || Imm.isAllOnesValue()) - return SDValue(); - unsigned ShAmt = Imm.countTrailingZeros(); - unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; - unsigned NewBW = NextPowerOf2(MSB - ShAmt); - EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); - // The narrowing should be profitable, the load/store operation should be - // legal (or custom) and the store size should be equal to the NewVT width. - while (NewBW < BitWidth && - (NewVT.getStoreSizeInBits() != NewBW || - !TLI.isOperationLegalOrCustom(Opc, NewVT) || - !TLI.isNarrowingProfitable(VT, NewVT))) { - NewBW = NextPowerOf2(NewBW); - NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); - } - if (NewBW >= BitWidth) - return SDValue(); - - // If the lsb changed does not start at the type bitwidth boundary, - // start at the previous one. - if (ShAmt % NewBW) - ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; - APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, - std::min(BitWidth, ShAmt + NewBW)); - if ((Imm & Mask) == Imm) { - APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); - if (Opc == ISD::AND) - NewImm ^= APInt::getAllOnesValue(NewBW); - uint64_t PtrOff = ShAmt / 8; - // For big endian targets, we need to adjust the offset to the pointer to - // load the correct bytes. - if (DAG.getDataLayout().isBigEndian()) - PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; - - Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); - Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); - if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy)) - return SDValue(); - +} + +/// Look for sequence of load / op / store where op is one of 'or', 'xor', and +/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try +/// narrowing the load and store if it would end up being a win for performance +/// or code size. +SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) { + StoreSDNode *ST = cast<StoreSDNode>(N); + if (!ST->isSimple()) + return SDValue(); + + SDValue Chain = ST->getChain(); + SDValue Value = ST->getValue(); + SDValue Ptr = ST->getBasePtr(); + EVT VT = Value.getValueType(); + + if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse()) + return SDValue(); + + unsigned Opc = Value.getOpcode(); + + // If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst + // is a byte mask indicating a consecutive number of bytes, check to see if + // Y is known to provide just those bytes. If so, we try to replace the + // load + replace + store sequence with a single (narrower) store, which makes + // the load dead. + if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) { + std::pair<unsigned, unsigned> MaskedLoad; + MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain); + if (MaskedLoad.first) + if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, + Value.getOperand(1), ST,this)) + return NewST; + + // Or is commutative, so try swapping X and Y. + MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain); + if (MaskedLoad.first) + if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad, + Value.getOperand(0), ST,this)) + return NewST; + } + + if (!EnableReduceLoadOpStoreWidth) + return SDValue(); + + if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) || + Value.getOperand(1).getOpcode() != ISD::Constant) + return SDValue(); + + SDValue N0 = Value.getOperand(0); + if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && + Chain == SDValue(N0.getNode(), 1)) { + LoadSDNode *LD = cast<LoadSDNode>(N0); + if (LD->getBasePtr() != Ptr || + LD->getPointerInfo().getAddrSpace() != + ST->getPointerInfo().getAddrSpace()) + return SDValue(); + + // Find the type to narrow it the load / op / store to. + SDValue N1 = Value.getOperand(1); + unsigned BitWidth = N1.getValueSizeInBits(); + APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue(); + if (Opc == ISD::AND) + Imm ^= APInt::getAllOnesValue(BitWidth); + if (Imm == 0 || Imm.isAllOnesValue()) + return SDValue(); + unsigned ShAmt = Imm.countTrailingZeros(); + unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1; + unsigned NewBW = NextPowerOf2(MSB - ShAmt); + EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); + // The narrowing should be profitable, the load/store operation should be + // legal (or custom) and the store size should be equal to the NewVT width. + while (NewBW < BitWidth && + (NewVT.getStoreSizeInBits() != NewBW || + !TLI.isOperationLegalOrCustom(Opc, NewVT) || + !TLI.isNarrowingProfitable(VT, NewVT))) { + NewBW = NextPowerOf2(NewBW); + NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW); + } + if (NewBW >= BitWidth) + return SDValue(); + + // If the lsb changed does not start at the type bitwidth boundary, + // start at the previous one. + if (ShAmt % NewBW) + ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW; + APInt Mask = APInt::getBitsSet(BitWidth, ShAmt, + std::min(BitWidth, ShAmt + NewBW)); + if ((Imm & Mask) == Imm) { + APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW); + if (Opc == ISD::AND) + NewImm ^= APInt::getAllOnesValue(NewBW); + uint64_t PtrOff = ShAmt / 8; + // For big endian targets, we need to adjust the offset to the pointer to + // load the correct bytes. + if (DAG.getDataLayout().isBigEndian()) + PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff; + + Align NewAlign = commonAlignment(LD->getAlign(), PtrOff); + Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext()); + if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy)) + return SDValue(); + SDValue NewPtr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD)); - SDValue NewLD = - DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, - LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, - LD->getMemOperand()->getFlags(), LD->getAAInfo()); - SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, - DAG.getConstant(NewImm, SDLoc(Value), - NewVT)); - SDValue NewST = - DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, - ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); - - AddToWorklist(NewPtr.getNode()); - AddToWorklist(NewLD.getNode()); - AddToWorklist(NewVal.getNode()); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); - ++OpsNarrowed; - return NewST; - } - } - - return SDValue(); -} - -/// For a given floating point load / store pair, if the load value isn't used -/// by any other operations, then consider transforming the pair to integer -/// load / store operations if the target deems the transformation profitable. -SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - SDValue Value = ST->getValue(); - if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && - Value.hasOneUse()) { - LoadSDNode *LD = cast<LoadSDNode>(Value); - EVT VT = LD->getMemoryVT(); - if (!VT.isFloatingPoint() || - VT != ST->getMemoryVT() || - LD->isNonTemporal() || - ST->isNonTemporal() || - LD->getPointerInfo().getAddrSpace() != 0 || - ST->getPointerInfo().getAddrSpace() != 0) - return SDValue(); - - TypeSize VTSize = VT.getSizeInBits(); - - // We don't know the size of scalable types at compile time so we cannot - // create an integer of the equivalent size. - if (VTSize.isScalable()) - return SDValue(); - - EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); - if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || - !TLI.isOperationLegal(ISD::STORE, IntVT) || - !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || - !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) - return SDValue(); - - Align LDAlign = LD->getAlign(); - Align STAlign = ST->getAlign(); - Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); - Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy); - if (LDAlign < ABIAlign || STAlign < ABIAlign) - return SDValue(); - - SDValue NewLD = - DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), - LD->getPointerInfo(), LDAlign); - - SDValue NewST = - DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), - ST->getPointerInfo(), STAlign); - - AddToWorklist(NewLD.getNode()); - AddToWorklist(NewST.getNode()); - WorklistRemover DeadNodes(*this); - DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); - ++LdStFP2Int; - return NewST; - } - - return SDValue(); -} - -// This is a helper function for visitMUL to check the profitability -// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). -// MulNode is the original multiply, AddNode is (add x, c1), -// and ConstNode is c2. -// -// If the (add x, c1) has multiple uses, we could increase -// the number of adds if we make this transformation. -// It would only be worth doing this if we can remove a -// multiply in the process. Check for that here. -// To illustrate: -// (A + c1) * c3 -// (A + c2) * c3 -// We're checking for cases where we have common "c3 * A" expressions. -bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, - SDValue &AddNode, - SDValue &ConstNode) { - APInt Val; - - // If the add only has one use, this would be OK to do. - if (AddNode.getNode()->hasOneUse()) - return true; - - // Walk all the users of the constant with which we're multiplying. - for (SDNode *Use : ConstNode->uses()) { - if (Use == MulNode) // This use is the one we're on right now. Skip it. - continue; - - if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. - SDNode *OtherOp; - SDNode *MulVar = AddNode.getOperand(0).getNode(); - - // OtherOp is what we're multiplying against the constant. - if (Use->getOperand(0) == ConstNode) - OtherOp = Use->getOperand(1).getNode(); - else - OtherOp = Use->getOperand(0).getNode(); - - // Check to see if multiply is with the same operand of our "add". - // - // ConstNode = CONST - // Use = ConstNode * A <-- visiting Use. OtherOp is A. - // ... - // AddNode = (A + c1) <-- MulVar is A. - // = AddNode * ConstNode <-- current visiting instruction. - // - // If we make this transformation, we will have a common - // multiply (ConstNode * A) that we can save. - if (OtherOp == MulVar) - return true; - - // Now check to see if a future expansion will give us a common - // multiply. - // - // ConstNode = CONST - // AddNode = (A + c1) - // ... = AddNode * ConstNode <-- current visiting instruction. - // ... - // OtherOp = (A + c2) - // Use = OtherOp * ConstNode <-- visiting Use. - // - // If we make this transformation, we will have a common - // multiply (CONST * A) after we also do the same transformation - // to the "t2" instruction. - if (OtherOp->getOpcode() == ISD::ADD && - DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && - OtherOp->getOperand(0).getNode() == MulVar) - return true; - } - } - - // Didn't find a case where this would be profitable. - return false; -} - -SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumStores) { - SmallVector<SDValue, 8> Chains; - SmallPtrSet<const SDNode *, 8> Visited; - SDLoc StoreDL(StoreNodes[0].MemNode); - - for (unsigned i = 0; i < NumStores; ++i) { - Visited.insert(StoreNodes[i].MemNode); - } - - // don't include nodes that are children or repeated nodes. - for (unsigned i = 0; i < NumStores; ++i) { - if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) - Chains.push_back(StoreNodes[i].MemNode->getChain()); - } - - assert(Chains.size() > 0 && "Chain should have generated a chain"); - return DAG.getTokenFactor(StoreDL, Chains); -} - -bool DAGCombiner::mergeStoresOfConstantsOrVecElts( - SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, - bool IsConstantSrc, bool UseVector, bool UseTrunc) { - // Make sure we have something to merge. - if (NumStores < 2) - return false; - - // The latest Node in the DAG. - SDLoc DL(StoreNodes[0].MemNode); - - TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); - unsigned SizeInBits = NumStores * ElementSizeBits; - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - - EVT StoreTy; - if (UseVector) { - unsigned Elts = NumStores * NumMemElts; - // Get the type for the merged vector store. - StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); - } else - StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); - - SDValue StoredVal; - if (UseVector) { - if (IsConstantSrc) { - SmallVector<SDValue, 8> BuildVector; - for (unsigned I = 0; I != NumStores; ++I) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); - SDValue Val = St->getValue(); - // If constant is of the wrong type, convert it now. - if (MemVT != Val.getValueType()) { - Val = peekThroughBitcasts(Val); - // Deal with constants of wrong size. - if (ElementSizeBits != Val.getValueSizeInBits()) { - EVT IntMemVT = - EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); - if (isa<ConstantFPSDNode>(Val)) { - // Not clear how to truncate FP values. - return false; - } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) - Val = DAG.getConstant(C->getAPIntValue() - .zextOrTrunc(Val.getValueSizeInBits()) - .zextOrTrunc(ElementSizeBits), - SDLoc(C), IntMemVT); - } - // Make sure correctly size type is the correct type. - Val = DAG.getBitcast(MemVT, Val); - } - BuildVector.push_back(Val); - } - StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS - : ISD::BUILD_VECTOR, - DL, StoreTy, BuildVector); - } else { - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0; i < NumStores; ++i) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue Val = peekThroughBitcasts(St->getValue()); - // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of - // type MemVT. If the underlying value is not the correct - // type, but it is an extraction of an appropriate vector we - // can recast Val to be of the correct type. This may require - // converting between EXTRACT_VECTOR_ELT and - // EXTRACT_SUBVECTOR. - if ((MemVT != Val.getValueType()) && - (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || - Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { - EVT MemVTScalarTy = MemVT.getScalarType(); - // We may need to add a bitcast here to get types to line up. - if (MemVTScalarTy != Val.getValueType().getScalarType()) { - Val = DAG.getBitcast(MemVT, Val); - } else { - unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR - : ISD::EXTRACT_VECTOR_ELT; - SDValue Vec = Val.getOperand(0); - SDValue Idx = Val.getOperand(1); - Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); - } - } - Ops.push_back(Val); - } - - // Build the extracted vector elements back into a vector. - StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS - : ISD::BUILD_VECTOR, - DL, StoreTy, Ops); - } - } else { - // We should always use a vector store when merging extracted vector - // elements, so this path implies a store of constants. - assert(IsConstantSrc && "Merged vector elements should use vector store"); - - APInt StoreInt(SizeInBits, 0); - - // Construct a single integer constant which is made of the smaller - // constant inputs. - bool IsLE = DAG.getDataLayout().isLittleEndian(); - for (unsigned i = 0; i < NumStores; ++i) { - unsigned Idx = IsLE ? (NumStores - 1 - i) : i; - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); - - SDValue Val = St->getValue(); - Val = peekThroughBitcasts(Val); - StoreInt <<= ElementSizeBits; - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { - StoreInt |= C->getAPIntValue() - .zextOrTrunc(ElementSizeBits) - .zextOrTrunc(SizeInBits); - } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { - StoreInt |= C->getValueAPF() - .bitcastToAPInt() - .zextOrTrunc(ElementSizeBits) - .zextOrTrunc(SizeInBits); - // If fp truncation is necessary give up for now. - if (MemVT.getSizeInBits() != ElementSizeBits) - return false; - } else { - llvm_unreachable("Invalid constant element type"); - } - } - - // Create the new Load and Store operations. - StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); - } - - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); - - // make sure we use trunc store if it's necessary to be legal. - SDValue NewStore; - if (!UseTrunc) { + SDValue NewLD = + DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr, + LD->getPointerInfo().getWithOffset(PtrOff), NewAlign, + LD->getMemOperand()->getFlags(), LD->getAAInfo()); + SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD, + DAG.getConstant(NewImm, SDLoc(Value), + NewVT)); + SDValue NewST = + DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr, + ST->getPointerInfo().getWithOffset(PtrOff), NewAlign); + + AddToWorklist(NewPtr.getNode()); + AddToWorklist(NewLD.getNode()); + AddToWorklist(NewVal.getNode()); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1)); + ++OpsNarrowed; + return NewST; + } + } + + return SDValue(); +} + +/// For a given floating point load / store pair, if the load value isn't used +/// by any other operations, then consider transforming the pair to integer +/// load / store operations if the target deems the transformation profitable. +SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) { + StoreSDNode *ST = cast<StoreSDNode>(N); + SDValue Value = ST->getValue(); + if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) && + Value.hasOneUse()) { + LoadSDNode *LD = cast<LoadSDNode>(Value); + EVT VT = LD->getMemoryVT(); + if (!VT.isFloatingPoint() || + VT != ST->getMemoryVT() || + LD->isNonTemporal() || + ST->isNonTemporal() || + LD->getPointerInfo().getAddrSpace() != 0 || + ST->getPointerInfo().getAddrSpace() != 0) + return SDValue(); + + TypeSize VTSize = VT.getSizeInBits(); + + // We don't know the size of scalable types at compile time so we cannot + // create an integer of the equivalent size. + if (VTSize.isScalable()) + return SDValue(); + + EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize()); + if (!TLI.isOperationLegal(ISD::LOAD, IntVT) || + !TLI.isOperationLegal(ISD::STORE, IntVT) || + !TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) || + !TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT)) + return SDValue(); + + Align LDAlign = LD->getAlign(); + Align STAlign = ST->getAlign(); + Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext()); + Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy); + if (LDAlign < ABIAlign || STAlign < ABIAlign) + return SDValue(); + + SDValue NewLD = + DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(), + LD->getPointerInfo(), LDAlign); + + SDValue NewST = + DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(), + ST->getPointerInfo(), STAlign); + + AddToWorklist(NewLD.getNode()); + AddToWorklist(NewST.getNode()); + WorklistRemover DeadNodes(*this); + DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1)); + ++LdStFP2Int; + return NewST; + } + + return SDValue(); +} + +// This is a helper function for visitMUL to check the profitability +// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2). +// MulNode is the original multiply, AddNode is (add x, c1), +// and ConstNode is c2. +// +// If the (add x, c1) has multiple uses, we could increase +// the number of adds if we make this transformation. +// It would only be worth doing this if we can remove a +// multiply in the process. Check for that here. +// To illustrate: +// (A + c1) * c3 +// (A + c2) * c3 +// We're checking for cases where we have common "c3 * A" expressions. +bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode, + SDValue &AddNode, + SDValue &ConstNode) { + APInt Val; + + // If the add only has one use, this would be OK to do. + if (AddNode.getNode()->hasOneUse()) + return true; + + // Walk all the users of the constant with which we're multiplying. + for (SDNode *Use : ConstNode->uses()) { + if (Use == MulNode) // This use is the one we're on right now. Skip it. + continue; + + if (Use->getOpcode() == ISD::MUL) { // We have another multiply use. + SDNode *OtherOp; + SDNode *MulVar = AddNode.getOperand(0).getNode(); + + // OtherOp is what we're multiplying against the constant. + if (Use->getOperand(0) == ConstNode) + OtherOp = Use->getOperand(1).getNode(); + else + OtherOp = Use->getOperand(0).getNode(); + + // Check to see if multiply is with the same operand of our "add". + // + // ConstNode = CONST + // Use = ConstNode * A <-- visiting Use. OtherOp is A. + // ... + // AddNode = (A + c1) <-- MulVar is A. + // = AddNode * ConstNode <-- current visiting instruction. + // + // If we make this transformation, we will have a common + // multiply (ConstNode * A) that we can save. + if (OtherOp == MulVar) + return true; + + // Now check to see if a future expansion will give us a common + // multiply. + // + // ConstNode = CONST + // AddNode = (A + c1) + // ... = AddNode * ConstNode <-- current visiting instruction. + // ... + // OtherOp = (A + c2) + // Use = OtherOp * ConstNode <-- visiting Use. + // + // If we make this transformation, we will have a common + // multiply (CONST * A) after we also do the same transformation + // to the "t2" instruction. + if (OtherOp->getOpcode() == ISD::ADD && + DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) && + OtherOp->getOperand(0).getNode() == MulVar) + return true; + } + } + + // Didn't find a case where this would be profitable. + return false; +} + +SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumStores) { + SmallVector<SDValue, 8> Chains; + SmallPtrSet<const SDNode *, 8> Visited; + SDLoc StoreDL(StoreNodes[0].MemNode); + + for (unsigned i = 0; i < NumStores; ++i) { + Visited.insert(StoreNodes[i].MemNode); + } + + // don't include nodes that are children or repeated nodes. + for (unsigned i = 0; i < NumStores; ++i) { + if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second) + Chains.push_back(StoreNodes[i].MemNode->getChain()); + } + + assert(Chains.size() > 0 && "Chain should have generated a chain"); + return DAG.getTokenFactor(StoreDL, Chains); +} + +bool DAGCombiner::mergeStoresOfConstantsOrVecElts( + SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores, + bool IsConstantSrc, bool UseVector, bool UseTrunc) { + // Make sure we have something to merge. + if (NumStores < 2) + return false; + + // The latest Node in the DAG. + SDLoc DL(StoreNodes[0].MemNode); + + TypeSize ElementSizeBits = MemVT.getStoreSizeInBits(); + unsigned SizeInBits = NumStores * ElementSizeBits; + unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + + EVT StoreTy; + if (UseVector) { + unsigned Elts = NumStores * NumMemElts; + // Get the type for the merged vector store. + StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); + } else + StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits); + + SDValue StoredVal; + if (UseVector) { + if (IsConstantSrc) { + SmallVector<SDValue, 8> BuildVector; + for (unsigned I = 0; I != NumStores; ++I) { + StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode); + SDValue Val = St->getValue(); + // If constant is of the wrong type, convert it now. + if (MemVT != Val.getValueType()) { + Val = peekThroughBitcasts(Val); + // Deal with constants of wrong size. + if (ElementSizeBits != Val.getValueSizeInBits()) { + EVT IntMemVT = + EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()); + if (isa<ConstantFPSDNode>(Val)) { + // Not clear how to truncate FP values. + return false; + } else if (auto *C = dyn_cast<ConstantSDNode>(Val)) + Val = DAG.getConstant(C->getAPIntValue() + .zextOrTrunc(Val.getValueSizeInBits()) + .zextOrTrunc(ElementSizeBits), + SDLoc(C), IntMemVT); + } + // Make sure correctly size type is the correct type. + Val = DAG.getBitcast(MemVT, Val); + } + BuildVector.push_back(Val); + } + StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS + : ISD::BUILD_VECTOR, + DL, StoreTy, BuildVector); + } else { + SmallVector<SDValue, 8> Ops; + for (unsigned i = 0; i < NumStores; ++i) { + StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); + SDValue Val = peekThroughBitcasts(St->getValue()); + // All operands of BUILD_VECTOR / CONCAT_VECTOR must be of + // type MemVT. If the underlying value is not the correct + // type, but it is an extraction of an appropriate vector we + // can recast Val to be of the correct type. This may require + // converting between EXTRACT_VECTOR_ELT and + // EXTRACT_SUBVECTOR. + if ((MemVT != Val.getValueType()) && + (Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT || + Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) { + EVT MemVTScalarTy = MemVT.getScalarType(); + // We may need to add a bitcast here to get types to line up. + if (MemVTScalarTy != Val.getValueType().getScalarType()) { + Val = DAG.getBitcast(MemVT, Val); + } else { + unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR + : ISD::EXTRACT_VECTOR_ELT; + SDValue Vec = Val.getOperand(0); + SDValue Idx = Val.getOperand(1); + Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx); + } + } + Ops.push_back(Val); + } + + // Build the extracted vector elements back into a vector. + StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS + : ISD::BUILD_VECTOR, + DL, StoreTy, Ops); + } + } else { + // We should always use a vector store when merging extracted vector + // elements, so this path implies a store of constants. + assert(IsConstantSrc && "Merged vector elements should use vector store"); + + APInt StoreInt(SizeInBits, 0); + + // Construct a single integer constant which is made of the smaller + // constant inputs. + bool IsLE = DAG.getDataLayout().isLittleEndian(); + for (unsigned i = 0; i < NumStores; ++i) { + unsigned Idx = IsLE ? (NumStores - 1 - i) : i; + StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode); + + SDValue Val = St->getValue(); + Val = peekThroughBitcasts(Val); + StoreInt <<= ElementSizeBits; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) { + StoreInt |= C->getAPIntValue() + .zextOrTrunc(ElementSizeBits) + .zextOrTrunc(SizeInBits); + } else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) { + StoreInt |= C->getValueAPF() + .bitcastToAPInt() + .zextOrTrunc(ElementSizeBits) + .zextOrTrunc(SizeInBits); + // If fp truncation is necessary give up for now. + if (MemVT.getSizeInBits() != ElementSizeBits) + return false; + } else { + llvm_unreachable("Invalid constant element type"); + } + } + + // Create the new Load and Store operations. + StoredVal = DAG.getConstant(StoreInt, DL, StoreTy); + } + + LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; + SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores); + + // make sure we use trunc store if it's necessary to be legal. + SDValue NewStore; + if (!UseTrunc) { NewStore = DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(), FirstInChain->getPointerInfo(), FirstInChain->getAlign()); - } else { // Must be realized as a trunc store - EVT LegalizedStoredValTy = - TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); - unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); - ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); - SDValue ExtendedStoreVal = - DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, - LegalizedStoredValTy); - NewStore = DAG.getTruncStore( - NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, + } else { // Must be realized as a trunc store + EVT LegalizedStoredValTy = + TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType()); + unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits(); + ConstantSDNode *C = cast<ConstantSDNode>(StoredVal); + SDValue ExtendedStoreVal = + DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL, + LegalizedStoredValTy); + NewStore = DAG.getTruncStore( + NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(), + FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/, FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); - } - - // Replace all merged stores with the new store. - for (unsigned i = 0; i < NumStores; ++i) - CombineTo(StoreNodes[i].MemNode, NewStore); - - AddToWorklist(NewChain.getNode()); - return true; -} - -void DAGCombiner::getStoreMergeCandidates( - StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, - SDNode *&RootNode) { - // This holds the base pointer, index, and the offset in bytes from the base + } + + // Replace all merged stores with the new store. + for (unsigned i = 0; i < NumStores; ++i) + CombineTo(StoreNodes[i].MemNode, NewStore); + + AddToWorklist(NewChain.getNode()); + return true; +} + +void DAGCombiner::getStoreMergeCandidates( + StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes, + SDNode *&RootNode) { + // This holds the base pointer, index, and the offset in bytes from the base // pointer. We must have a base and an offset. Do not handle stores to undef // base pointers. - BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); + BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef()) return; - - SDValue Val = peekThroughBitcasts(St->getValue()); - StoreSource StoreSrc = getStoreSource(Val); - assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); + + SDValue Val = peekThroughBitcasts(St->getValue()); + StoreSource StoreSrc = getStoreSource(Val); + assert(StoreSrc != StoreSource::Unknown && "Expected known source for store"); // Match on loadbaseptr if relevant. EVT MemVT = St->getMemoryVT(); - BaseIndexOffset LBasePtr; - EVT LoadVT; - if (StoreSrc == StoreSource::Load) { - auto *Ld = cast<LoadSDNode>(Val); - LBasePtr = BaseIndexOffset::match(Ld, DAG); - LoadVT = Ld->getMemoryVT(); - // Load and store should be the same type. - if (MemVT != LoadVT) - return; - // Loads must only have one use. - if (!Ld->hasNUsesOfValue(1, 0)) - return; - // The memory operands must not be volatile/indexed/atomic. - // TODO: May be able to relax for unordered atomics (see D66309) - if (!Ld->isSimple() || Ld->isIndexed()) - return; - } - auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, - int64_t &Offset) -> bool { - // The memory operands must not be volatile/indexed/atomic. - // TODO: May be able to relax for unordered atomics (see D66309) + BaseIndexOffset LBasePtr; + EVT LoadVT; + if (StoreSrc == StoreSource::Load) { + auto *Ld = cast<LoadSDNode>(Val); + LBasePtr = BaseIndexOffset::match(Ld, DAG); + LoadVT = Ld->getMemoryVT(); + // Load and store should be the same type. + if (MemVT != LoadVT) + return; + // Loads must only have one use. + if (!Ld->hasNUsesOfValue(1, 0)) + return; + // The memory operands must not be volatile/indexed/atomic. + // TODO: May be able to relax for unordered atomics (see D66309) + if (!Ld->isSimple() || Ld->isIndexed()) + return; + } + auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr, + int64_t &Offset) -> bool { + // The memory operands must not be volatile/indexed/atomic. + // TODO: May be able to relax for unordered atomics (see D66309) if (!Other->isSimple() || Other->isIndexed()) - return false; - // Don't mix temporal stores with non-temporal stores. - if (St->isNonTemporal() != Other->isNonTemporal()) - return false; - SDValue OtherBC = peekThroughBitcasts(Other->getValue()); - // Allow merging constants of different types as integers. - bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) - : Other->getMemoryVT() != MemVT; + return false; + // Don't mix temporal stores with non-temporal stores. + if (St->isNonTemporal() != Other->isNonTemporal()) + return false; + SDValue OtherBC = peekThroughBitcasts(Other->getValue()); + // Allow merging constants of different types as integers. + bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT()) + : Other->getMemoryVT() != MemVT; switch (StoreSrc) { case StoreSource::Load: { - if (NoTypeMatch) - return false; + if (NoTypeMatch) + return false; // The Load's Base Ptr must also match. auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC); if (!OtherLd) - return false; + return false; BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG); if (LoadVT != OtherLd->getMemoryVT()) return false; @@ -16642,40 +16642,40 @@ void DAGCombiner::getStoreMergeCandidates( if (!(LBasePtr.equalBaseIndex(LPtr, DAG))) return false; break; - } + } case StoreSource::Constant: - if (NoTypeMatch) - return false; - if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) - return false; + if (NoTypeMatch) + return false; + if (!(isa<ConstantSDNode>(OtherBC) || isa<ConstantFPSDNode>(OtherBC))) + return false; break; case StoreSource::Extract: - // Do not merge truncated stores here. - if (Other->isTruncatingStore()) - return false; - if (!MemVT.bitsEq(OtherBC.getValueType())) - return false; - if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && - OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return false; + // Do not merge truncated stores here. + if (Other->isTruncatingStore()) + return false; + if (!MemVT.bitsEq(OtherBC.getValueType())) + return false; + if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT && + OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR) + return false; break; default: llvm_unreachable("Unhandled store source for merging"); - } - Ptr = BaseIndexOffset::match(Other, DAG); - return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); - }; - - // Check if the pair of StoreNode and the RootNode already bail out many - // times which is over the limit in dependence check. - auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, - SDNode *RootNode) -> bool { - auto RootCount = StoreRootCountMap.find(StoreNode); + } + Ptr = BaseIndexOffset::match(Other, DAG); + return (BasePtr.equalBaseIndex(Ptr, DAG, Offset)); + }; + + // Check if the pair of StoreNode and the RootNode already bail out many + // times which is over the limit in dependence check. + auto OverLimitInDependenceCheck = [&](SDNode *StoreNode, + SDNode *RootNode) -> bool { + auto RootCount = StoreRootCountMap.find(StoreNode); return RootCount != StoreRootCountMap.end() && RootCount->second.first == RootNode && RootCount->second.second > StoreMergeDependenceLimit; - }; - + }; + auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) { // This must be a chain use. if (UseIter.getOperandNo() != 0) @@ -16689,1396 +16689,1396 @@ void DAGCombiner::getStoreMergeCandidates( } }; - // We looking for a root node which is an ancestor to all mergable - // stores. We search up through a load, to our root and then down - // through all children. For instance we will find Store{1,2,3} if - // St is Store1, Store2. or Store3 where the root is not a load - // which always true for nonvolatile ops. TODO: Expand - // the search to find all valid candidates through multiple layers of loads. - // - // Root - // |-------|-------| - // Load Load Store3 - // | | - // Store1 Store2 - // - // FIXME: We should be able to climb and - // descend TokenFactors to find candidates as well. - - RootNode = St->getChain().getNode(); - - unsigned NumNodesExplored = 0; + // We looking for a root node which is an ancestor to all mergable + // stores. We search up through a load, to our root and then down + // through all children. For instance we will find Store{1,2,3} if + // St is Store1, Store2. or Store3 where the root is not a load + // which always true for nonvolatile ops. TODO: Expand + // the search to find all valid candidates through multiple layers of loads. + // + // Root + // |-------|-------| + // Load Load Store3 + // | | + // Store1 Store2 + // + // FIXME: We should be able to climb and + // descend TokenFactors to find candidates as well. + + RootNode = St->getChain().getNode(); + + unsigned NumNodesExplored = 0; const unsigned MaxSearchNodes = 1024; if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) { - RootNode = Ldn->getChain().getNode(); - for (auto I = RootNode->use_begin(), E = RootNode->use_end(); + RootNode = Ldn->getChain().getNode(); + for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) { if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain - for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) + for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2) TryToAddCandidate(I2); } } } else { - for (auto I = RootNode->use_begin(), E = RootNode->use_end(); + for (auto I = RootNode->use_begin(), E = RootNode->use_end(); I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) TryToAddCandidate(I); } -} - -// We need to check that merging these stores does not cause a loop in -// the DAG. Any store candidate may depend on another candidate -// indirectly through its operand (we already consider dependencies -// through the chain). Check in parallel by searching up from -// non-chain operands of candidates. -bool DAGCombiner::checkMergeStoreCandidatesForDependencies( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, - SDNode *RootNode) { - // FIXME: We should be able to truncate a full search of - // predecessors by doing a BFS and keeping tabs the originating - // stores from which worklist nodes come from in a similar way to - // TokenFactor simplfication. - - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 8> Worklist; - - // RootNode is a predecessor to all candidates so we need not search - // past it. Add RootNode (peeking through TokenFactors). Do not count - // these towards size check. - - Worklist.push_back(RootNode); - while (!Worklist.empty()) { - auto N = Worklist.pop_back_val(); - if (!Visited.insert(N).second) - continue; // Already present in Visited. - if (N->getOpcode() == ISD::TokenFactor) { - for (SDValue Op : N->ops()) - Worklist.push_back(Op.getNode()); - } - } - - // Don't count pruning nodes towards max. - unsigned int Max = 1024 + Visited.size(); - // Search Ops of store candidates. - for (unsigned i = 0; i < NumStores; ++i) { - SDNode *N = StoreNodes[i].MemNode; - // Of the 4 Store Operands: - // * Chain (Op 0) -> We have already considered these - // in candidate selection and can be - // safely ignored - // * Value (Op 1) -> Cycles may happen (e.g. through load chains) - // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, - // but aren't necessarily fromt the same base node, so - // cycles possible (e.g. via indexed store). - // * (Op 3) -> Represents the pre or post-indexing offset (or undef for - // non-indexed stores). Not constant on all targets (e.g. ARM) - // and so can participate in a cycle. - for (unsigned j = 1; j < N->getNumOperands(); ++j) - Worklist.push_back(N->getOperand(j).getNode()); - } - // Search through DAG. We can stop early if we find a store node. - for (unsigned i = 0; i < NumStores; ++i) - if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, - Max)) { - // If the searching bail out, record the StoreNode and RootNode in the - // StoreRootCountMap. If we have seen the pair many times over a limit, - // we won't add the StoreNode into StoreNodes set again. - if (Visited.size() >= Max) { - auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; - if (RootCount.first == RootNode) - RootCount.second++; - else - RootCount = {RootNode, 1}; - } - return false; - } - return true; -} - -unsigned -DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, - int64_t ElementSizeBytes) const { - while (true) { - // Find a store past the width of the first store. - size_t StartIdx = 0; - while ((StartIdx + 1 < StoreNodes.size()) && - StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != - StoreNodes[StartIdx + 1].OffsetFromBase) - ++StartIdx; - - // Bail if we don't have enough candidates to merge. - if (StartIdx + 1 >= StoreNodes.size()) - return 0; - - // Trim stores that overlapped with the first store. - if (StartIdx) - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); - - // Scan the memory operations on the chain and find the first - // non-consecutive store memory address. - unsigned NumConsecutiveStores = 1; - int64_t StartAddress = StoreNodes[0].OffsetFromBase; - // Check that the addresses are consecutive starting from the second - // element in the list of stores. - for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { - int64_t CurrAddress = StoreNodes[i].OffsetFromBase; - if (CurrAddress - StartAddress != (ElementSizeBytes * i)) - break; - NumConsecutiveStores = i + 1; - } - if (NumConsecutiveStores > 1) - return NumConsecutiveStores; - - // There are no consecutive stores at the start of the list. - // Remove the first store and try again. - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); - } -} - -bool DAGCombiner::tryStoreMergeOfConstants( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, - EVT MemVT, SDNode *RootNode, bool AllowVectors) { - LLVMContext &Context = *DAG.getContext(); - const DataLayout &DL = DAG.getDataLayout(); - int64_t ElementSizeBytes = MemVT.getStoreSize(); - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - bool MadeChange = false; - - // Store the constants into memory as one consecutive store. - while (NumConsecutiveStores >= 2) { - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); - unsigned FirstStoreAlign = FirstInChain->getAlignment(); - unsigned LastLegalType = 1; - unsigned LastLegalVectorType = 1; - bool LastIntegerTrunc = false; - bool NonZero = false; - unsigned FirstZeroAfterNonZero = NumConsecutiveStores; - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue StoredVal = ST->getValue(); - bool IsElementZero = false; - if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) - IsElementZero = C->isNullValue(); - else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) - IsElementZero = C->getConstantFPValue()->isNullValue(); - if (IsElementZero) { - if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) - FirstZeroAfterNonZero = i; - } - NonZero |= !IsElementZero; - - // Find a legal type for the constant store. - unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; - EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); - bool IsFast = false; - - // Break early when size is too large to be legal. - if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) - break; - - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstInChain->getMemOperand(), &IsFast) && - IsFast) { - LastIntegerTrunc = false; - LastLegalType = i + 1; - // Or check whether a truncstore is legal. - } else if (TLI.getTypeAction(Context, StoreTy) == - TargetLowering::TypePromoteInteger) { - EVT LegalizedStoredValTy = - TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); - if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstInChain->getMemOperand(), &IsFast) && - IsFast) { - LastIntegerTrunc = true; - LastLegalType = i + 1; - } - } - - // We only use vectors if the constant is known to be zero or the - // target allows it and the function is not marked with the - // noimplicitfloat attribute. - if ((!NonZero || - TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && - AllowVectors) { - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && - TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && - TLI.allowsMemoryAccess(Context, DL, Ty, - *FirstInChain->getMemOperand(), &IsFast) && - IsFast) - LastLegalVectorType = i + 1; - } - } - - bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; - unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; - - // Check if we found a legal integer type that creates a meaningful - // merge. - if (NumElem < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have, is if the alignment has - // improved or we've dropped a non-zero value. Drop as many - // candidates as we can here. - unsigned NumSkip = 1; - while ((NumSkip < NumConsecutiveStores) && - (NumSkip < FirstZeroAfterNonZero) && - (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) - NumSkip++; - - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, - RootNode)) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - continue; - } - - MadeChange |= mergeStoresOfConstantsOrVecElts( - StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc); - - // Remove merged stores for next iteration. - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - } - return MadeChange; -} - -bool DAGCombiner::tryStoreMergeOfExtracts( - SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, - EVT MemVT, SDNode *RootNode) { - LLVMContext &Context = *DAG.getContext(); - const DataLayout &DL = DAG.getDataLayout(); - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - bool MadeChange = false; - - // Loop on Consecutive Stores on success. - while (NumConsecutiveStores >= 2) { - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); - unsigned FirstStoreAlign = FirstInChain->getAlignment(); - unsigned NumStoresToMerge = 1; - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); - bool IsFast = false; - - // Break early when size is too large to be legal. - if (Ty.getSizeInBits() > MaximumLegalStoreInBits) - break; - - if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && - TLI.allowsMemoryAccess(Context, DL, Ty, - *FirstInChain->getMemOperand(), &IsFast) && - IsFast) - NumStoresToMerge = i + 1; - } - - // Check if we found a legal integer type creating a meaningful - // merge. - if (NumStoresToMerge < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have, is if the alignment has - // improved. Drop as many candidates as we can here. - unsigned NumSkip = 1; - while ((NumSkip < NumConsecutiveStores) && - (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) - NumSkip++; - - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, - RootNode)) { - StoreNodes.erase(StoreNodes.begin(), - StoreNodes.begin() + NumStoresToMerge); - NumConsecutiveStores -= NumStoresToMerge; - continue; - } - - MadeChange |= mergeStoresOfConstantsOrVecElts( - StoreNodes, MemVT, NumStoresToMerge, false, true, false); - - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); - NumConsecutiveStores -= NumStoresToMerge; - } - return MadeChange; -} - -bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, - unsigned NumConsecutiveStores, EVT MemVT, - SDNode *RootNode, bool AllowVectors, - bool IsNonTemporalStore, - bool IsNonTemporalLoad) { - LLVMContext &Context = *DAG.getContext(); - const DataLayout &DL = DAG.getDataLayout(); - int64_t ElementSizeBytes = MemVT.getStoreSize(); - unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; - bool MadeChange = false; - - int64_t StartAddress = StoreNodes[0].OffsetFromBase; - - // Look for load nodes which are used by the stored values. - SmallVector<MemOpLink, 8> LoadNodes; - - // Find acceptable loads. Loads need to have the same chain (token factor), - // must not be zext, volatile, indexed, and they must be consecutive. - BaseIndexOffset LdBasePtr; - - for (unsigned i = 0; i < NumConsecutiveStores; ++i) { - StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); - SDValue Val = peekThroughBitcasts(St->getValue()); - LoadSDNode *Ld = cast<LoadSDNode>(Val); - - BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); - // If this is not the first ptr that we check. - int64_t LdOffset = 0; - if (LdBasePtr.getBase().getNode()) { - // The base ptr must be the same. - if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) - break; - } else { - // Check that all other base pointers are the same as this one. - LdBasePtr = LdPtr; - } - - // We found a potential memory operand to merge. - LoadNodes.push_back(MemOpLink(Ld, LdOffset)); - } - - while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { - Align RequiredAlignment; - bool NeedRotate = false; - if (LoadNodes.size() == 2) { - // If we have load/store pair instructions and we only have two values, - // don't bother merging. - if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && - StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); - break; - } - // If the loads are reversed, see if we can rotate the halves into place. - int64_t Offset0 = LoadNodes[0].OffsetFromBase; - int64_t Offset1 = LoadNodes[1].OffsetFromBase; - EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); - if (Offset0 - Offset1 == ElementSizeBytes && - (hasOperation(ISD::ROTL, PairVT) || - hasOperation(ISD::ROTR, PairVT))) { - std::swap(LoadNodes[0], LoadNodes[1]); - NeedRotate = true; - } - } - LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; - unsigned FirstStoreAS = FirstInChain->getAddressSpace(); +} + +// We need to check that merging these stores does not cause a loop in +// the DAG. Any store candidate may depend on another candidate +// indirectly through its operand (we already consider dependencies +// through the chain). Check in parallel by searching up from +// non-chain operands of candidates. +bool DAGCombiner::checkMergeStoreCandidatesForDependencies( + SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores, + SDNode *RootNode) { + // FIXME: We should be able to truncate a full search of + // predecessors by doing a BFS and keeping tabs the originating + // stores from which worklist nodes come from in a similar way to + // TokenFactor simplfication. + + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 8> Worklist; + + // RootNode is a predecessor to all candidates so we need not search + // past it. Add RootNode (peeking through TokenFactors). Do not count + // these towards size check. + + Worklist.push_back(RootNode); + while (!Worklist.empty()) { + auto N = Worklist.pop_back_val(); + if (!Visited.insert(N).second) + continue; // Already present in Visited. + if (N->getOpcode() == ISD::TokenFactor) { + for (SDValue Op : N->ops()) + Worklist.push_back(Op.getNode()); + } + } + + // Don't count pruning nodes towards max. + unsigned int Max = 1024 + Visited.size(); + // Search Ops of store candidates. + for (unsigned i = 0; i < NumStores; ++i) { + SDNode *N = StoreNodes[i].MemNode; + // Of the 4 Store Operands: + // * Chain (Op 0) -> We have already considered these + // in candidate selection and can be + // safely ignored + // * Value (Op 1) -> Cycles may happen (e.g. through load chains) + // * Address (Op 2) -> Merged addresses may only vary by a fixed constant, + // but aren't necessarily fromt the same base node, so + // cycles possible (e.g. via indexed store). + // * (Op 3) -> Represents the pre or post-indexing offset (or undef for + // non-indexed stores). Not constant on all targets (e.g. ARM) + // and so can participate in a cycle. + for (unsigned j = 1; j < N->getNumOperands(); ++j) + Worklist.push_back(N->getOperand(j).getNode()); + } + // Search through DAG. We can stop early if we find a store node. + for (unsigned i = 0; i < NumStores; ++i) + if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist, + Max)) { + // If the searching bail out, record the StoreNode and RootNode in the + // StoreRootCountMap. If we have seen the pair many times over a limit, + // we won't add the StoreNode into StoreNodes set again. + if (Visited.size() >= Max) { + auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode]; + if (RootCount.first == RootNode) + RootCount.second++; + else + RootCount = {RootNode, 1}; + } + return false; + } + return true; +} + +unsigned +DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes, + int64_t ElementSizeBytes) const { + while (true) { + // Find a store past the width of the first store. + size_t StartIdx = 0; + while ((StartIdx + 1 < StoreNodes.size()) && + StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes != + StoreNodes[StartIdx + 1].OffsetFromBase) + ++StartIdx; + + // Bail if we don't have enough candidates to merge. + if (StartIdx + 1 >= StoreNodes.size()) + return 0; + + // Trim stores that overlapped with the first store. + if (StartIdx) + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx); + + // Scan the memory operations on the chain and find the first + // non-consecutive store memory address. + unsigned NumConsecutiveStores = 1; + int64_t StartAddress = StoreNodes[0].OffsetFromBase; + // Check that the addresses are consecutive starting from the second + // element in the list of stores. + for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) { + int64_t CurrAddress = StoreNodes[i].OffsetFromBase; + if (CurrAddress - StartAddress != (ElementSizeBytes * i)) + break; + NumConsecutiveStores = i + 1; + } + if (NumConsecutiveStores > 1) + return NumConsecutiveStores; + + // There are no consecutive stores at the start of the list. + // Remove the first store and try again. + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1); + } +} + +bool DAGCombiner::tryStoreMergeOfConstants( + SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, + EVT MemVT, SDNode *RootNode, bool AllowVectors) { + LLVMContext &Context = *DAG.getContext(); + const DataLayout &DL = DAG.getDataLayout(); + int64_t ElementSizeBytes = MemVT.getStoreSize(); + unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + bool MadeChange = false; + + // Store the constants into memory as one consecutive store. + while (NumConsecutiveStores >= 2) { + LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; + unsigned FirstStoreAS = FirstInChain->getAddressSpace(); + unsigned FirstStoreAlign = FirstInChain->getAlignment(); + unsigned LastLegalType = 1; + unsigned LastLegalVectorType = 1; + bool LastIntegerTrunc = false; + bool NonZero = false; + unsigned FirstZeroAfterNonZero = NumConsecutiveStores; + for (unsigned i = 0; i < NumConsecutiveStores; ++i) { + StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode); + SDValue StoredVal = ST->getValue(); + bool IsElementZero = false; + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal)) + IsElementZero = C->isNullValue(); + else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal)) + IsElementZero = C->getConstantFPValue()->isNullValue(); + if (IsElementZero) { + if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores) + FirstZeroAfterNonZero = i; + } + NonZero |= !IsElementZero; + + // Find a legal type for the constant store. + unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; + EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits); + bool IsFast = false; + + // Break early when size is too large to be legal. + if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) + break; + + if (TLI.isTypeLegal(StoreTy) && + TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstInChain->getMemOperand(), &IsFast) && + IsFast) { + LastIntegerTrunc = false; + LastLegalType = i + 1; + // Or check whether a truncstore is legal. + } else if (TLI.getTypeAction(Context, StoreTy) == + TargetLowering::TypePromoteInteger) { + EVT LegalizedStoredValTy = + TLI.getTypeToTransformTo(Context, StoredVal.getValueType()); + if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && + TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstInChain->getMemOperand(), &IsFast) && + IsFast) { + LastIntegerTrunc = true; + LastLegalType = i + 1; + } + } + + // We only use vectors if the constant is known to be zero or the + // target allows it and the function is not marked with the + // noimplicitfloat attribute. + if ((!NonZero || + TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) && + AllowVectors) { + // Find a legal type for the vector store. + unsigned Elts = (i + 1) * NumMemElts; + EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); + if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) && + TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && + TLI.allowsMemoryAccess(Context, DL, Ty, + *FirstInChain->getMemOperand(), &IsFast) && + IsFast) + LastLegalVectorType = i + 1; + } + } + + bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors; + unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType; + + // Check if we found a legal integer type that creates a meaningful + // merge. + if (NumElem < 2) { + // We know that candidate stores are in order and of correct + // shape. While there is no mergeable sequence from the + // beginning one may start later in the sequence. The only + // reason a merge of size N could have failed where another of + // the same size would not have, is if the alignment has + // improved or we've dropped a non-zero value. Drop as many + // candidates as we can here. + unsigned NumSkip = 1; + while ((NumSkip < NumConsecutiveStores) && + (NumSkip < FirstZeroAfterNonZero) && + (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) + NumSkip++; + + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); + NumConsecutiveStores -= NumSkip; + continue; + } + + // Check that we can merge these candidates without causing a cycle. + if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, + RootNode)) { + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); + NumConsecutiveStores -= NumElem; + continue; + } + + MadeChange |= mergeStoresOfConstantsOrVecElts( + StoreNodes, MemVT, NumElem, true, UseVector, LastIntegerTrunc); + + // Remove merged stores for next iteration. + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); + NumConsecutiveStores -= NumElem; + } + return MadeChange; +} + +bool DAGCombiner::tryStoreMergeOfExtracts( + SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores, + EVT MemVT, SDNode *RootNode) { + LLVMContext &Context = *DAG.getContext(); + const DataLayout &DL = DAG.getDataLayout(); + unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + bool MadeChange = false; + + // Loop on Consecutive Stores on success. + while (NumConsecutiveStores >= 2) { + LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; + unsigned FirstStoreAS = FirstInChain->getAddressSpace(); + unsigned FirstStoreAlign = FirstInChain->getAlignment(); + unsigned NumStoresToMerge = 1; + for (unsigned i = 0; i < NumConsecutiveStores; ++i) { + // Find a legal type for the vector store. + unsigned Elts = (i + 1) * NumMemElts; + EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts); + bool IsFast = false; + + // Break early when size is too large to be legal. + if (Ty.getSizeInBits() > MaximumLegalStoreInBits) + break; + + if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) && + TLI.allowsMemoryAccess(Context, DL, Ty, + *FirstInChain->getMemOperand(), &IsFast) && + IsFast) + NumStoresToMerge = i + 1; + } + + // Check if we found a legal integer type creating a meaningful + // merge. + if (NumStoresToMerge < 2) { + // We know that candidate stores are in order and of correct + // shape. While there is no mergeable sequence from the + // beginning one may start later in the sequence. The only + // reason a merge of size N could have failed where another of + // the same size would not have, is if the alignment has + // improved. Drop as many candidates as we can here. + unsigned NumSkip = 1; + while ((NumSkip < NumConsecutiveStores) && + (StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign)) + NumSkip++; + + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); + NumConsecutiveStores -= NumSkip; + continue; + } + + // Check that we can merge these candidates without causing a cycle. + if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge, + RootNode)) { + StoreNodes.erase(StoreNodes.begin(), + StoreNodes.begin() + NumStoresToMerge); + NumConsecutiveStores -= NumStoresToMerge; + continue; + } + + MadeChange |= mergeStoresOfConstantsOrVecElts( + StoreNodes, MemVT, NumStoresToMerge, false, true, false); + + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge); + NumConsecutiveStores -= NumStoresToMerge; + } + return MadeChange; +} + +bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes, + unsigned NumConsecutiveStores, EVT MemVT, + SDNode *RootNode, bool AllowVectors, + bool IsNonTemporalStore, + bool IsNonTemporalLoad) { + LLVMContext &Context = *DAG.getContext(); + const DataLayout &DL = DAG.getDataLayout(); + int64_t ElementSizeBytes = MemVT.getStoreSize(); + unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1; + bool MadeChange = false; + + int64_t StartAddress = StoreNodes[0].OffsetFromBase; + + // Look for load nodes which are used by the stored values. + SmallVector<MemOpLink, 8> LoadNodes; + + // Find acceptable loads. Loads need to have the same chain (token factor), + // must not be zext, volatile, indexed, and they must be consecutive. + BaseIndexOffset LdBasePtr; + + for (unsigned i = 0; i < NumConsecutiveStores; ++i) { + StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode); + SDValue Val = peekThroughBitcasts(St->getValue()); + LoadSDNode *Ld = cast<LoadSDNode>(Val); + + BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG); + // If this is not the first ptr that we check. + int64_t LdOffset = 0; + if (LdBasePtr.getBase().getNode()) { + // The base ptr must be the same. + if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset)) + break; + } else { + // Check that all other base pointers are the same as this one. + LdBasePtr = LdPtr; + } + + // We found a potential memory operand to merge. + LoadNodes.push_back(MemOpLink(Ld, LdOffset)); + } + + while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) { + Align RequiredAlignment; + bool NeedRotate = false; + if (LoadNodes.size() == 2) { + // If we have load/store pair instructions and we only have two values, + // don't bother merging. + if (TLI.hasPairedLoad(MemVT, RequiredAlignment) && + StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) { + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2); + LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2); + break; + } + // If the loads are reversed, see if we can rotate the halves into place. + int64_t Offset0 = LoadNodes[0].OffsetFromBase; + int64_t Offset1 = LoadNodes[1].OffsetFromBase; + EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2); + if (Offset0 - Offset1 == ElementSizeBytes && + (hasOperation(ISD::ROTL, PairVT) || + hasOperation(ISD::ROTR, PairVT))) { + std::swap(LoadNodes[0], LoadNodes[1]); + NeedRotate = true; + } + } + LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode; + unsigned FirstStoreAS = FirstInChain->getAddressSpace(); Align FirstStoreAlign = FirstInChain->getAlign(); - LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); - - // Scan the memory operations on the chain and find the first - // non-consecutive load memory address. These variables hold the index in - // the store node array. - - unsigned LastConsecutiveLoad = 1; - - // This variable refers to the size and not index in the array. - unsigned LastLegalVectorType = 1; - unsigned LastLegalIntegerType = 1; - bool isDereferenceable = true; - bool DoIntegerTruncate = false; - StartAddress = LoadNodes[0].OffsetFromBase; - SDValue LoadChain = FirstLoad->getChain(); - for (unsigned i = 1; i < LoadNodes.size(); ++i) { - // All loads must share the same chain. - if (LoadNodes[i].MemNode->getChain() != LoadChain) - break; - - int64_t CurrAddress = LoadNodes[i].OffsetFromBase; - if (CurrAddress - StartAddress != (ElementSizeBytes * i)) - break; - LastConsecutiveLoad = i; - - if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) - isDereferenceable = false; - - // Find a legal type for the vector store. - unsigned Elts = (i + 1) * NumMemElts; - EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - - // Break early when size is too large to be legal. - if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) - break; - - bool IsFastSt = false; - bool IsFastLd = false; - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstInChain->getMemOperand(), &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstLoad->getMemOperand(), &IsFastLd) && - IsFastLd) { - LastLegalVectorType = i + 1; - } - - // Find a legal type for the integer store. - unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; - StoreTy = EVT::getIntegerVT(Context, SizeInBits); - if (TLI.isTypeLegal(StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstInChain->getMemOperand(), &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstLoad->getMemOperand(), &IsFastLd) && - IsFastLd) { - LastLegalIntegerType = i + 1; - DoIntegerTruncate = false; - // Or check whether a truncstore and extload is legal. - } else if (TLI.getTypeAction(Context, StoreTy) == - TargetLowering::TypePromoteInteger) { - EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); - if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && - TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && - TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && - TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && - TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstInChain->getMemOperand(), &IsFastSt) && - IsFastSt && - TLI.allowsMemoryAccess(Context, DL, StoreTy, - *FirstLoad->getMemOperand(), &IsFastLd) && - IsFastLd) { - LastLegalIntegerType = i + 1; - DoIntegerTruncate = true; - } - } - } - - // Only use vector types if the vector type is larger than the integer - // type. If they are the same, use integers. - bool UseVectorTy = - LastLegalVectorType > LastLegalIntegerType && AllowVectors; - unsigned LastLegalType = - std::max(LastLegalVectorType, LastLegalIntegerType); - - // We add +1 here because the LastXXX variables refer to location while - // the NumElem refers to array/index size. - unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); - NumElem = std::min(LastLegalType, NumElem); + LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode); + + // Scan the memory operations on the chain and find the first + // non-consecutive load memory address. These variables hold the index in + // the store node array. + + unsigned LastConsecutiveLoad = 1; + + // This variable refers to the size and not index in the array. + unsigned LastLegalVectorType = 1; + unsigned LastLegalIntegerType = 1; + bool isDereferenceable = true; + bool DoIntegerTruncate = false; + StartAddress = LoadNodes[0].OffsetFromBase; + SDValue LoadChain = FirstLoad->getChain(); + for (unsigned i = 1; i < LoadNodes.size(); ++i) { + // All loads must share the same chain. + if (LoadNodes[i].MemNode->getChain() != LoadChain) + break; + + int64_t CurrAddress = LoadNodes[i].OffsetFromBase; + if (CurrAddress - StartAddress != (ElementSizeBytes * i)) + break; + LastConsecutiveLoad = i; + + if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable()) + isDereferenceable = false; + + // Find a legal type for the vector store. + unsigned Elts = (i + 1) * NumMemElts; + EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); + + // Break early when size is too large to be legal. + if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits) + break; + + bool IsFastSt = false; + bool IsFastLd = false; + if (TLI.isTypeLegal(StoreTy) && + TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstInChain->getMemOperand(), &IsFastSt) && + IsFastSt && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstLoad->getMemOperand(), &IsFastLd) && + IsFastLd) { + LastLegalVectorType = i + 1; + } + + // Find a legal type for the integer store. + unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8; + StoreTy = EVT::getIntegerVT(Context, SizeInBits); + if (TLI.isTypeLegal(StoreTy) && + TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstInChain->getMemOperand(), &IsFastSt) && + IsFastSt && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstLoad->getMemOperand(), &IsFastLd) && + IsFastLd) { + LastLegalIntegerType = i + 1; + DoIntegerTruncate = false; + // Or check whether a truncstore and extload is legal. + } else if (TLI.getTypeAction(Context, StoreTy) == + TargetLowering::TypePromoteInteger) { + EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy); + if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) && + TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) && + TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) && + TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) && + TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstInChain->getMemOperand(), &IsFastSt) && + IsFastSt && + TLI.allowsMemoryAccess(Context, DL, StoreTy, + *FirstLoad->getMemOperand(), &IsFastLd) && + IsFastLd) { + LastLegalIntegerType = i + 1; + DoIntegerTruncate = true; + } + } + } + + // Only use vector types if the vector type is larger than the integer + // type. If they are the same, use integers. + bool UseVectorTy = + LastLegalVectorType > LastLegalIntegerType && AllowVectors; + unsigned LastLegalType = + std::max(LastLegalVectorType, LastLegalIntegerType); + + // We add +1 here because the LastXXX variables refer to location while + // the NumElem refers to array/index size. + unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1); + NumElem = std::min(LastLegalType, NumElem); Align FirstLoadAlign = FirstLoad->getAlign(); - - if (NumElem < 2) { - // We know that candidate stores are in order and of correct - // shape. While there is no mergeable sequence from the - // beginning one may start later in the sequence. The only - // reason a merge of size N could have failed where another of - // the same size would not have is if the alignment or either - // the load or store has improved. Drop as many candidates as we - // can here. - unsigned NumSkip = 1; - while ((NumSkip < LoadNodes.size()) && + + if (NumElem < 2) { + // We know that candidate stores are in order and of correct + // shape. While there is no mergeable sequence from the + // beginning one may start later in the sequence. The only + // reason a merge of size N could have failed where another of + // the same size would not have is if the alignment or either + // the load or store has improved. Drop as many candidates as we + // can here. + unsigned NumSkip = 1; + while ((NumSkip < LoadNodes.size()) && (LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) && (StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign)) - NumSkip++; - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); - NumConsecutiveStores -= NumSkip; - continue; - } - - // Check that we can merge these candidates without causing a cycle. - if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, - RootNode)) { - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - continue; - } - - // Find if it is better to use vectors or integers to load and store - // to memory. - EVT JointMemOpVT; - if (UseVectorTy) { - // Find a legal type for the vector store. - unsigned Elts = NumElem * NumMemElts; - JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); - } else { - unsigned SizeInBits = NumElem * ElementSizeBytes * 8; - JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); - } - - SDLoc LoadDL(LoadNodes[0].MemNode); - SDLoc StoreDL(StoreNodes[0].MemNode); - - // The merged loads are required to have the same incoming chain, so - // using the first's chain is acceptable. - - SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); - AddToWorklist(NewStoreChain.getNode()); - - MachineMemOperand::Flags LdMMOFlags = - isDereferenceable ? MachineMemOperand::MODereferenceable - : MachineMemOperand::MONone; - if (IsNonTemporalLoad) - LdMMOFlags |= MachineMemOperand::MONonTemporal; - - MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore - ? MachineMemOperand::MONonTemporal - : MachineMemOperand::MONone; - - SDValue NewLoad, NewStore; - if (UseVectorTy || !DoIntegerTruncate) { - NewLoad = DAG.getLoad( - JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), - FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); - SDValue StoreOp = NewLoad; - if (NeedRotate) { - unsigned LoadWidth = ElementSizeBytes * 8 * 2; - assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && - "Unexpected type for rotate-able load pair"); - SDValue RotAmt = - DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); - // Target can convert to the identical ROTR if it does not have ROTL. - StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); - } - NewStore = DAG.getStore( - NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), - FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); - } else { // This must be the truncstore/extload case - EVT ExtendedTy = - TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); - NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, - FirstLoad->getChain(), FirstLoad->getBasePtr(), - FirstLoad->getPointerInfo(), JointMemOpVT, - FirstLoadAlign, LdMMOFlags); + NumSkip++; + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip); + LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip); + NumConsecutiveStores -= NumSkip; + continue; + } + + // Check that we can merge these candidates without causing a cycle. + if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem, + RootNode)) { + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); + LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); + NumConsecutiveStores -= NumElem; + continue; + } + + // Find if it is better to use vectors or integers to load and store + // to memory. + EVT JointMemOpVT; + if (UseVectorTy) { + // Find a legal type for the vector store. + unsigned Elts = NumElem * NumMemElts; + JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts); + } else { + unsigned SizeInBits = NumElem * ElementSizeBytes * 8; + JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits); + } + + SDLoc LoadDL(LoadNodes[0].MemNode); + SDLoc StoreDL(StoreNodes[0].MemNode); + + // The merged loads are required to have the same incoming chain, so + // using the first's chain is acceptable. + + SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem); + AddToWorklist(NewStoreChain.getNode()); + + MachineMemOperand::Flags LdMMOFlags = + isDereferenceable ? MachineMemOperand::MODereferenceable + : MachineMemOperand::MONone; + if (IsNonTemporalLoad) + LdMMOFlags |= MachineMemOperand::MONonTemporal; + + MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore + ? MachineMemOperand::MONonTemporal + : MachineMemOperand::MONone; + + SDValue NewLoad, NewStore; + if (UseVectorTy || !DoIntegerTruncate) { + NewLoad = DAG.getLoad( + JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(), + FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags); + SDValue StoreOp = NewLoad; + if (NeedRotate) { + unsigned LoadWidth = ElementSizeBytes * 8 * 2; + assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) && + "Unexpected type for rotate-able load pair"); + SDValue RotAmt = + DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL); + // Target can convert to the identical ROTR if it does not have ROTL. + StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt); + } + NewStore = DAG.getStore( + NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(), + FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags); + } else { // This must be the truncstore/extload case + EVT ExtendedTy = + TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT); + NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy, + FirstLoad->getChain(), FirstLoad->getBasePtr(), + FirstLoad->getPointerInfo(), JointMemOpVT, + FirstLoadAlign, LdMMOFlags); NewStore = DAG.getTruncStore( NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(), FirstInChain->getPointerInfo(), JointMemOpVT, FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags()); - } - - // Transfer chain users from old loads to the new load. - for (unsigned i = 0; i < NumElem; ++i) { - LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); - DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), - SDValue(NewLoad.getNode(), 1)); - } - - // Replace all stores with the new store. Recursively remove corresponding - // values if they are no longer used. - for (unsigned i = 0; i < NumElem; ++i) { - SDValue Val = StoreNodes[i].MemNode->getOperand(1); - CombineTo(StoreNodes[i].MemNode, NewStore); - if (Val.getNode()->use_empty()) - recursivelyDeleteUnusedNodes(Val.getNode()); - } - - MadeChange = true; - StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); - LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); - NumConsecutiveStores -= NumElem; - } - return MadeChange; -} - -bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { - if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) - return false; - - // TODO: Extend this function to merge stores of scalable vectors. - // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> - // store since we know <vscale x 16 x i8> is exactly twice as large as - // <vscale x 8 x i8>). Until then, bail out for scalable vectors. - EVT MemVT = St->getMemoryVT(); - if (MemVT.isScalableVector()) - return false; - if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) - return false; - - // This function cannot currently deal with non-byte-sized memory sizes. - int64_t ElementSizeBytes = MemVT.getStoreSize(); - if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) - return false; - - // Do not bother looking at stored values that are not constants, loads, or - // extracted vector elements. - SDValue StoredVal = peekThroughBitcasts(St->getValue()); - const StoreSource StoreSrc = getStoreSource(StoredVal); - if (StoreSrc == StoreSource::Unknown) - return false; - - SmallVector<MemOpLink, 8> StoreNodes; - SDNode *RootNode; - // Find potential store merge candidates by searching through chain sub-DAG - getStoreMergeCandidates(St, StoreNodes, RootNode); - - // Check if there is anything to merge. - if (StoreNodes.size() < 2) - return false; - - // Sort the memory operands according to their distance from the - // base pointer. - llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { - return LHS.OffsetFromBase < RHS.OffsetFromBase; - }); - - bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( - Attribute::NoImplicitFloat); - bool IsNonTemporalStore = St->isNonTemporal(); - bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && - cast<LoadSDNode>(StoredVal)->isNonTemporal(); - - // Store Merge attempts to merge the lowest stores. This generally - // works out as if successful, as the remaining stores are checked - // after the first collection of stores is merged. However, in the - // case that a non-mergeable store is found first, e.g., {p[-2], - // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent - // mergeable cases. To prevent this, we prune such stores from the - // front of StoreNodes here. - bool MadeChange = false; - while (StoreNodes.size() > 1) { - unsigned NumConsecutiveStores = - getConsecutiveStores(StoreNodes, ElementSizeBytes); - // There are no more stores in the list to examine. - if (NumConsecutiveStores == 0) - return MadeChange; - - // We have at least 2 consecutive stores. Try to merge them. - assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); - switch (StoreSrc) { - case StoreSource::Constant: - MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, - MemVT, RootNode, AllowVectors); - break; - - case StoreSource::Extract: - MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, - MemVT, RootNode); - break; - - case StoreSource::Load: - MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, - MemVT, RootNode, AllowVectors, - IsNonTemporalStore, IsNonTemporalLoad); - break; - - default: - llvm_unreachable("Unhandled store source type"); - } - } - return MadeChange; -} - -SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { - SDLoc SL(ST); - SDValue ReplStore; - - // Replace the chain to avoid dependency. - if (ST->isTruncatingStore()) { - ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), - ST->getBasePtr(), ST->getMemoryVT(), - ST->getMemOperand()); - } else { - ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), - ST->getMemOperand()); - } - - // Create token to keep both nodes around. - SDValue Token = DAG.getNode(ISD::TokenFactor, SL, - MVT::Other, ST->getChain(), ReplStore); - - // Make sure the new and old chains are cleaned up. - AddToWorklist(Token.getNode()); - - // Don't add users to work list. - return CombineTo(ST, Token, false); -} - -SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { - SDValue Value = ST->getValue(); - if (Value.getOpcode() == ISD::TargetConstantFP) - return SDValue(); - - if (!ISD::isNormalStore(ST)) - return SDValue(); - - SDLoc DL(ST); - - SDValue Chain = ST->getChain(); - SDValue Ptr = ST->getBasePtr(); - - const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); - - // NOTE: If the original store is volatile, this transform must not increase - // the number of stores. For example, on x86-32 an f64 can be stored in one - // processor operation but an i64 (which is not legal) requires two. So the - // transform should not be done in this case. - - SDValue Tmp; - switch (CFP->getSimpleValueType(0).SimpleTy) { - default: - llvm_unreachable("Unknown FP type"); - case MVT::f16: // We don't do this for these yet. - case MVT::f80: - case MVT::f128: - case MVT::ppcf128: - return SDValue(); - case MVT::f32: - if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { - ; - Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). - bitcastToAPInt().getZExtValue(), SDLoc(CFP), - MVT::i32); - return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); - } - - return SDValue(); - case MVT::f64: - if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && - ST->isSimple()) || - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { - ; - Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). - getZExtValue(), SDLoc(CFP), MVT::i64); - return DAG.getStore(Chain, DL, Tmp, - Ptr, ST->getMemOperand()); - } - - if (ST->isSimple() && - TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { - // Many FP stores are not made apparent until after legalize, e.g. for - // argument passing. Since this is so common, custom legalize the - // 64-bit integer store into two 32-bit stores. - uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); - SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); - SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); - if (DAG.getDataLayout().isBigEndian()) - std::swap(Lo, Hi); - - MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); - AAMDNodes AAInfo = ST->getAAInfo(); - - SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), + } + + // Transfer chain users from old loads to the new load. + for (unsigned i = 0; i < NumElem; ++i) { + LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode); + DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), + SDValue(NewLoad.getNode(), 1)); + } + + // Replace all stores with the new store. Recursively remove corresponding + // values if they are no longer used. + for (unsigned i = 0; i < NumElem; ++i) { + SDValue Val = StoreNodes[i].MemNode->getOperand(1); + CombineTo(StoreNodes[i].MemNode, NewStore); + if (Val.getNode()->use_empty()) + recursivelyDeleteUnusedNodes(Val.getNode()); + } + + MadeChange = true; + StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem); + LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem); + NumConsecutiveStores -= NumElem; + } + return MadeChange; +} + +bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) { + if (OptLevel == CodeGenOpt::None || !EnableStoreMerging) + return false; + + // TODO: Extend this function to merge stores of scalable vectors. + // (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8> + // store since we know <vscale x 16 x i8> is exactly twice as large as + // <vscale x 8 x i8>). Until then, bail out for scalable vectors. + EVT MemVT = St->getMemoryVT(); + if (MemVT.isScalableVector()) + return false; + if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits) + return false; + + // This function cannot currently deal with non-byte-sized memory sizes. + int64_t ElementSizeBytes = MemVT.getStoreSize(); + if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits()) + return false; + + // Do not bother looking at stored values that are not constants, loads, or + // extracted vector elements. + SDValue StoredVal = peekThroughBitcasts(St->getValue()); + const StoreSource StoreSrc = getStoreSource(StoredVal); + if (StoreSrc == StoreSource::Unknown) + return false; + + SmallVector<MemOpLink, 8> StoreNodes; + SDNode *RootNode; + // Find potential store merge candidates by searching through chain sub-DAG + getStoreMergeCandidates(St, StoreNodes, RootNode); + + // Check if there is anything to merge. + if (StoreNodes.size() < 2) + return false; + + // Sort the memory operands according to their distance from the + // base pointer. + llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) { + return LHS.OffsetFromBase < RHS.OffsetFromBase; + }); + + bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute( + Attribute::NoImplicitFloat); + bool IsNonTemporalStore = St->isNonTemporal(); + bool IsNonTemporalLoad = StoreSrc == StoreSource::Load && + cast<LoadSDNode>(StoredVal)->isNonTemporal(); + + // Store Merge attempts to merge the lowest stores. This generally + // works out as if successful, as the remaining stores are checked + // after the first collection of stores is merged. However, in the + // case that a non-mergeable store is found first, e.g., {p[-2], + // p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent + // mergeable cases. To prevent this, we prune such stores from the + // front of StoreNodes here. + bool MadeChange = false; + while (StoreNodes.size() > 1) { + unsigned NumConsecutiveStores = + getConsecutiveStores(StoreNodes, ElementSizeBytes); + // There are no more stores in the list to examine. + if (NumConsecutiveStores == 0) + return MadeChange; + + // We have at least 2 consecutive stores. Try to merge them. + assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores"); + switch (StoreSrc) { + case StoreSource::Constant: + MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores, + MemVT, RootNode, AllowVectors); + break; + + case StoreSource::Extract: + MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores, + MemVT, RootNode); + break; + + case StoreSource::Load: + MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores, + MemVT, RootNode, AllowVectors, + IsNonTemporalStore, IsNonTemporalLoad); + break; + + default: + llvm_unreachable("Unhandled store source type"); + } + } + return MadeChange; +} + +SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) { + SDLoc SL(ST); + SDValue ReplStore; + + // Replace the chain to avoid dependency. + if (ST->isTruncatingStore()) { + ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(), + ST->getBasePtr(), ST->getMemoryVT(), + ST->getMemOperand()); + } else { + ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(), + ST->getMemOperand()); + } + + // Create token to keep both nodes around. + SDValue Token = DAG.getNode(ISD::TokenFactor, SL, + MVT::Other, ST->getChain(), ReplStore); + + // Make sure the new and old chains are cleaned up. + AddToWorklist(Token.getNode()); + + // Don't add users to work list. + return CombineTo(ST, Token, false); +} + +SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) { + SDValue Value = ST->getValue(); + if (Value.getOpcode() == ISD::TargetConstantFP) + return SDValue(); + + if (!ISD::isNormalStore(ST)) + return SDValue(); + + SDLoc DL(ST); + + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + + const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value); + + // NOTE: If the original store is volatile, this transform must not increase + // the number of stores. For example, on x86-32 an f64 can be stored in one + // processor operation but an i64 (which is not legal) requires two. So the + // transform should not be done in this case. + + SDValue Tmp; + switch (CFP->getSimpleValueType(0).SimpleTy) { + default: + llvm_unreachable("Unknown FP type"); + case MVT::f16: // We don't do this for these yet. + case MVT::f80: + case MVT::f128: + case MVT::ppcf128: + return SDValue(); + case MVT::f32: + if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) || + TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { + ; + Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF(). + bitcastToAPInt().getZExtValue(), SDLoc(CFP), + MVT::i32); + return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand()); + } + + return SDValue(); + case MVT::f64: + if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations && + ST->isSimple()) || + TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) { + ; + Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). + getZExtValue(), SDLoc(CFP), MVT::i64); + return DAG.getStore(Chain, DL, Tmp, + Ptr, ST->getMemOperand()); + } + + if (ST->isSimple() && + TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) { + // Many FP stores are not made apparent until after legalize, e.g. for + // argument passing. Since this is so common, custom legalize the + // 64-bit integer store into two 32-bit stores. + uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue(); + SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32); + SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32); + if (DAG.getDataLayout().isBigEndian()) + std::swap(Lo, Hi); + + MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); + AAMDNodes AAInfo = ST->getAAInfo(); + + SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL); - SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, - ST->getPointerInfo().getWithOffset(4), + SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr, + ST->getPointerInfo().getWithOffset(4), ST->getOriginalAlign(), MMOFlags, AAInfo); - return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, - St0, St1); - } - - return SDValue(); - } -} - -SDValue DAGCombiner::visitSTORE(SDNode *N) { - StoreSDNode *ST = cast<StoreSDNode>(N); - SDValue Chain = ST->getChain(); - SDValue Value = ST->getValue(); - SDValue Ptr = ST->getBasePtr(); - - // If this is a store of a bit convert, store the input value if the - // resultant store does not need a higher alignment than the original. - if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && - ST->isUnindexed()) { - EVT SVT = Value.getOperand(0).getValueType(); - // If the store is volatile, we only want to change the store type if the - // resulting store is legal. Otherwise we might increase the number of - // memory accesses. We don't care if the original type was legal or not - // as we assume software couldn't rely on the number of accesses of an - // illegal type. - // TODO: May be able to relax for unordered atomics (see D66309) - if (((!LegalOperations && ST->isSimple()) || - TLI.isOperationLegal(ISD::STORE, SVT)) && - TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, - DAG, *ST->getMemOperand())) { - return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, - ST->getMemOperand()); - } - } - - // Turn 'store undef, Ptr' -> nothing. - if (Value.isUndef() && ST->isUnindexed()) - return Chain; - - // Try to infer better alignment information than the store already has. - if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { - if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { - if (*Alignment > ST->getAlign() && - isAligned(*Alignment, ST->getSrcValueOffset())) { - SDValue NewStore = - DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), - ST->getMemoryVT(), *Alignment, - ST->getMemOperand()->getFlags(), ST->getAAInfo()); - // NewStore will always be N as we are only refining the alignment - assert(NewStore.getNode() == N); - (void)NewStore; - } - } - } - - // Try transforming a pair floating point load / store ops to integer - // load / store ops. - if (SDValue NewST = TransformFPLoadStorePair(N)) - return NewST; - - // Try transforming several stores into STORE (BSWAP). + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + St0, St1); + } + + return SDValue(); + } +} + +SDValue DAGCombiner::visitSTORE(SDNode *N) { + StoreSDNode *ST = cast<StoreSDNode>(N); + SDValue Chain = ST->getChain(); + SDValue Value = ST->getValue(); + SDValue Ptr = ST->getBasePtr(); + + // If this is a store of a bit convert, store the input value if the + // resultant store does not need a higher alignment than the original. + if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() && + ST->isUnindexed()) { + EVT SVT = Value.getOperand(0).getValueType(); + // If the store is volatile, we only want to change the store type if the + // resulting store is legal. Otherwise we might increase the number of + // memory accesses. We don't care if the original type was legal or not + // as we assume software couldn't rely on the number of accesses of an + // illegal type. + // TODO: May be able to relax for unordered atomics (see D66309) + if (((!LegalOperations && ST->isSimple()) || + TLI.isOperationLegal(ISD::STORE, SVT)) && + TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT, + DAG, *ST->getMemOperand())) { + return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, + ST->getMemOperand()); + } + } + + // Turn 'store undef, Ptr' -> nothing. + if (Value.isUndef() && ST->isUnindexed()) + return Chain; + + // Try to infer better alignment information than the store already has. + if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) { + if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) { + if (*Alignment > ST->getAlign() && + isAligned(*Alignment, ST->getSrcValueOffset())) { + SDValue NewStore = + DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(), + ST->getMemoryVT(), *Alignment, + ST->getMemOperand()->getFlags(), ST->getAAInfo()); + // NewStore will always be N as we are only refining the alignment + assert(NewStore.getNode() == N); + (void)NewStore; + } + } + } + + // Try transforming a pair floating point load / store ops to integer + // load / store ops. + if (SDValue NewST = TransformFPLoadStorePair(N)) + return NewST; + + // Try transforming several stores into STORE (BSWAP). if (SDValue Store = mergeTruncStores(ST)) - return Store; - - if (ST->isUnindexed()) { - // Walk up chain skipping non-aliasing memory nodes, on this store and any - // adjacent stores. - if (findBetterNeighborChains(ST)) { - // replaceStoreChain uses CombineTo, which handled all of the worklist - // manipulation. Return the original node to not do anything else. - return SDValue(ST, 0); - } - Chain = ST->getChain(); - } - - // FIXME: is there such a thing as a truncating indexed store? - if (ST->isTruncatingStore() && ST->isUnindexed() && - Value.getValueType().isInteger() && - (!isa<ConstantSDNode>(Value) || - !cast<ConstantSDNode>(Value)->isOpaque())) { - APInt TruncDemandedBits = - APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), - ST->getMemoryVT().getScalarSizeInBits()); - - // See if we can simplify the input to this truncstore with knowledge that - // only the low bits are being used. For example: - // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" - AddToWorklist(Value.getNode()); - if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) - return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), - ST->getMemOperand()); - - // Otherwise, see if we can simplify the operation with - // SimplifyDemandedBits, which only works if the value has a single use. - if (SimplifyDemandedBits(Value, TruncDemandedBits)) { - // Re-visit the store if anything changed and the store hasn't been merged - // with another node (N is deleted) SimplifyDemandedBits will add Value's - // node back to the worklist if necessary, but we also need to re-visit - // the Store node itself. - if (N->getOpcode() != ISD::DELETED_NODE) - AddToWorklist(N); - return SDValue(N, 0); - } - } - - // If this is a load followed by a store to the same location, then the store - // is dead/noop. - // TODO: Can relax for unordered atomics (see D66309) - if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { - if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && - ST->isUnindexed() && ST->isSimple() && - // There can't be any side effects between the load and store, such as - // a call or store. - Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { - // The store is dead, remove it. - return Chain; - } - } - - // TODO: Can relax for unordered atomics (see D66309) - if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { - if (ST->isUnindexed() && ST->isSimple() && - ST1->isUnindexed() && ST1->isSimple()) { - if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && - ST->getMemoryVT() == ST1->getMemoryVT()) { - // If this is a store followed by a store with the same value to the - // same location, then the store is dead/noop. - return Chain; - } - - if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && - !ST1->getBasePtr().isUndef() && - // BaseIndexOffset and the code below requires knowing the size - // of a vector, so bail out if MemoryVT is scalable. + return Store; + + if (ST->isUnindexed()) { + // Walk up chain skipping non-aliasing memory nodes, on this store and any + // adjacent stores. + if (findBetterNeighborChains(ST)) { + // replaceStoreChain uses CombineTo, which handled all of the worklist + // manipulation. Return the original node to not do anything else. + return SDValue(ST, 0); + } + Chain = ST->getChain(); + } + + // FIXME: is there such a thing as a truncating indexed store? + if (ST->isTruncatingStore() && ST->isUnindexed() && + Value.getValueType().isInteger() && + (!isa<ConstantSDNode>(Value) || + !cast<ConstantSDNode>(Value)->isOpaque())) { + APInt TruncDemandedBits = + APInt::getLowBitsSet(Value.getScalarValueSizeInBits(), + ST->getMemoryVT().getScalarSizeInBits()); + + // See if we can simplify the input to this truncstore with knowledge that + // only the low bits are being used. For example: + // "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8" + AddToWorklist(Value.getNode()); + if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits)) + return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(), + ST->getMemOperand()); + + // Otherwise, see if we can simplify the operation with + // SimplifyDemandedBits, which only works if the value has a single use. + if (SimplifyDemandedBits(Value, TruncDemandedBits)) { + // Re-visit the store if anything changed and the store hasn't been merged + // with another node (N is deleted) SimplifyDemandedBits will add Value's + // node back to the worklist if necessary, but we also need to re-visit + // the Store node itself. + if (N->getOpcode() != ISD::DELETED_NODE) + AddToWorklist(N); + return SDValue(N, 0); + } + } + + // If this is a load followed by a store to the same location, then the store + // is dead/noop. + // TODO: Can relax for unordered atomics (see D66309) + if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) { + if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() && + ST->isUnindexed() && ST->isSimple() && + // There can't be any side effects between the load and store, such as + // a call or store. + Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) { + // The store is dead, remove it. + return Chain; + } + } + + // TODO: Can relax for unordered atomics (see D66309) + if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) { + if (ST->isUnindexed() && ST->isSimple() && + ST1->isUnindexed() && ST1->isSimple()) { + if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value && + ST->getMemoryVT() == ST1->getMemoryVT()) { + // If this is a store followed by a store with the same value to the + // same location, then the store is dead/noop. + return Chain; + } + + if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() && + !ST1->getBasePtr().isUndef() && + // BaseIndexOffset and the code below requires knowing the size + // of a vector, so bail out if MemoryVT is scalable. !ST->getMemoryVT().isScalableVector() && - !ST1->getMemoryVT().isScalableVector()) { - const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); - const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); + !ST1->getMemoryVT().isScalableVector()) { + const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG); + const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG); unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits(); unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits(); - // If this is a store who's preceding store to a subset of the current - // location and no one other node is chained to that store we can - // effectively drop the store. Do not remove stores to undef as they may - // be used as data sinks. - if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { - CombineTo(ST1, ST1->getChain()); - return SDValue(); - } - } - } - } - - // If this is an FP_ROUND or TRUNC followed by a store, fold this into a - // truncating store. We can do this even if this is already a truncstore. - if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) - && Value.getNode()->hasOneUse() && ST->isUnindexed() && - TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), - ST->getMemoryVT())) { - return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), - Ptr, ST->getMemoryVT(), ST->getMemOperand()); - } - - // Always perform this optimization before types are legal. If the target - // prefers, also try this after legalization to catch stores that were created - // by intrinsics or other nodes. - if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { - while (true) { - // There can be multiple store sequences on the same chain. - // Keep trying to merge store sequences until we are unable to do so - // or until we merge the last store on the chain. - bool Changed = mergeConsecutiveStores(ST); - if (!Changed) break; - // Return N as merge only uses CombineTo and no worklist clean - // up is necessary. - if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) - return SDValue(N, 0); - } - } - - // Try transforming N to an indexed store. - if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) - return SDValue(N, 0); - - // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' - // - // Make sure to do this only after attempting to merge stores in order to - // avoid changing the types of some subset of stores due to visit order, - // preventing their merging. - if (isa<ConstantFPSDNode>(ST->getValue())) { - if (SDValue NewSt = replaceStoreOfFPConstant(ST)) - return NewSt; - } - - if (SDValue NewSt = splitMergedValStore(ST)) - return NewSt; - - return ReduceLoadOpStoreWidth(N); -} - -SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { - const auto *LifetimeEnd = cast<LifetimeSDNode>(N); - if (!LifetimeEnd->hasOffset()) - return SDValue(); - - const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), - LifetimeEnd->getOffset(), false); - - // We walk up the chains to find stores. - SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; - while (!Chains.empty()) { + // If this is a store who's preceding store to a subset of the current + // location and no one other node is chained to that store we can + // effectively drop the store. Do not remove stores to undef as they may + // be used as data sinks. + if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) { + CombineTo(ST1, ST1->getChain()); + return SDValue(); + } + } + } + } + + // If this is an FP_ROUND or TRUNC followed by a store, fold this into a + // truncating store. We can do this even if this is already a truncstore. + if ((Value.getOpcode() == ISD::FP_ROUND || Value.getOpcode() == ISD::TRUNCATE) + && Value.getNode()->hasOneUse() && ST->isUnindexed() && + TLI.isTruncStoreLegal(Value.getOperand(0).getValueType(), + ST->getMemoryVT())) { + return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), + Ptr, ST->getMemoryVT(), ST->getMemOperand()); + } + + // Always perform this optimization before types are legal. If the target + // prefers, also try this after legalization to catch stores that were created + // by intrinsics or other nodes. + if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) { + while (true) { + // There can be multiple store sequences on the same chain. + // Keep trying to merge store sequences until we are unable to do so + // or until we merge the last store on the chain. + bool Changed = mergeConsecutiveStores(ST); + if (!Changed) break; + // Return N as merge only uses CombineTo and no worklist clean + // up is necessary. + if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N)) + return SDValue(N, 0); + } + } + + // Try transforming N to an indexed store. + if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N)) + return SDValue(N, 0); + + // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' + // + // Make sure to do this only after attempting to merge stores in order to + // avoid changing the types of some subset of stores due to visit order, + // preventing their merging. + if (isa<ConstantFPSDNode>(ST->getValue())) { + if (SDValue NewSt = replaceStoreOfFPConstant(ST)) + return NewSt; + } + + if (SDValue NewSt = splitMergedValStore(ST)) + return NewSt; + + return ReduceLoadOpStoreWidth(N); +} + +SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) { + const auto *LifetimeEnd = cast<LifetimeSDNode>(N); + if (!LifetimeEnd->hasOffset()) + return SDValue(); + + const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(), + LifetimeEnd->getOffset(), false); + + // We walk up the chains to find stores. + SmallVector<SDValue, 8> Chains = {N->getOperand(0)}; + while (!Chains.empty()) { SDValue Chain = Chains.pop_back_val(); - if (!Chain.hasOneUse()) - continue; - switch (Chain.getOpcode()) { - case ISD::TokenFactor: - for (unsigned Nops = Chain.getNumOperands(); Nops;) - Chains.push_back(Chain.getOperand(--Nops)); - break; - case ISD::LIFETIME_START: - case ISD::LIFETIME_END: - // We can forward past any lifetime start/end that can be proven not to - // alias the node. - if (!isAlias(Chain.getNode(), N)) - Chains.push_back(Chain.getOperand(0)); - break; - case ISD::STORE: { - StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); - // TODO: Can relax for unordered atomics (see D66309) - if (!ST->isSimple() || ST->isIndexed()) - continue; + if (!Chain.hasOneUse()) + continue; + switch (Chain.getOpcode()) { + case ISD::TokenFactor: + for (unsigned Nops = Chain.getNumOperands(); Nops;) + Chains.push_back(Chain.getOperand(--Nops)); + break; + case ISD::LIFETIME_START: + case ISD::LIFETIME_END: + // We can forward past any lifetime start/end that can be proven not to + // alias the node. + if (!isAlias(Chain.getNode(), N)) + Chains.push_back(Chain.getOperand(0)); + break; + case ISD::STORE: { + StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain); + // TODO: Can relax for unordered atomics (see D66309) + if (!ST->isSimple() || ST->isIndexed()) + continue; const TypeSize StoreSize = ST->getMemoryVT().getStoreSize(); // The bounds of a scalable store are not known until runtime, so this // store cannot be elided. if (StoreSize.isScalable()) continue; - const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); - // If we store purely within object bounds just before its lifetime ends, - // we can remove the store. - if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, + const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG); + // If we store purely within object bounds just before its lifetime ends, + // we can remove the store. + if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase, StoreSize.getFixedSize() * 8)) { - LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); - dbgs() << "\nwithin LIFETIME_END of : "; - LifetimeEndBase.dump(); dbgs() << "\n"); - CombineTo(ST, ST->getChain()); - return SDValue(N, 0); - } - } - } - } - return SDValue(); -} - -/// For the instruction sequence of store below, F and I values -/// are bundled together as an i64 value before being stored into memory. -/// Sometimes it is more efficent to generate separate stores for F and I, -/// which can remove the bitwise instructions or sink them to colder places. -/// -/// (store (or (zext (bitcast F to i32) to i64), -/// (shl (zext I to i64), 32)), addr) --> -/// (store F, addr) and (store I, addr+4) -/// -/// Similarly, splitting for other merged store can also be beneficial, like: -/// For pair of {i32, i32}, i64 store --> two i32 stores. -/// For pair of {i32, i16}, i64 store --> two i32 stores. -/// For pair of {i16, i16}, i32 store --> two i16 stores. -/// For pair of {i16, i8}, i32 store --> two i16 stores. -/// For pair of {i8, i8}, i16 store --> two i8 stores. -/// -/// We allow each target to determine specifically which kind of splitting is -/// supported. -/// -/// The store patterns are commonly seen from the simple code snippet below -/// if only std::make_pair(...) is sroa transformed before inlined into hoo. -/// void goo(const std::pair<int, float> &); -/// hoo() { -/// ... -/// goo(std::make_pair(tmp, ftmp)); -/// ... -/// } -/// -SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { - if (OptLevel == CodeGenOpt::None) - return SDValue(); - - // Can't change the number of memory accesses for a volatile store or break - // atomicity for an atomic one. - if (!ST->isSimple()) - return SDValue(); - - SDValue Val = ST->getValue(); - SDLoc DL(ST); - - // Match OR operand. - if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) - return SDValue(); - - // Match SHL operand and get Lower and Higher parts of Val. - SDValue Op1 = Val.getOperand(0); - SDValue Op2 = Val.getOperand(1); - SDValue Lo, Hi; - if (Op1.getOpcode() != ISD::SHL) { - std::swap(Op1, Op2); - if (Op1.getOpcode() != ISD::SHL) - return SDValue(); - } - Lo = Op2; - Hi = Op1.getOperand(0); - if (!Op1.hasOneUse()) - return SDValue(); - - // Match shift amount to HalfValBitSize. - unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; - ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); - if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) - return SDValue(); - - // Lo and Hi are zero-extended from int with size less equal than 32 - // to i64. - if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || - !Lo.getOperand(0).getValueType().isScalarInteger() || - Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || - Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || - !Hi.getOperand(0).getValueType().isScalarInteger() || - Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) - return SDValue(); - - // Use the EVT of low and high parts before bitcast as the input - // of target query. - EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) - ? Lo.getOperand(0).getValueType() - : Lo.getValueType(); - EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) - ? Hi.getOperand(0).getValueType() - : Hi.getValueType(); - if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) - return SDValue(); - - // Start to split store. - MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); - AAMDNodes AAInfo = ST->getAAInfo(); - - // Change the sizes of Lo and Hi's value types to HalfValBitSize. - EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); - Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); - Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); - - SDValue Chain = ST->getChain(); - SDValue Ptr = ST->getBasePtr(); - // Lower value store. - SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), + LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump(); + dbgs() << "\nwithin LIFETIME_END of : "; + LifetimeEndBase.dump(); dbgs() << "\n"); + CombineTo(ST, ST->getChain()); + return SDValue(N, 0); + } + } + } + } + return SDValue(); +} + +/// For the instruction sequence of store below, F and I values +/// are bundled together as an i64 value before being stored into memory. +/// Sometimes it is more efficent to generate separate stores for F and I, +/// which can remove the bitwise instructions or sink them to colder places. +/// +/// (store (or (zext (bitcast F to i32) to i64), +/// (shl (zext I to i64), 32)), addr) --> +/// (store F, addr) and (store I, addr+4) +/// +/// Similarly, splitting for other merged store can also be beneficial, like: +/// For pair of {i32, i32}, i64 store --> two i32 stores. +/// For pair of {i32, i16}, i64 store --> two i32 stores. +/// For pair of {i16, i16}, i32 store --> two i16 stores. +/// For pair of {i16, i8}, i32 store --> two i16 stores. +/// For pair of {i8, i8}, i16 store --> two i8 stores. +/// +/// We allow each target to determine specifically which kind of splitting is +/// supported. +/// +/// The store patterns are commonly seen from the simple code snippet below +/// if only std::make_pair(...) is sroa transformed before inlined into hoo. +/// void goo(const std::pair<int, float> &); +/// hoo() { +/// ... +/// goo(std::make_pair(tmp, ftmp)); +/// ... +/// } +/// +SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) { + if (OptLevel == CodeGenOpt::None) + return SDValue(); + + // Can't change the number of memory accesses for a volatile store or break + // atomicity for an atomic one. + if (!ST->isSimple()) + return SDValue(); + + SDValue Val = ST->getValue(); + SDLoc DL(ST); + + // Match OR operand. + if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR) + return SDValue(); + + // Match SHL operand and get Lower and Higher parts of Val. + SDValue Op1 = Val.getOperand(0); + SDValue Op2 = Val.getOperand(1); + SDValue Lo, Hi; + if (Op1.getOpcode() != ISD::SHL) { + std::swap(Op1, Op2); + if (Op1.getOpcode() != ISD::SHL) + return SDValue(); + } + Lo = Op2; + Hi = Op1.getOperand(0); + if (!Op1.hasOneUse()) + return SDValue(); + + // Match shift amount to HalfValBitSize. + unsigned HalfValBitSize = Val.getValueSizeInBits() / 2; + ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1)); + if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize) + return SDValue(); + + // Lo and Hi are zero-extended from int with size less equal than 32 + // to i64. + if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() || + !Lo.getOperand(0).getValueType().isScalarInteger() || + Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize || + Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() || + !Hi.getOperand(0).getValueType().isScalarInteger() || + Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize) + return SDValue(); + + // Use the EVT of low and high parts before bitcast as the input + // of target query. + EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST) + ? Lo.getOperand(0).getValueType() + : Lo.getValueType(); + EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST) + ? Hi.getOperand(0).getValueType() + : Hi.getValueType(); + if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) + return SDValue(); + + // Start to split store. + MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags(); + AAMDNodes AAInfo = ST->getAAInfo(); + + // Change the sizes of Lo and Hi's value types to HalfValBitSize. + EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize); + Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0)); + Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0)); + + SDValue Chain = ST->getChain(); + SDValue Ptr = ST->getBasePtr(); + // Lower value store. + SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(), ST->getOriginalAlign(), MMOFlags, AAInfo); Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL); - // Higher value store. + // Higher value store. SDValue St1 = DAG.getStore( St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8), ST->getOriginalAlign(), MMOFlags, AAInfo); - return St1; -} - -/// Convert a disguised subvector insertion into a shuffle: -SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { - assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && - "Expected extract_vector_elt"); - SDValue InsertVal = N->getOperand(1); - SDValue Vec = N->getOperand(0); - - // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), - // InsIndex) - // --> (vector_shuffle X, Y) and variations where shuffle operands may be - // CONCAT_VECTORS. - if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && - InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - isa<ConstantSDNode>(InsertVal.getOperand(1))) { - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); - ArrayRef<int> Mask = SVN->getMask(); - - SDValue X = Vec.getOperand(0); - SDValue Y = Vec.getOperand(1); - - // Vec's operand 0 is using indices from 0 to N-1 and - // operand 1 from N to 2N - 1, where N is the number of - // elements in the vectors. - SDValue InsertVal0 = InsertVal.getOperand(0); - int ElementOffset = -1; - - // We explore the inputs of the shuffle in order to see if we find the - // source of the extract_vector_elt. If so, we can use it to modify the - // shuffle rather than perform an insert_vector_elt. - SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; - ArgWorkList.emplace_back(Mask.size(), Y); - ArgWorkList.emplace_back(0, X); - - while (!ArgWorkList.empty()) { - int ArgOffset; - SDValue ArgVal; - std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); - - if (ArgVal == InsertVal0) { - ElementOffset = ArgOffset; - break; - } - - // Peek through concat_vector. - if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { - int CurrentArgOffset = - ArgOffset + ArgVal.getValueType().getVectorNumElements(); - int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); - for (SDValue Op : reverse(ArgVal->ops())) { - CurrentArgOffset -= Step; - ArgWorkList.emplace_back(CurrentArgOffset, Op); - } - - // Make sure we went through all the elements and did not screw up index - // computation. - assert(CurrentArgOffset == ArgOffset); - } - } - - if (ElementOffset != -1) { - SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); - - auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); - NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); - assert(NewMask[InsIndex] < - (int)(2 * Vec.getValueType().getVectorNumElements()) && - NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); - - SDValue LegalShuffle = - TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, - Y, NewMask, DAG); - if (LegalShuffle) - return LegalShuffle; - } - } - - // insert_vector_elt V, (bitcast X from vector type), IdxC --> - // bitcast(shuffle (bitcast V), (extended X), Mask) - // Note: We do not use an insert_subvector node because that requires a - // legal subvector type. - if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || - !InsertVal.getOperand(0).getValueType().isVector()) - return SDValue(); - - SDValue SubVec = InsertVal.getOperand(0); - SDValue DestVec = N->getOperand(0); - EVT SubVecVT = SubVec.getValueType(); - EVT VT = DestVec.getValueType(); - unsigned NumSrcElts = SubVecVT.getVectorNumElements(); - // If the source only has a single vector element, the cost of creating adding - // it to a vector is likely to exceed the cost of a insert_vector_elt. - if (NumSrcElts == 1) - return SDValue(); - unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); - unsigned NumMaskVals = ExtendRatio * NumSrcElts; - - // Step 1: Create a shuffle mask that implements this insert operation. The - // vector that we are inserting into will be operand 0 of the shuffle, so - // those elements are just 'i'. The inserted subvector is in the first - // positions of operand 1 of the shuffle. Example: - // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} - SmallVector<int, 16> Mask(NumMaskVals); - for (unsigned i = 0; i != NumMaskVals; ++i) { - if (i / NumSrcElts == InsIndex) - Mask[i] = (i % NumSrcElts) + NumMaskVals; - else - Mask[i] = i; - } - - // Bail out if the target can not handle the shuffle we want to create. - EVT SubVecEltVT = SubVecVT.getVectorElementType(); - EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); - if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) - return SDValue(); - - // Step 2: Create a wide vector from the inserted source vector by appending - // undefined elements. This is the same size as our destination vector. - SDLoc DL(N); - SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); - ConcatOps[0] = SubVec; - SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); - - // Step 3: Shuffle in the padded subvector. - SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); - SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); - AddToWorklist(PaddedSubV.getNode()); - AddToWorklist(DestVecBC.getNode()); - AddToWorklist(Shuf.getNode()); - return DAG.getBitcast(VT, Shuf); -} - -SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { - SDValue InVec = N->getOperand(0); - SDValue InVal = N->getOperand(1); - SDValue EltNo = N->getOperand(2); - SDLoc DL(N); - - EVT VT = InVec.getValueType(); - auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); - - // Insert into out-of-bounds element is undefined. - if (IndexC && VT.isFixedLengthVector() && - IndexC->getZExtValue() >= VT.getVectorNumElements()) - return DAG.getUNDEF(VT); - - // Remove redundant insertions: - // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x - if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) - return InVec; - - if (!IndexC) { - // If this is variable insert to undef vector, it might be better to splat: - // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > - if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { - if (VT.isScalableVector()) - return DAG.getSplatVector(VT, DL, InVal); - else { - SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); - return DAG.getBuildVector(VT, DL, Ops); - } - } - return SDValue(); - } - - if (VT.isScalableVector()) - return SDValue(); - - unsigned NumElts = VT.getVectorNumElements(); - - // We must know which element is being inserted for folds below here. - unsigned Elt = IndexC->getZExtValue(); - if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) - return Shuf; - - // Canonicalize insert_vector_elt dag nodes. - // Example: - // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) - // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) - // - // Do this only if the child insert_vector node has one use; also - // do this only if indices are both constants and Idx1 < Idx0. - if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() - && isa<ConstantSDNode>(InVec.getOperand(2))) { - unsigned OtherElt = InVec.getConstantOperandVal(2); - if (Elt < OtherElt) { - // Swap nodes. - SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, - InVec.getOperand(0), InVal, EltNo); - AddToWorklist(NewOp.getNode()); - return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), - VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); - } - } - - // If we can't generate a legal BUILD_VECTOR, exit - if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) - return SDValue(); - - // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially - // be converted to a BUILD_VECTOR). Fill in the Ops vector with the - // vector elements. - SmallVector<SDValue, 8> Ops; - // Do not combine these two vectors if the output vector will not replace - // the input vector. - if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { - Ops.append(InVec.getNode()->op_begin(), - InVec.getNode()->op_end()); - } else if (InVec.isUndef()) { - Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); - } else { - return SDValue(); - } - assert(Ops.size() == NumElts && "Unexpected vector size"); - - // Insert the element - if (Elt < Ops.size()) { - // All the operands of BUILD_VECTOR must have the same type; - // we enforce that here. - EVT OpVT = Ops[0].getValueType(); - Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; - } - - // Return the new vector - return DAG.getBuildVector(VT, DL, Ops); -} - -SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, - SDValue EltNo, - LoadSDNode *OriginalLoad) { - assert(OriginalLoad->isSimple()); - - EVT ResultVT = EVE->getValueType(0); - EVT VecEltVT = InVecVT.getVectorElementType(); + return St1; +} + +/// Convert a disguised subvector insertion into a shuffle: +SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) { + assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && + "Expected extract_vector_elt"); + SDValue InsertVal = N->getOperand(1); + SDValue Vec = N->getOperand(0); + + // (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N), + // InsIndex) + // --> (vector_shuffle X, Y) and variations where shuffle operands may be + // CONCAT_VECTORS. + if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() && + InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + isa<ConstantSDNode>(InsertVal.getOperand(1))) { + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode()); + ArrayRef<int> Mask = SVN->getMask(); + + SDValue X = Vec.getOperand(0); + SDValue Y = Vec.getOperand(1); + + // Vec's operand 0 is using indices from 0 to N-1 and + // operand 1 from N to 2N - 1, where N is the number of + // elements in the vectors. + SDValue InsertVal0 = InsertVal.getOperand(0); + int ElementOffset = -1; + + // We explore the inputs of the shuffle in order to see if we find the + // source of the extract_vector_elt. If so, we can use it to modify the + // shuffle rather than perform an insert_vector_elt. + SmallVector<std::pair<int, SDValue>, 8> ArgWorkList; + ArgWorkList.emplace_back(Mask.size(), Y); + ArgWorkList.emplace_back(0, X); + + while (!ArgWorkList.empty()) { + int ArgOffset; + SDValue ArgVal; + std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val(); + + if (ArgVal == InsertVal0) { + ElementOffset = ArgOffset; + break; + } + + // Peek through concat_vector. + if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) { + int CurrentArgOffset = + ArgOffset + ArgVal.getValueType().getVectorNumElements(); + int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements(); + for (SDValue Op : reverse(ArgVal->ops())) { + CurrentArgOffset -= Step; + ArgWorkList.emplace_back(CurrentArgOffset, Op); + } + + // Make sure we went through all the elements and did not screw up index + // computation. + assert(CurrentArgOffset == ArgOffset); + } + } + + if (ElementOffset != -1) { + SmallVector<int, 16> NewMask(Mask.begin(), Mask.end()); + + auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1)); + NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue(); + assert(NewMask[InsIndex] < + (int)(2 * Vec.getValueType().getVectorNumElements()) && + NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound"); + + SDValue LegalShuffle = + TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X, + Y, NewMask, DAG); + if (LegalShuffle) + return LegalShuffle; + } + } + + // insert_vector_elt V, (bitcast X from vector type), IdxC --> + // bitcast(shuffle (bitcast V), (extended X), Mask) + // Note: We do not use an insert_subvector node because that requires a + // legal subvector type. + if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() || + !InsertVal.getOperand(0).getValueType().isVector()) + return SDValue(); + + SDValue SubVec = InsertVal.getOperand(0); + SDValue DestVec = N->getOperand(0); + EVT SubVecVT = SubVec.getValueType(); + EVT VT = DestVec.getValueType(); + unsigned NumSrcElts = SubVecVT.getVectorNumElements(); + // If the source only has a single vector element, the cost of creating adding + // it to a vector is likely to exceed the cost of a insert_vector_elt. + if (NumSrcElts == 1) + return SDValue(); + unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits(); + unsigned NumMaskVals = ExtendRatio * NumSrcElts; + + // Step 1: Create a shuffle mask that implements this insert operation. The + // vector that we are inserting into will be operand 0 of the shuffle, so + // those elements are just 'i'. The inserted subvector is in the first + // positions of operand 1 of the shuffle. Example: + // insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7} + SmallVector<int, 16> Mask(NumMaskVals); + for (unsigned i = 0; i != NumMaskVals; ++i) { + if (i / NumSrcElts == InsIndex) + Mask[i] = (i % NumSrcElts) + NumMaskVals; + else + Mask[i] = i; + } + + // Bail out if the target can not handle the shuffle we want to create. + EVT SubVecEltVT = SubVecVT.getVectorElementType(); + EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals); + if (!TLI.isShuffleMaskLegal(Mask, ShufVT)) + return SDValue(); + + // Step 2: Create a wide vector from the inserted source vector by appending + // undefined elements. This is the same size as our destination vector. + SDLoc DL(N); + SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT)); + ConcatOps[0] = SubVec; + SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps); + + // Step 3: Shuffle in the padded subvector. + SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec); + SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask); + AddToWorklist(PaddedSubV.getNode()); + AddToWorklist(DestVecBC.getNode()); + AddToWorklist(Shuf.getNode()); + return DAG.getBitcast(VT, Shuf); +} + +SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) { + SDValue InVec = N->getOperand(0); + SDValue InVal = N->getOperand(1); + SDValue EltNo = N->getOperand(2); + SDLoc DL(N); + + EVT VT = InVec.getValueType(); + auto *IndexC = dyn_cast<ConstantSDNode>(EltNo); + + // Insert into out-of-bounds element is undefined. + if (IndexC && VT.isFixedLengthVector() && + IndexC->getZExtValue() >= VT.getVectorNumElements()) + return DAG.getUNDEF(VT); + + // Remove redundant insertions: + // (insert_vector_elt x (extract_vector_elt x idx) idx) -> x + if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1)) + return InVec; + + if (!IndexC) { + // If this is variable insert to undef vector, it might be better to splat: + // inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... > + if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) { + if (VT.isScalableVector()) + return DAG.getSplatVector(VT, DL, InVal); + else { + SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal); + return DAG.getBuildVector(VT, DL, Ops); + } + } + return SDValue(); + } + + if (VT.isScalableVector()) + return SDValue(); + + unsigned NumElts = VT.getVectorNumElements(); + + // We must know which element is being inserted for folds below here. + unsigned Elt = IndexC->getZExtValue(); + if (SDValue Shuf = combineInsertEltToShuffle(N, Elt)) + return Shuf; + + // Canonicalize insert_vector_elt dag nodes. + // Example: + // (insert_vector_elt (insert_vector_elt A, Idx0), Idx1) + // -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0) + // + // Do this only if the child insert_vector node has one use; also + // do this only if indices are both constants and Idx1 < Idx0. + if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse() + && isa<ConstantSDNode>(InVec.getOperand(2))) { + unsigned OtherElt = InVec.getConstantOperandVal(2); + if (Elt < OtherElt) { + // Swap nodes. + SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, + InVec.getOperand(0), InVal, EltNo); + AddToWorklist(NewOp.getNode()); + return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()), + VT, NewOp, InVec.getOperand(1), InVec.getOperand(2)); + } + } + + // If we can't generate a legal BUILD_VECTOR, exit + if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)) + return SDValue(); + + // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially + // be converted to a BUILD_VECTOR). Fill in the Ops vector with the + // vector elements. + SmallVector<SDValue, 8> Ops; + // Do not combine these two vectors if the output vector will not replace + // the input vector. + if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) { + Ops.append(InVec.getNode()->op_begin(), + InVec.getNode()->op_end()); + } else if (InVec.isUndef()) { + Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType())); + } else { + return SDValue(); + } + assert(Ops.size() == NumElts && "Unexpected vector size"); + + // Insert the element + if (Elt < Ops.size()) { + // All the operands of BUILD_VECTOR must have the same type; + // we enforce that here. + EVT OpVT = Ops[0].getValueType(); + Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal; + } + + // Return the new vector + return DAG.getBuildVector(VT, DL, Ops); +} + +SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, + SDValue EltNo, + LoadSDNode *OriginalLoad) { + assert(OriginalLoad->isSimple()); + + EVT ResultVT = EVE->getValueType(0); + EVT VecEltVT = InVecVT.getVectorElementType(); // If the vector element type is not a multiple of a byte then we are unable // to correctly compute an address to load only the extracted element as a @@ -18086,1773 +18086,1773 @@ SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT, if (!VecEltVT.isByteSized()) return SDValue(); - Align Alignment = OriginalLoad->getAlign(); - Align NewAlign = DAG.getDataLayout().getABITypeAlign( - VecEltVT.getTypeForEVT(*DAG.getContext())); - - if (NewAlign > Alignment || - !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) - return SDValue(); - - ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? - ISD::NON_EXTLOAD : ISD::EXTLOAD; - if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) - return SDValue(); - - Alignment = NewAlign; - - SDValue NewPtr = OriginalLoad->getBasePtr(); - SDValue Offset; - EVT PtrType = NewPtr.getValueType(); - MachinePointerInfo MPI; - SDLoc DL(EVE); - if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { - int Elt = ConstEltNo->getZExtValue(); - unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; - Offset = DAG.getConstant(PtrOff, DL, PtrType); - MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); - } else { - Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); - Offset = DAG.getNode( - ISD::MUL, DL, PtrType, Offset, - DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); - // Discard the pointer info except the address space because the memory - // operand can't represent this new access since the offset is variable. - MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); - } - NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL); - - // The replacement we need to do here is a little tricky: we need to - // replace an extractelement of a load with a load. - // Use ReplaceAllUsesOfValuesWith to do the replacement. - // Note that this replacement assumes that the extractvalue is the only - // use of the load; that's okay because we don't want to perform this - // transformation in other cases anyway. - SDValue Load; - SDValue Chain; - if (ResultVT.bitsGT(VecEltVT)) { - // If the result type of vextract is wider than the load, then issue an - // extending load instead. - ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, - VecEltVT) - ? ISD::ZEXTLOAD - : ISD::EXTLOAD; - Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, - OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, - Alignment, OriginalLoad->getMemOperand()->getFlags(), - OriginalLoad->getAAInfo()); - Chain = Load.getValue(1); - } else { - Load = DAG.getLoad( - VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, - OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); - Chain = Load.getValue(1); - if (ResultVT.bitsLT(VecEltVT)) - Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); - else - Load = DAG.getBitcast(ResultVT, Load); - } - WorklistRemover DeadNodes(*this); - SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; - SDValue To[] = { Load, Chain }; - DAG.ReplaceAllUsesOfValuesWith(From, To, 2); - // Make sure to revisit this node to clean it up; it will usually be dead. - AddToWorklist(EVE); - // Since we're explicitly calling ReplaceAllUses, add the new node to the - // worklist explicitly as well. - AddToWorklistWithUsers(Load.getNode()); - ++OpsNarrowed; - return SDValue(EVE, 0); -} - -/// Transform a vector binary operation into a scalar binary operation by moving -/// the math/logic after an extract element of a vector. -static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, - bool LegalOperations) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Vec = ExtElt->getOperand(0); - SDValue Index = ExtElt->getOperand(1); - auto *IndexC = dyn_cast<ConstantSDNode>(Index); - if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || - Vec.getNode()->getNumValues() != 1) - return SDValue(); - - // Targets may want to avoid this to prevent an expensive register transfer. - if (!TLI.shouldScalarizeBinop(Vec)) - return SDValue(); - - // Extracting an element of a vector constant is constant-folded, so this - // transform is just replacing a vector op with a scalar op while moving the - // extract. - SDValue Op0 = Vec.getOperand(0); - SDValue Op1 = Vec.getOperand(1); - if (isAnyConstantBuildVector(Op0, true) || - isAnyConstantBuildVector(Op1, true)) { - // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' - // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) - SDLoc DL(ExtElt); - EVT VT = ExtElt->getValueType(0); - SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); - SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); - return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); - } - - return SDValue(); -} - -SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { - SDValue VecOp = N->getOperand(0); - SDValue Index = N->getOperand(1); - EVT ScalarVT = N->getValueType(0); - EVT VecVT = VecOp.getValueType(); - if (VecOp.isUndef()) - return DAG.getUNDEF(ScalarVT); - - // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val - // - // This only really matters if the index is non-constant since other combines - // on the constant elements already work. - SDLoc DL(N); - if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && - Index == VecOp.getOperand(2)) { - SDValue Elt = VecOp.getOperand(1); - return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; - } - - // (vextract (scalar_to_vector val, 0) -> val - if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { - // Only 0'th element of SCALAR_TO_VECTOR is defined. - if (DAG.isKnownNeverZero(Index)) - return DAG.getUNDEF(ScalarVT); - - // Check if the result type doesn't match the inserted element type. A - // SCALAR_TO_VECTOR may truncate the inserted element and the - // EXTRACT_VECTOR_ELT may widen the extracted vector. - SDValue InOp = VecOp.getOperand(0); - if (InOp.getValueType() != ScalarVT) { - assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); - return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); - } - return InOp; - } - - // extract_vector_elt of out-of-bounds element -> UNDEF - auto *IndexC = dyn_cast<ConstantSDNode>(Index); - if (IndexC && VecVT.isFixedLengthVector() && - IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) - return DAG.getUNDEF(ScalarVT); - - // extract_vector_elt (build_vector x, y), 1 -> y - if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || - VecOp.getOpcode() == ISD::SPLAT_VECTOR) && - TLI.isTypeLegal(VecVT) && - (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { - assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || - VecVT.isFixedLengthVector()) && - "BUILD_VECTOR used for scalable vectors"); - unsigned IndexVal = - VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; - SDValue Elt = VecOp.getOperand(IndexVal); - EVT InEltVT = Elt.getValueType(); - - // Sometimes build_vector's scalar input types do not match result type. - if (ScalarVT == InEltVT) - return Elt; - - // TODO: It may be useful to truncate if free if the build_vector implicitly - // converts. - } - - if (VecVT.isScalableVector()) - return SDValue(); - - // All the code from this point onwards assumes fixed width vectors, but it's - // possible that some of the combinations could be made to work for scalable - // vectors too. - unsigned NumElts = VecVT.getVectorNumElements(); - unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); - - // TODO: These transforms should not require the 'hasOneUse' restriction, but - // there are regressions on multiple targets without it. We can end up with a - // mess of scalar and vector code if we reduce only part of the DAG to scalar. - if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && - VecOp.hasOneUse()) { - // The vector index of the LSBs of the source depend on the endian-ness. - bool IsLE = DAG.getDataLayout().isLittleEndian(); - unsigned ExtractIndex = IndexC->getZExtValue(); - // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) - unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; - SDValue BCSrc = VecOp.getOperand(0); - if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) - return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); - - if (LegalTypes && BCSrc.getValueType().isInteger() && - BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { - // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> - // trunc i64 X to i32 - SDValue X = BCSrc.getOperand(0); - assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && - "Extract element and scalar to vector can't change element type " - "from FP to integer."); - unsigned XBitWidth = X.getValueSizeInBits(); - BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; - - // An extract element return value type can be wider than its vector - // operand element type. In that case, the high bits are undefined, so - // it's possible that we may need to extend rather than truncate. - if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { - assert(XBitWidth % VecEltBitWidth == 0 && - "Scalar bitwidth must be a multiple of vector element bitwidth"); - return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); - } - } - } - - if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) - return BO; - - // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. - // We only perform this optimization before the op legalization phase because - // we may introduce new vector instructions which are not backed by TD - // patterns. For example on AVX, extracting elements from a wide vector - // without using extract_subvector. However, if we can find an underlying - // scalar value, then we can always use that. - if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { - auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); - // Find the new index to extract from. - int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); - - // Extracting an undef index is undef. - if (OrigElt == -1) - return DAG.getUNDEF(ScalarVT); - - // Select the right vector half to extract from. - SDValue SVInVec; - if (OrigElt < (int)NumElts) { - SVInVec = VecOp.getOperand(0); - } else { - SVInVec = VecOp.getOperand(1); - OrigElt -= NumElts; - } - - if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { - SDValue InOp = SVInVec.getOperand(OrigElt); - if (InOp.getValueType() != ScalarVT) { - assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); - InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); - } - - return InOp; - } - - // FIXME: We should handle recursing on other vector shuffles and - // scalar_to_vector here as well. - - if (!LegalOperations || - // FIXME: Should really be just isOperationLegalOrCustom. - TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || - TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { - return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, - DAG.getVectorIdxConstant(OrigElt, DL)); - } - } - - // If only EXTRACT_VECTOR_ELT nodes use the source vector we can - // simplify it based on the (valid) extraction indices. - if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { - return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && - Use->getOperand(0) == VecOp && - isa<ConstantSDNode>(Use->getOperand(1)); - })) { - APInt DemandedElts = APInt::getNullValue(NumElts); - for (SDNode *Use : VecOp->uses()) { - auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); - if (CstElt->getAPIntValue().ult(NumElts)) - DemandedElts.setBit(CstElt->getZExtValue()); - } - if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { - // We simplified the vector operand of this extract element. If this - // extract is not dead, visit it again so it is folded properly. - if (N->getOpcode() != ISD::DELETED_NODE) - AddToWorklist(N); - return SDValue(N, 0); - } - APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); - if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { - // We simplified the vector operand of this extract element. If this - // extract is not dead, visit it again so it is folded properly. - if (N->getOpcode() != ISD::DELETED_NODE) - AddToWorklist(N); - return SDValue(N, 0); - } - } - - // Everything under here is trying to match an extract of a loaded value. - // If the result of load has to be truncated, then it's not necessarily - // profitable. - bool BCNumEltsChanged = false; - EVT ExtVT = VecVT.getVectorElementType(); - EVT LVT = ExtVT; - if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) - return SDValue(); - - if (VecOp.getOpcode() == ISD::BITCAST) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - EVT BCVT = VecOp.getOperand(0).getValueType(); - if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) - return SDValue(); - if (NumElts != BCVT.getVectorNumElements()) - BCNumEltsChanged = true; - VecOp = VecOp.getOperand(0); - ExtVT = BCVT.getVectorElementType(); - } - - // extract (vector load $addr), i --> load $addr + i * size - if (!LegalOperations && !IndexC && VecOp.hasOneUse() && - ISD::isNormalLoad(VecOp.getNode()) && - !Index->hasPredecessor(VecOp.getNode())) { - auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); - if (VecLoad && VecLoad->isSimple()) - return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); - } - - // Perform only after legalization to ensure build_vector / vector_shuffle - // optimizations have already been done. - if (!LegalOperations || !IndexC) - return SDValue(); - - // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) - // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) - // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) - int Elt = IndexC->getZExtValue(); - LoadSDNode *LN0 = nullptr; - if (ISD::isNormalLoad(VecOp.getNode())) { - LN0 = cast<LoadSDNode>(VecOp); - } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && - VecOp.getOperand(0).getValueType() == ExtVT && - ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); - } - if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { - // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) - // => - // (load $addr+1*size) - - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - // If the bit convert changed the number of elements, it is unsafe - // to examine the mask. - if (BCNumEltsChanged) - return SDValue(); - - // Select the input vector, guarding against out of range extract vector. - int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); - VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); - - if (VecOp.getOpcode() == ISD::BITCAST) { - // Don't duplicate a load with other uses. - if (!VecOp.hasOneUse()) - return SDValue(); - - VecOp = VecOp.getOperand(0); - } - if (ISD::isNormalLoad(VecOp.getNode())) { - LN0 = cast<LoadSDNode>(VecOp); - Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; - Index = DAG.getConstant(Elt, DL, Index.getValueType()); - } - } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && - VecVT.getVectorElementType() == ScalarVT && - (!LegalTypes || - TLI.isTypeLegal( - VecOp.getOperand(0).getValueType().getVectorElementType()))) { - // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 - // -> extract_vector_elt a, 0 - // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 - // -> extract_vector_elt a, 1 - // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 - // -> extract_vector_elt b, 0 - // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 - // -> extract_vector_elt b, 1 - SDLoc SL(N); - EVT ConcatVT = VecOp.getOperand(0).getValueType(); - unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); - SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, - Index.getValueType()); - - SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); - SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, - ConcatVT.getVectorElementType(), - ConcatOp, NewIdx); - return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); - } - - // Make sure we found a non-volatile load and the extractelement is - // the only use. - if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) - return SDValue(); - - // If Idx was -1 above, Elt is going to be -1, so just return undef. - if (Elt == -1) - return DAG.getUNDEF(LVT); - - return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); -} - -// Simplify (build_vec (ext )) to (bitcast (build_vec )) -SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { - // We perform this optimization post type-legalization because - // the type-legalizer often scalarizes integer-promoted vectors. - // Performing this optimization before may create bit-casts which - // will be type-legalized to complex code sequences. - // We perform this optimization only before the operation legalizer because we - // may introduce illegal operations. - if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) - return SDValue(); - - unsigned NumInScalars = N->getNumOperands(); - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // Check to see if this is a BUILD_VECTOR of a bunch of values - // which come from any_extend or zero_extend nodes. If so, we can create - // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR - // optimizations. We do not handle sign-extend because we can't fill the sign - // using shuffles. - EVT SourceType = MVT::Other; - bool AllAnyExt = true; - - for (unsigned i = 0; i != NumInScalars; ++i) { - SDValue In = N->getOperand(i); - // Ignore undef inputs. - if (In.isUndef()) continue; - - bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; - bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; - - // Abort if the element is not an extension. - if (!ZeroExt && !AnyExt) { - SourceType = MVT::Other; - break; - } - - // The input is a ZeroExt or AnyExt. Check the original type. - EVT InTy = In.getOperand(0).getValueType(); - - // Check that all of the widened source types are the same. - if (SourceType == MVT::Other) - // First time. - SourceType = InTy; - else if (InTy != SourceType) { - // Multiple income types. Abort. - SourceType = MVT::Other; - break; - } - - // Check if all of the extends are ANY_EXTENDs. - AllAnyExt &= AnyExt; - } - - // In order to have valid types, all of the inputs must be extended from the - // same source type and all of the inputs must be any or zero extend. - // Scalar sizes must be a power of two. - EVT OutScalarTy = VT.getScalarType(); - bool ValidTypes = SourceType != MVT::Other && - isPowerOf2_32(OutScalarTy.getSizeInBits()) && - isPowerOf2_32(SourceType.getSizeInBits()); - - // Create a new simpler BUILD_VECTOR sequence which other optimizations can - // turn into a single shuffle instruction. - if (!ValidTypes) - return SDValue(); - - // If we already have a splat buildvector, then don't fold it if it means - // introducing zeros. - if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) - return SDValue(); - - bool isLE = DAG.getDataLayout().isLittleEndian(); - unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); - assert(ElemRatio > 1 && "Invalid element size ratio"); - SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): - DAG.getConstant(0, DL, SourceType); - - unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); - SmallVector<SDValue, 8> Ops(NewBVElems, Filler); - - // Populate the new build_vector - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - SDValue Cast = N->getOperand(i); - assert((Cast.getOpcode() == ISD::ANY_EXTEND || - Cast.getOpcode() == ISD::ZERO_EXTEND || - Cast.isUndef()) && "Invalid cast opcode"); - SDValue In; - if (Cast.isUndef()) - In = DAG.getUNDEF(SourceType); - else - In = Cast->getOperand(0); - unsigned Index = isLE ? (i * ElemRatio) : - (i * ElemRatio + (ElemRatio - 1)); - - assert(Index < Ops.size() && "Invalid index"); - Ops[Index] = In; - } - - // The type of the new BUILD_VECTOR node. - EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); - assert(VecVT.getSizeInBits() == VT.getSizeInBits() && - "Invalid vector size"); - // Check if the new vector type is legal. - if (!isTypeLegal(VecVT) || - (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && - TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) - return SDValue(); - - // Make the new BUILD_VECTOR. - SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); - - // The new BUILD_VECTOR node has the potential to be further optimized. - AddToWorklist(BV.getNode()); - // Bitcast to the desired type. - return DAG.getBitcast(VT, BV); -} - -// Simplify (build_vec (trunc $1) -// (trunc (srl $1 half-width)) -// (trunc (srl $1 (2 * half-width))) …) -// to (bitcast $1) -SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { - assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); - - // Only for little endian - if (!DAG.getDataLayout().isLittleEndian()) - return SDValue(); - - SDLoc DL(N); - EVT VT = N->getValueType(0); - EVT OutScalarTy = VT.getScalarType(); - uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); - - // Only for power of two types to be sure that bitcast works well - if (!isPowerOf2_64(ScalarTypeBitsize)) - return SDValue(); - - unsigned NumInScalars = N->getNumOperands(); - - // Look through bitcasts - auto PeekThroughBitcast = [](SDValue Op) { - if (Op.getOpcode() == ISD::BITCAST) - return Op.getOperand(0); - return Op; - }; - - // The source value where all the parts are extracted. - SDValue Src; - for (unsigned i = 0; i != NumInScalars; ++i) { - SDValue In = PeekThroughBitcast(N->getOperand(i)); - // Ignore undef inputs. - if (In.isUndef()) continue; - - if (In.getOpcode() != ISD::TRUNCATE) - return SDValue(); - - In = PeekThroughBitcast(In.getOperand(0)); - - if (In.getOpcode() != ISD::SRL) { - // For now only build_vec without shuffling, handle shifts here in the - // future. - if (i != 0) - return SDValue(); - - Src = In; - } else { - // In is SRL - SDValue part = PeekThroughBitcast(In.getOperand(0)); - - if (!Src) { - Src = part; - } else if (Src != part) { - // Vector parts do not stem from the same variable - return SDValue(); - } - - SDValue ShiftAmtVal = In.getOperand(1); - if (!isa<ConstantSDNode>(ShiftAmtVal)) - return SDValue(); - - uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); - - // The extracted value is not extracted at the right position - if (ShiftAmt != i * ScalarTypeBitsize) - return SDValue(); - } - } - - // Only cast if the size is the same - if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - return DAG.getBitcast(VT, Src); -} - -SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, - ArrayRef<int> VectorMask, - SDValue VecIn1, SDValue VecIn2, - unsigned LeftIdx, bool DidSplitVec) { - SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); - - EVT VT = N->getValueType(0); - EVT InVT1 = VecIn1.getValueType(); - EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; - - unsigned NumElems = VT.getVectorNumElements(); - unsigned ShuffleNumElems = NumElems; - - // If we artificially split a vector in two already, then the offsets in the - // operands will all be based off of VecIn1, even those in VecIn2. - unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); - + Align Alignment = OriginalLoad->getAlign(); + Align NewAlign = DAG.getDataLayout().getABITypeAlign( + VecEltVT.getTypeForEVT(*DAG.getContext())); + + if (NewAlign > Alignment || + !TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT)) + return SDValue(); + + ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ? + ISD::NON_EXTLOAD : ISD::EXTLOAD; + if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT)) + return SDValue(); + + Alignment = NewAlign; + + SDValue NewPtr = OriginalLoad->getBasePtr(); + SDValue Offset; + EVT PtrType = NewPtr.getValueType(); + MachinePointerInfo MPI; + SDLoc DL(EVE); + if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) { + int Elt = ConstEltNo->getZExtValue(); + unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8; + Offset = DAG.getConstant(PtrOff, DL, PtrType); + MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff); + } else { + Offset = DAG.getZExtOrTrunc(EltNo, DL, PtrType); + Offset = DAG.getNode( + ISD::MUL, DL, PtrType, Offset, + DAG.getConstant(VecEltVT.getStoreSize(), DL, PtrType)); + // Discard the pointer info except the address space because the memory + // operand can't represent this new access since the offset is variable. + MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace()); + } + NewPtr = DAG.getMemBasePlusOffset(NewPtr, Offset, DL); + + // The replacement we need to do here is a little tricky: we need to + // replace an extractelement of a load with a load. + // Use ReplaceAllUsesOfValuesWith to do the replacement. + // Note that this replacement assumes that the extractvalue is the only + // use of the load; that's okay because we don't want to perform this + // transformation in other cases anyway. + SDValue Load; + SDValue Chain; + if (ResultVT.bitsGT(VecEltVT)) { + // If the result type of vextract is wider than the load, then issue an + // extending load instead. + ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT, + VecEltVT) + ? ISD::ZEXTLOAD + : ISD::EXTLOAD; + Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT, + OriginalLoad->getChain(), NewPtr, MPI, VecEltVT, + Alignment, OriginalLoad->getMemOperand()->getFlags(), + OriginalLoad->getAAInfo()); + Chain = Load.getValue(1); + } else { + Load = DAG.getLoad( + VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment, + OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo()); + Chain = Load.getValue(1); + if (ResultVT.bitsLT(VecEltVT)) + Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load); + else + Load = DAG.getBitcast(ResultVT, Load); + } + WorklistRemover DeadNodes(*this); + SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) }; + SDValue To[] = { Load, Chain }; + DAG.ReplaceAllUsesOfValuesWith(From, To, 2); + // Make sure to revisit this node to clean it up; it will usually be dead. + AddToWorklist(EVE); + // Since we're explicitly calling ReplaceAllUses, add the new node to the + // worklist explicitly as well. + AddToWorklistWithUsers(Load.getNode()); + ++OpsNarrowed; + return SDValue(EVE, 0); +} + +/// Transform a vector binary operation into a scalar binary operation by moving +/// the math/logic after an extract element of a vector. +static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG, + bool LegalOperations) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Vec = ExtElt->getOperand(0); + SDValue Index = ExtElt->getOperand(1); + auto *IndexC = dyn_cast<ConstantSDNode>(Index); + if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() || + Vec.getNode()->getNumValues() != 1) + return SDValue(); + + // Targets may want to avoid this to prevent an expensive register transfer. + if (!TLI.shouldScalarizeBinop(Vec)) + return SDValue(); + + // Extracting an element of a vector constant is constant-folded, so this + // transform is just replacing a vector op with a scalar op while moving the + // extract. + SDValue Op0 = Vec.getOperand(0); + SDValue Op1 = Vec.getOperand(1); + if (isAnyConstantBuildVector(Op0, true) || + isAnyConstantBuildVector(Op1, true)) { + // extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C' + // extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC) + SDLoc DL(ExtElt); + EVT VT = ExtElt->getValueType(0); + SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index); + SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index); + return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1); + } + + return SDValue(); +} + +SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) { + SDValue VecOp = N->getOperand(0); + SDValue Index = N->getOperand(1); + EVT ScalarVT = N->getValueType(0); + EVT VecVT = VecOp.getValueType(); + if (VecOp.isUndef()) + return DAG.getUNDEF(ScalarVT); + + // extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val + // + // This only really matters if the index is non-constant since other combines + // on the constant elements already work. + SDLoc DL(N); + if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT && + Index == VecOp.getOperand(2)) { + SDValue Elt = VecOp.getOperand(1); + return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt; + } + + // (vextract (scalar_to_vector val, 0) -> val + if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) { + // Only 0'th element of SCALAR_TO_VECTOR is defined. + if (DAG.isKnownNeverZero(Index)) + return DAG.getUNDEF(ScalarVT); + + // Check if the result type doesn't match the inserted element type. A + // SCALAR_TO_VECTOR may truncate the inserted element and the + // EXTRACT_VECTOR_ELT may widen the extracted vector. + SDValue InOp = VecOp.getOperand(0); + if (InOp.getValueType() != ScalarVT) { + assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); + return DAG.getSExtOrTrunc(InOp, DL, ScalarVT); + } + return InOp; + } + + // extract_vector_elt of out-of-bounds element -> UNDEF + auto *IndexC = dyn_cast<ConstantSDNode>(Index); + if (IndexC && VecVT.isFixedLengthVector() && + IndexC->getAPIntValue().uge(VecVT.getVectorNumElements())) + return DAG.getUNDEF(ScalarVT); + + // extract_vector_elt (build_vector x, y), 1 -> y + if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) || + VecOp.getOpcode() == ISD::SPLAT_VECTOR) && + TLI.isTypeLegal(VecVT) && + (VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) { + assert((VecOp.getOpcode() != ISD::BUILD_VECTOR || + VecVT.isFixedLengthVector()) && + "BUILD_VECTOR used for scalable vectors"); + unsigned IndexVal = + VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0; + SDValue Elt = VecOp.getOperand(IndexVal); + EVT InEltVT = Elt.getValueType(); + + // Sometimes build_vector's scalar input types do not match result type. + if (ScalarVT == InEltVT) + return Elt; + + // TODO: It may be useful to truncate if free if the build_vector implicitly + // converts. + } + + if (VecVT.isScalableVector()) + return SDValue(); + + // All the code from this point onwards assumes fixed width vectors, but it's + // possible that some of the combinations could be made to work for scalable + // vectors too. + unsigned NumElts = VecVT.getVectorNumElements(); + unsigned VecEltBitWidth = VecVT.getScalarSizeInBits(); + + // TODO: These transforms should not require the 'hasOneUse' restriction, but + // there are regressions on multiple targets without it. We can end up with a + // mess of scalar and vector code if we reduce only part of the DAG to scalar. + if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() && + VecOp.hasOneUse()) { + // The vector index of the LSBs of the source depend on the endian-ness. + bool IsLE = DAG.getDataLayout().isLittleEndian(); + unsigned ExtractIndex = IndexC->getZExtValue(); + // extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x) + unsigned BCTruncElt = IsLE ? 0 : NumElts - 1; + SDValue BCSrc = VecOp.getOperand(0); + if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger()) + return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc); + + if (LegalTypes && BCSrc.getValueType().isInteger() && + BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) { + // ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt --> + // trunc i64 X to i32 + SDValue X = BCSrc.getOperand(0); + assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() && + "Extract element and scalar to vector can't change element type " + "from FP to integer."); + unsigned XBitWidth = X.getValueSizeInBits(); + BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1; + + // An extract element return value type can be wider than its vector + // operand element type. In that case, the high bits are undefined, so + // it's possible that we may need to extend rather than truncate. + if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) { + assert(XBitWidth % VecEltBitWidth == 0 && + "Scalar bitwidth must be a multiple of vector element bitwidth"); + return DAG.getAnyExtOrTrunc(X, DL, ScalarVT); + } + } + } + + if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations)) + return BO; + + // Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT. + // We only perform this optimization before the op legalization phase because + // we may introduce new vector instructions which are not backed by TD + // patterns. For example on AVX, extracting elements from a wide vector + // without using extract_subvector. However, if we can find an underlying + // scalar value, then we can always use that. + if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) { + auto *Shuf = cast<ShuffleVectorSDNode>(VecOp); + // Find the new index to extract from. + int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue()); + + // Extracting an undef index is undef. + if (OrigElt == -1) + return DAG.getUNDEF(ScalarVT); + + // Select the right vector half to extract from. + SDValue SVInVec; + if (OrigElt < (int)NumElts) { + SVInVec = VecOp.getOperand(0); + } else { + SVInVec = VecOp.getOperand(1); + OrigElt -= NumElts; + } + + if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) { + SDValue InOp = SVInVec.getOperand(OrigElt); + if (InOp.getValueType() != ScalarVT) { + assert(InOp.getValueType().isInteger() && ScalarVT.isInteger()); + InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT); + } + + return InOp; + } + + // FIXME: We should handle recursing on other vector shuffles and + // scalar_to_vector here as well. + + if (!LegalOperations || + // FIXME: Should really be just isOperationLegalOrCustom. + TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) || + TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) { + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec, + DAG.getVectorIdxConstant(OrigElt, DL)); + } + } + + // If only EXTRACT_VECTOR_ELT nodes use the source vector we can + // simplify it based on the (valid) extraction indices. + if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) { + return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Use->getOperand(0) == VecOp && + isa<ConstantSDNode>(Use->getOperand(1)); + })) { + APInt DemandedElts = APInt::getNullValue(NumElts); + for (SDNode *Use : VecOp->uses()) { + auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1)); + if (CstElt->getAPIntValue().ult(NumElts)) + DemandedElts.setBit(CstElt->getZExtValue()); + } + if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) { + // We simplified the vector operand of this extract element. If this + // extract is not dead, visit it again so it is folded properly. + if (N->getOpcode() != ISD::DELETED_NODE) + AddToWorklist(N); + return SDValue(N, 0); + } + APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth); + if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) { + // We simplified the vector operand of this extract element. If this + // extract is not dead, visit it again so it is folded properly. + if (N->getOpcode() != ISD::DELETED_NODE) + AddToWorklist(N); + return SDValue(N, 0); + } + } + + // Everything under here is trying to match an extract of a loaded value. + // If the result of load has to be truncated, then it's not necessarily + // profitable. + bool BCNumEltsChanged = false; + EVT ExtVT = VecVT.getVectorElementType(); + EVT LVT = ExtVT; + if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT)) + return SDValue(); + + if (VecOp.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!VecOp.hasOneUse()) + return SDValue(); + + EVT BCVT = VecOp.getOperand(0).getValueType(); + if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType())) + return SDValue(); + if (NumElts != BCVT.getVectorNumElements()) + BCNumEltsChanged = true; + VecOp = VecOp.getOperand(0); + ExtVT = BCVT.getVectorElementType(); + } + + // extract (vector load $addr), i --> load $addr + i * size + if (!LegalOperations && !IndexC && VecOp.hasOneUse() && + ISD::isNormalLoad(VecOp.getNode()) && + !Index->hasPredecessor(VecOp.getNode())) { + auto *VecLoad = dyn_cast<LoadSDNode>(VecOp); + if (VecLoad && VecLoad->isSimple()) + return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad); + } + + // Perform only after legalization to ensure build_vector / vector_shuffle + // optimizations have already been done. + if (!LegalOperations || !IndexC) + return SDValue(); + + // (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size) + // (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size) + // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr) + int Elt = IndexC->getZExtValue(); + LoadSDNode *LN0 = nullptr; + if (ISD::isNormalLoad(VecOp.getNode())) { + LN0 = cast<LoadSDNode>(VecOp); + } else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR && + VecOp.getOperand(0).getValueType() == ExtVT && + ISD::isNormalLoad(VecOp.getOperand(0).getNode())) { + // Don't duplicate a load with other uses. + if (!VecOp.hasOneUse()) + return SDValue(); + + LN0 = cast<LoadSDNode>(VecOp.getOperand(0)); + } + if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) { + // (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1) + // => + // (load $addr+1*size) + + // Don't duplicate a load with other uses. + if (!VecOp.hasOneUse()) + return SDValue(); + + // If the bit convert changed the number of elements, it is unsafe + // to examine the mask. + if (BCNumEltsChanged) + return SDValue(); + + // Select the input vector, guarding against out of range extract vector. + int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt); + VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1); + + if (VecOp.getOpcode() == ISD::BITCAST) { + // Don't duplicate a load with other uses. + if (!VecOp.hasOneUse()) + return SDValue(); + + VecOp = VecOp.getOperand(0); + } + if (ISD::isNormalLoad(VecOp.getNode())) { + LN0 = cast<LoadSDNode>(VecOp); + Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts; + Index = DAG.getConstant(Elt, DL, Index.getValueType()); + } + } else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged && + VecVT.getVectorElementType() == ScalarVT && + (!LegalTypes || + TLI.isTypeLegal( + VecOp.getOperand(0).getValueType().getVectorElementType()))) { + // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0 + // -> extract_vector_elt a, 0 + // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1 + // -> extract_vector_elt a, 1 + // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2 + // -> extract_vector_elt b, 0 + // extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3 + // -> extract_vector_elt b, 1 + SDLoc SL(N); + EVT ConcatVT = VecOp.getOperand(0).getValueType(); + unsigned ConcatNumElts = ConcatVT.getVectorNumElements(); + SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL, + Index.getValueType()); + + SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts); + SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, + ConcatVT.getVectorElementType(), + ConcatOp, NewIdx); + return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt); + } + + // Make sure we found a non-volatile load and the extractelement is + // the only use. + if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple()) + return SDValue(); + + // If Idx was -1 above, Elt is going to be -1, so just return undef. + if (Elt == -1) + return DAG.getUNDEF(LVT); + + return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0); +} + +// Simplify (build_vec (ext )) to (bitcast (build_vec )) +SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) { + // We perform this optimization post type-legalization because + // the type-legalizer often scalarizes integer-promoted vectors. + // Performing this optimization before may create bit-casts which + // will be type-legalized to complex code sequences. + // We perform this optimization only before the operation legalizer because we + // may introduce illegal operations. + if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes) + return SDValue(); + + unsigned NumInScalars = N->getNumOperands(); + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // Check to see if this is a BUILD_VECTOR of a bunch of values + // which come from any_extend or zero_extend nodes. If so, we can create + // a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR + // optimizations. We do not handle sign-extend because we can't fill the sign + // using shuffles. + EVT SourceType = MVT::Other; + bool AllAnyExt = true; + + for (unsigned i = 0; i != NumInScalars; ++i) { + SDValue In = N->getOperand(i); + // Ignore undef inputs. + if (In.isUndef()) continue; + + bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND; + bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND; + + // Abort if the element is not an extension. + if (!ZeroExt && !AnyExt) { + SourceType = MVT::Other; + break; + } + + // The input is a ZeroExt or AnyExt. Check the original type. + EVT InTy = In.getOperand(0).getValueType(); + + // Check that all of the widened source types are the same. + if (SourceType == MVT::Other) + // First time. + SourceType = InTy; + else if (InTy != SourceType) { + // Multiple income types. Abort. + SourceType = MVT::Other; + break; + } + + // Check if all of the extends are ANY_EXTENDs. + AllAnyExt &= AnyExt; + } + + // In order to have valid types, all of the inputs must be extended from the + // same source type and all of the inputs must be any or zero extend. + // Scalar sizes must be a power of two. + EVT OutScalarTy = VT.getScalarType(); + bool ValidTypes = SourceType != MVT::Other && + isPowerOf2_32(OutScalarTy.getSizeInBits()) && + isPowerOf2_32(SourceType.getSizeInBits()); + + // Create a new simpler BUILD_VECTOR sequence which other optimizations can + // turn into a single shuffle instruction. + if (!ValidTypes) + return SDValue(); + + // If we already have a splat buildvector, then don't fold it if it means + // introducing zeros. + if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true)) + return SDValue(); + + bool isLE = DAG.getDataLayout().isLittleEndian(); + unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits(); + assert(ElemRatio > 1 && "Invalid element size ratio"); + SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType): + DAG.getConstant(0, DL, SourceType); + + unsigned NewBVElems = ElemRatio * VT.getVectorNumElements(); + SmallVector<SDValue, 8> Ops(NewBVElems, Filler); + + // Populate the new build_vector + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDValue Cast = N->getOperand(i); + assert((Cast.getOpcode() == ISD::ANY_EXTEND || + Cast.getOpcode() == ISD::ZERO_EXTEND || + Cast.isUndef()) && "Invalid cast opcode"); + SDValue In; + if (Cast.isUndef()) + In = DAG.getUNDEF(SourceType); + else + In = Cast->getOperand(0); + unsigned Index = isLE ? (i * ElemRatio) : + (i * ElemRatio + (ElemRatio - 1)); + + assert(Index < Ops.size() && "Invalid index"); + Ops[Index] = In; + } + + // The type of the new BUILD_VECTOR node. + EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems); + assert(VecVT.getSizeInBits() == VT.getSizeInBits() && + "Invalid vector size"); + // Check if the new vector type is legal. + if (!isTypeLegal(VecVT) || + (!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) && + TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))) + return SDValue(); + + // Make the new BUILD_VECTOR. + SDValue BV = DAG.getBuildVector(VecVT, DL, Ops); + + // The new BUILD_VECTOR node has the potential to be further optimized. + AddToWorklist(BV.getNode()); + // Bitcast to the desired type. + return DAG.getBitcast(VT, BV); +} + +// Simplify (build_vec (trunc $1) +// (trunc (srl $1 half-width)) +// (trunc (srl $1 (2 * half-width))) …) +// to (bitcast $1) +SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) { + assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); + + // Only for little endian + if (!DAG.getDataLayout().isLittleEndian()) + return SDValue(); + + SDLoc DL(N); + EVT VT = N->getValueType(0); + EVT OutScalarTy = VT.getScalarType(); + uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits(); + + // Only for power of two types to be sure that bitcast works well + if (!isPowerOf2_64(ScalarTypeBitsize)) + return SDValue(); + + unsigned NumInScalars = N->getNumOperands(); + + // Look through bitcasts + auto PeekThroughBitcast = [](SDValue Op) { + if (Op.getOpcode() == ISD::BITCAST) + return Op.getOperand(0); + return Op; + }; + + // The source value where all the parts are extracted. + SDValue Src; + for (unsigned i = 0; i != NumInScalars; ++i) { + SDValue In = PeekThroughBitcast(N->getOperand(i)); + // Ignore undef inputs. + if (In.isUndef()) continue; + + if (In.getOpcode() != ISD::TRUNCATE) + return SDValue(); + + In = PeekThroughBitcast(In.getOperand(0)); + + if (In.getOpcode() != ISD::SRL) { + // For now only build_vec without shuffling, handle shifts here in the + // future. + if (i != 0) + return SDValue(); + + Src = In; + } else { + // In is SRL + SDValue part = PeekThroughBitcast(In.getOperand(0)); + + if (!Src) { + Src = part; + } else if (Src != part) { + // Vector parts do not stem from the same variable + return SDValue(); + } + + SDValue ShiftAmtVal = In.getOperand(1); + if (!isa<ConstantSDNode>(ShiftAmtVal)) + return SDValue(); + + uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1); + + // The extracted value is not extracted at the right position + if (ShiftAmt != i * ScalarTypeBitsize) + return SDValue(); + } + } + + // Only cast if the size is the same + if (Src.getValueType().getSizeInBits() != VT.getSizeInBits()) + return SDValue(); + + return DAG.getBitcast(VT, Src); +} + +SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N, + ArrayRef<int> VectorMask, + SDValue VecIn1, SDValue VecIn2, + unsigned LeftIdx, bool DidSplitVec) { + SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL); + + EVT VT = N->getValueType(0); + EVT InVT1 = VecIn1.getValueType(); + EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1; + + unsigned NumElems = VT.getVectorNumElements(); + unsigned ShuffleNumElems = NumElems; + + // If we artificially split a vector in two already, then the offsets in the + // operands will all be based off of VecIn1, even those in VecIn2. + unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements(); + uint64_t VTSize = VT.getFixedSizeInBits(); uint64_t InVT1Size = InVT1.getFixedSizeInBits(); uint64_t InVT2Size = InVT2.getFixedSizeInBits(); - // We can't generate a shuffle node with mismatched input and output types. - // Try to make the types match the type of the output. - if (InVT1 != VT || InVT2 != VT) { + // We can't generate a shuffle node with mismatched input and output types. + // Try to make the types match the type of the output. + if (InVT1 != VT || InVT2 != VT) { if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) { - // If the output vector length is a multiple of both input lengths, - // we can concatenate them and pad the rest with undefs. + // If the output vector length is a multiple of both input lengths, + // we can concatenate them and pad the rest with undefs. unsigned NumConcats = VTSize / InVT1Size; - assert(NumConcats >= 2 && "Concat needs at least two inputs!"); - SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); - ConcatOps[0] = VecIn1; - ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); - VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); - VecIn2 = SDValue(); + assert(NumConcats >= 2 && "Concat needs at least two inputs!"); + SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1)); + ConcatOps[0] = VecIn1; + ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1); + VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); + VecIn2 = SDValue(); } else if (InVT1Size == VTSize * 2) { - if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) - return SDValue(); - - if (!VecIn2.getNode()) { - // If we only have one input vector, and it's twice the size of the - // output, split it in two. - VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, - DAG.getVectorIdxConstant(NumElems, DL)); - VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); - // Since we now have shorter input vectors, adjust the offset of the - // second vector's start. - Vec2Offset = NumElems; + if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems)) + return SDValue(); + + if (!VecIn2.getNode()) { + // If we only have one input vector, and it's twice the size of the + // output, split it in two. + VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, + DAG.getVectorIdxConstant(NumElems, DL)); + VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx); + // Since we now have shorter input vectors, adjust the offset of the + // second vector's start. + Vec2Offset = NumElems; } else if (InVT2Size <= InVT1Size) { - // VecIn1 is wider than the output, and we have another, possibly - // smaller input. Pad the smaller input with undefs, shuffle at the - // input vector width, and extract the output. - // The shuffle type is different than VT, so check legality again. - if (LegalOperations && - !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) - return SDValue(); - - // Legalizing INSERT_SUBVECTOR is tricky - you basically have to - // lower it back into a BUILD_VECTOR. So if the inserted type is - // illegal, don't even try. - if (InVT1 != InVT2) { - if (!TLI.isTypeLegal(InVT2)) - return SDValue(); - VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, - DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); - } - ShuffleNumElems = NumElems * 2; - } else { - // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider - // than VecIn1. We can't handle this for now - this case will disappear - // when we start sorting the vectors by type. - return SDValue(); - } + // VecIn1 is wider than the output, and we have another, possibly + // smaller input. Pad the smaller input with undefs, shuffle at the + // input vector width, and extract the output. + // The shuffle type is different than VT, so check legality again. + if (LegalOperations && + !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1)) + return SDValue(); + + // Legalizing INSERT_SUBVECTOR is tricky - you basically have to + // lower it back into a BUILD_VECTOR. So if the inserted type is + // illegal, don't even try. + if (InVT1 != InVT2) { + if (!TLI.isTypeLegal(InVT2)) + return SDValue(); + VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1, + DAG.getUNDEF(InVT1), VecIn2, ZeroIdx); + } + ShuffleNumElems = NumElems * 2; + } else { + // Both VecIn1 and VecIn2 are wider than the output, and VecIn2 is wider + // than VecIn1. We can't handle this for now - this case will disappear + // when we start sorting the vectors by type. + return SDValue(); + } } else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) { - SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); - ConcatOps[0] = VecIn2; - VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); - } else { - // TODO: Support cases where the length mismatch isn't exactly by a - // factor of 2. - // TODO: Move this check upwards, so that if we have bad type - // mismatches, we don't create any DAG nodes. - return SDValue(); - } - } - - // Initialize mask to undef. - SmallVector<int, 8> Mask(ShuffleNumElems, -1); - - // Only need to run up to the number of elements actually used, not the - // total number of elements in the shuffle - if we are shuffling a wider - // vector, the high lanes should be set to undef. - for (unsigned i = 0; i != NumElems; ++i) { - if (VectorMask[i] <= 0) - continue; - - unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); - if (VectorMask[i] == (int)LeftIdx) { - Mask[i] = ExtIndex; - } else if (VectorMask[i] == (int)LeftIdx + 1) { - Mask[i] = Vec2Offset + ExtIndex; - } - } - - // The type the input vectors may have changed above. - InVT1 = VecIn1.getValueType(); - - // If we already have a VecIn2, it should have the same type as VecIn1. - // If we don't, get an undef/zero vector of the appropriate type. - VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); - assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); - - SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); - if (ShuffleNumElems > NumElems) - Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); - - return Shuffle; -} - -static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { - assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); - - // First, determine where the build vector is not undef. - // TODO: We could extend this to handle zero elements as well as undefs. - int NumBVOps = BV->getNumOperands(); - int ZextElt = -1; - for (int i = 0; i != NumBVOps; ++i) { - SDValue Op = BV->getOperand(i); - if (Op.isUndef()) - continue; - if (ZextElt == -1) - ZextElt = i; - else - return SDValue(); - } - // Bail out if there's no non-undef element. - if (ZextElt == -1) - return SDValue(); - - // The build vector contains some number of undef elements and exactly - // one other element. That other element must be a zero-extended scalar - // extracted from a vector at a constant index to turn this into a shuffle. - // Also, require that the build vector does not implicitly truncate/extend - // its elements. - // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. - EVT VT = BV->getValueType(0); - SDValue Zext = BV->getOperand(ZextElt); - if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || - Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || - !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || - Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) - return SDValue(); - - // The zero-extend must be a multiple of the source size, and we must be - // building a vector of the same size as the source of the extract element. - SDValue Extract = Zext.getOperand(0); - unsigned DestSize = Zext.getValueSizeInBits(); - unsigned SrcSize = Extract.getValueSizeInBits(); - if (DestSize % SrcSize != 0 || - Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // Create a shuffle mask that will combine the extracted element with zeros - // and undefs. - int ZextRatio = DestSize / SrcSize; - int NumMaskElts = NumBVOps * ZextRatio; - SmallVector<int, 32> ShufMask(NumMaskElts, -1); - for (int i = 0; i != NumMaskElts; ++i) { - if (i / ZextRatio == ZextElt) { - // The low bits of the (potentially translated) extracted element map to - // the source vector. The high bits map to zero. We will use a zero vector - // as the 2nd source operand of the shuffle, so use the 1st element of - // that vector (mask value is number-of-elements) for the high bits. - if (i % ZextRatio == 0) - ShufMask[i] = Extract.getConstantOperandVal(1); - else - ShufMask[i] = NumMaskElts; - } - - // Undef elements of the build vector remain undef because we initialize - // the shuffle mask with -1. - } - - // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> - // bitcast (shuffle V, ZeroVec, VectorMask) - SDLoc DL(BV); - EVT VecVT = Extract.getOperand(0).getValueType(); - SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), - ZeroVec, ShufMask, DAG); - if (!Shuf) - return SDValue(); - return DAG.getBitcast(VT, Shuf); -} - -// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT -// operations. If the types of the vectors we're extracting from allow it, -// turn this into a vector_shuffle node. -SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { - SDLoc DL(N); - EVT VT = N->getValueType(0); - - // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. - if (!isTypeLegal(VT)) - return SDValue(); - - if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) - return V; - - // May only combine to shuffle after legalize if shuffle is legal. - if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) - return SDValue(); - - bool UsesZeroVector = false; - unsigned NumElems = N->getNumOperands(); - - // Record, for each element of the newly built vector, which input vector - // that element comes from. -1 stands for undef, 0 for the zero vector, - // and positive values for the input vectors. - // VectorMask maps each element to its vector number, and VecIn maps vector - // numbers to their initial SDValues. - - SmallVector<int, 8> VectorMask(NumElems, -1); - SmallVector<SDValue, 8> VecIn; - VecIn.push_back(SDValue()); - - for (unsigned i = 0; i != NumElems; ++i) { - SDValue Op = N->getOperand(i); - - if (Op.isUndef()) - continue; - - // See if we can use a blend with a zero vector. - // TODO: Should we generalize this to a blend with an arbitrary constant - // vector? - if (isNullConstant(Op) || isNullFPConstant(Op)) { - UsesZeroVector = true; - VectorMask[i] = 0; - continue; - } - - // Not an undef or zero. If the input is something other than an - // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. - if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || - !isa<ConstantSDNode>(Op.getOperand(1))) - return SDValue(); - SDValue ExtractedFromVec = Op.getOperand(0); - - if (ExtractedFromVec.getValueType().isScalableVector()) - return SDValue(); - - const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); - if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) - return SDValue(); - - // All inputs must have the same element type as the output. - if (VT.getVectorElementType() != - ExtractedFromVec.getValueType().getVectorElementType()) - return SDValue(); - - // Have we seen this input vector before? - // The vectors are expected to be tiny (usually 1 or 2 elements), so using - // a map back from SDValues to numbers isn't worth it. + SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2)); + ConcatOps[0] = VecIn2; + VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); + } else { + // TODO: Support cases where the length mismatch isn't exactly by a + // factor of 2. + // TODO: Move this check upwards, so that if we have bad type + // mismatches, we don't create any DAG nodes. + return SDValue(); + } + } + + // Initialize mask to undef. + SmallVector<int, 8> Mask(ShuffleNumElems, -1); + + // Only need to run up to the number of elements actually used, not the + // total number of elements in the shuffle - if we are shuffling a wider + // vector, the high lanes should be set to undef. + for (unsigned i = 0; i != NumElems; ++i) { + if (VectorMask[i] <= 0) + continue; + + unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1); + if (VectorMask[i] == (int)LeftIdx) { + Mask[i] = ExtIndex; + } else if (VectorMask[i] == (int)LeftIdx + 1) { + Mask[i] = Vec2Offset + ExtIndex; + } + } + + // The type the input vectors may have changed above. + InVT1 = VecIn1.getValueType(); + + // If we already have a VecIn2, it should have the same type as VecIn1. + // If we don't, get an undef/zero vector of the appropriate type. + VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1); + assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type."); + + SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask); + if (ShuffleNumElems > NumElems) + Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx); + + return Shuffle; +} + +static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) { + assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector"); + + // First, determine where the build vector is not undef. + // TODO: We could extend this to handle zero elements as well as undefs. + int NumBVOps = BV->getNumOperands(); + int ZextElt = -1; + for (int i = 0; i != NumBVOps; ++i) { + SDValue Op = BV->getOperand(i); + if (Op.isUndef()) + continue; + if (ZextElt == -1) + ZextElt = i; + else + return SDValue(); + } + // Bail out if there's no non-undef element. + if (ZextElt == -1) + return SDValue(); + + // The build vector contains some number of undef elements and exactly + // one other element. That other element must be a zero-extended scalar + // extracted from a vector at a constant index to turn this into a shuffle. + // Also, require that the build vector does not implicitly truncate/extend + // its elements. + // TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND. + EVT VT = BV->getValueType(0); + SDValue Zext = BV->getOperand(ZextElt); + if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() || + Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) || + Zext.getValueSizeInBits() != VT.getScalarSizeInBits()) + return SDValue(); + + // The zero-extend must be a multiple of the source size, and we must be + // building a vector of the same size as the source of the extract element. + SDValue Extract = Zext.getOperand(0); + unsigned DestSize = Zext.getValueSizeInBits(); + unsigned SrcSize = Extract.getValueSizeInBits(); + if (DestSize % SrcSize != 0 || + Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits()) + return SDValue(); + + // Create a shuffle mask that will combine the extracted element with zeros + // and undefs. + int ZextRatio = DestSize / SrcSize; + int NumMaskElts = NumBVOps * ZextRatio; + SmallVector<int, 32> ShufMask(NumMaskElts, -1); + for (int i = 0; i != NumMaskElts; ++i) { + if (i / ZextRatio == ZextElt) { + // The low bits of the (potentially translated) extracted element map to + // the source vector. The high bits map to zero. We will use a zero vector + // as the 2nd source operand of the shuffle, so use the 1st element of + // that vector (mask value is number-of-elements) for the high bits. + if (i % ZextRatio == 0) + ShufMask[i] = Extract.getConstantOperandVal(1); + else + ShufMask[i] = NumMaskElts; + } + + // Undef elements of the build vector remain undef because we initialize + // the shuffle mask with -1. + } + + // buildvec undef, ..., (zext (extractelt V, IndexC)), undef... --> + // bitcast (shuffle V, ZeroVec, VectorMask) + SDLoc DL(BV); + EVT VecVT = Extract.getOperand(0).getValueType(); + SDValue ZeroVec = DAG.getConstant(0, DL, VecVT); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0), + ZeroVec, ShufMask, DAG); + if (!Shuf) + return SDValue(); + return DAG.getBitcast(VT, Shuf); +} + +// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT +// operations. If the types of the vectors we're extracting from allow it, +// turn this into a vector_shuffle node. +SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) { + SDLoc DL(N); + EVT VT = N->getValueType(0); + + // Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes. + if (!isTypeLegal(VT)) + return SDValue(); + + if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG)) + return V; + + // May only combine to shuffle after legalize if shuffle is legal. + if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT)) + return SDValue(); + + bool UsesZeroVector = false; + unsigned NumElems = N->getNumOperands(); + + // Record, for each element of the newly built vector, which input vector + // that element comes from. -1 stands for undef, 0 for the zero vector, + // and positive values for the input vectors. + // VectorMask maps each element to its vector number, and VecIn maps vector + // numbers to their initial SDValues. + + SmallVector<int, 8> VectorMask(NumElems, -1); + SmallVector<SDValue, 8> VecIn; + VecIn.push_back(SDValue()); + + for (unsigned i = 0; i != NumElems; ++i) { + SDValue Op = N->getOperand(i); + + if (Op.isUndef()) + continue; + + // See if we can use a blend with a zero vector. + // TODO: Should we generalize this to a blend with an arbitrary constant + // vector? + if (isNullConstant(Op) || isNullFPConstant(Op)) { + UsesZeroVector = true; + VectorMask[i] = 0; + continue; + } + + // Not an undef or zero. If the input is something other than an + // EXTRACT_VECTOR_ELT with an in-range constant index, bail out. + if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || + !isa<ConstantSDNode>(Op.getOperand(1))) + return SDValue(); + SDValue ExtractedFromVec = Op.getOperand(0); + + if (ExtractedFromVec.getValueType().isScalableVector()) + return SDValue(); + + const APInt &ExtractIdx = Op.getConstantOperandAPInt(1); + if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements())) + return SDValue(); + + // All inputs must have the same element type as the output. + if (VT.getVectorElementType() != + ExtractedFromVec.getValueType().getVectorElementType()) + return SDValue(); + + // Have we seen this input vector before? + // The vectors are expected to be tiny (usually 1 or 2 elements), so using + // a map back from SDValues to numbers isn't worth it. unsigned Idx = std::distance(VecIn.begin(), find(VecIn, ExtractedFromVec)); - if (Idx == VecIn.size()) - VecIn.push_back(ExtractedFromVec); - - VectorMask[i] = Idx; - } - - // If we didn't find at least one input vector, bail out. - if (VecIn.size() < 2) - return SDValue(); - - // If all the Operands of BUILD_VECTOR extract from same - // vector, then split the vector efficiently based on the maximum - // vector access index and adjust the VectorMask and - // VecIn accordingly. - bool DidSplitVec = false; - if (VecIn.size() == 2) { - unsigned MaxIndex = 0; - unsigned NearestPow2 = 0; - SDValue Vec = VecIn.back(); - EVT InVT = Vec.getValueType(); - SmallVector<unsigned, 8> IndexVec(NumElems, 0); - - for (unsigned i = 0; i < NumElems; i++) { - if (VectorMask[i] <= 0) - continue; - unsigned Index = N->getOperand(i).getConstantOperandVal(1); - IndexVec[i] = Index; - MaxIndex = std::max(MaxIndex, Index); - } - - NearestPow2 = PowerOf2Ceil(MaxIndex); - if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && - NumElems * 2 < NearestPow2) { - unsigned SplitSize = NearestPow2 / 2; - EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), - InVT.getVectorElementType(), SplitSize); - if (TLI.isTypeLegal(SplitVT)) { - SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, - DAG.getVectorIdxConstant(SplitSize, DL)); - SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, - DAG.getVectorIdxConstant(0, DL)); - VecIn.pop_back(); - VecIn.push_back(VecIn1); - VecIn.push_back(VecIn2); - DidSplitVec = true; - - for (unsigned i = 0; i < NumElems; i++) { - if (VectorMask[i] <= 0) - continue; - VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; - } - } - } - } - - // TODO: We want to sort the vectors by descending length, so that adjacent - // pairs have similar length, and the longer vector is always first in the - // pair. - - // TODO: Should this fire if some of the input vectors has illegal type (like - // it does now), or should we let legalization run its course first? - - // Shuffle phase: - // Take pairs of vectors, and shuffle them so that the result has elements - // from these vectors in the correct places. - // For example, given: - // t10: i32 = extract_vector_elt t1, Constant:i64<0> - // t11: i32 = extract_vector_elt t2, Constant:i64<0> - // t12: i32 = extract_vector_elt t3, Constant:i64<0> - // t13: i32 = extract_vector_elt t1, Constant:i64<1> - // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 - // We will generate: - // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 - // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef - SmallVector<SDValue, 4> Shuffles; - for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { - unsigned LeftIdx = 2 * In + 1; - SDValue VecLeft = VecIn[LeftIdx]; - SDValue VecRight = - (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); - - if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, - VecRight, LeftIdx, DidSplitVec)) - Shuffles.push_back(Shuffle); - else - return SDValue(); - } - - // If we need the zero vector as an "ingredient" in the blend tree, add it - // to the list of shuffles. - if (UsesZeroVector) - Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) - : DAG.getConstantFP(0.0, DL, VT)); - - // If we only have one shuffle, we're done. - if (Shuffles.size() == 1) - return Shuffles[0]; - - // Update the vector mask to point to the post-shuffle vectors. - for (int &Vec : VectorMask) - if (Vec == 0) - Vec = Shuffles.size() - 1; - else - Vec = (Vec - 1) / 2; - - // More than one shuffle. Generate a binary tree of blends, e.g. if from - // the previous step we got the set of shuffles t10, t11, t12, t13, we will - // generate: - // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 - // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 - // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 - // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 - // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 - // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 - // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 - - // Make sure the initial size of the shuffle list is even. - if (Shuffles.size() % 2) - Shuffles.push_back(DAG.getUNDEF(VT)); - - for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { - if (CurSize % 2) { - Shuffles[CurSize] = DAG.getUNDEF(VT); - CurSize++; - } - for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { - int Left = 2 * In; - int Right = 2 * In + 1; - SmallVector<int, 8> Mask(NumElems, -1); - for (unsigned i = 0; i != NumElems; ++i) { - if (VectorMask[i] == Left) { - Mask[i] = i; - VectorMask[i] = In; - } else if (VectorMask[i] == Right) { - Mask[i] = i + NumElems; - VectorMask[i] = In; - } - } - - Shuffles[In] = - DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); - } - } - return Shuffles[0]; -} - -// Try to turn a build vector of zero extends of extract vector elts into a -// a vector zero extend and possibly an extract subvector. -// TODO: Support sign extend? -// TODO: Allow undef elements? -SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { - if (LegalOperations) - return SDValue(); - - EVT VT = N->getValueType(0); - - bool FoundZeroExtend = false; - SDValue Op0 = N->getOperand(0); - auto checkElem = [&](SDValue Op) -> int64_t { - unsigned Opc = Op.getOpcode(); - FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); - if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && - Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && - Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) - if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) - return C->getZExtValue(); - return -1; - }; - - // Make sure the first element matches - // (zext (extract_vector_elt X, C)) - int64_t Offset = checkElem(Op0); - if (Offset < 0) - return SDValue(); - - unsigned NumElems = N->getNumOperands(); - SDValue In = Op0.getOperand(0).getOperand(0); - EVT InSVT = In.getValueType().getScalarType(); - EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); - - // Don't create an illegal input type after type legalization. - if (LegalTypes && !TLI.isTypeLegal(InVT)) - return SDValue(); - - // Ensure all the elements come from the same vector and are adjacent. - for (unsigned i = 1; i != NumElems; ++i) { - if ((Offset + i) != checkElem(N->getOperand(i))) - return SDValue(); - } - - SDLoc DL(N); - In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, - Op0.getOperand(0).getOperand(1)); - return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, - VT, In); -} - -SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { - EVT VT = N->getValueType(0); - - // A vector built entirely of undefs is undef. - if (ISD::allOperandsUndef(N)) - return DAG.getUNDEF(VT); - - // If this is a splat of a bitcast from another vector, change to a - // concat_vector. - // For example: - // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> - // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) - // - // If X is a build_vector itself, the concat can become a larger build_vector. - // TODO: Maybe this is useful for non-splat too? - if (!LegalOperations) { - if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { - Splat = peekThroughBitcasts(Splat); - EVT SrcVT = Splat.getValueType(); - if (SrcVT.isVector()) { - unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); - EVT NewVT = EVT::getVectorVT(*DAG.getContext(), - SrcVT.getVectorElementType(), NumElts); - if (!LegalTypes || TLI.isTypeLegal(NewVT)) { - SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); - SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), - NewVT, Ops); - return DAG.getBitcast(VT, Concat); - } - } - } - } - - // A splat of a single element is a SPLAT_VECTOR if supported on the target. - if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) - if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { - assert(!V.isUndef() && "Splat of undef should have been handled earlier"); - return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); - } - - // Check if we can express BUILD VECTOR via subvector extract. - if (!LegalTypes && (N->getNumOperands() > 1)) { - SDValue Op0 = N->getOperand(0); - auto checkElem = [&](SDValue Op) -> uint64_t { - if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && - (Op0.getOperand(0) == Op.getOperand(0))) - if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) - return CNode->getZExtValue(); - return -1; - }; - - int Offset = checkElem(Op0); - for (unsigned i = 0; i < N->getNumOperands(); ++i) { - if (Offset + i != checkElem(N->getOperand(i))) { - Offset = -1; - break; - } - } - - if ((Offset == 0) && - (Op0.getOperand(0).getValueType() == N->getValueType(0))) - return Op0.getOperand(0); - if ((Offset != -1) && - ((Offset % N->getValueType(0).getVectorNumElements()) == - 0)) // IDX must be multiple of output size. - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), - Op0.getOperand(0), Op0.getOperand(1)); - } - - if (SDValue V = convertBuildVecZextToZext(N)) - return V; - - if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) - return V; - - if (SDValue V = reduceBuildVecTruncToBitCast(N)) - return V; - - if (SDValue V = reduceBuildVecToShuffle(N)) - return V; - - return SDValue(); -} - -static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT OpVT = N->getOperand(0).getValueType(); - - // If the operands are legal vectors, leave them alone. - if (TLI.isTypeLegal(OpVT)) - return SDValue(); - - SDLoc DL(N); - EVT VT = N->getValueType(0); - SmallVector<SDValue, 8> Ops; - - EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); - SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); - - // Keep track of what we encounter. - bool AnyInteger = false; - bool AnyFP = false; - for (const SDValue &Op : N->ops()) { - if (ISD::BITCAST == Op.getOpcode() && - !Op.getOperand(0).getValueType().isVector()) - Ops.push_back(Op.getOperand(0)); - else if (ISD::UNDEF == Op.getOpcode()) - Ops.push_back(ScalarUndef); - else - return SDValue(); - - // Note whether we encounter an integer or floating point scalar. - // If it's neither, bail out, it could be something weird like x86mmx. - EVT LastOpVT = Ops.back().getValueType(); - if (LastOpVT.isFloatingPoint()) - AnyFP = true; - else if (LastOpVT.isInteger()) - AnyInteger = true; - else - return SDValue(); - } - - // If any of the operands is a floating point scalar bitcast to a vector, - // use floating point types throughout, and bitcast everything. - // Replace UNDEFs by another scalar UNDEF node, of the final desired type. - if (AnyFP) { - SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); - ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); - if (AnyInteger) { - for (SDValue &Op : Ops) { - if (Op.getValueType() == SVT) - continue; - if (Op.isUndef()) - Op = ScalarUndef; - else - Op = DAG.getBitcast(SVT, Op); - } - } - } - - EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, - VT.getSizeInBits() / SVT.getSizeInBits()); - return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); -} - -// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR -// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at -// most two distinct vectors the same size as the result, attempt to turn this -// into a legal shuffle. -static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - EVT OpVT = N->getOperand(0).getValueType(); - - // We currently can't generate an appropriate shuffle for a scalable vector. - if (VT.isScalableVector()) - return SDValue(); - - int NumElts = VT.getVectorNumElements(); - int NumOpElts = OpVT.getVectorNumElements(); - - SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); - SmallVector<int, 8> Mask; - - for (SDValue Op : N->ops()) { - Op = peekThroughBitcasts(Op); - - // UNDEF nodes convert to UNDEF shuffle mask values. - if (Op.isUndef()) { - Mask.append((unsigned)NumOpElts, -1); - continue; - } - - if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return SDValue(); - - // What vector are we extracting the subvector from and at what index? - SDValue ExtVec = Op.getOperand(0); - int ExtIdx = Op.getConstantOperandVal(1); - - // We want the EVT of the original extraction to correctly scale the - // extraction index. - EVT ExtVT = ExtVec.getValueType(); - ExtVec = peekThroughBitcasts(ExtVec); - - // UNDEF nodes convert to UNDEF shuffle mask values. - if (ExtVec.isUndef()) { - Mask.append((unsigned)NumOpElts, -1); - continue; - } - - // Ensure that we are extracting a subvector from a vector the same - // size as the result. - if (ExtVT.getSizeInBits() != VT.getSizeInBits()) - return SDValue(); - - // Scale the subvector index to account for any bitcast. - int NumExtElts = ExtVT.getVectorNumElements(); - if (0 == (NumExtElts % NumElts)) - ExtIdx /= (NumExtElts / NumElts); - else if (0 == (NumElts % NumExtElts)) - ExtIdx *= (NumElts / NumExtElts); - else - return SDValue(); - - // At most we can reference 2 inputs in the final shuffle. - if (SV0.isUndef() || SV0 == ExtVec) { - SV0 = ExtVec; - for (int i = 0; i != NumOpElts; ++i) - Mask.push_back(i + ExtIdx); - } else if (SV1.isUndef() || SV1 == ExtVec) { - SV1 = ExtVec; - for (int i = 0; i != NumOpElts; ++i) - Mask.push_back(i + ExtIdx + NumElts); - } else { - return SDValue(); - } - } - - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), - DAG.getBitcast(VT, SV1), Mask, DAG); -} - -static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { - unsigned CastOpcode = N->getOperand(0).getOpcode(); - switch (CastOpcode) { - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - // TODO: Allow more opcodes? - // case ISD::BITCAST: - // case ISD::TRUNCATE: - // case ISD::ZERO_EXTEND: - // case ISD::SIGN_EXTEND: - // case ISD::FP_EXTEND: - break; - default: - return SDValue(); - } - - EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); - if (!SrcVT.isVector()) - return SDValue(); - - // All operands of the concat must be the same kind of cast from the same - // source type. - SmallVector<SDValue, 4> SrcOps; - for (SDValue Op : N->ops()) { - if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || - Op.getOperand(0).getValueType() != SrcVT) - return SDValue(); - SrcOps.push_back(Op.getOperand(0)); - } - - // The wider cast must be supported by the target. This is unusual because - // the operation support type parameter depends on the opcode. In addition, - // check the other type in the cast to make sure this is really legal. - EVT VT = N->getValueType(0); - EVT SrcEltVT = SrcVT.getVectorElementType(); + if (Idx == VecIn.size()) + VecIn.push_back(ExtractedFromVec); + + VectorMask[i] = Idx; + } + + // If we didn't find at least one input vector, bail out. + if (VecIn.size() < 2) + return SDValue(); + + // If all the Operands of BUILD_VECTOR extract from same + // vector, then split the vector efficiently based on the maximum + // vector access index and adjust the VectorMask and + // VecIn accordingly. + bool DidSplitVec = false; + if (VecIn.size() == 2) { + unsigned MaxIndex = 0; + unsigned NearestPow2 = 0; + SDValue Vec = VecIn.back(); + EVT InVT = Vec.getValueType(); + SmallVector<unsigned, 8> IndexVec(NumElems, 0); + + for (unsigned i = 0; i < NumElems; i++) { + if (VectorMask[i] <= 0) + continue; + unsigned Index = N->getOperand(i).getConstantOperandVal(1); + IndexVec[i] = Index; + MaxIndex = std::max(MaxIndex, Index); + } + + NearestPow2 = PowerOf2Ceil(MaxIndex); + if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 && + NumElems * 2 < NearestPow2) { + unsigned SplitSize = NearestPow2 / 2; + EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), + InVT.getVectorElementType(), SplitSize); + if (TLI.isTypeLegal(SplitVT)) { + SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, + DAG.getVectorIdxConstant(SplitSize, DL)); + SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec, + DAG.getVectorIdxConstant(0, DL)); + VecIn.pop_back(); + VecIn.push_back(VecIn1); + VecIn.push_back(VecIn2); + DidSplitVec = true; + + for (unsigned i = 0; i < NumElems; i++) { + if (VectorMask[i] <= 0) + continue; + VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2; + } + } + } + } + + // TODO: We want to sort the vectors by descending length, so that adjacent + // pairs have similar length, and the longer vector is always first in the + // pair. + + // TODO: Should this fire if some of the input vectors has illegal type (like + // it does now), or should we let legalization run its course first? + + // Shuffle phase: + // Take pairs of vectors, and shuffle them so that the result has elements + // from these vectors in the correct places. + // For example, given: + // t10: i32 = extract_vector_elt t1, Constant:i64<0> + // t11: i32 = extract_vector_elt t2, Constant:i64<0> + // t12: i32 = extract_vector_elt t3, Constant:i64<0> + // t13: i32 = extract_vector_elt t1, Constant:i64<1> + // t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13 + // We will generate: + // t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2 + // t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef + SmallVector<SDValue, 4> Shuffles; + for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) { + unsigned LeftIdx = 2 * In + 1; + SDValue VecLeft = VecIn[LeftIdx]; + SDValue VecRight = + (LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue(); + + if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft, + VecRight, LeftIdx, DidSplitVec)) + Shuffles.push_back(Shuffle); + else + return SDValue(); + } + + // If we need the zero vector as an "ingredient" in the blend tree, add it + // to the list of shuffles. + if (UsesZeroVector) + Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT) + : DAG.getConstantFP(0.0, DL, VT)); + + // If we only have one shuffle, we're done. + if (Shuffles.size() == 1) + return Shuffles[0]; + + // Update the vector mask to point to the post-shuffle vectors. + for (int &Vec : VectorMask) + if (Vec == 0) + Vec = Shuffles.size() - 1; + else + Vec = (Vec - 1) / 2; + + // More than one shuffle. Generate a binary tree of blends, e.g. if from + // the previous step we got the set of shuffles t10, t11, t12, t13, we will + // generate: + // t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2 + // t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4 + // t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6 + // t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8 + // t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11 + // t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13 + // t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21 + + // Make sure the initial size of the shuffle list is even. + if (Shuffles.size() % 2) + Shuffles.push_back(DAG.getUNDEF(VT)); + + for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) { + if (CurSize % 2) { + Shuffles[CurSize] = DAG.getUNDEF(VT); + CurSize++; + } + for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) { + int Left = 2 * In; + int Right = 2 * In + 1; + SmallVector<int, 8> Mask(NumElems, -1); + for (unsigned i = 0; i != NumElems; ++i) { + if (VectorMask[i] == Left) { + Mask[i] = i; + VectorMask[i] = In; + } else if (VectorMask[i] == Right) { + Mask[i] = i + NumElems; + VectorMask[i] = In; + } + } + + Shuffles[In] = + DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask); + } + } + return Shuffles[0]; +} + +// Try to turn a build vector of zero extends of extract vector elts into a +// a vector zero extend and possibly an extract subvector. +// TODO: Support sign extend? +// TODO: Allow undef elements? +SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) { + if (LegalOperations) + return SDValue(); + + EVT VT = N->getValueType(0); + + bool FoundZeroExtend = false; + SDValue Op0 = N->getOperand(0); + auto checkElem = [&](SDValue Op) -> int64_t { + unsigned Opc = Op.getOpcode(); + FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND); + if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) && + Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0)) + if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1))) + return C->getZExtValue(); + return -1; + }; + + // Make sure the first element matches + // (zext (extract_vector_elt X, C)) + int64_t Offset = checkElem(Op0); + if (Offset < 0) + return SDValue(); + + unsigned NumElems = N->getNumOperands(); + SDValue In = Op0.getOperand(0).getOperand(0); + EVT InSVT = In.getValueType().getScalarType(); + EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems); + + // Don't create an illegal input type after type legalization. + if (LegalTypes && !TLI.isTypeLegal(InVT)) + return SDValue(); + + // Ensure all the elements come from the same vector and are adjacent. + for (unsigned i = 1; i != NumElems; ++i) { + if ((Offset + i) != checkElem(N->getOperand(i))) + return SDValue(); + } + + SDLoc DL(N); + In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In, + Op0.getOperand(0).getOperand(1)); + return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL, + VT, In); +} + +SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) { + EVT VT = N->getValueType(0); + + // A vector built entirely of undefs is undef. + if (ISD::allOperandsUndef(N)) + return DAG.getUNDEF(VT); + + // If this is a splat of a bitcast from another vector, change to a + // concat_vector. + // For example: + // (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) -> + // (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X)))) + // + // If X is a build_vector itself, the concat can become a larger build_vector. + // TODO: Maybe this is useful for non-splat too? + if (!LegalOperations) { + if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) { + Splat = peekThroughBitcasts(Splat); + EVT SrcVT = Splat.getValueType(); + if (SrcVT.isVector()) { + unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements(); + EVT NewVT = EVT::getVectorVT(*DAG.getContext(), + SrcVT.getVectorElementType(), NumElts); + if (!LegalTypes || TLI.isTypeLegal(NewVT)) { + SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat); + SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), + NewVT, Ops); + return DAG.getBitcast(VT, Concat); + } + } + } + } + + // A splat of a single element is a SPLAT_VECTOR if supported on the target. + if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand) + if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) { + assert(!V.isUndef() && "Splat of undef should have been handled earlier"); + return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V); + } + + // Check if we can express BUILD VECTOR via subvector extract. + if (!LegalTypes && (N->getNumOperands() > 1)) { + SDValue Op0 = N->getOperand(0); + auto checkElem = [&](SDValue Op) -> uint64_t { + if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) && + (Op0.getOperand(0) == Op.getOperand(0))) + if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1))) + return CNode->getZExtValue(); + return -1; + }; + + int Offset = checkElem(Op0); + for (unsigned i = 0; i < N->getNumOperands(); ++i) { + if (Offset + i != checkElem(N->getOperand(i))) { + Offset = -1; + break; + } + } + + if ((Offset == 0) && + (Op0.getOperand(0).getValueType() == N->getValueType(0))) + return Op0.getOperand(0); + if ((Offset != -1) && + ((Offset % N->getValueType(0).getVectorNumElements()) == + 0)) // IDX must be multiple of output size. + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0), + Op0.getOperand(0), Op0.getOperand(1)); + } + + if (SDValue V = convertBuildVecZextToZext(N)) + return V; + + if (SDValue V = reduceBuildVecExtToExtBuildVec(N)) + return V; + + if (SDValue V = reduceBuildVecTruncToBitCast(N)) + return V; + + if (SDValue V = reduceBuildVecToShuffle(N)) + return V; + + return SDValue(); +} + +static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) { + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT OpVT = N->getOperand(0).getValueType(); + + // If the operands are legal vectors, leave them alone. + if (TLI.isTypeLegal(OpVT)) + return SDValue(); + + SDLoc DL(N); + EVT VT = N->getValueType(0); + SmallVector<SDValue, 8> Ops; + + EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits()); + SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); + + // Keep track of what we encounter. + bool AnyInteger = false; + bool AnyFP = false; + for (const SDValue &Op : N->ops()) { + if (ISD::BITCAST == Op.getOpcode() && + !Op.getOperand(0).getValueType().isVector()) + Ops.push_back(Op.getOperand(0)); + else if (ISD::UNDEF == Op.getOpcode()) + Ops.push_back(ScalarUndef); + else + return SDValue(); + + // Note whether we encounter an integer or floating point scalar. + // If it's neither, bail out, it could be something weird like x86mmx. + EVT LastOpVT = Ops.back().getValueType(); + if (LastOpVT.isFloatingPoint()) + AnyFP = true; + else if (LastOpVT.isInteger()) + AnyInteger = true; + else + return SDValue(); + } + + // If any of the operands is a floating point scalar bitcast to a vector, + // use floating point types throughout, and bitcast everything. + // Replace UNDEFs by another scalar UNDEF node, of the final desired type. + if (AnyFP) { + SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits()); + ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT); + if (AnyInteger) { + for (SDValue &Op : Ops) { + if (Op.getValueType() == SVT) + continue; + if (Op.isUndef()) + Op = ScalarUndef; + else + Op = DAG.getBitcast(SVT, Op); + } + } + } + + EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT, + VT.getSizeInBits() / SVT.getSizeInBits()); + return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops)); +} + +// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR +// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at +// most two distinct vectors the same size as the result, attempt to turn this +// into a legal shuffle. +static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + EVT OpVT = N->getOperand(0).getValueType(); + + // We currently can't generate an appropriate shuffle for a scalable vector. + if (VT.isScalableVector()) + return SDValue(); + + int NumElts = VT.getVectorNumElements(); + int NumOpElts = OpVT.getVectorNumElements(); + + SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT); + SmallVector<int, 8> Mask; + + for (SDValue Op : N->ops()) { + Op = peekThroughBitcasts(Op); + + // UNDEF nodes convert to UNDEF shuffle mask values. + if (Op.isUndef()) { + Mask.append((unsigned)NumOpElts, -1); + continue; + } + + if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) + return SDValue(); + + // What vector are we extracting the subvector from and at what index? + SDValue ExtVec = Op.getOperand(0); + int ExtIdx = Op.getConstantOperandVal(1); + + // We want the EVT of the original extraction to correctly scale the + // extraction index. + EVT ExtVT = ExtVec.getValueType(); + ExtVec = peekThroughBitcasts(ExtVec); + + // UNDEF nodes convert to UNDEF shuffle mask values. + if (ExtVec.isUndef()) { + Mask.append((unsigned)NumOpElts, -1); + continue; + } + + // Ensure that we are extracting a subvector from a vector the same + // size as the result. + if (ExtVT.getSizeInBits() != VT.getSizeInBits()) + return SDValue(); + + // Scale the subvector index to account for any bitcast. + int NumExtElts = ExtVT.getVectorNumElements(); + if (0 == (NumExtElts % NumElts)) + ExtIdx /= (NumExtElts / NumElts); + else if (0 == (NumElts % NumExtElts)) + ExtIdx *= (NumElts / NumExtElts); + else + return SDValue(); + + // At most we can reference 2 inputs in the final shuffle. + if (SV0.isUndef() || SV0 == ExtVec) { + SV0 = ExtVec; + for (int i = 0; i != NumOpElts; ++i) + Mask.push_back(i + ExtIdx); + } else if (SV1.isUndef() || SV1 == ExtVec) { + SV1 = ExtVec; + for (int i = 0; i != NumOpElts; ++i) + Mask.push_back(i + ExtIdx + NumElts); + } else { + return SDValue(); + } + } + + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0), + DAG.getBitcast(VT, SV1), Mask, DAG); +} + +static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) { + unsigned CastOpcode = N->getOperand(0).getOpcode(); + switch (CastOpcode) { + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + // TODO: Allow more opcodes? + // case ISD::BITCAST: + // case ISD::TRUNCATE: + // case ISD::ZERO_EXTEND: + // case ISD::SIGN_EXTEND: + // case ISD::FP_EXTEND: + break; + default: + return SDValue(); + } + + EVT SrcVT = N->getOperand(0).getOperand(0).getValueType(); + if (!SrcVT.isVector()) + return SDValue(); + + // All operands of the concat must be the same kind of cast from the same + // source type. + SmallVector<SDValue, 4> SrcOps; + for (SDValue Op : N->ops()) { + if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() || + Op.getOperand(0).getValueType() != SrcVT) + return SDValue(); + SrcOps.push_back(Op.getOperand(0)); + } + + // The wider cast must be supported by the target. This is unusual because + // the operation support type parameter depends on the opcode. In addition, + // check the other type in the cast to make sure this is really legal. + EVT VT = N->getValueType(0); + EVT SrcEltVT = SrcVT.getVectorElementType(); ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands(); - EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - switch (CastOpcode) { - case ISD::SINT_TO_FP: - case ISD::UINT_TO_FP: - if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || - !TLI.isTypeLegal(VT)) - return SDValue(); - break; - case ISD::FP_TO_SINT: - case ISD::FP_TO_UINT: - if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || - !TLI.isTypeLegal(ConcatSrcVT)) - return SDValue(); - break; - default: - llvm_unreachable("Unexpected cast opcode"); - } - - // concat (cast X), (cast Y)... -> cast (concat X, Y...) - SDLoc DL(N); - SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); - return DAG.getNode(CastOpcode, DL, VT, NewConcat); -} - -SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { - // If we only have one input vector, we don't need to do any concatenation. - if (N->getNumOperands() == 1) - return N->getOperand(0); - - // Check if all of the operands are undefs. - EVT VT = N->getValueType(0); - if (ISD::allOperandsUndef(N)) - return DAG.getUNDEF(VT); - - // Optimize concat_vectors where all but the first of the vectors are undef. + EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + switch (CastOpcode) { + case ISD::SINT_TO_FP: + case ISD::UINT_TO_FP: + if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) || + !TLI.isTypeLegal(VT)) + return SDValue(); + break; + case ISD::FP_TO_SINT: + case ISD::FP_TO_UINT: + if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) || + !TLI.isTypeLegal(ConcatSrcVT)) + return SDValue(); + break; + default: + llvm_unreachable("Unexpected cast opcode"); + } + + // concat (cast X), (cast Y)... -> cast (concat X, Y...) + SDLoc DL(N); + SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps); + return DAG.getNode(CastOpcode, DL, VT, NewConcat); +} + +SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) { + // If we only have one input vector, we don't need to do any concatenation. + if (N->getNumOperands() == 1) + return N->getOperand(0); + + // Check if all of the operands are undefs. + EVT VT = N->getValueType(0); + if (ISD::allOperandsUndef(N)) + return DAG.getUNDEF(VT); + + // Optimize concat_vectors where all but the first of the vectors are undef. if (all_of(drop_begin(N->ops()), [](const SDValue &Op) { return Op.isUndef(); })) { - SDValue In = N->getOperand(0); - assert(In.getValueType().isVector() && "Must concat vectors"); - - // If the input is a concat_vectors, just make a larger concat by padding - // with smaller undefs. - if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { - unsigned NumOps = N->getNumOperands() * In.getNumOperands(); - SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); - Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); - } - - SDValue Scalar = peekThroughOneUseBitcasts(In); - - // concat_vectors(scalar_to_vector(scalar), undef) -> - // scalar_to_vector(scalar) - if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && - Scalar.hasOneUse()) { - EVT SVT = Scalar.getValueType().getVectorElementType(); - if (SVT == Scalar.getOperand(0).getValueType()) - Scalar = Scalar.getOperand(0); - } - - // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) - if (!Scalar.getValueType().isVector()) { - // If the bitcast type isn't legal, it might be a trunc of a legal type; - // look through the trunc so we can still do the transform: - // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) - if (Scalar->getOpcode() == ISD::TRUNCATE && - !TLI.isTypeLegal(Scalar.getValueType()) && - TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) - Scalar = Scalar->getOperand(0); - - EVT SclTy = Scalar.getValueType(); - - if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) - return SDValue(); - - // Bail out if the vector size is not a multiple of the scalar size. - if (VT.getSizeInBits() % SclTy.getSizeInBits()) - return SDValue(); - - unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); - if (VNTNumElms < 2) - return SDValue(); - - EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); - if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) - return SDValue(); - - SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); - return DAG.getBitcast(VT, Res); - } - } - - // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. - // We have already tested above for an UNDEF only concatenation. - // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) - // -> (BUILD_VECTOR A, B, ..., C, D, ...) - auto IsBuildVectorOrUndef = [](const SDValue &Op) { - return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); - }; - if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { - SmallVector<SDValue, 8> Opnds; - EVT SVT = VT.getScalarType(); - - EVT MinVT = SVT; - if (!SVT.isFloatingPoint()) { - // If BUILD_VECTOR are from built from integer, they may have different - // operand types. Get the smallest type and truncate all operands to it. - bool FoundMinVT = false; - for (const SDValue &Op : N->ops()) - if (ISD::BUILD_VECTOR == Op.getOpcode()) { - EVT OpSVT = Op.getOperand(0).getValueType(); - MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; - FoundMinVT = true; - } - assert(FoundMinVT && "Concat vector type mismatch"); - } - - for (const SDValue &Op : N->ops()) { - EVT OpVT = Op.getValueType(); - unsigned NumElts = OpVT.getVectorNumElements(); - - if (ISD::UNDEF == Op.getOpcode()) - Opnds.append(NumElts, DAG.getUNDEF(MinVT)); - - if (ISD::BUILD_VECTOR == Op.getOpcode()) { - if (SVT.isFloatingPoint()) { - assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); - Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); - } else { - for (unsigned i = 0; i != NumElts; ++i) - Opnds.push_back( - DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); - } - } - } - - assert(VT.getVectorNumElements() == Opnds.size() && - "Concat vector type mismatch"); - return DAG.getBuildVector(VT, SDLoc(N), Opnds); - } - - // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. - if (SDValue V = combineConcatVectorOfScalars(N, DAG)) - return V; - - // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. - if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) - if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) - return V; - - if (SDValue V = combineConcatVectorOfCasts(N, DAG)) - return V; - - // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR - // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR - // operands and look for a CONCAT operations that place the incoming vectors - // at the exact same location. - // - // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. - SDValue SingleSource = SDValue(); - unsigned PartNumElem = - N->getOperand(0).getValueType().getVectorMinNumElements(); - - for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { - SDValue Op = N->getOperand(i); - - if (Op.isUndef()) - continue; - - // Check if this is the identity extract: - if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) - return SDValue(); - - // Find the single incoming vector for the extract_subvector. - if (SingleSource.getNode()) { - if (Op.getOperand(0) != SingleSource) - return SDValue(); - } else { - SingleSource = Op.getOperand(0); - - // Check the source type is the same as the type of the result. - // If not, this concat may extend the vector, so we can not - // optimize it away. - if (SingleSource.getValueType() != N->getValueType(0)) - return SDValue(); - } - - // Check that we are reading from the identity index. - unsigned IdentityIndex = i * PartNumElem; - if (Op.getConstantOperandAPInt(1) != IdentityIndex) - return SDValue(); - } - - if (SingleSource.getNode()) - return SingleSource; - - return SDValue(); -} - -// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find -// if the subvector can be sourced for free. -static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { - if (V.getOpcode() == ISD::INSERT_SUBVECTOR && - V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { - return V.getOperand(1); - } - auto *IndexC = dyn_cast<ConstantSDNode>(Index); - if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && - V.getOperand(0).getValueType() == SubVT && + SDValue In = N->getOperand(0); + assert(In.getValueType().isVector() && "Must concat vectors"); + + // If the input is a concat_vectors, just make a larger concat by padding + // with smaller undefs. + if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) { + unsigned NumOps = N->getNumOperands() * In.getNumOperands(); + SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end()); + Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType())); + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); + } + + SDValue Scalar = peekThroughOneUseBitcasts(In); + + // concat_vectors(scalar_to_vector(scalar), undef) -> + // scalar_to_vector(scalar) + if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR && + Scalar.hasOneUse()) { + EVT SVT = Scalar.getValueType().getVectorElementType(); + if (SVT == Scalar.getOperand(0).getValueType()) + Scalar = Scalar.getOperand(0); + } + + // concat_vectors(scalar, undef) -> scalar_to_vector(scalar) + if (!Scalar.getValueType().isVector()) { + // If the bitcast type isn't legal, it might be a trunc of a legal type; + // look through the trunc so we can still do the transform: + // concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar) + if (Scalar->getOpcode() == ISD::TRUNCATE && + !TLI.isTypeLegal(Scalar.getValueType()) && + TLI.isTypeLegal(Scalar->getOperand(0).getValueType())) + Scalar = Scalar->getOperand(0); + + EVT SclTy = Scalar.getValueType(); + + if (!SclTy.isFloatingPoint() && !SclTy.isInteger()) + return SDValue(); + + // Bail out if the vector size is not a multiple of the scalar size. + if (VT.getSizeInBits() % SclTy.getSizeInBits()) + return SDValue(); + + unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits(); + if (VNTNumElms < 2) + return SDValue(); + + EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms); + if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType())) + return SDValue(); + + SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar); + return DAG.getBitcast(VT, Res); + } + } + + // Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR. + // We have already tested above for an UNDEF only concatenation. + // fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...)) + // -> (BUILD_VECTOR A, B, ..., C, D, ...) + auto IsBuildVectorOrUndef = [](const SDValue &Op) { + return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode(); + }; + if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) { + SmallVector<SDValue, 8> Opnds; + EVT SVT = VT.getScalarType(); + + EVT MinVT = SVT; + if (!SVT.isFloatingPoint()) { + // If BUILD_VECTOR are from built from integer, they may have different + // operand types. Get the smallest type and truncate all operands to it. + bool FoundMinVT = false; + for (const SDValue &Op : N->ops()) + if (ISD::BUILD_VECTOR == Op.getOpcode()) { + EVT OpSVT = Op.getOperand(0).getValueType(); + MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT; + FoundMinVT = true; + } + assert(FoundMinVT && "Concat vector type mismatch"); + } + + for (const SDValue &Op : N->ops()) { + EVT OpVT = Op.getValueType(); + unsigned NumElts = OpVT.getVectorNumElements(); + + if (ISD::UNDEF == Op.getOpcode()) + Opnds.append(NumElts, DAG.getUNDEF(MinVT)); + + if (ISD::BUILD_VECTOR == Op.getOpcode()) { + if (SVT.isFloatingPoint()) { + assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch"); + Opnds.append(Op->op_begin(), Op->op_begin() + NumElts); + } else { + for (unsigned i = 0; i != NumElts; ++i) + Opnds.push_back( + DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i))); + } + } + } + + assert(VT.getVectorNumElements() == Opnds.size() && + "Concat vector type mismatch"); + return DAG.getBuildVector(VT, SDLoc(N), Opnds); + } + + // Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR. + if (SDValue V = combineConcatVectorOfScalars(N, DAG)) + return V; + + // Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE. + if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT)) + if (SDValue V = combineConcatVectorOfExtracts(N, DAG)) + return V; + + if (SDValue V = combineConcatVectorOfCasts(N, DAG)) + return V; + + // Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR + // nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR + // operands and look for a CONCAT operations that place the incoming vectors + // at the exact same location. + // + // For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled. + SDValue SingleSource = SDValue(); + unsigned PartNumElem = + N->getOperand(0).getValueType().getVectorMinNumElements(); + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDValue Op = N->getOperand(i); + + if (Op.isUndef()) + continue; + + // Check if this is the identity extract: + if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR) + return SDValue(); + + // Find the single incoming vector for the extract_subvector. + if (SingleSource.getNode()) { + if (Op.getOperand(0) != SingleSource) + return SDValue(); + } else { + SingleSource = Op.getOperand(0); + + // Check the source type is the same as the type of the result. + // If not, this concat may extend the vector, so we can not + // optimize it away. + if (SingleSource.getValueType() != N->getValueType(0)) + return SDValue(); + } + + // Check that we are reading from the identity index. + unsigned IdentityIndex = i * PartNumElem; + if (Op.getConstantOperandAPInt(1) != IdentityIndex) + return SDValue(); + } + + if (SingleSource.getNode()) + return SingleSource; + + return SDValue(); +} + +// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find +// if the subvector can be sourced for free. +static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) { + if (V.getOpcode() == ISD::INSERT_SUBVECTOR && + V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) { + return V.getOperand(1); + } + auto *IndexC = dyn_cast<ConstantSDNode>(Index); + if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS && + V.getOperand(0).getValueType() == SubVT && (IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) { uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements(); - return V.getOperand(SubIdx); - } - return SDValue(); -} - -static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, + return V.getOperand(SubIdx); + } + return SDValue(); +} + +static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract, SelectionDAG &DAG, bool LegalOperations) { - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue BinOp = Extract->getOperand(0); - unsigned BinOpcode = BinOp.getOpcode(); - if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) - return SDValue(); - - EVT VecVT = BinOp.getValueType(); - SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); - if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) - return SDValue(); - - SDValue Index = Extract->getOperand(1); - EVT SubVT = Extract->getValueType(0); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue BinOp = Extract->getOperand(0); + unsigned BinOpcode = BinOp.getOpcode(); + if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1) + return SDValue(); + + EVT VecVT = BinOp.getValueType(); + SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1); + if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType()) + return SDValue(); + + SDValue Index = Extract->getOperand(1); + EVT SubVT = Extract->getValueType(0); if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations)) - return SDValue(); - - SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); - SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); - - // TODO: We could handle the case where only 1 operand is being inserted by - // creating an extract of the other operand, but that requires checking - // number of uses and/or costs. - if (!Sub0 || !Sub1) - return SDValue(); - - // We are inserting both operands of the wide binop only to extract back - // to the narrow vector size. Eliminate all of the insert/extract: - // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y - return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, - BinOp->getFlags()); -} - -/// If we are extracting a subvector produced by a wide binary operator try -/// to use a narrow binary operator and/or avoid concatenation and extraction. + return SDValue(); + + SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT); + SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT); + + // TODO: We could handle the case where only 1 operand is being inserted by + // creating an extract of the other operand, but that requires checking + // number of uses and/or costs. + if (!Sub0 || !Sub1) + return SDValue(); + + // We are inserting both operands of the wide binop only to extract back + // to the narrow vector size. Eliminate all of the insert/extract: + // ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y + return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1, + BinOp->getFlags()); +} + +/// If we are extracting a subvector produced by a wide binary operator try +/// to use a narrow binary operator and/or avoid concatenation and extraction. static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG, bool LegalOperations) { - // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share - // some of these bailouts with other transforms. - + // TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share + // some of these bailouts with other transforms. + if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations)) - return V; - - // The extract index must be a constant, so we can map it to a concat operand. - auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); - if (!ExtractIndexC) - return SDValue(); - - // We are looking for an optionally bitcasted wide vector binary operator - // feeding an extract subvector. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); - unsigned BOpcode = BinOp.getOpcode(); - if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) - return SDValue(); - - // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be - // reduced to the unary fneg when it is visited, and we probably want to deal - // with fneg in a target-specific way. - if (BOpcode == ISD::FSUB) { - auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); - if (C && C->getValueAPF().isNegZero()) - return SDValue(); - } - - // The binop must be a vector type, so we can extract some fraction of it. - EVT WideBVT = BinOp.getValueType(); - // The optimisations below currently assume we are dealing with fixed length - // vectors. It is possible to add support for scalable vectors, but at the - // moment we've done no analysis to prove whether they are profitable or not. - if (!WideBVT.isFixedLengthVector()) - return SDValue(); - - EVT VT = Extract->getValueType(0); - unsigned ExtractIndex = ExtractIndexC->getZExtValue(); - assert(ExtractIndex % VT.getVectorNumElements() == 0 && - "Extract index is not a multiple of the vector length."); - - // Bail out if this is not a proper multiple width extraction. - unsigned WideWidth = WideBVT.getSizeInBits(); - unsigned NarrowWidth = VT.getSizeInBits(); - if (WideWidth % NarrowWidth != 0) - return SDValue(); - - // Bail out if we are extracting a fraction of a single operation. This can - // occur because we potentially looked through a bitcast of the binop. - unsigned NarrowingRatio = WideWidth / NarrowWidth; - unsigned WideNumElts = WideBVT.getVectorNumElements(); - if (WideNumElts % NarrowingRatio != 0) - return SDValue(); - - // Bail out if the target does not support a narrower version of the binop. - EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), - WideNumElts / NarrowingRatio); - if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) - return SDValue(); - - // If extraction is cheap, we don't need to look at the binop operands - // for concat ops. The narrow binop alone makes this transform profitable. - // We can't just reuse the original extract index operand because we may have - // bitcasted. - unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); - unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); - if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && - BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { - // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) - SDLoc DL(Extract); - SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); - SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(0), NewExtIndex); - SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(1), NewExtIndex); - SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, - BinOp.getNode()->getFlags()); - return DAG.getBitcast(VT, NarrowBinOp); - } - - // Only handle the case where we are doubling and then halving. A larger ratio - // may require more than two narrow binops to replace the wide binop. - if (NarrowingRatio != 2) - return SDValue(); - - // TODO: The motivating case for this transform is an x86 AVX1 target. That - // target has temptingly almost legal versions of bitwise logic ops in 256-bit - // flavors, but no other 256-bit integer support. This could be extended to - // handle any binop, but that may require fixing/adding other folds to avoid - // codegen regressions. - if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) - return SDValue(); - - // We need at least one concatenation operation of a binop operand to make - // this transform worthwhile. The concat must double the input vector sizes. - auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { - if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) - return V.getOperand(ConcatOpNum); - return SDValue(); - }; - SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); - SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); - - if (SubVecL || SubVecR) { - // If a binop operand was not the result of a concat, we must extract a - // half-sized operand for our new narrow binop: - // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN - // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) - // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN - SDLoc DL(Extract); - SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); - SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) - : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(0), IndexC); - - SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) - : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, - BinOp.getOperand(1), IndexC); - - SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); - return DAG.getBitcast(VT, NarrowBinOp); - } - - return SDValue(); -} - -/// If we are extracting a subvector from a wide vector load, convert to a -/// narrow load to eliminate the extraction: -/// (extract_subvector (load wide vector)) --> (load narrow vector) -static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { - // TODO: Add support for big-endian. The offset calculation must be adjusted. - if (DAG.getDataLayout().isBigEndian()) - return SDValue(); - - auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); - auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); - if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || - !ExtIdx) - return SDValue(); - - // Allow targets to opt-out. - EVT VT = Extract->getValueType(0); - - // We can only create byte sized loads. - if (!VT.isByteSized()) - return SDValue(); - - unsigned Index = ExtIdx->getZExtValue(); + return V; + + // The extract index must be a constant, so we can map it to a concat operand. + auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); + if (!ExtractIndexC) + return SDValue(); + + // We are looking for an optionally bitcasted wide vector binary operator + // feeding an extract subvector. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0)); + unsigned BOpcode = BinOp.getOpcode(); + if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1) + return SDValue(); + + // Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be + // reduced to the unary fneg when it is visited, and we probably want to deal + // with fneg in a target-specific way. + if (BOpcode == ISD::FSUB) { + auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true); + if (C && C->getValueAPF().isNegZero()) + return SDValue(); + } + + // The binop must be a vector type, so we can extract some fraction of it. + EVT WideBVT = BinOp.getValueType(); + // The optimisations below currently assume we are dealing with fixed length + // vectors. It is possible to add support for scalable vectors, but at the + // moment we've done no analysis to prove whether they are profitable or not. + if (!WideBVT.isFixedLengthVector()) + return SDValue(); + + EVT VT = Extract->getValueType(0); + unsigned ExtractIndex = ExtractIndexC->getZExtValue(); + assert(ExtractIndex % VT.getVectorNumElements() == 0 && + "Extract index is not a multiple of the vector length."); + + // Bail out if this is not a proper multiple width extraction. + unsigned WideWidth = WideBVT.getSizeInBits(); + unsigned NarrowWidth = VT.getSizeInBits(); + if (WideWidth % NarrowWidth != 0) + return SDValue(); + + // Bail out if we are extracting a fraction of a single operation. This can + // occur because we potentially looked through a bitcast of the binop. + unsigned NarrowingRatio = WideWidth / NarrowWidth; + unsigned WideNumElts = WideBVT.getVectorNumElements(); + if (WideNumElts % NarrowingRatio != 0) + return SDValue(); + + // Bail out if the target does not support a narrower version of the binop. + EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(), + WideNumElts / NarrowingRatio); + if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT)) + return SDValue(); + + // If extraction is cheap, we don't need to look at the binop operands + // for concat ops. The narrow binop alone makes this transform profitable. + // We can't just reuse the original extract index operand because we may have + // bitcasted. + unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements(); + unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements(); + if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) && + BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) { + // extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N) + SDLoc DL(Extract); + SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL); + SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, + BinOp.getOperand(0), NewExtIndex); + SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, + BinOp.getOperand(1), NewExtIndex); + SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y, + BinOp.getNode()->getFlags()); + return DAG.getBitcast(VT, NarrowBinOp); + } + + // Only handle the case where we are doubling and then halving. A larger ratio + // may require more than two narrow binops to replace the wide binop. + if (NarrowingRatio != 2) + return SDValue(); + + // TODO: The motivating case for this transform is an x86 AVX1 target. That + // target has temptingly almost legal versions of bitwise logic ops in 256-bit + // flavors, but no other 256-bit integer support. This could be extended to + // handle any binop, but that may require fixing/adding other folds to avoid + // codegen regressions. + if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR) + return SDValue(); + + // We need at least one concatenation operation of a binop operand to make + // this transform worthwhile. The concat must double the input vector sizes. + auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue { + if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2) + return V.getOperand(ConcatOpNum); + return SDValue(); + }; + SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0))); + SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1))); + + if (SubVecL || SubVecR) { + // If a binop operand was not the result of a concat, we must extract a + // half-sized operand for our new narrow binop: + // extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN + // extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC) + // extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN + SDLoc DL(Extract); + SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL); + SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL) + : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, + BinOp.getOperand(0), IndexC); + + SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR) + : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT, + BinOp.getOperand(1), IndexC); + + SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y); + return DAG.getBitcast(VT, NarrowBinOp); + } + + return SDValue(); +} + +/// If we are extracting a subvector from a wide vector load, convert to a +/// narrow load to eliminate the extraction: +/// (extract_subvector (load wide vector)) --> (load narrow vector) +static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { + // TODO: Add support for big-endian. The offset calculation must be adjusted. + if (DAG.getDataLayout().isBigEndian()) + return SDValue(); + + auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0)); + auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1)); + if (!Ld || Ld->getExtensionType() || !Ld->isSimple() || + !ExtIdx) + return SDValue(); + + // Allow targets to opt-out. + EVT VT = Extract->getValueType(0); + + // We can only create byte sized loads. + if (!VT.isByteSized()) + return SDValue(); + + unsigned Index = ExtIdx->getZExtValue(); unsigned NumElts = VT.getVectorMinNumElements(); - + // The definition of EXTRACT_SUBVECTOR states that the index must be a // multiple of the minimum number of elements in the result type. assert(Index % NumElts == 0 && "The extract subvector index is not a " "multiple of the result's element count"); - + // It's fine to use TypeSize here as we know the offset will not be negative. TypeSize Offset = VT.getStoreSize() * (Index / NumElts); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) - return SDValue(); - - // The narrow load will be offset from the base address of the old load if - // we are extracting from something besides index 0 (little-endian). - SDLoc DL(Extract); - - // TODO: Use "BaseIndexOffset" to make this more effective. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT)) + return SDValue(); + + // The narrow load will be offset from the base address of the old load if + // we are extracting from something besides index 0 (little-endian). + SDLoc DL(Extract); + + // TODO: Use "BaseIndexOffset" to make this more effective. SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL); uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize()); - MachineFunction &MF = DAG.getMachineFunction(); + MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *MMO; if (Offset.isScalable()) { MachinePointerInfo MPI = @@ -19862,957 +19862,957 @@ static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) { MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(), StoreSize); - SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); - DAG.makeEquivalentMemoryOrdering(Ld, NewLd); - return NewLd; -} - -SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { - EVT NVT = N->getValueType(0); - SDValue V = N->getOperand(0); - uint64_t ExtIdx = N->getConstantOperandVal(1); - - // Extract from UNDEF is UNDEF. - if (V.isUndef()) - return DAG.getUNDEF(NVT); - - if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) - if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) - return NarrowLoad; - - // Combine an extract of an extract into a single extract_subvector. - // ext (ext X, C), 0 --> ext X, C - if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { - if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), - V.getConstantOperandVal(1)) && - TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), - V.getOperand(1)); - } - } - - // Try to move vector bitcast after extract_subv by scaling extraction index: - // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') - if (V.getOpcode() == ISD::BITCAST && - V.getOperand(0).getValueType().isVector()) { - SDValue SrcOp = V.getOperand(0); - EVT SrcVT = SrcOp.getValueType(); - unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); - unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); - if ((SrcNumElts % DestNumElts) == 0) { - unsigned SrcDestRatio = SrcNumElts / DestNumElts; - ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; - EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), - NewExtEC); - if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { - SDLoc DL(N); - SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); - SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, - V.getOperand(0), NewIndex); - return DAG.getBitcast(NVT, NewExtract); - } - } - if ((DestNumElts % SrcNumElts) == 0) { - unsigned DestSrcRatio = DestNumElts / SrcNumElts; + SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO); + DAG.makeEquivalentMemoryOrdering(Ld, NewLd); + return NewLd; +} + +SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) { + EVT NVT = N->getValueType(0); + SDValue V = N->getOperand(0); + uint64_t ExtIdx = N->getConstantOperandVal(1); + + // Extract from UNDEF is UNDEF. + if (V.isUndef()) + return DAG.getUNDEF(NVT); + + if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT)) + if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG)) + return NarrowLoad; + + // Combine an extract of an extract into a single extract_subvector. + // ext (ext X, C), 0 --> ext X, C + if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) { + if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(), + V.getConstantOperandVal(1)) && + TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) { + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0), + V.getOperand(1)); + } + } + + // Try to move vector bitcast after extract_subv by scaling extraction index: + // extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index') + if (V.getOpcode() == ISD::BITCAST && + V.getOperand(0).getValueType().isVector()) { + SDValue SrcOp = V.getOperand(0); + EVT SrcVT = SrcOp.getValueType(); + unsigned SrcNumElts = SrcVT.getVectorMinNumElements(); + unsigned DestNumElts = V.getValueType().getVectorMinNumElements(); + if ((SrcNumElts % DestNumElts) == 0) { + unsigned SrcDestRatio = SrcNumElts / DestNumElts; + ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio; + EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(), + NewExtEC); + if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { + SDLoc DL(N); + SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL); + SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, + V.getOperand(0), NewIndex); + return DAG.getBitcast(NVT, NewExtract); + } + } + if ((DestNumElts % SrcNumElts) == 0) { + unsigned DestSrcRatio = DestNumElts / SrcNumElts; if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) { ElementCount NewExtEC = NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio); - EVT ScalarVT = SrcVT.getScalarType(); - if ((ExtIdx % DestSrcRatio) == 0) { - SDLoc DL(N); - unsigned IndexValScaled = ExtIdx / DestSrcRatio; - EVT NewExtVT = - EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); - if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { - SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); - SDValue NewExtract = - DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, - V.getOperand(0), NewIndex); - return DAG.getBitcast(NVT, NewExtract); - } + EVT ScalarVT = SrcVT.getScalarType(); + if ((ExtIdx % DestSrcRatio) == 0) { + SDLoc DL(N); + unsigned IndexValScaled = ExtIdx / DestSrcRatio; + EVT NewExtVT = + EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC); + if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) { + SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); + SDValue NewExtract = + DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT, + V.getOperand(0), NewIndex); + return DAG.getBitcast(NVT, NewExtract); + } if (NewExtEC.isScalar() && - TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { - SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); - SDValue NewExtract = - DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, - V.getOperand(0), NewIndex); - return DAG.getBitcast(NVT, NewExtract); - } - } - } - } - } - - if (V.getOpcode() == ISD::CONCAT_VECTORS) { - unsigned ExtNumElts = NVT.getVectorMinNumElements(); - EVT ConcatSrcVT = V.getOperand(0).getValueType(); - assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && - "Concat and extract subvector do not change element type"); - assert((ExtIdx % ExtNumElts) == 0 && - "Extract index is not a multiple of the input vector length."); - - unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); - unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; - - // If the concatenated source types match this extract, it's a direct - // simplification: - // extract_subvec (concat V1, V2, ...), i --> Vi - if (ConcatSrcNumElts == ExtNumElts) - return V.getOperand(ConcatOpIdx); - - // If the concatenated source vectors are a multiple length of this extract, - // then extract a fraction of one of those source vectors directly from a - // concat operand. Example: - // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> - // v2i8 extract_subvec v8i8 Y, 6 - if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) { - SDLoc DL(N); - unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; - assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && - "Trying to extract from >1 concat operand?"); - assert(NewExtIdx % ExtNumElts == 0 && - "Extract index is not a multiple of the input vector length."); - SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, - V.getOperand(ConcatOpIdx), NewIndexC); - } - } - - V = peekThroughBitcasts(V); - - // If the input is a build vector. Try to make a smaller build vector. - if (V.getOpcode() == ISD::BUILD_VECTOR) { - EVT InVT = V.getValueType(); - unsigned ExtractSize = NVT.getSizeInBits(); - unsigned EltSize = InVT.getScalarSizeInBits(); - // Only do this if we won't split any elements. - if (ExtractSize % EltSize == 0) { - unsigned NumElems = ExtractSize / EltSize; - EVT EltVT = InVT.getVectorElementType(); - EVT ExtractVT = - NumElems == 1 ? EltVT - : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); - if ((Level < AfterLegalizeDAG || - (NumElems == 1 || - TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && - (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { - unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; - - if (NumElems == 1) { - SDValue Src = V->getOperand(IdxVal); - if (EltVT != Src.getValueType()) - Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); - return DAG.getBitcast(NVT, Src); - } - - // Extract the pieces from the original build_vector. - SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), - V->ops().slice(IdxVal, NumElems)); - return DAG.getBitcast(NVT, BuildVec); - } - } - } - - if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { - // Handle only simple case where vector being inserted and vector - // being extracted are of same size. - EVT SmallVT = V.getOperand(1).getValueType(); - if (!NVT.bitsEq(SmallVT)) - return SDValue(); - - // Combine: - // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) - // Into: - // indices are equal or bit offsets are equal => V1 - // otherwise => (extract_subvec V1, ExtIdx) - uint64_t InsIdx = V.getConstantOperandVal(2); - if (InsIdx * SmallVT.getScalarSizeInBits() == - ExtIdx * NVT.getScalarSizeInBits()) - return DAG.getBitcast(NVT, V.getOperand(1)); - return DAG.getNode( - ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, - DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), - N->getOperand(1)); - } - + TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) { + SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL); + SDValue NewExtract = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, + V.getOperand(0), NewIndex); + return DAG.getBitcast(NVT, NewExtract); + } + } + } + } + } + + if (V.getOpcode() == ISD::CONCAT_VECTORS) { + unsigned ExtNumElts = NVT.getVectorMinNumElements(); + EVT ConcatSrcVT = V.getOperand(0).getValueType(); + assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() && + "Concat and extract subvector do not change element type"); + assert((ExtIdx % ExtNumElts) == 0 && + "Extract index is not a multiple of the input vector length."); + + unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements(); + unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts; + + // If the concatenated source types match this extract, it's a direct + // simplification: + // extract_subvec (concat V1, V2, ...), i --> Vi + if (ConcatSrcNumElts == ExtNumElts) + return V.getOperand(ConcatOpIdx); + + // If the concatenated source vectors are a multiple length of this extract, + // then extract a fraction of one of those source vectors directly from a + // concat operand. Example: + // v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 --> + // v2i8 extract_subvec v8i8 Y, 6 + if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) { + SDLoc DL(N); + unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts; + assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts && + "Trying to extract from >1 concat operand?"); + assert(NewExtIdx % ExtNumElts == 0 && + "Extract index is not a multiple of the input vector length."); + SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT, + V.getOperand(ConcatOpIdx), NewIndexC); + } + } + + V = peekThroughBitcasts(V); + + // If the input is a build vector. Try to make a smaller build vector. + if (V.getOpcode() == ISD::BUILD_VECTOR) { + EVT InVT = V.getValueType(); + unsigned ExtractSize = NVT.getSizeInBits(); + unsigned EltSize = InVT.getScalarSizeInBits(); + // Only do this if we won't split any elements. + if (ExtractSize % EltSize == 0) { + unsigned NumElems = ExtractSize / EltSize; + EVT EltVT = InVT.getVectorElementType(); + EVT ExtractVT = + NumElems == 1 ? EltVT + : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems); + if ((Level < AfterLegalizeDAG || + (NumElems == 1 || + TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) && + (!LegalTypes || TLI.isTypeLegal(ExtractVT))) { + unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize; + + if (NumElems == 1) { + SDValue Src = V->getOperand(IdxVal); + if (EltVT != Src.getValueType()) + Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src); + return DAG.getBitcast(NVT, Src); + } + + // Extract the pieces from the original build_vector. + SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N), + V->ops().slice(IdxVal, NumElems)); + return DAG.getBitcast(NVT, BuildVec); + } + } + } + + if (V.getOpcode() == ISD::INSERT_SUBVECTOR) { + // Handle only simple case where vector being inserted and vector + // being extracted are of same size. + EVT SmallVT = V.getOperand(1).getValueType(); + if (!NVT.bitsEq(SmallVT)) + return SDValue(); + + // Combine: + // (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx) + // Into: + // indices are equal or bit offsets are equal => V1 + // otherwise => (extract_subvec V1, ExtIdx) + uint64_t InsIdx = V.getConstantOperandVal(2); + if (InsIdx * SmallVT.getScalarSizeInBits() == + ExtIdx * NVT.getScalarSizeInBits()) + return DAG.getBitcast(NVT, V.getOperand(1)); + return DAG.getNode( + ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, + DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)), + N->getOperand(1)); + } + if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations)) - return NarrowBOp; - - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles -/// followed by concatenation. Narrow vector ops may have better performance -/// than wide ops, and this can unlock further narrowing of other vector ops. -/// Targets can invert this transform later if it is not profitable. -static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, - SelectionDAG &DAG) { - SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); - if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || - N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || - !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) - return SDValue(); - - // Split the wide shuffle mask into halves. Any mask element that is accessing - // operand 1 is offset down to account for narrowing of the vectors. - ArrayRef<int> Mask = Shuf->getMask(); - EVT VT = Shuf->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - unsigned HalfNumElts = NumElts / 2; - SmallVector<int, 16> Mask0(HalfNumElts, -1); - SmallVector<int, 16> Mask1(HalfNumElts, -1); - for (unsigned i = 0; i != NumElts; ++i) { - if (Mask[i] == -1) - continue; - int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; - if (i < HalfNumElts) - Mask0[i] = M; - else - Mask1[i - HalfNumElts] = M; - } - - // Ask the target if this is a valid transform. - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), - HalfNumElts); - if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || - !TLI.isShuffleMaskLegal(Mask1, HalfVT)) - return SDValue(); - - // shuffle (concat X, undef), (concat Y, undef), Mask --> - // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) - SDValue X = N0.getOperand(0), Y = N1.getOperand(0); - SDLoc DL(Shuf); - SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); - SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); - return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); -} - -// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, -// or turn a shuffle of a single concat into simpler shuffle then concat. -static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { - EVT VT = N->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); - ArrayRef<int> Mask = SVN->getMask(); - - SmallVector<SDValue, 4> Ops; - EVT ConcatVT = N0.getOperand(0).getValueType(); - unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); - unsigned NumConcats = NumElts / NumElemsPerConcat; - - auto IsUndefMaskElt = [](int i) { return i == -1; }; - - // Special case: shuffle(concat(A,B)) can be more efficiently represented - // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high - // half vector elements. - if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && - llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), - IsUndefMaskElt)) { - N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), - N0.getOperand(1), - Mask.slice(0, NumElemsPerConcat)); - N1 = DAG.getUNDEF(ConcatVT); - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); - } - - // Look at every vector that's inserted. We're looking for exact - // subvector-sized copies from a concatenated vector - for (unsigned I = 0; I != NumConcats; ++I) { - unsigned Begin = I * NumElemsPerConcat; - ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); - - // Make sure we're dealing with a copy. - if (llvm::all_of(SubMask, IsUndefMaskElt)) { - Ops.push_back(DAG.getUNDEF(ConcatVT)); - continue; - } - - int OpIdx = -1; - for (int i = 0; i != (int)NumElemsPerConcat; ++i) { - if (IsUndefMaskElt(SubMask[i])) - continue; - if ((SubMask[i] % (int)NumElemsPerConcat) != i) - return SDValue(); - int EltOpIdx = SubMask[i] / NumElemsPerConcat; - if (0 <= OpIdx && EltOpIdx != OpIdx) - return SDValue(); - OpIdx = EltOpIdx; - } - assert(0 <= OpIdx && "Unknown concat_vectors op"); - - if (OpIdx < (int)N0.getNumOperands()) - Ops.push_back(N0.getOperand(OpIdx)); - else - Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); - } - - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); -} - -// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - -// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. -// -// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always -// a simplification in some sense, but it isn't appropriate in general: some -// BUILD_VECTORs are substantially cheaper than others. The general case -// of a BUILD_VECTOR requires inserting each element individually (or -// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of -// all constants is a single constant pool load. A BUILD_VECTOR where each -// element is identical is a splat. A BUILD_VECTOR where most of the operands -// are undef lowers to a small number of element insertions. -// -// To deal with this, we currently use a bunch of mostly arbitrary heuristics. -// We don't fold shuffles where one side is a non-zero constant, and we don't -// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate -// non-constant operands. This seems to work out reasonably well in practice. -static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG, - const TargetLowering &TLI) { - EVT VT = SVN->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - SDValue N0 = SVN->getOperand(0); - SDValue N1 = SVN->getOperand(1); - - if (!N0->hasOneUse()) - return SDValue(); - - // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as - // discussed above. - if (!N1.isUndef()) { - if (!N1->hasOneUse()) - return SDValue(); - - bool N0AnyConst = isAnyConstantBuildVector(N0); - bool N1AnyConst = isAnyConstantBuildVector(N1); - if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) - return SDValue(); - if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) - return SDValue(); - } - - // If both inputs are splats of the same value then we can safely merge this - // to a single BUILD_VECTOR with undef elements based on the shuffle mask. - bool IsSplat = false; - auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); - auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); - if (BV0 && BV1) - if (SDValue Splat0 = BV0->getSplatValue()) - IsSplat = (Splat0 == BV1->getSplatValue()); - - SmallVector<SDValue, 8> Ops; - SmallSet<SDValue, 16> DuplicateOps; - for (int M : SVN->getMask()) { - SDValue Op = DAG.getUNDEF(VT.getScalarType()); - if (M >= 0) { - int Idx = M < (int)NumElts ? M : M - NumElts; - SDValue &S = (M < (int)NumElts ? N0 : N1); - if (S.getOpcode() == ISD::BUILD_VECTOR) { - Op = S.getOperand(Idx); - } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { - SDValue Op0 = S.getOperand(0); - Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); - } else { - // Operand can't be combined - bail out. - return SDValue(); - } - } - - // Don't duplicate a non-constant BUILD_VECTOR operand unless we're - // generating a splat; semantically, this is fine, but it's likely to - // generate low-quality code if the target can't reconstruct an appropriate - // shuffle. - if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) - if (!IsSplat && !DuplicateOps.insert(Op).second) - return SDValue(); - - Ops.push_back(Op); - } - - // BUILD_VECTOR requires all inputs to be of the same type, find the - // maximum type and extend them all. - EVT SVT = VT.getScalarType(); - if (SVT.isInteger()) - for (SDValue &Op : Ops) - SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); - if (SVT != VT.getScalarType()) - for (SDValue &Op : Ops) - Op = TLI.isZExtFree(Op.getValueType(), SVT) - ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) - : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); - return DAG.getBuildVector(VT, SDLoc(SVN), Ops); -} - -// Match shuffles that can be converted to any_vector_extend_in_reg. -// This is often generated during legalization. -// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) -// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. -static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG, - const TargetLowering &TLI, - bool LegalOperations) { - EVT VT = SVN->getValueType(0); - bool IsBigEndian = DAG.getDataLayout().isBigEndian(); - - // TODO Add support for big-endian when we have a test case. - if (!VT.isInteger() || IsBigEndian) - return SDValue(); - - unsigned NumElts = VT.getVectorNumElements(); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - ArrayRef<int> Mask = SVN->getMask(); - SDValue N0 = SVN->getOperand(0); - - // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) - auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { - for (unsigned i = 0; i != NumElts; ++i) { - if (Mask[i] < 0) - continue; - if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) - continue; - return false; - } - return true; - }; - - // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for - // power-of-2 extensions as they are the most likely. - for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { - // Check for non power of 2 vector sizes - if (NumElts % Scale != 0) - continue; - if (!isAnyExtend(Scale)) - continue; - - EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); - EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); - // Never create an illegal type. Only create unsupported operations if we - // are pre-legalization. - if (TLI.isTypeLegal(OutVT)) - if (!LegalOperations || - TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) - return DAG.getBitcast(VT, - DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, - SDLoc(SVN), OutVT, N0)); - } - - return SDValue(); -} - -// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of -// each source element of a large type into the lowest elements of a smaller -// destination type. This is often generated during legalization. -// If the source node itself was a '*_extend_vector_inreg' node then we should -// then be able to remove it. -static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, - SelectionDAG &DAG) { - EVT VT = SVN->getValueType(0); - bool IsBigEndian = DAG.getDataLayout().isBigEndian(); - - // TODO Add support for big-endian when we have a test case. - if (!VT.isInteger() || IsBigEndian) - return SDValue(); - - SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); - - unsigned Opcode = N0.getOpcode(); - if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && - Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && - Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) - return SDValue(); - - SDValue N00 = N0.getOperand(0); - ArrayRef<int> Mask = SVN->getMask(); - unsigned NumElts = VT.getVectorNumElements(); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); - unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); - - if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) - return SDValue(); - unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; - - // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> - // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> - // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> - auto isTruncate = [&Mask, &NumElts](unsigned Scale) { - for (unsigned i = 0; i != NumElts; ++i) { - if (Mask[i] < 0) - continue; - if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) - continue; - return false; - } - return true; - }; - - // At the moment we just handle the case where we've truncated back to the - // same size as before the extension. - // TODO: handle more extension/truncation cases as cases arise. - if (EltSizeInBits != ExtSrcSizeInBits) - return SDValue(); - - // We can remove *extend_vector_inreg only if the truncation happens at - // the same scale as the extension. - if (isTruncate(ExtScale)) - return DAG.getBitcast(VT, N00); - - return SDValue(); -} - -// Combine shuffles of splat-shuffles of the form: -// shuffle (shuffle V, undef, splat-mask), undef, M -// If splat-mask contains undef elements, we need to be careful about -// introducing undef's in the folded mask which are not the result of composing -// the masks of the shuffles. -static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, - SelectionDAG &DAG) { - if (!Shuf->getOperand(1).isUndef()) - return SDValue(); - auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); - if (!Splat || !Splat->isSplat()) - return SDValue(); - - ArrayRef<int> ShufMask = Shuf->getMask(); - ArrayRef<int> SplatMask = Splat->getMask(); - assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); - - // Prefer simplifying to the splat-shuffle, if possible. This is legal if - // every undef mask element in the splat-shuffle has a corresponding undef - // element in the user-shuffle's mask or if the composition of mask elements - // would result in undef. - // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): - // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] - // In this case it is not legal to simplify to the splat-shuffle because we - // may be exposing the users of the shuffle an undef element at index 1 - // which was not there before the combine. - // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] - // In this case the composition of masks yields SplatMask, so it's ok to - // simplify to the splat-shuffle. - // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] - // In this case the composed mask includes all undef elements of SplatMask - // and in addition sets element zero to undef. It is safe to simplify to - // the splat-shuffle. - auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, - ArrayRef<int> SplatMask) { - for (unsigned i = 0, e = UserMask.size(); i != e; ++i) - if (UserMask[i] != -1 && SplatMask[i] == -1 && - SplatMask[UserMask[i]] != -1) - return false; - return true; - }; - if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) - return Shuf->getOperand(0); - - // Create a new shuffle with a mask that is composed of the two shuffles' - // masks. - SmallVector<int, 32> NewMask; - for (int Idx : ShufMask) - NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); - - return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), - Splat->getOperand(0), Splat->getOperand(1), - NewMask); -} - -/// Combine shuffle of shuffle of the form: -/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X -static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, - SelectionDAG &DAG) { - if (!OuterShuf->getOperand(1).isUndef()) - return SDValue(); - auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); - if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) - return SDValue(); - - ArrayRef<int> OuterMask = OuterShuf->getMask(); - ArrayRef<int> InnerMask = InnerShuf->getMask(); - unsigned NumElts = OuterMask.size(); - assert(NumElts == InnerMask.size() && "Mask length mismatch"); - SmallVector<int, 32> CombinedMask(NumElts, -1); - int SplatIndex = -1; - for (unsigned i = 0; i != NumElts; ++i) { - // Undef lanes remain undef. - int OuterMaskElt = OuterMask[i]; - if (OuterMaskElt == -1) - continue; - - // Peek through the shuffle masks to get the underlying source element. - int InnerMaskElt = InnerMask[OuterMaskElt]; - if (InnerMaskElt == -1) - continue; - - // Initialize the splatted element. - if (SplatIndex == -1) - SplatIndex = InnerMaskElt; - - // Non-matching index - this is not a splat. - if (SplatIndex != InnerMaskElt) - return SDValue(); - - CombinedMask[i] = InnerMaskElt; - } - assert((all_of(CombinedMask, [](int M) { return M == -1; }) || - getSplatIndex(CombinedMask) != -1) && - "Expected a splat mask"); - - // TODO: The transform may be a win even if the mask is not legal. - EVT VT = OuterShuf->getValueType(0); - assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); - if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) - return SDValue(); - - return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), - InnerShuf->getOperand(1), CombinedMask); -} - -/// If the shuffle mask is taking exactly one element from the first vector -/// operand and passing through all other elements from the second vector -/// operand, return the index of the mask element that is choosing an element -/// from the first operand. Otherwise, return -1. -static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { - int MaskSize = Mask.size(); - int EltFromOp0 = -1; - // TODO: This does not match if there are undef elements in the shuffle mask. - // Should we ignore undefs in the shuffle mask instead? The trade-off is - // removing an instruction (a shuffle), but losing the knowledge that some - // vector lanes are not needed. - for (int i = 0; i != MaskSize; ++i) { - if (Mask[i] >= 0 && Mask[i] < MaskSize) { - // We're looking for a shuffle of exactly one element from operand 0. - if (EltFromOp0 != -1) - return -1; - EltFromOp0 = i; - } else if (Mask[i] != i + MaskSize) { - // Nothing from operand 1 can change lanes. - return -1; - } - } - return EltFromOp0; -} - -/// If a shuffle inserts exactly one element from a source vector operand into -/// another vector operand and we can access the specified element as a scalar, -/// then we can eliminate the shuffle. -static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, - SelectionDAG &DAG) { - // First, check if we are taking one element of a vector and shuffling that - // element into another vector. - ArrayRef<int> Mask = Shuf->getMask(); - SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); - SDValue Op0 = Shuf->getOperand(0); - SDValue Op1 = Shuf->getOperand(1); - int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); - if (ShufOp0Index == -1) { - // Commute mask and check again. - ShuffleVectorSDNode::commuteMask(CommutedMask); - ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); - if (ShufOp0Index == -1) - return SDValue(); - // Commute operands to match the commuted shuffle mask. - std::swap(Op0, Op1); - Mask = CommutedMask; - } - - // The shuffle inserts exactly one element from operand 0 into operand 1. - // Now see if we can access that element as a scalar via a real insert element - // instruction. - // TODO: We can try harder to locate the element as a scalar. Examples: it - // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. - assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && - "Shuffle mask value must be from operand 0"); - if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) - return SDValue(); - - auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); - if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) - return SDValue(); - - // There's an existing insertelement with constant insertion index, so we - // don't need to check the legality/profitability of a replacement operation - // that differs at most in the constant value. The target should be able to - // lower any of those in a similar way. If not, legalization will expand this - // to a scalar-to-vector plus shuffle. - // - // Note that the shuffle may move the scalar from the position that the insert - // element used. Therefore, our new insert element occurs at the shuffle's - // mask index value, not the insert's index value. - // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' - SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); - return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), - Op1, Op0.getOperand(1), NewInsIndex); -} - -/// If we have a unary shuffle of a shuffle, see if it can be folded away -/// completely. This has the potential to lose undef knowledge because the first -/// shuffle may not have an undef mask element where the second one does. So -/// only call this after doing simplifications based on demanded elements. -static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { - // shuf (shuf0 X, Y, Mask0), undef, Mask - auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); - if (!Shuf0 || !Shuf->getOperand(1).isUndef()) - return SDValue(); - - ArrayRef<int> Mask = Shuf->getMask(); - ArrayRef<int> Mask0 = Shuf0->getMask(); - for (int i = 0, e = (int)Mask.size(); i != e; ++i) { - // Ignore undef elements. - if (Mask[i] == -1) - continue; - assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); - - // Is the element of the shuffle operand chosen by this shuffle the same as - // the element chosen by the shuffle operand itself? - if (Mask0[Mask[i]] != Mask0[i]) - return SDValue(); - } - // Every element of this shuffle is identical to the result of the previous - // shuffle, so we can replace this value. - return Shuf->getOperand(0); -} - -SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { - EVT VT = N->getValueType(0); - unsigned NumElts = VT.getVectorNumElements(); - - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); - - // Canonicalize shuffle undef, undef -> undef - if (N0.isUndef() && N1.isUndef()) - return DAG.getUNDEF(VT); - - ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); - - // Canonicalize shuffle v, v -> v, undef - if (N0 == N1) { - SmallVector<int, 8> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx >= (int)NumElts) Idx -= NumElts; - NewMask.push_back(Idx); - } - return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); - } - - // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. - if (N0.isUndef()) - return DAG.getCommutedVectorShuffle(*SVN); - - // Remove references to rhs if it is undef - if (N1.isUndef()) { - bool Changed = false; - SmallVector<int, 8> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx >= (int)NumElts) { - Idx = -1; - Changed = true; - } - NewMask.push_back(Idx); - } - if (Changed) - return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); - } - - if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) - return InsElt; - - // A shuffle of a single vector that is a splatted value can always be folded. - if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) - return V; - - if (SDValue V = formSplatFromShuffles(SVN, DAG)) - return V; - - // If it is a splat, check if the argument vector is another splat or a - // build_vector. - if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { - int SplatIndex = SVN->getSplatIndex(); - if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && - TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { - // splat (vector_bo L, R), Index --> - // splat (scalar_bo (extelt L, Index), (extelt R, Index)) - SDValue L = N0.getOperand(0), R = N0.getOperand(1); - SDLoc DL(N); - EVT EltVT = VT.getScalarType(); - SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); - SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); - SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); - SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, - N0.getNode()->getFlags()); - SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); - SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); - return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); - } - - // If this is a bit convert that changes the element type of the vector but - // not the number of vector elements, look through it. Be careful not to - // look though conversions that change things like v4f32 to v2f64. - SDNode *V = N0.getNode(); - if (V->getOpcode() == ISD::BITCAST) { - SDValue ConvInput = V->getOperand(0); - if (ConvInput.getValueType().isVector() && - ConvInput.getValueType().getVectorNumElements() == NumElts) - V = ConvInput.getNode(); - } - - if (V->getOpcode() == ISD::BUILD_VECTOR) { - assert(V->getNumOperands() == NumElts && - "BUILD_VECTOR has wrong number of operands"); - SDValue Base; - bool AllSame = true; - for (unsigned i = 0; i != NumElts; ++i) { - if (!V->getOperand(i).isUndef()) { - Base = V->getOperand(i); - break; - } - } - // Splat of <u, u, u, u>, return <u, u, u, u> - if (!Base.getNode()) - return N0; - for (unsigned i = 0; i != NumElts; ++i) { - if (V->getOperand(i) != Base) { - AllSame = false; - break; - } - } - // Splat of <x, x, x, x>, return <x, x, x, x> - if (AllSame) - return N0; - - // Canonicalize any other splat as a build_vector. - SDValue Splatted = V->getOperand(SplatIndex); - SmallVector<SDValue, 8> Ops(NumElts, Splatted); - SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); - - // We may have jumped through bitcasts, so the type of the - // BUILD_VECTOR may not match the type of the shuffle. - if (V->getValueType(0) != VT) - NewBV = DAG.getBitcast(VT, NewBV); - return NewBV; - } - } - - // Simplify source operands based on shuffle mask. - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - // This is intentionally placed after demanded elements simplification because - // it could eliminate knowledge of undef elements created by this shuffle. - if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) - return ShufOp; - - // Match shuffles that can be converted to any_vector_extend_in_reg. - if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) - return V; - - // Combine "truncate_vector_in_reg" style shuffles. - if (SDValue V = combineTruncationShuffle(SVN, DAG)) - return V; - - if (N0.getOpcode() == ISD::CONCAT_VECTORS && - Level < AfterLegalizeVectorOps && - (N1.isUndef() || - (N1.getOpcode() == ISD::CONCAT_VECTORS && - N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { - if (SDValue V = partitionShuffleOfConcats(N, DAG)) - return V; - } - - // A shuffle of a concat of the same narrow vector can be reduced to use - // only low-half elements of a concat with undef: - // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' - if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && - N0.getNumOperands() == 2 && - N0.getOperand(0) == N0.getOperand(1)) { - int HalfNumElts = (int)NumElts / 2; - SmallVector<int, 8> NewMask; - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx >= HalfNumElts) { - assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); - Idx -= HalfNumElts; - } - NewMask.push_back(Idx); - } - if (TLI.isShuffleMaskLegal(NewMask, VT)) { - SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); - SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, - N0.getOperand(0), UndefVec); - return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); - } - } - - // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - - // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. - if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) - if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) - return Res; - - // If this shuffle only has a single input that is a bitcasted shuffle, - // attempt to merge the 2 shuffles and suitably bitcast the inputs/output - // back to their original types. - if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && - N1.isUndef() && Level < AfterLegalizeVectorOps && - TLI.isTypeLegal(VT)) { - - SDValue BC0 = peekThroughOneUseBitcasts(N0); - if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { - EVT SVT = VT.getScalarType(); - EVT InnerVT = BC0->getValueType(0); - EVT InnerSVT = InnerVT.getScalarType(); - - // Determine which shuffle works with the smaller scalar type. - EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; - EVT ScaleSVT = ScaleVT.getScalarType(); - - if (TLI.isTypeLegal(ScaleVT) && - 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && - 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { - int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); - int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); - - // Scale the shuffle masks to the smaller scalar type. - ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); - SmallVector<int, 8> InnerMask; - SmallVector<int, 8> OuterMask; - narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); - narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); - - // Merge the shuffle masks. - SmallVector<int, 8> NewMask; - for (int M : OuterMask) - NewMask.push_back(M < 0 ? -1 : InnerMask[M]); - - // Test for shuffle mask legality over both commutations. - SDValue SV0 = BC0->getOperand(0); - SDValue SV1 = BC0->getOperand(1); - bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); - if (!LegalMask) { - std::swap(SV0, SV1); - ShuffleVectorSDNode::commuteMask(NewMask); - LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); - } - - if (LegalMask) { - SV0 = DAG.getBitcast(ScaleVT, SV0); - SV1 = DAG.getBitcast(ScaleVT, SV1); - return DAG.getBitcast( - VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); - } - } - } - } - + return NarrowBOp; + + if (SimplifyDemandedVectorElts(SDValue(N, 0))) + return SDValue(N, 0); + + return SDValue(); +} + +/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles +/// followed by concatenation. Narrow vector ops may have better performance +/// than wide ops, and this can unlock further narrowing of other vector ops. +/// Targets can invert this transform later if it is not profitable. +static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf, + SelectionDAG &DAG) { + SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1); + if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 || + N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 || + !N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef()) + return SDValue(); + + // Split the wide shuffle mask into halves. Any mask element that is accessing + // operand 1 is offset down to account for narrowing of the vectors. + ArrayRef<int> Mask = Shuf->getMask(); + EVT VT = Shuf->getValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + unsigned HalfNumElts = NumElts / 2; + SmallVector<int, 16> Mask0(HalfNumElts, -1); + SmallVector<int, 16> Mask1(HalfNumElts, -1); + for (unsigned i = 0; i != NumElts; ++i) { + if (Mask[i] == -1) + continue; + int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts; + if (i < HalfNumElts) + Mask0[i] = M; + else + Mask1[i - HalfNumElts] = M; + } + + // Ask the target if this is a valid transform. + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), + HalfNumElts); + if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) || + !TLI.isShuffleMaskLegal(Mask1, HalfVT)) + return SDValue(); + + // shuffle (concat X, undef), (concat Y, undef), Mask --> + // concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1) + SDValue X = N0.getOperand(0), Y = N1.getOperand(0); + SDLoc DL(Shuf); + SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0); + SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1); + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1); +} + +// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat, +// or turn a shuffle of a single concat into simpler shuffle then concat. +static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) { + EVT VT = N->getValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + ArrayRef<int> Mask = SVN->getMask(); + + SmallVector<SDValue, 4> Ops; + EVT ConcatVT = N0.getOperand(0).getValueType(); + unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements(); + unsigned NumConcats = NumElts / NumElemsPerConcat; + + auto IsUndefMaskElt = [](int i) { return i == -1; }; + + // Special case: shuffle(concat(A,B)) can be more efficiently represented + // as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high + // half vector elements. + if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() && + llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat), + IsUndefMaskElt)) { + N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0), + N0.getOperand(1), + Mask.slice(0, NumElemsPerConcat)); + N1 = DAG.getUNDEF(ConcatVT); + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1); + } + + // Look at every vector that's inserted. We're looking for exact + // subvector-sized copies from a concatenated vector + for (unsigned I = 0; I != NumConcats; ++I) { + unsigned Begin = I * NumElemsPerConcat; + ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat); + + // Make sure we're dealing with a copy. + if (llvm::all_of(SubMask, IsUndefMaskElt)) { + Ops.push_back(DAG.getUNDEF(ConcatVT)); + continue; + } + + int OpIdx = -1; + for (int i = 0; i != (int)NumElemsPerConcat; ++i) { + if (IsUndefMaskElt(SubMask[i])) + continue; + if ((SubMask[i] % (int)NumElemsPerConcat) != i) + return SDValue(); + int EltOpIdx = SubMask[i] / NumElemsPerConcat; + if (0 <= OpIdx && EltOpIdx != OpIdx) + return SDValue(); + OpIdx = EltOpIdx; + } + assert(0 <= OpIdx && "Unknown concat_vectors op"); + + if (OpIdx < (int)N0.getNumOperands()) + Ops.push_back(N0.getOperand(OpIdx)); + else + Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands())); + } + + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); +} + +// Attempt to combine a shuffle of 2 inputs of 'scalar sources' - +// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. +// +// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always +// a simplification in some sense, but it isn't appropriate in general: some +// BUILD_VECTORs are substantially cheaper than others. The general case +// of a BUILD_VECTOR requires inserting each element individually (or +// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of +// all constants is a single constant pool load. A BUILD_VECTOR where each +// element is identical is a splat. A BUILD_VECTOR where most of the operands +// are undef lowers to a small number of element insertions. +// +// To deal with this, we currently use a bunch of mostly arbitrary heuristics. +// We don't fold shuffles where one side is a non-zero constant, and we don't +// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate +// non-constant operands. This seems to work out reasonably well in practice. +static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN, + SelectionDAG &DAG, + const TargetLowering &TLI) { + EVT VT = SVN->getValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + SDValue N0 = SVN->getOperand(0); + SDValue N1 = SVN->getOperand(1); + + if (!N0->hasOneUse()) + return SDValue(); + + // If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as + // discussed above. + if (!N1.isUndef()) { + if (!N1->hasOneUse()) + return SDValue(); + + bool N0AnyConst = isAnyConstantBuildVector(N0); + bool N1AnyConst = isAnyConstantBuildVector(N1); + if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode())) + return SDValue(); + if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode())) + return SDValue(); + } + + // If both inputs are splats of the same value then we can safely merge this + // to a single BUILD_VECTOR with undef elements based on the shuffle mask. + bool IsSplat = false; + auto *BV0 = dyn_cast<BuildVectorSDNode>(N0); + auto *BV1 = dyn_cast<BuildVectorSDNode>(N1); + if (BV0 && BV1) + if (SDValue Splat0 = BV0->getSplatValue()) + IsSplat = (Splat0 == BV1->getSplatValue()); + + SmallVector<SDValue, 8> Ops; + SmallSet<SDValue, 16> DuplicateOps; + for (int M : SVN->getMask()) { + SDValue Op = DAG.getUNDEF(VT.getScalarType()); + if (M >= 0) { + int Idx = M < (int)NumElts ? M : M - NumElts; + SDValue &S = (M < (int)NumElts ? N0 : N1); + if (S.getOpcode() == ISD::BUILD_VECTOR) { + Op = S.getOperand(Idx); + } else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) { + SDValue Op0 = S.getOperand(0); + Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType()); + } else { + // Operand can't be combined - bail out. + return SDValue(); + } + } + + // Don't duplicate a non-constant BUILD_VECTOR operand unless we're + // generating a splat; semantically, this is fine, but it's likely to + // generate low-quality code if the target can't reconstruct an appropriate + // shuffle. + if (!Op.isUndef() && !isa<ConstantSDNode>(Op) && !isa<ConstantFPSDNode>(Op)) + if (!IsSplat && !DuplicateOps.insert(Op).second) + return SDValue(); + + Ops.push_back(Op); + } + + // BUILD_VECTOR requires all inputs to be of the same type, find the + // maximum type and extend them all. + EVT SVT = VT.getScalarType(); + if (SVT.isInteger()) + for (SDValue &Op : Ops) + SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT); + if (SVT != VT.getScalarType()) + for (SDValue &Op : Ops) + Op = TLI.isZExtFree(Op.getValueType(), SVT) + ? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT) + : DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT); + return DAG.getBuildVector(VT, SDLoc(SVN), Ops); +} + +// Match shuffles that can be converted to any_vector_extend_in_reg. +// This is often generated during legalization. +// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src)) +// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case. +static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN, + SelectionDAG &DAG, + const TargetLowering &TLI, + bool LegalOperations) { + EVT VT = SVN->getValueType(0); + bool IsBigEndian = DAG.getDataLayout().isBigEndian(); + + // TODO Add support for big-endian when we have a test case. + if (!VT.isInteger() || IsBigEndian) + return SDValue(); + + unsigned NumElts = VT.getVectorNumElements(); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + ArrayRef<int> Mask = SVN->getMask(); + SDValue N0 = SVN->getOperand(0); + + // shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32)) + auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) { + for (unsigned i = 0; i != NumElts; ++i) { + if (Mask[i] < 0) + continue; + if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale)) + continue; + return false; + } + return true; + }; + + // Attempt to match a '*_extend_vector_inreg' shuffle, we just search for + // power-of-2 extensions as they are the most likely. + for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) { + // Check for non power of 2 vector sizes + if (NumElts % Scale != 0) + continue; + if (!isAnyExtend(Scale)) + continue; + + EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale); + EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale); + // Never create an illegal type. Only create unsupported operations if we + // are pre-legalization. + if (TLI.isTypeLegal(OutVT)) + if (!LegalOperations || + TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT)) + return DAG.getBitcast(VT, + DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, + SDLoc(SVN), OutVT, N0)); + } + + return SDValue(); +} + +// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of +// each source element of a large type into the lowest elements of a smaller +// destination type. This is often generated during legalization. +// If the source node itself was a '*_extend_vector_inreg' node then we should +// then be able to remove it. +static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN, + SelectionDAG &DAG) { + EVT VT = SVN->getValueType(0); + bool IsBigEndian = DAG.getDataLayout().isBigEndian(); + + // TODO Add support for big-endian when we have a test case. + if (!VT.isInteger() || IsBigEndian) + return SDValue(); + + SDValue N0 = peekThroughBitcasts(SVN->getOperand(0)); + + unsigned Opcode = N0.getOpcode(); + if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG && + Opcode != ISD::SIGN_EXTEND_VECTOR_INREG && + Opcode != ISD::ZERO_EXTEND_VECTOR_INREG) + return SDValue(); + + SDValue N00 = N0.getOperand(0); + ArrayRef<int> Mask = SVN->getMask(); + unsigned NumElts = VT.getVectorNumElements(); + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits(); + unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits(); + + if (ExtDstSizeInBits % ExtSrcSizeInBits != 0) + return SDValue(); + unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits; + + // (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1> + // (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1> + // (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1> + auto isTruncate = [&Mask, &NumElts](unsigned Scale) { + for (unsigned i = 0; i != NumElts; ++i) { + if (Mask[i] < 0) + continue; + if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale)) + continue; + return false; + } + return true; + }; + + // At the moment we just handle the case where we've truncated back to the + // same size as before the extension. + // TODO: handle more extension/truncation cases as cases arise. + if (EltSizeInBits != ExtSrcSizeInBits) + return SDValue(); + + // We can remove *extend_vector_inreg only if the truncation happens at + // the same scale as the extension. + if (isTruncate(ExtScale)) + return DAG.getBitcast(VT, N00); + + return SDValue(); +} + +// Combine shuffles of splat-shuffles of the form: +// shuffle (shuffle V, undef, splat-mask), undef, M +// If splat-mask contains undef elements, we need to be careful about +// introducing undef's in the folded mask which are not the result of composing +// the masks of the shuffles. +static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf, + SelectionDAG &DAG) { + if (!Shuf->getOperand(1).isUndef()) + return SDValue(); + auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); + if (!Splat || !Splat->isSplat()) + return SDValue(); + + ArrayRef<int> ShufMask = Shuf->getMask(); + ArrayRef<int> SplatMask = Splat->getMask(); + assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch"); + + // Prefer simplifying to the splat-shuffle, if possible. This is legal if + // every undef mask element in the splat-shuffle has a corresponding undef + // element in the user-shuffle's mask or if the composition of mask elements + // would result in undef. + // Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask): + // * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u] + // In this case it is not legal to simplify to the splat-shuffle because we + // may be exposing the users of the shuffle an undef element at index 1 + // which was not there before the combine. + // * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u] + // In this case the composition of masks yields SplatMask, so it's ok to + // simplify to the splat-shuffle. + // * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u] + // In this case the composed mask includes all undef elements of SplatMask + // and in addition sets element zero to undef. It is safe to simplify to + // the splat-shuffle. + auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask, + ArrayRef<int> SplatMask) { + for (unsigned i = 0, e = UserMask.size(); i != e; ++i) + if (UserMask[i] != -1 && SplatMask[i] == -1 && + SplatMask[UserMask[i]] != -1) + return false; + return true; + }; + if (CanSimplifyToExistingSplat(ShufMask, SplatMask)) + return Shuf->getOperand(0); + + // Create a new shuffle with a mask that is composed of the two shuffles' + // masks. + SmallVector<int, 32> NewMask; + for (int Idx : ShufMask) + NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]); + + return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat), + Splat->getOperand(0), Splat->getOperand(1), + NewMask); +} + +/// Combine shuffle of shuffle of the form: +/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X +static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf, + SelectionDAG &DAG) { + if (!OuterShuf->getOperand(1).isUndef()) + return SDValue(); + auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0)); + if (!InnerShuf || !InnerShuf->getOperand(1).isUndef()) + return SDValue(); + + ArrayRef<int> OuterMask = OuterShuf->getMask(); + ArrayRef<int> InnerMask = InnerShuf->getMask(); + unsigned NumElts = OuterMask.size(); + assert(NumElts == InnerMask.size() && "Mask length mismatch"); + SmallVector<int, 32> CombinedMask(NumElts, -1); + int SplatIndex = -1; + for (unsigned i = 0; i != NumElts; ++i) { + // Undef lanes remain undef. + int OuterMaskElt = OuterMask[i]; + if (OuterMaskElt == -1) + continue; + + // Peek through the shuffle masks to get the underlying source element. + int InnerMaskElt = InnerMask[OuterMaskElt]; + if (InnerMaskElt == -1) + continue; + + // Initialize the splatted element. + if (SplatIndex == -1) + SplatIndex = InnerMaskElt; + + // Non-matching index - this is not a splat. + if (SplatIndex != InnerMaskElt) + return SDValue(); + + CombinedMask[i] = InnerMaskElt; + } + assert((all_of(CombinedMask, [](int M) { return M == -1; }) || + getSplatIndex(CombinedMask) != -1) && + "Expected a splat mask"); + + // TODO: The transform may be a win even if the mask is not legal. + EVT VT = OuterShuf->getValueType(0); + assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types"); + if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT)) + return SDValue(); + + return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0), + InnerShuf->getOperand(1), CombinedMask); +} + +/// If the shuffle mask is taking exactly one element from the first vector +/// operand and passing through all other elements from the second vector +/// operand, return the index of the mask element that is choosing an element +/// from the first operand. Otherwise, return -1. +static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) { + int MaskSize = Mask.size(); + int EltFromOp0 = -1; + // TODO: This does not match if there are undef elements in the shuffle mask. + // Should we ignore undefs in the shuffle mask instead? The trade-off is + // removing an instruction (a shuffle), but losing the knowledge that some + // vector lanes are not needed. + for (int i = 0; i != MaskSize; ++i) { + if (Mask[i] >= 0 && Mask[i] < MaskSize) { + // We're looking for a shuffle of exactly one element from operand 0. + if (EltFromOp0 != -1) + return -1; + EltFromOp0 = i; + } else if (Mask[i] != i + MaskSize) { + // Nothing from operand 1 can change lanes. + return -1; + } + } + return EltFromOp0; +} + +/// If a shuffle inserts exactly one element from a source vector operand into +/// another vector operand and we can access the specified element as a scalar, +/// then we can eliminate the shuffle. +static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf, + SelectionDAG &DAG) { + // First, check if we are taking one element of a vector and shuffling that + // element into another vector. + ArrayRef<int> Mask = Shuf->getMask(); + SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end()); + SDValue Op0 = Shuf->getOperand(0); + SDValue Op1 = Shuf->getOperand(1); + int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask); + if (ShufOp0Index == -1) { + // Commute mask and check again. + ShuffleVectorSDNode::commuteMask(CommutedMask); + ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask); + if (ShufOp0Index == -1) + return SDValue(); + // Commute operands to match the commuted shuffle mask. + std::swap(Op0, Op1); + Mask = CommutedMask; + } + + // The shuffle inserts exactly one element from operand 0 into operand 1. + // Now see if we can access that element as a scalar via a real insert element + // instruction. + // TODO: We can try harder to locate the element as a scalar. Examples: it + // could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant. + assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() && + "Shuffle mask value must be from operand 0"); + if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT) + return SDValue(); + + auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2)); + if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index]) + return SDValue(); + + // There's an existing insertelement with constant insertion index, so we + // don't need to check the legality/profitability of a replacement operation + // that differs at most in the constant value. The target should be able to + // lower any of those in a similar way. If not, legalization will expand this + // to a scalar-to-vector plus shuffle. + // + // Note that the shuffle may move the scalar from the position that the insert + // element used. Therefore, our new insert element occurs at the shuffle's + // mask index value, not the insert's index value. + // shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C' + SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf)); + return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(), + Op1, Op0.getOperand(1), NewInsIndex); +} + +/// If we have a unary shuffle of a shuffle, see if it can be folded away +/// completely. This has the potential to lose undef knowledge because the first +/// shuffle may not have an undef mask element where the second one does. So +/// only call this after doing simplifications based on demanded elements. +static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) { + // shuf (shuf0 X, Y, Mask0), undef, Mask + auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0)); + if (!Shuf0 || !Shuf->getOperand(1).isUndef()) + return SDValue(); + + ArrayRef<int> Mask = Shuf->getMask(); + ArrayRef<int> Mask0 = Shuf0->getMask(); + for (int i = 0, e = (int)Mask.size(); i != e; ++i) { + // Ignore undef elements. + if (Mask[i] == -1) + continue; + assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value"); + + // Is the element of the shuffle operand chosen by this shuffle the same as + // the element chosen by the shuffle operand itself? + if (Mask0[Mask[i]] != Mask0[i]) + return SDValue(); + } + // Every element of this shuffle is identical to the result of the previous + // shuffle, so we can replace this value. + return Shuf->getOperand(0); +} + +SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { + EVT VT = N->getValueType(0); + unsigned NumElts = VT.getVectorNumElements(); + + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + + assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG"); + + // Canonicalize shuffle undef, undef -> undef + if (N0.isUndef() && N1.isUndef()) + return DAG.getUNDEF(VT); + + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + + // Canonicalize shuffle v, v -> v, undef + if (N0 == N1) { + SmallVector<int, 8> NewMask; + for (unsigned i = 0; i != NumElts; ++i) { + int Idx = SVN->getMaskElt(i); + if (Idx >= (int)NumElts) Idx -= NumElts; + NewMask.push_back(Idx); + } + return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask); + } + + // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask. + if (N0.isUndef()) + return DAG.getCommutedVectorShuffle(*SVN); + + // Remove references to rhs if it is undef + if (N1.isUndef()) { + bool Changed = false; + SmallVector<int, 8> NewMask; + for (unsigned i = 0; i != NumElts; ++i) { + int Idx = SVN->getMaskElt(i); + if (Idx >= (int)NumElts) { + Idx = -1; + Changed = true; + } + NewMask.push_back(Idx); + } + if (Changed) + return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask); + } + + if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG)) + return InsElt; + + // A shuffle of a single vector that is a splatted value can always be folded. + if (SDValue V = combineShuffleOfSplatVal(SVN, DAG)) + return V; + + if (SDValue V = formSplatFromShuffles(SVN, DAG)) + return V; + + // If it is a splat, check if the argument vector is another splat or a + // build_vector. + if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) { + int SplatIndex = SVN->getSplatIndex(); + if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) && + TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) { + // splat (vector_bo L, R), Index --> + // splat (scalar_bo (extelt L, Index), (extelt R, Index)) + SDValue L = N0.getOperand(0), R = N0.getOperand(1); + SDLoc DL(N); + EVT EltVT = VT.getScalarType(); + SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL); + SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index); + SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index); + SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR, + N0.getNode()->getFlags()); + SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO); + SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0); + return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask); + } + + // If this is a bit convert that changes the element type of the vector but + // not the number of vector elements, look through it. Be careful not to + // look though conversions that change things like v4f32 to v2f64. + SDNode *V = N0.getNode(); + if (V->getOpcode() == ISD::BITCAST) { + SDValue ConvInput = V->getOperand(0); + if (ConvInput.getValueType().isVector() && + ConvInput.getValueType().getVectorNumElements() == NumElts) + V = ConvInput.getNode(); + } + + if (V->getOpcode() == ISD::BUILD_VECTOR) { + assert(V->getNumOperands() == NumElts && + "BUILD_VECTOR has wrong number of operands"); + SDValue Base; + bool AllSame = true; + for (unsigned i = 0; i != NumElts; ++i) { + if (!V->getOperand(i).isUndef()) { + Base = V->getOperand(i); + break; + } + } + // Splat of <u, u, u, u>, return <u, u, u, u> + if (!Base.getNode()) + return N0; + for (unsigned i = 0; i != NumElts; ++i) { + if (V->getOperand(i) != Base) { + AllSame = false; + break; + } + } + // Splat of <x, x, x, x>, return <x, x, x, x> + if (AllSame) + return N0; + + // Canonicalize any other splat as a build_vector. + SDValue Splatted = V->getOperand(SplatIndex); + SmallVector<SDValue, 8> Ops(NumElts, Splatted); + SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops); + + // We may have jumped through bitcasts, so the type of the + // BUILD_VECTOR may not match the type of the shuffle. + if (V->getValueType(0) != VT) + NewBV = DAG.getBitcast(VT, NewBV); + return NewBV; + } + } + + // Simplify source operands based on shuffle mask. + if (SimplifyDemandedVectorElts(SDValue(N, 0))) + return SDValue(N, 0); + + // This is intentionally placed after demanded elements simplification because + // it could eliminate knowledge of undef elements created by this shuffle. + if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN)) + return ShufOp; + + // Match shuffles that can be converted to any_vector_extend_in_reg. + if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations)) + return V; + + // Combine "truncate_vector_in_reg" style shuffles. + if (SDValue V = combineTruncationShuffle(SVN, DAG)) + return V; + + if (N0.getOpcode() == ISD::CONCAT_VECTORS && + Level < AfterLegalizeVectorOps && + (N1.isUndef() || + (N1.getOpcode() == ISD::CONCAT_VECTORS && + N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) { + if (SDValue V = partitionShuffleOfConcats(N, DAG)) + return V; + } + + // A shuffle of a concat of the same narrow vector can be reduced to use + // only low-half elements of a concat with undef: + // shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask' + if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() && + N0.getNumOperands() == 2 && + N0.getOperand(0) == N0.getOperand(1)) { + int HalfNumElts = (int)NumElts / 2; + SmallVector<int, 8> NewMask; + for (unsigned i = 0; i != NumElts; ++i) { + int Idx = SVN->getMaskElt(i); + if (Idx >= HalfNumElts) { + assert(Idx < (int)NumElts && "Shuffle mask chooses undef op"); + Idx -= HalfNumElts; + } + NewMask.push_back(Idx); + } + if (TLI.isShuffleMaskLegal(NewMask, VT)) { + SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType()); + SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, + N0.getOperand(0), UndefVec); + return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask); + } + } + + // Attempt to combine a shuffle of 2 inputs of 'scalar sources' - + // BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR. + if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) + if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI)) + return Res; + + // If this shuffle only has a single input that is a bitcasted shuffle, + // attempt to merge the 2 shuffles and suitably bitcast the inputs/output + // back to their original types. + if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() && + N1.isUndef() && Level < AfterLegalizeVectorOps && + TLI.isTypeLegal(VT)) { + + SDValue BC0 = peekThroughOneUseBitcasts(N0); + if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) { + EVT SVT = VT.getScalarType(); + EVT InnerVT = BC0->getValueType(0); + EVT InnerSVT = InnerVT.getScalarType(); + + // Determine which shuffle works with the smaller scalar type. + EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT; + EVT ScaleSVT = ScaleVT.getScalarType(); + + if (TLI.isTypeLegal(ScaleVT) && + 0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) && + 0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) { + int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits(); + int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits(); + + // Scale the shuffle masks to the smaller scalar type. + ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0); + SmallVector<int, 8> InnerMask; + SmallVector<int, 8> OuterMask; + narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask); + narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask); + + // Merge the shuffle masks. + SmallVector<int, 8> NewMask; + for (int M : OuterMask) + NewMask.push_back(M < 0 ? -1 : InnerMask[M]); + + // Test for shuffle mask legality over both commutations. + SDValue SV0 = BC0->getOperand(0); + SDValue SV1 = BC0->getOperand(1); + bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); + if (!LegalMask) { + std::swap(SV0, SV1); + ShuffleVectorSDNode::commuteMask(NewMask); + LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT); + } + + if (LegalMask) { + SV0 = DAG.getBitcast(ScaleVT, SV0); + SV1 = DAG.getBitcast(ScaleVT, SV1); + return DAG.getBitcast( + VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask)); + } + } + } + } + if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { // Canonicalize shuffles according to rules: // shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A) @@ -20824,7 +20824,7 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { // current shuffle. assert(N1->getOperand(0).getValueType() == VT && "Shuffle types don't match"); - + SDValue SV0 = N1->getOperand(0); SDValue SV1 = N1->getOperand(1); bool HasSameOp0 = N0 == SV0; @@ -20840,10 +20840,10 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { N1.getOpcode() == ISD::VECTOR_SHUFFLE && cast<ShuffleVectorSDNode>(N0)->isSplat() && !cast<ShuffleVectorSDNode>(N1)->isSplat()) { - return DAG.getCommutedVectorShuffle(*SVN); + return DAG.getCommutedVectorShuffle(*SVN); } - } - + } + // Compute the combined shuffle mask for a shuffle with SV0 as the first // operand, and SV1 as the second operand. // i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask). @@ -20851,55 +20851,55 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { ShuffleVectorSDNode *OtherSVN, SDValue N1, SDValue &SV0, SDValue &SV1, SmallVectorImpl<int> &Mask) -> bool { - // Don't try to fold splats; they're likely to simplify somehow, or they - // might be free. + // Don't try to fold splats; they're likely to simplify somehow, or they + // might be free. if (OtherSVN->isSplat()) return false; - + SV0 = SV1 = SDValue(); Mask.clear(); - - for (unsigned i = 0; i != NumElts; ++i) { - int Idx = SVN->getMaskElt(i); - if (Idx < 0) { - // Propagate Undef. - Mask.push_back(Idx); - continue; - } - - SDValue CurrentVec; - if (Idx < (int)NumElts) { - // This shuffle index refers to the inner shuffle N0. Lookup the inner - // shuffle mask to identify which vector is actually referenced. + + for (unsigned i = 0; i != NumElts; ++i) { + int Idx = SVN->getMaskElt(i); + if (Idx < 0) { + // Propagate Undef. + Mask.push_back(Idx); + continue; + } + + SDValue CurrentVec; + if (Idx < (int)NumElts) { + // This shuffle index refers to the inner shuffle N0. Lookup the inner + // shuffle mask to identify which vector is actually referenced. Idx = OtherSVN->getMaskElt(Idx); - if (Idx < 0) { - // Propagate Undef. - Mask.push_back(Idx); - continue; - } + if (Idx < 0) { + // Propagate Undef. + Mask.push_back(Idx); + continue; + } CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0) : OtherSVN->getOperand(1); - } else { - // This shuffle index references an element within N1. - CurrentVec = N1; - } - - // Simple case where 'CurrentVec' is UNDEF. - if (CurrentVec.isUndef()) { - Mask.push_back(-1); - continue; - } - - // Canonicalize the shuffle index. We don't know yet if CurrentVec - // will be the first or second operand of the combined shuffle. - Idx = Idx % NumElts; - if (!SV0.getNode() || SV0 == CurrentVec) { - // Ok. CurrentVec is the left hand side. - // Update the mask accordingly. - SV0 = CurrentVec; - Mask.push_back(Idx); - continue; - } + } else { + // This shuffle index references an element within N1. + CurrentVec = N1; + } + + // Simple case where 'CurrentVec' is UNDEF. + if (CurrentVec.isUndef()) { + Mask.push_back(-1); + continue; + } + + // Canonicalize the shuffle index. We don't know yet if CurrentVec + // will be the first or second operand of the combined shuffle. + Idx = Idx % NumElts; + if (!SV0.getNode() || SV0 == CurrentVec) { + // Ok. CurrentVec is the left hand side. + // Update the mask accordingly. + SV0 = CurrentVec; + Mask.push_back(Idx); + continue; + } if (!SV1.getNode() || SV1 == CurrentVec) { // Ok. CurrentVec is the right hand side. // Update the mask accordingly. @@ -20907,7 +20907,7 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { Mask.push_back(Idx + NumElts); continue; } - + // Last chance - see if the vector is another shuffle and if it // uses one of the existing candidate shuffle ops. if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) { @@ -20934,12 +20934,12 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { } } - // Bail out if we cannot convert the shuffle pair into a single shuffle. + // Bail out if we cannot convert the shuffle pair into a single shuffle. return false; - } + } return true; }; - + // Try to fold according to rules: // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2) // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2) @@ -20949,19 +20949,19 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { if (N0.getOpcode() == ISD::VECTOR_SHUFFLE && N->isOnlyUserOf(N0.getNode()) && Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) { ShuffleVectorSDNode *OtherSV = cast<ShuffleVectorSDNode>(N0); - + // The incoming shuffle must be of the same type as the result of the // current shuffle. assert(OtherSV->getOperand(0).getValueType() == VT && "Shuffle types don't match"); - + SDValue SV0, SV1; SmallVector<int, 4> Mask; if (MergeInnerShuffle(SVN, OtherSV, N1, SV0, SV1, Mask)) { // Check if all indices in Mask are Undef. In case, propagate Undef. if (llvm::all_of(Mask, [](int M) { return M < 0; })) return DAG.getUNDEF(VT); - + if (!SV0.getNode()) SV0 = DAG.getUNDEF(VT); if (!SV1.getNode()) @@ -20976,820 +20976,820 @@ SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) { // shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2) return TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, Mask, DAG); } - } - - if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) - return V; - - return SDValue(); -} - -SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { - SDValue InVal = N->getOperand(0); - EVT VT = N->getValueType(0); - - // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern - // with a VECTOR_SHUFFLE and possible truncate. - if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && - VT.isFixedLengthVector() && - InVal->getOperand(0).getValueType().isFixedLengthVector()) { - SDValue InVec = InVal->getOperand(0); - SDValue EltNo = InVal->getOperand(1); - auto InVecT = InVec.getValueType(); - if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { - SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); - int Elt = C0->getZExtValue(); - NewMask[0] = Elt; - // If we have an implict truncate do truncate here as long as it's legal. - // if it's not legal, this should - if (VT.getScalarType() != InVal.getValueType() && - InVal.getValueType().isScalarInteger() && - isTypeLegal(VT.getScalarType())) { - SDValue Val = - DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); - return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); - } - if (VT.getScalarType() == InVecT.getScalarType() && - VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { - SDValue LegalShuffle = - TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, - DAG.getUNDEF(InVecT), NewMask, DAG); - if (LegalShuffle) { - // If the initial vector is the correct size this shuffle is a - // valid result. - if (VT == InVecT) - return LegalShuffle; - // If not we must truncate the vector. - if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { - SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); - EVT SubVT = EVT::getVectorVT(*DAG.getContext(), - InVecT.getVectorElementType(), - VT.getVectorNumElements()); - return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, - LegalShuffle, ZeroIdx); - } - } - } - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { - EVT VT = N->getValueType(0); - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - SDValue N2 = N->getOperand(2); - uint64_t InsIdx = N->getConstantOperandVal(2); - - // If inserting an UNDEF, just return the original vector. - if (N1.isUndef()) - return N0; - - // If this is an insert of an extracted vector into an undef vector, we can - // just use the input to the extract. - if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && - N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) - return N1.getOperand(0); - - // If we are inserting a bitcast value into an undef, with the same - // number of elements, just use the bitcast input of the extract. - // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> - // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) - if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && - N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && - N1.getOperand(0).getOperand(1) == N2 && + } + + if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG)) + return V; + + return SDValue(); +} + +SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) { + SDValue InVal = N->getOperand(0); + EVT VT = N->getValueType(0); + + // Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern + // with a VECTOR_SHUFFLE and possible truncate. + if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + VT.isFixedLengthVector() && + InVal->getOperand(0).getValueType().isFixedLengthVector()) { + SDValue InVec = InVal->getOperand(0); + SDValue EltNo = InVal->getOperand(1); + auto InVecT = InVec.getValueType(); + if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) { + SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1); + int Elt = C0->getZExtValue(); + NewMask[0] = Elt; + // If we have an implict truncate do truncate here as long as it's legal. + // if it's not legal, this should + if (VT.getScalarType() != InVal.getValueType() && + InVal.getValueType().isScalarInteger() && + isTypeLegal(VT.getScalarType())) { + SDValue Val = + DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal); + return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val); + } + if (VT.getScalarType() == InVecT.getScalarType() && + VT.getVectorNumElements() <= InVecT.getVectorNumElements()) { + SDValue LegalShuffle = + TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec, + DAG.getUNDEF(InVecT), NewMask, DAG); + if (LegalShuffle) { + // If the initial vector is the correct size this shuffle is a + // valid result. + if (VT == InVecT) + return LegalShuffle; + // If not we must truncate the vector. + if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) { + SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N)); + EVT SubVT = EVT::getVectorVT(*DAG.getContext(), + InVecT.getVectorElementType(), + VT.getVectorNumElements()); + return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT, + LegalShuffle, ZeroIdx); + } + } + } + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) { + EVT VT = N->getValueType(0); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + SDValue N2 = N->getOperand(2); + uint64_t InsIdx = N->getConstantOperandVal(2); + + // If inserting an UNDEF, just return the original vector. + if (N1.isUndef()) + return N0; + + // If this is an insert of an extracted vector into an undef vector, we can + // just use the input to the extract. + if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR && + N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT) + return N1.getOperand(0); + + // If we are inserting a bitcast value into an undef, with the same + // number of elements, just use the bitcast input of the extract. + // i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 -> + // BITCAST (INSERT_SUBVECTOR UNDEF N1 N2) + if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST && + N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR && + N1.getOperand(0).getOperand(1) == N2 && N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() == VT.getVectorElementCount() && - N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == - VT.getSizeInBits()) { - return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); - } - - // If both N1 and N2 are bitcast values on which insert_subvector - // would makes sense, pull the bitcast through. - // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> - // BITCAST (INSERT_SUBVECTOR N0 N1 N2) - if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { - SDValue CN0 = N0.getOperand(0); - SDValue CN1 = N1.getOperand(0); - EVT CN0VT = CN0.getValueType(); - EVT CN1VT = CN1.getValueType(); - if (CN0VT.isVector() && CN1VT.isVector() && - CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && + N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() == + VT.getSizeInBits()) { + return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0)); + } + + // If both N1 and N2 are bitcast values on which insert_subvector + // would makes sense, pull the bitcast through. + // i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 -> + // BITCAST (INSERT_SUBVECTOR N0 N1 N2) + if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) { + SDValue CN0 = N0.getOperand(0); + SDValue CN1 = N1.getOperand(0); + EVT CN0VT = CN0.getValueType(); + EVT CN1VT = CN1.getValueType(); + if (CN0VT.isVector() && CN1VT.isVector() && + CN0VT.getVectorElementType() == CN1VT.getVectorElementType() && CN0VT.getVectorElementCount() == VT.getVectorElementCount()) { - SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), - CN0.getValueType(), CN0, CN1, N2); - return DAG.getBitcast(VT, NewINSERT); - } - } - - // Combine INSERT_SUBVECTORs where we are inserting to the same index. - // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) - // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) - if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && - N0.getOperand(1).getValueType() == N1.getValueType() && - N0.getOperand(2) == N2) - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), - N1, N2); - - // Eliminate an intermediate insert into an undef vector: - // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> - // insert_subvector undef, X, N2 - if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && - N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, - N1.getOperand(1), N2); - - // Push subvector bitcasts to the output, adjusting the index as we go. - // insert_subvector(bitcast(v), bitcast(s), c1) - // -> bitcast(insert_subvector(v, s, c2)) - if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && - N1.getOpcode() == ISD::BITCAST) { - SDValue N0Src = peekThroughBitcasts(N0); - SDValue N1Src = peekThroughBitcasts(N1); - EVT N0SrcSVT = N0Src.getValueType().getScalarType(); - EVT N1SrcSVT = N1Src.getValueType().getScalarType(); - if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && - N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { - EVT NewVT; - SDLoc DL(N); - SDValue NewIdx; - LLVMContext &Ctx = *DAG.getContext(); + SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), + CN0.getValueType(), CN0, CN1, N2); + return DAG.getBitcast(VT, NewINSERT); + } + } + + // Combine INSERT_SUBVECTORs where we are inserting to the same index. + // INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx ) + // --> INSERT_SUBVECTOR( Vec, SubNew, Idx ) + if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && + N0.getOperand(1).getValueType() == N1.getValueType() && + N0.getOperand(2) == N2) + return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0), + N1, N2); + + // Eliminate an intermediate insert into an undef vector: + // insert_subvector undef, (insert_subvector undef, X, 0), N2 --> + // insert_subvector undef, X, N2 + if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR && + N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2))) + return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0, + N1.getOperand(1), N2); + + // Push subvector bitcasts to the output, adjusting the index as we go. + // insert_subvector(bitcast(v), bitcast(s), c1) + // -> bitcast(insert_subvector(v, s, c2)) + if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) && + N1.getOpcode() == ISD::BITCAST) { + SDValue N0Src = peekThroughBitcasts(N0); + SDValue N1Src = peekThroughBitcasts(N1); + EVT N0SrcSVT = N0Src.getValueType().getScalarType(); + EVT N1SrcSVT = N1Src.getValueType().getScalarType(); + if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) && + N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) { + EVT NewVT; + SDLoc DL(N); + SDValue NewIdx; + LLVMContext &Ctx = *DAG.getContext(); ElementCount NumElts = VT.getVectorElementCount(); - unsigned EltSizeInBits = VT.getScalarSizeInBits(); - if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { - unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); - NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); - NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); - } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { - unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; + unsigned EltSizeInBits = VT.getScalarSizeInBits(); + if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) { + unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits(); + NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale); + NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL); + } else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) { + unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits; if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) { NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts.divideCoefficientBy(Scale)); - NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); - } - } - if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { - SDValue Res = DAG.getBitcast(NewVT, N0Src); - Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); - return DAG.getBitcast(VT, Res); - } - } - } - - // Canonicalize insert_subvector dag nodes. - // Example: - // (insert_subvector (insert_subvector A, Idx0), Idx1) - // -> (insert_subvector (insert_subvector A, Idx1), Idx0) - if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && - N1.getValueType() == N0.getOperand(1).getValueType()) { - unsigned OtherIdx = N0.getConstantOperandVal(2); - if (InsIdx < OtherIdx) { - // Swap nodes. - SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, - N0.getOperand(0), N1, N2); - AddToWorklist(NewOp.getNode()); - return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), - VT, NewOp, N0.getOperand(1), N0.getOperand(2)); - } - } - - // If the input vector is a concatenation, and the insert replaces - // one of the pieces, we can optimize into a single concat_vectors. - if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && + NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL); + } + } + if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) { + SDValue Res = DAG.getBitcast(NewVT, N0Src); + Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx); + return DAG.getBitcast(VT, Res); + } + } + } + + // Canonicalize insert_subvector dag nodes. + // Example: + // (insert_subvector (insert_subvector A, Idx0), Idx1) + // -> (insert_subvector (insert_subvector A, Idx1), Idx0) + if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() && + N1.getValueType() == N0.getOperand(1).getValueType()) { + unsigned OtherIdx = N0.getConstantOperandVal(2); + if (InsIdx < OtherIdx) { + // Swap nodes. + SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, + N0.getOperand(0), N1, N2); + AddToWorklist(NewOp.getNode()); + return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()), + VT, NewOp, N0.getOperand(1), N0.getOperand(2)); + } + } + + // If the input vector is a concatenation, and the insert replaces + // one of the pieces, we can optimize into a single concat_vectors. + if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() && N0.getOperand(0).getValueType() == N1.getValueType() && N0.getOperand(0).getValueType().isScalableVector() == N1.getValueType().isScalableVector()) { unsigned Factor = N1.getValueType().getVectorMinNumElements(); - SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); - Ops[InsIdx / Factor] = N1; - return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); - } - - // Simplify source operands based on insertion. - if (SimplifyDemandedVectorElts(SDValue(N, 0))) - return SDValue(N, 0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { - SDValue N0 = N->getOperand(0); - - // fold (fp_to_fp16 (fp16_to_fp op)) -> op - if (N0->getOpcode() == ISD::FP16_TO_FP) - return N0->getOperand(0); - - return SDValue(); -} - -SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { - SDValue N0 = N->getOperand(0); - - // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) + SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end()); + Ops[InsIdx / Factor] = N1; + return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops); + } + + // Simplify source operands based on insertion. + if (SimplifyDemandedVectorElts(SDValue(N, 0))) + return SDValue(N, 0); + + return SDValue(); +} + +SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) { + SDValue N0 = N->getOperand(0); + + // fold (fp_to_fp16 (fp16_to_fp op)) -> op + if (N0->getOpcode() == ISD::FP16_TO_FP) + return N0->getOperand(0); + + return SDValue(); +} + +SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) { + SDValue N0 = N->getOperand(0); + + // fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op) if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) { - ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); - if (AndConst && AndConst->getAPIntValue() == 0xffff) { - return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), - N0.getOperand(0)); - } - } - - return SDValue(); -} - -SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { - SDValue N0 = N->getOperand(0); - EVT VT = N0.getValueType(); - unsigned Opcode = N->getOpcode(); - - // VECREDUCE over 1-element vector is just an extract. + ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1)); + if (AndConst && AndConst->getAPIntValue() == 0xffff) { + return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0), + N0.getOperand(0)); + } + } + + return SDValue(); +} + +SDValue DAGCombiner::visitVECREDUCE(SDNode *N) { + SDValue N0 = N->getOperand(0); + EVT VT = N0.getValueType(); + unsigned Opcode = N->getOpcode(); + + // VECREDUCE over 1-element vector is just an extract. if (VT.getVectorElementCount().isScalar()) { - SDLoc dl(N); - SDValue Res = - DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, - DAG.getVectorIdxConstant(0, dl)); - if (Res.getValueType() != N->getValueType(0)) - Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); - return Res; - } - - // On an boolean vector an and/or reduction is the same as a umin/umax - // reduction. Convert them if the latter is legal while the former isn't. - if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { - unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND - ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; - if (!TLI.isOperationLegalOrCustom(Opcode, VT) && - TLI.isOperationLegalOrCustom(NewOpcode, VT) && - DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) - return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); - } - - return SDValue(); -} - -/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle -/// with the destination vector and a zero vector. -/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> -/// vector_shuffle V, Zero, <0, 4, 2, 4> -SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { - assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); - - EVT VT = N->getValueType(0); - SDValue LHS = N->getOperand(0); - SDValue RHS = peekThroughBitcasts(N->getOperand(1)); - SDLoc DL(N); - - // Make sure we're not running after operation legalization where it - // may have custom lowered the vector shuffles. - if (LegalOperations) - return SDValue(); - - if (RHS.getOpcode() != ISD::BUILD_VECTOR) - return SDValue(); - - EVT RVT = RHS.getValueType(); - unsigned NumElts = RHS.getNumOperands(); - - // Attempt to create a valid clear mask, splitting the mask into - // sub elements and checking to see if each is - // all zeros or all ones - suitable for shuffle masking. - auto BuildClearMask = [&](int Split) { - int NumSubElts = NumElts * Split; - int NumSubBits = RVT.getScalarSizeInBits() / Split; - - SmallVector<int, 8> Indices; - for (int i = 0; i != NumSubElts; ++i) { - int EltIdx = i / Split; - int SubIdx = i % Split; - SDValue Elt = RHS.getOperand(EltIdx); - // X & undef --> 0 (not undef). So this lane must be converted to choose - // from the zero constant vector (same as if the element had all 0-bits). - if (Elt.isUndef()) { - Indices.push_back(i + NumSubElts); - continue; - } - - APInt Bits; - if (isa<ConstantSDNode>(Elt)) - Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); - else if (isa<ConstantFPSDNode>(Elt)) - Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); - else - return SDValue(); - - // Extract the sub element from the constant bit mask. - if (DAG.getDataLayout().isBigEndian()) - Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); - else - Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); - - if (Bits.isAllOnesValue()) - Indices.push_back(i); - else if (Bits == 0) - Indices.push_back(i + NumSubElts); - else - return SDValue(); - } - - // Let's see if the target supports this vector_shuffle. - EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); - EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); - if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) - return SDValue(); - - SDValue Zero = DAG.getConstant(0, DL, ClearVT); - return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, - DAG.getBitcast(ClearVT, LHS), - Zero, Indices)); - }; - - // Determine maximum split level (byte level masking). - int MaxSplit = 1; - if (RVT.getScalarSizeInBits() % 8 == 0) - MaxSplit = RVT.getScalarSizeInBits() / 8; - - for (int Split = 1; Split <= MaxSplit; ++Split) - if (RVT.getScalarSizeInBits() % Split == 0) - if (SDValue S = BuildClearMask(Split)) - return S; - - return SDValue(); -} - -/// If a vector binop is performed on splat values, it may be profitable to -/// extract, scalarize, and insert/splat. -static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - unsigned Opcode = N->getOpcode(); - EVT VT = N->getValueType(0); - EVT EltVT = VT.getVectorElementType(); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - - // TODO: Remove/replace the extract cost check? If the elements are available - // as scalars, then there may be no extract cost. Should we ask if - // inserting a scalar back into a vector is cheap instead? - int Index0, Index1; - SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); - SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); - if (!Src0 || !Src1 || Index0 != Index1 || - Src0.getValueType().getVectorElementType() != EltVT || - Src1.getValueType().getVectorElementType() != EltVT || - !TLI.isExtractVecEltCheap(VT, Index0) || - !TLI.isOperationLegalOrCustom(Opcode, EltVT)) - return SDValue(); - - SDLoc DL(N); - SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); - SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); - SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); - SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); - - // If all lanes but 1 are undefined, no need to splat the scalar result. - // TODO: Keep track of undefs and use that info in the general case. - if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && - count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && - count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { - // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> - // build_vec ..undef, (bo X, Y), undef... - SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); - Ops[Index0] = ScalarBO; - return DAG.getBuildVector(VT, DL, Ops); - } - - // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index - SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); - return DAG.getBuildVector(VT, DL, Ops); -} - -/// Visit a binary vector operation, like ADD. -SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { - assert(N->getValueType(0).isVector() && - "SimplifyVBinOp only works on vectors!"); - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - SDValue Ops[] = {LHS, RHS}; - EVT VT = N->getValueType(0); - unsigned Opcode = N->getOpcode(); - SDNodeFlags Flags = N->getFlags(); - - // See if we can constant fold the vector operation. - if (SDValue Fold = DAG.FoldConstantVectorArithmetic( - Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) - return Fold; - - // Move unary shuffles with identical masks after a vector binop: - // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) - // --> shuffle (VBinOp A, B), Undef, Mask - // This does not require type legality checks because we are creating the - // same types of operations that are in the original sequence. We do have to - // restrict ops like integer div that have immediate UB (eg, div-by-zero) - // though. This code is adapted from the identical transform in instcombine. - if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && - Opcode != ISD::UREM && Opcode != ISD::SREM && - Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { - auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); - auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); - if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && - LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && - (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { - SDLoc DL(N); - SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), - RHS.getOperand(0), Flags); - SDValue UndefV = LHS.getOperand(1); - return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); - } - - // Try to sink a splat shuffle after a binop with a uniform constant. - // This is limited to cases where neither the shuffle nor the constant have - // undefined elements because that could be poison-unsafe or inhibit - // demanded elements analysis. It is further limited to not change a splat - // of an inserted scalar because that may be optimized better by - // load-folding or other target-specific behaviors. - if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && - Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && - Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { - // binop (splat X), (splat C) --> splat (binop X, C) - SDLoc DL(N); - SDValue X = Shuf0->getOperand(0); - SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); - return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), - Shuf0->getMask()); - } - if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && - Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && - Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { - // binop (splat C), (splat X) --> splat (binop C, X) - SDLoc DL(N); - SDValue X = Shuf1->getOperand(0); - SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); - return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), - Shuf1->getMask()); - } - } - - // The following pattern is likely to emerge with vector reduction ops. Moving - // the binary operation ahead of insertion may allow using a narrower vector - // instruction that has better performance than the wide version of the op: - // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z - if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && - RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && - LHS.getOperand(2) == RHS.getOperand(2) && - (LHS.hasOneUse() || RHS.hasOneUse())) { - SDValue X = LHS.getOperand(1); - SDValue Y = RHS.getOperand(1); - SDValue Z = LHS.getOperand(2); - EVT NarrowVT = X.getValueType(); - if (NarrowVT == Y.getValueType() && + SDLoc dl(N); + SDValue Res = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0, + DAG.getVectorIdxConstant(0, dl)); + if (Res.getValueType() != N->getValueType(0)) + Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res); + return Res; + } + + // On an boolean vector an and/or reduction is the same as a umin/umax + // reduction. Convert them if the latter is legal while the former isn't. + if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) { + unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND + ? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX; + if (!TLI.isOperationLegalOrCustom(Opcode, VT) && + TLI.isOperationLegalOrCustom(NewOpcode, VT) && + DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits()) + return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0); + } + + return SDValue(); +} + +/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle +/// with the destination vector and a zero vector. +/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==> +/// vector_shuffle V, Zero, <0, 4, 2, 4> +SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) { + assert(N->getOpcode() == ISD::AND && "Unexpected opcode!"); + + EVT VT = N->getValueType(0); + SDValue LHS = N->getOperand(0); + SDValue RHS = peekThroughBitcasts(N->getOperand(1)); + SDLoc DL(N); + + // Make sure we're not running after operation legalization where it + // may have custom lowered the vector shuffles. + if (LegalOperations) + return SDValue(); + + if (RHS.getOpcode() != ISD::BUILD_VECTOR) + return SDValue(); + + EVT RVT = RHS.getValueType(); + unsigned NumElts = RHS.getNumOperands(); + + // Attempt to create a valid clear mask, splitting the mask into + // sub elements and checking to see if each is + // all zeros or all ones - suitable for shuffle masking. + auto BuildClearMask = [&](int Split) { + int NumSubElts = NumElts * Split; + int NumSubBits = RVT.getScalarSizeInBits() / Split; + + SmallVector<int, 8> Indices; + for (int i = 0; i != NumSubElts; ++i) { + int EltIdx = i / Split; + int SubIdx = i % Split; + SDValue Elt = RHS.getOperand(EltIdx); + // X & undef --> 0 (not undef). So this lane must be converted to choose + // from the zero constant vector (same as if the element had all 0-bits). + if (Elt.isUndef()) { + Indices.push_back(i + NumSubElts); + continue; + } + + APInt Bits; + if (isa<ConstantSDNode>(Elt)) + Bits = cast<ConstantSDNode>(Elt)->getAPIntValue(); + else if (isa<ConstantFPSDNode>(Elt)) + Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt(); + else + return SDValue(); + + // Extract the sub element from the constant bit mask. + if (DAG.getDataLayout().isBigEndian()) + Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits); + else + Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits); + + if (Bits.isAllOnesValue()) + Indices.push_back(i); + else if (Bits == 0) + Indices.push_back(i + NumSubElts); + else + return SDValue(); + } + + // Let's see if the target supports this vector_shuffle. + EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits); + EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts); + if (!TLI.isVectorClearMaskLegal(Indices, ClearVT)) + return SDValue(); + + SDValue Zero = DAG.getConstant(0, DL, ClearVT); + return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL, + DAG.getBitcast(ClearVT, LHS), + Zero, Indices)); + }; + + // Determine maximum split level (byte level masking). + int MaxSplit = 1; + if (RVT.getScalarSizeInBits() % 8 == 0) + MaxSplit = RVT.getScalarSizeInBits() / 8; + + for (int Split = 1; Split <= MaxSplit; ++Split) + if (RVT.getScalarSizeInBits() % Split == 0) + if (SDValue S = BuildClearMask(Split)) + return S; + + return SDValue(); +} + +/// If a vector binop is performed on splat values, it may be profitable to +/// extract, scalarize, and insert/splat. +static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + unsigned Opcode = N->getOpcode(); + EVT VT = N->getValueType(0); + EVT EltVT = VT.getVectorElementType(); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + + // TODO: Remove/replace the extract cost check? If the elements are available + // as scalars, then there may be no extract cost. Should we ask if + // inserting a scalar back into a vector is cheap instead? + int Index0, Index1; + SDValue Src0 = DAG.getSplatSourceVector(N0, Index0); + SDValue Src1 = DAG.getSplatSourceVector(N1, Index1); + if (!Src0 || !Src1 || Index0 != Index1 || + Src0.getValueType().getVectorElementType() != EltVT || + Src1.getValueType().getVectorElementType() != EltVT || + !TLI.isExtractVecEltCheap(VT, Index0) || + !TLI.isOperationLegalOrCustom(Opcode, EltVT)) + return SDValue(); + + SDLoc DL(N); + SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL); + SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC); + SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC); + SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags()); + + // If all lanes but 1 are undefined, no need to splat the scalar result. + // TODO: Keep track of undefs and use that info in the general case. + if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() && + count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 && + count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) { + // bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) --> + // build_vec ..undef, (bo X, Y), undef... + SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT)); + Ops[Index0] = ScalarBO; + return DAG.getBuildVector(VT, DL, Ops); + } + + // bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index + SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO); + return DAG.getBuildVector(VT, DL, Ops); +} + +/// Visit a binary vector operation, like ADD. +SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) { + assert(N->getValueType(0).isVector() && + "SimplifyVBinOp only works on vectors!"); + + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + SDValue Ops[] = {LHS, RHS}; + EVT VT = N->getValueType(0); + unsigned Opcode = N->getOpcode(); + SDNodeFlags Flags = N->getFlags(); + + // See if we can constant fold the vector operation. + if (SDValue Fold = DAG.FoldConstantVectorArithmetic( + Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags())) + return Fold; + + // Move unary shuffles with identical masks after a vector binop: + // VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask)) + // --> shuffle (VBinOp A, B), Undef, Mask + // This does not require type legality checks because we are creating the + // same types of operations that are in the original sequence. We do have to + // restrict ops like integer div that have immediate UB (eg, div-by-zero) + // though. This code is adapted from the identical transform in instcombine. + if (Opcode != ISD::UDIV && Opcode != ISD::SDIV && + Opcode != ISD::UREM && Opcode != ISD::SREM && + Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) { + auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS); + auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS); + if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) && + LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() && + (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) { + SDLoc DL(N); + SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0), + RHS.getOperand(0), Flags); + SDValue UndefV = LHS.getOperand(1); + return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask()); + } + + // Try to sink a splat shuffle after a binop with a uniform constant. + // This is limited to cases where neither the shuffle nor the constant have + // undefined elements because that could be poison-unsafe or inhibit + // demanded elements analysis. It is further limited to not change a splat + // of an inserted scalar because that may be optimized better by + // load-folding or other target-specific behaviors. + if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) && + Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() && + Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { + // binop (splat X), (splat C) --> splat (binop X, C) + SDLoc DL(N); + SDValue X = Shuf0->getOperand(0); + SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags); + return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), + Shuf0->getMask()); + } + if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) && + Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() && + Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) { + // binop (splat C), (splat X) --> splat (binop C, X) + SDLoc DL(N); + SDValue X = Shuf1->getOperand(0); + SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags); + return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT), + Shuf1->getMask()); + } + } + + // The following pattern is likely to emerge with vector reduction ops. Moving + // the binary operation ahead of insertion may allow using a narrower vector + // instruction that has better performance than the wide version of the op: + // VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z + if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() && + RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() && + LHS.getOperand(2) == RHS.getOperand(2) && + (LHS.hasOneUse() || RHS.hasOneUse())) { + SDValue X = LHS.getOperand(1); + SDValue Y = RHS.getOperand(1); + SDValue Z = LHS.getOperand(2); + EVT NarrowVT = X.getValueType(); + if (NarrowVT == Y.getValueType() && TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT, LegalOperations)) { - // (binop undef, undef) may not return undef, so compute that result. - SDLoc DL(N); - SDValue VecC = - DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); - SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); - return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); - } - } - - // Make sure all but the first op are undef or constant. - auto ConcatWithConstantOrUndef = [](SDValue Concat) { - return Concat.getOpcode() == ISD::CONCAT_VECTORS && + // (binop undef, undef) may not return undef, so compute that result. + SDLoc DL(N); + SDValue VecC = + DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT)); + SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y); + return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z); + } + } + + // Make sure all but the first op are undef or constant. + auto ConcatWithConstantOrUndef = [](SDValue Concat) { + return Concat.getOpcode() == ISD::CONCAT_VECTORS && all_of(drop_begin(Concat->ops()), [](const SDValue &Op) { return Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()); }); - }; - - // The following pattern is likely to emerge with vector reduction ops. Moving - // the binary operation ahead of the concat may allow using a narrower vector - // instruction that has better performance than the wide version of the op: - // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> - // concat (VBinOp X, Y), VecC - if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && - (LHS.hasOneUse() || RHS.hasOneUse())) { - EVT NarrowVT = LHS.getOperand(0).getValueType(); - if (NarrowVT == RHS.getOperand(0).getValueType() && - TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { - SDLoc DL(N); - unsigned NumOperands = LHS.getNumOperands(); - SmallVector<SDValue, 4> ConcatOps; - for (unsigned i = 0; i != NumOperands; ++i) { - // This constant fold for operands 1 and up. - ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), - RHS.getOperand(i))); - } - - return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); - } - } - - if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) - return V; - - return SDValue(); -} - -SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2) { - assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); - - SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, - cast<CondCodeSDNode>(N0.getOperand(2))->get()); - - // If we got a simplified select_cc node back from SimplifySelectCC, then - // break it down into a new SETCC node, and a new SELECT node, and then return - // the SELECT node, since we were called with a SELECT node. - if (SCC.getNode()) { - // Check to see if we got a select_cc back (to turn into setcc/select). - // Otherwise, just return whatever node we got back, like fabs. - if (SCC.getOpcode() == ISD::SELECT_CC) { - const SDNodeFlags Flags = N0.getNode()->getFlags(); - SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), - N0.getValueType(), - SCC.getOperand(0), SCC.getOperand(1), - SCC.getOperand(4), Flags); - AddToWorklist(SETCC.getNode()); - SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, - SCC.getOperand(2), SCC.getOperand(3)); - SelectNode->setFlags(Flags); - return SelectNode; - } - - return SCC; - } - return SDValue(); -} - -/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values -/// being selected between, see if we can simplify the select. Callers of this -/// should assume that TheSelect is deleted if this returns true. As such, they -/// should return the appropriate thing (e.g. the node) back to the top-level of -/// the DAG combiner loop to avoid it being looked at. -bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, - SDValue RHS) { - // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) - // The select + setcc is redundant, because fsqrt returns NaN for X < 0. - if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { - if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { - // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) - SDValue Sqrt = RHS; - ISD::CondCode CC; - SDValue CmpLHS; - const ConstantFPSDNode *Zero = nullptr; - - if (TheSelect->getOpcode() == ISD::SELECT_CC) { - CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); - CmpLHS = TheSelect->getOperand(0); - Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); - } else { - // SELECT or VSELECT - SDValue Cmp = TheSelect->getOperand(0); - if (Cmp.getOpcode() == ISD::SETCC) { - CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); - CmpLHS = Cmp.getOperand(0); - Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); - } - } - if (Zero && Zero->isZero() && - Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || - CC == ISD::SETULT || CC == ISD::SETLT)) { - // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) - CombineTo(TheSelect, Sqrt); - return true; - } - } - } - // Cannot simplify select with vector condition - if (TheSelect->getOperand(0).getValueType().isVector()) return false; - - // If this is a select from two identical things, try to pull the operation - // through the select. - if (LHS.getOpcode() != RHS.getOpcode() || - !LHS.hasOneUse() || !RHS.hasOneUse()) - return false; - - // If this is a load and the token chain is identical, replace the select - // of two loads with a load through a select of the address to load from. - // This triggers in things like "select bool X, 10.0, 123.0" after the FP - // constants have been dropped into the constant pool. - if (LHS.getOpcode() == ISD::LOAD) { - LoadSDNode *LLD = cast<LoadSDNode>(LHS); - LoadSDNode *RLD = cast<LoadSDNode>(RHS); - - // Token chains must be identical. - if (LHS.getOperand(0) != RHS.getOperand(0) || - // Do not let this transformation reduce the number of volatile loads. - // Be conservative for atomics for the moment - // TODO: This does appear to be legal for unordered atomics (see D66309) - !LLD->isSimple() || !RLD->isSimple() || - // FIXME: If either is a pre/post inc/dec load, - // we'd need to split out the address adjustment. - LLD->isIndexed() || RLD->isIndexed() || - // If this is an EXTLOAD, the VT's must match. - LLD->getMemoryVT() != RLD->getMemoryVT() || - // If this is an EXTLOAD, the kind of extension must match. - (LLD->getExtensionType() != RLD->getExtensionType() && - // The only exception is if one of the extensions is anyext. - LLD->getExtensionType() != ISD::EXTLOAD && - RLD->getExtensionType() != ISD::EXTLOAD) || - // FIXME: this discards src value information. This is - // over-conservative. It would be beneficial to be able to remember - // both potential memory locations. Since we are discarding - // src value info, don't do the transformation if the memory - // locations are not in the default address space. - LLD->getPointerInfo().getAddrSpace() != 0 || - RLD->getPointerInfo().getAddrSpace() != 0 || - // We can't produce a CMOV of a TargetFrameIndex since we won't - // generate the address generation required. - LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || - RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || - !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), - LLD->getBasePtr().getValueType())) - return false; - - // The loads must not depend on one another. - if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) - return false; - - // Check that the select condition doesn't reach either load. If so, - // folding this will induce a cycle into the DAG. If not, this is safe to - // xform, so create a select of the addresses. - - SmallPtrSet<const SDNode *, 32> Visited; - SmallVector<const SDNode *, 16> Worklist; - - // Always fail if LLD and RLD are not independent. TheSelect is a - // predecessor to all Nodes in question so we need not search past it. - - Visited.insert(TheSelect); - Worklist.push_back(LLD); - Worklist.push_back(RLD); - - if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || - SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) - return false; - - SDValue Addr; - if (TheSelect->getOpcode() == ISD::SELECT) { - // We cannot do this optimization if any pair of {RLD, LLD} is a - // predecessor to {RLD, LLD, CondNode}. As we've already compared the - // Loads, we only need to check if CondNode is a successor to one of the - // loads. We can further avoid this if there's no use of their chain - // value. - SDNode *CondNode = TheSelect->getOperand(0).getNode(); - Worklist.push_back(CondNode); - - if ((LLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || - (RLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) - return false; - - Addr = DAG.getSelect(SDLoc(TheSelect), - LLD->getBasePtr().getValueType(), - TheSelect->getOperand(0), LLD->getBasePtr(), - RLD->getBasePtr()); - } else { // Otherwise SELECT_CC - // We cannot do this optimization if any pair of {RLD, LLD} is a - // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared - // the Loads, we only need to check if CondLHS/CondRHS is a successor to - // one of the loads. We can further avoid this if there's no use of their - // chain value. - - SDNode *CondLHS = TheSelect->getOperand(0).getNode(); - SDNode *CondRHS = TheSelect->getOperand(1).getNode(); - Worklist.push_back(CondLHS); - Worklist.push_back(CondRHS); - - if ((LLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || - (RLD->hasAnyUseOfValue(1) && - SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) - return false; - - Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), - LLD->getBasePtr().getValueType(), - TheSelect->getOperand(0), - TheSelect->getOperand(1), - LLD->getBasePtr(), RLD->getBasePtr(), - TheSelect->getOperand(4)); - } - - SDValue Load; - // It is safe to replace the two loads if they have different alignments, - // but the new load must be the minimum (most restrictive) alignment of the - // inputs. + }; + + // The following pattern is likely to emerge with vector reduction ops. Moving + // the binary operation ahead of the concat may allow using a narrower vector + // instruction that has better performance than the wide version of the op: + // VBinOp (concat X, undef/constant), (concat Y, undef/constant) --> + // concat (VBinOp X, Y), VecC + if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) && + (LHS.hasOneUse() || RHS.hasOneUse())) { + EVT NarrowVT = LHS.getOperand(0).getValueType(); + if (NarrowVT == RHS.getOperand(0).getValueType() && + TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) { + SDLoc DL(N); + unsigned NumOperands = LHS.getNumOperands(); + SmallVector<SDValue, 4> ConcatOps; + for (unsigned i = 0; i != NumOperands; ++i) { + // This constant fold for operands 1 and up. + ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i), + RHS.getOperand(i))); + } + + return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps); + } + } + + if (SDValue V = scalarizeBinOpOfSplats(N, DAG)) + return V; + + return SDValue(); +} + +SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, + SDValue N2) { + assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); + + SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2, + cast<CondCodeSDNode>(N0.getOperand(2))->get()); + + // If we got a simplified select_cc node back from SimplifySelectCC, then + // break it down into a new SETCC node, and a new SELECT node, and then return + // the SELECT node, since we were called with a SELECT node. + if (SCC.getNode()) { + // Check to see if we got a select_cc back (to turn into setcc/select). + // Otherwise, just return whatever node we got back, like fabs. + if (SCC.getOpcode() == ISD::SELECT_CC) { + const SDNodeFlags Flags = N0.getNode()->getFlags(); + SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0), + N0.getValueType(), + SCC.getOperand(0), SCC.getOperand(1), + SCC.getOperand(4), Flags); + AddToWorklist(SETCC.getNode()); + SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC, + SCC.getOperand(2), SCC.getOperand(3)); + SelectNode->setFlags(Flags); + return SelectNode; + } + + return SCC; + } + return SDValue(); +} + +/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values +/// being selected between, see if we can simplify the select. Callers of this +/// should assume that TheSelect is deleted if this returns true. As such, they +/// should return the appropriate thing (e.g. the node) back to the top-level of +/// the DAG combiner loop to avoid it being looked at. +bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS, + SDValue RHS) { + // fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) + // The select + setcc is redundant, because fsqrt returns NaN for X < 0. + if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) { + if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) { + // We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?)) + SDValue Sqrt = RHS; + ISD::CondCode CC; + SDValue CmpLHS; + const ConstantFPSDNode *Zero = nullptr; + + if (TheSelect->getOpcode() == ISD::SELECT_CC) { + CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get(); + CmpLHS = TheSelect->getOperand(0); + Zero = isConstOrConstSplatFP(TheSelect->getOperand(1)); + } else { + // SELECT or VSELECT + SDValue Cmp = TheSelect->getOperand(0); + if (Cmp.getOpcode() == ISD::SETCC) { + CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get(); + CmpLHS = Cmp.getOperand(0); + Zero = isConstOrConstSplatFP(Cmp.getOperand(1)); + } + } + if (Zero && Zero->isZero() && + Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT || + CC == ISD::SETULT || CC == ISD::SETLT)) { + // We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x)) + CombineTo(TheSelect, Sqrt); + return true; + } + } + } + // Cannot simplify select with vector condition + if (TheSelect->getOperand(0).getValueType().isVector()) return false; + + // If this is a select from two identical things, try to pull the operation + // through the select. + if (LHS.getOpcode() != RHS.getOpcode() || + !LHS.hasOneUse() || !RHS.hasOneUse()) + return false; + + // If this is a load and the token chain is identical, replace the select + // of two loads with a load through a select of the address to load from. + // This triggers in things like "select bool X, 10.0, 123.0" after the FP + // constants have been dropped into the constant pool. + if (LHS.getOpcode() == ISD::LOAD) { + LoadSDNode *LLD = cast<LoadSDNode>(LHS); + LoadSDNode *RLD = cast<LoadSDNode>(RHS); + + // Token chains must be identical. + if (LHS.getOperand(0) != RHS.getOperand(0) || + // Do not let this transformation reduce the number of volatile loads. + // Be conservative for atomics for the moment + // TODO: This does appear to be legal for unordered atomics (see D66309) + !LLD->isSimple() || !RLD->isSimple() || + // FIXME: If either is a pre/post inc/dec load, + // we'd need to split out the address adjustment. + LLD->isIndexed() || RLD->isIndexed() || + // If this is an EXTLOAD, the VT's must match. + LLD->getMemoryVT() != RLD->getMemoryVT() || + // If this is an EXTLOAD, the kind of extension must match. + (LLD->getExtensionType() != RLD->getExtensionType() && + // The only exception is if one of the extensions is anyext. + LLD->getExtensionType() != ISD::EXTLOAD && + RLD->getExtensionType() != ISD::EXTLOAD) || + // FIXME: this discards src value information. This is + // over-conservative. It would be beneficial to be able to remember + // both potential memory locations. Since we are discarding + // src value info, don't do the transformation if the memory + // locations are not in the default address space. + LLD->getPointerInfo().getAddrSpace() != 0 || + RLD->getPointerInfo().getAddrSpace() != 0 || + // We can't produce a CMOV of a TargetFrameIndex since we won't + // generate the address generation required. + LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || + RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex || + !TLI.isOperationLegalOrCustom(TheSelect->getOpcode(), + LLD->getBasePtr().getValueType())) + return false; + + // The loads must not depend on one another. + if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD)) + return false; + + // Check that the select condition doesn't reach either load. If so, + // folding this will induce a cycle into the DAG. If not, this is safe to + // xform, so create a select of the addresses. + + SmallPtrSet<const SDNode *, 32> Visited; + SmallVector<const SDNode *, 16> Worklist; + + // Always fail if LLD and RLD are not independent. TheSelect is a + // predecessor to all Nodes in question so we need not search past it. + + Visited.insert(TheSelect); + Worklist.push_back(LLD); + Worklist.push_back(RLD); + + if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) || + SDNode::hasPredecessorHelper(RLD, Visited, Worklist)) + return false; + + SDValue Addr; + if (TheSelect->getOpcode() == ISD::SELECT) { + // We cannot do this optimization if any pair of {RLD, LLD} is a + // predecessor to {RLD, LLD, CondNode}. As we've already compared the + // Loads, we only need to check if CondNode is a successor to one of the + // loads. We can further avoid this if there's no use of their chain + // value. + SDNode *CondNode = TheSelect->getOperand(0).getNode(); + Worklist.push_back(CondNode); + + if ((LLD->hasAnyUseOfValue(1) && + SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || + (RLD->hasAnyUseOfValue(1) && + SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) + return false; + + Addr = DAG.getSelect(SDLoc(TheSelect), + LLD->getBasePtr().getValueType(), + TheSelect->getOperand(0), LLD->getBasePtr(), + RLD->getBasePtr()); + } else { // Otherwise SELECT_CC + // We cannot do this optimization if any pair of {RLD, LLD} is a + // predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared + // the Loads, we only need to check if CondLHS/CondRHS is a successor to + // one of the loads. We can further avoid this if there's no use of their + // chain value. + + SDNode *CondLHS = TheSelect->getOperand(0).getNode(); + SDNode *CondRHS = TheSelect->getOperand(1).getNode(); + Worklist.push_back(CondLHS); + Worklist.push_back(CondRHS); + + if ((LLD->hasAnyUseOfValue(1) && + SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) || + (RLD->hasAnyUseOfValue(1) && + SDNode::hasPredecessorHelper(RLD, Visited, Worklist))) + return false; + + Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect), + LLD->getBasePtr().getValueType(), + TheSelect->getOperand(0), + TheSelect->getOperand(1), + LLD->getBasePtr(), RLD->getBasePtr(), + TheSelect->getOperand(4)); + } + + SDValue Load; + // It is safe to replace the two loads if they have different alignments, + // but the new load must be the minimum (most restrictive) alignment of the + // inputs. Align Alignment = std::min(LLD->getAlign(), RLD->getAlign()); - MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); - if (!RLD->isInvariant()) - MMOFlags &= ~MachineMemOperand::MOInvariant; - if (!RLD->isDereferenceable()) - MMOFlags &= ~MachineMemOperand::MODereferenceable; - if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { - // FIXME: Discards pointer and AA info. - Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), - LLD->getChain(), Addr, MachinePointerInfo(), Alignment, - MMOFlags); - } else { - // FIXME: Discards pointer and AA info. - Load = DAG.getExtLoad( - LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() - : LLD->getExtensionType(), - SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, - MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); - } - - // Users of the select now use the result of the load. - CombineTo(TheSelect, Load); - - // Users of the old loads now use the new load's chain. We know the - // old-load value is dead now. - CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); - CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); - return true; - } - - return false; -} - -/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and -/// bitwise 'and'. -SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, - SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC) { - // If this is a select where the false operand is zero and the compare is a - // check of the sign bit, see if we can perform the "gzip trick": - // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A - // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A - EVT XType = N0.getValueType(); - EVT AType = N2.getValueType(); - if (!isNullConstant(N3) || !XType.bitsGE(AType)) - return SDValue(); - - // If the comparison is testing for a positive value, we have to invert - // the sign bit mask, so only do that transform if the target has a bitwise - // 'and not' instruction (the invert is free). - if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { - // (X > -1) ? A : 0 - // (X > 0) ? X : 0 <-- This is canonical signed max. - if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) - return SDValue(); - } else if (CC == ISD::SETLT) { - // (X < 0) ? A : 0 - // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. - if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) - return SDValue(); - } else { - return SDValue(); - } - - // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit - // constant. - EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); - auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); - if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { - unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; - if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { - SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); - SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); - AddToWorklist(Shift.getNode()); - - if (XType.bitsGT(AType)) { - Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); - AddToWorklist(Shift.getNode()); - } - - if (CC == ISD::SETGT) - Shift = DAG.getNOT(DL, Shift, AType); - - return DAG.getNode(ISD::AND, DL, AType, Shift, N2); - } - } - - unsigned ShCt = XType.getSizeInBits() - 1; - if (TLI.shouldAvoidTransformToShift(XType, ShCt)) - return SDValue(); - - SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); - SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); - AddToWorklist(Shift.getNode()); - - if (XType.bitsGT(AType)) { - Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); - AddToWorklist(Shift.getNode()); - } - - if (CC == ISD::SETGT) - Shift = DAG.getNOT(DL, Shift, AType); - - return DAG.getNode(ISD::AND, DL, AType, Shift, N2); -} - + MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags(); + if (!RLD->isInvariant()) + MMOFlags &= ~MachineMemOperand::MOInvariant; + if (!RLD->isDereferenceable()) + MMOFlags &= ~MachineMemOperand::MODereferenceable; + if (LLD->getExtensionType() == ISD::NON_EXTLOAD) { + // FIXME: Discards pointer and AA info. + Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect), + LLD->getChain(), Addr, MachinePointerInfo(), Alignment, + MMOFlags); + } else { + // FIXME: Discards pointer and AA info. + Load = DAG.getExtLoad( + LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType() + : LLD->getExtensionType(), + SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr, + MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags); + } + + // Users of the select now use the result of the load. + CombineTo(TheSelect, Load); + + // Users of the old loads now use the new load's chain. We know the + // old-load value is dead now. + CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1)); + CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1)); + return true; + } + + return false; +} + +/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and +/// bitwise 'and'. +SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, + SDValue N1, SDValue N2, SDValue N3, + ISD::CondCode CC) { + // If this is a select where the false operand is zero and the compare is a + // check of the sign bit, see if we can perform the "gzip trick": + // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A + // select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A + EVT XType = N0.getValueType(); + EVT AType = N2.getValueType(); + if (!isNullConstant(N3) || !XType.bitsGE(AType)) + return SDValue(); + + // If the comparison is testing for a positive value, we have to invert + // the sign bit mask, so only do that transform if the target has a bitwise + // 'and not' instruction (the invert is free). + if (CC == ISD::SETGT && TLI.hasAndNot(N2)) { + // (X > -1) ? A : 0 + // (X > 0) ? X : 0 <-- This is canonical signed max. + if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2))) + return SDValue(); + } else if (CC == ISD::SETLT) { + // (X < 0) ? A : 0 + // (X < 1) ? X : 0 <-- This is un-canonicalized signed min. + if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2))) + return SDValue(); + } else { + return SDValue(); + } + + // and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit + // constant. + EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType()); + auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); + if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) { + unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1; + if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) { + SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); + SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt); + AddToWorklist(Shift.getNode()); + + if (XType.bitsGT(AType)) { + Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); + AddToWorklist(Shift.getNode()); + } + + if (CC == ISD::SETGT) + Shift = DAG.getNOT(DL, Shift, AType); + + return DAG.getNode(ISD::AND, DL, AType, Shift, N2); + } + } + + unsigned ShCt = XType.getSizeInBits() - 1; + if (TLI.shouldAvoidTransformToShift(XType, ShCt)) + return SDValue(); + + SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy); + SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt); + AddToWorklist(Shift.getNode()); + + if (XType.bitsGT(AType)) { + Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift); + AddToWorklist(Shift.getNode()); + } + + if (CC == ISD::SETGT) + Shift = DAG.getNOT(DL, Shift, AType); + + return DAG.getNode(ISD::AND, DL, AType, Shift, N2); +} + // Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values. SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { SDValue N0 = N->getOperand(0); @@ -21830,925 +21830,925 @@ SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) { return DAG.getBitcast(VT, Int); } -/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" -/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 -/// in it. This may be a win when the constant is not otherwise available -/// because it replaces two constant pool loads with one. -SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( - const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, - ISD::CondCode CC) { - if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) - return SDValue(); - - // If we are before legalize types, we want the other legalization to happen - // first (for example, to avoid messing with soft float). - auto *TV = dyn_cast<ConstantFPSDNode>(N2); - auto *FV = dyn_cast<ConstantFPSDNode>(N3); - EVT VT = N2.getValueType(); - if (!TV || !FV || !TLI.isTypeLegal(VT)) - return SDValue(); - - // If a constant can be materialized without loads, this does not make sense. - if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || - TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || - TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) - return SDValue(); - - // If both constants have multiple uses, then we won't need to do an extra - // load. The values are likely around in registers for other users. - if (!TV->hasOneUse() && !FV->hasOneUse()) - return SDValue(); - - Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), - const_cast<ConstantFP*>(TV->getConstantFPValue()) }; - Type *FPTy = Elts[0]->getType(); - const DataLayout &TD = DAG.getDataLayout(); - - // Create a ConstantArray of the two constants. - Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); - SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), - TD.getPrefTypeAlign(FPTy)); - Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); - - // Get offsets to the 0 and 1 elements of the array, so we can select between - // them. - SDValue Zero = DAG.getIntPtrConstant(0, DL); - unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); - SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); - SDValue Cond = - DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); - AddToWorklist(Cond.getNode()); - SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); - AddToWorklist(CstOffset.getNode()); - CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); - AddToWorklist(CPIdx.getNode()); - return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, - MachinePointerInfo::getConstantPool( - DAG.getMachineFunction()), Alignment); -} - -/// Simplify an expression of the form (N0 cond N1) ? N2 : N3 -/// where 'cond' is the comparison specified by CC. -SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, - SDValue N2, SDValue N3, ISD::CondCode CC, - bool NotExtCompare) { - // (x ? y : y) -> y. - if (N2 == N3) return N2; - - EVT CmpOpVT = N0.getValueType(); - EVT CmpResVT = getSetCCResultType(CmpOpVT); - EVT VT = N2.getValueType(); - auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); - auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); - auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); - - // Determine if the condition we're dealing with is constant. - if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { - AddToWorklist(SCC.getNode()); - if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { - // fold select_cc true, x, y -> x - // fold select_cc false, x, y -> y - return !(SCCC->isNullValue()) ? N2 : N3; - } - } - - if (SDValue V = - convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) - return V; - - if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) - return V; - - // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) - // where y is has a single bit set. - // A plaintext description would be, we can turn the SELECT_CC into an AND - // when the condition can be materialized as an all-ones register. Any - // single bit-test can be materialized as an all-ones register with - // shift-left and shift-right-arith. - if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && - N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { - SDValue AndLHS = N0->getOperand(0); - auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); - if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { - // Shift the tested bit over the sign bit. - const APInt &AndMask = ConstAndRHS->getAPIntValue(); - unsigned ShCt = AndMask.getBitWidth() - 1; - if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { - SDValue ShlAmt = - DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), - getShiftAmountTy(AndLHS.getValueType())); - SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); - - // Now arithmetic right shift it all the way over, so the result is - // either all-ones, or zero. - SDValue ShrAmt = - DAG.getConstant(ShCt, SDLoc(Shl), - getShiftAmountTy(Shl.getValueType())); - SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); - - return DAG.getNode(ISD::AND, DL, VT, Shr, N3); - } - } - } - - // fold select C, 16, 0 -> shl C, 4 - bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); - bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); - - if ((Fold || Swap) && - TLI.getBooleanContents(CmpOpVT) == - TargetLowering::ZeroOrOneBooleanContent && - (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { - - if (Swap) { - CC = ISD::getSetCCInverse(CC, CmpOpVT); - std::swap(N2C, N3C); - } - - // If the caller doesn't want us to simplify this into a zext of a compare, - // don't do it. - if (NotExtCompare && N2C->isOne()) - return SDValue(); - - SDValue Temp, SCC; - // zext (setcc n0, n1) - if (LegalTypes) { - SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); - if (VT.bitsLT(SCC.getValueType())) - Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); - else - Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); - } else { - SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); - Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); - } - - AddToWorklist(SCC.getNode()); - AddToWorklist(Temp.getNode()); - - if (N2C->isOne()) - return Temp; - - unsigned ShCt = N2C->getAPIntValue().logBase2(); - if (TLI.shouldAvoidTransformToShift(VT, ShCt)) - return SDValue(); - - // shl setcc result by log2 n2c - return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, - DAG.getConstant(ShCt, SDLoc(Temp), - getShiftAmountTy(Temp.getValueType()))); - } - - // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) - // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) - // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) - // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) - // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) - // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) - // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) - // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) - if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { - SDValue ValueOnZero = N2; - SDValue Count = N3; - // If the condition is NE instead of E, swap the operands. - if (CC == ISD::SETNE) - std::swap(ValueOnZero, Count); - // Check if the value on zero is a constant equal to the bits in the type. - if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { - if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { - // If the other operand is cttz/cttz_zero_undef of N0, and cttz is - // legal, combine to just cttz. - if ((Count.getOpcode() == ISD::CTTZ || - Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && - N0 == Count.getOperand(0) && - (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) - return DAG.getNode(ISD::CTTZ, DL, VT, N0); - // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is - // legal, combine to just ctlz. - if ((Count.getOpcode() == ISD::CTLZ || - Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && - N0 == Count.getOperand(0) && - (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) - return DAG.getNode(ISD::CTLZ, DL, VT, N0); - } - } - } - - return SDValue(); -} - -/// This is a stub for TargetLowering::SimplifySetCC. -SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, - ISD::CondCode Cond, const SDLoc &DL, - bool foldBooleans) { - TargetLowering::DAGCombinerInfo - DagCombineInfo(DAG, Level, false, this); - return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); -} - -/// Given an ISD::SDIV node expressing a divide by constant, return -/// a DAG expression to select that will generate the same value by multiplying -/// by a magic number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue DAGCombiner::BuildSDIV(SDNode *N) { - // when optimising for minimum size, we don't want to expand a div to a mul - // and a shift. - if (DAG.getMachineFunction().getFunction().hasMinSize()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a -/// DAG expression that will generate the same value by right shifting. -SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { - ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); - if (!C) - return SDValue(); - - // Avoid division by zero. - if (C->isNullValue()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Given an ISD::UDIV node expressing a divide by constant, return a DAG -/// expression that will generate the same value by multiplying by a magic -/// number. -/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". -SDValue DAGCombiner::BuildUDIV(SDNode *N) { - // when optimising for minimum size, we don't want to expand a div to a mul - // and a shift. - if (DAG.getMachineFunction().getFunction().hasMinSize()) - return SDValue(); - - SmallVector<SDNode *, 8> Built; - if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { - for (SDNode *N : Built) - AddToWorklist(N); - return S; - } - - return SDValue(); -} - -/// Determines the LogBase2 value for a non-null input value using the -/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). -SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { - EVT VT = V.getValueType(); - SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); +/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)" +/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0 +/// in it. This may be a win when the constant is not otherwise available +/// because it replaces two constant pool loads with one. +SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset( + const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3, + ISD::CondCode CC) { + if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType())) + return SDValue(); + + // If we are before legalize types, we want the other legalization to happen + // first (for example, to avoid messing with soft float). + auto *TV = dyn_cast<ConstantFPSDNode>(N2); + auto *FV = dyn_cast<ConstantFPSDNode>(N3); + EVT VT = N2.getValueType(); + if (!TV || !FV || !TLI.isTypeLegal(VT)) + return SDValue(); + + // If a constant can be materialized without loads, this does not make sense. + if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal || + TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) || + TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize)) + return SDValue(); + + // If both constants have multiple uses, then we won't need to do an extra + // load. The values are likely around in registers for other users. + if (!TV->hasOneUse() && !FV->hasOneUse()) + return SDValue(); + + Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()), + const_cast<ConstantFP*>(TV->getConstantFPValue()) }; + Type *FPTy = Elts[0]->getType(); + const DataLayout &TD = DAG.getDataLayout(); + + // Create a ConstantArray of the two constants. + Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts); + SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()), + TD.getPrefTypeAlign(FPTy)); + Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign(); + + // Get offsets to the 0 and 1 elements of the array, so we can select between + // them. + SDValue Zero = DAG.getIntPtrConstant(0, DL); + unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType()); + SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV)); + SDValue Cond = + DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC); + AddToWorklist(Cond.getNode()); + SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero); + AddToWorklist(CstOffset.getNode()); + CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset); + AddToWorklist(CPIdx.getNode()); + return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx, + MachinePointerInfo::getConstantPool( + DAG.getMachineFunction()), Alignment); +} + +/// Simplify an expression of the form (N0 cond N1) ? N2 : N3 +/// where 'cond' is the comparison specified by CC. +SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1, + SDValue N2, SDValue N3, ISD::CondCode CC, + bool NotExtCompare) { + // (x ? y : y) -> y. + if (N2 == N3) return N2; + + EVT CmpOpVT = N0.getValueType(); + EVT CmpResVT = getSetCCResultType(CmpOpVT); + EVT VT = N2.getValueType(); + auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode()); + auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode()); + auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode()); + + // Determine if the condition we're dealing with is constant. + if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) { + AddToWorklist(SCC.getNode()); + if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) { + // fold select_cc true, x, y -> x + // fold select_cc false, x, y -> y + return !(SCCC->isNullValue()) ? N2 : N3; + } + } + + if (SDValue V = + convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC)) + return V; + + if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC)) + return V; + + // fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A) + // where y is has a single bit set. + // A plaintext description would be, we can turn the SELECT_CC into an AND + // when the condition can be materialized as an all-ones register. Any + // single bit-test can be materialized as an all-ones register with + // shift-left and shift-right-arith. + if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND && + N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) { + SDValue AndLHS = N0->getOperand(0); + auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1)); + if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) { + // Shift the tested bit over the sign bit. + const APInt &AndMask = ConstAndRHS->getAPIntValue(); + unsigned ShCt = AndMask.getBitWidth() - 1; + if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) { + SDValue ShlAmt = + DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS), + getShiftAmountTy(AndLHS.getValueType())); + SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt); + + // Now arithmetic right shift it all the way over, so the result is + // either all-ones, or zero. + SDValue ShrAmt = + DAG.getConstant(ShCt, SDLoc(Shl), + getShiftAmountTy(Shl.getValueType())); + SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt); + + return DAG.getNode(ISD::AND, DL, VT, Shr, N3); + } + } + } + + // fold select C, 16, 0 -> shl C, 4 + bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2(); + bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2(); + + if ((Fold || Swap) && + TLI.getBooleanContents(CmpOpVT) == + TargetLowering::ZeroOrOneBooleanContent && + (!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) { + + if (Swap) { + CC = ISD::getSetCCInverse(CC, CmpOpVT); + std::swap(N2C, N3C); + } + + // If the caller doesn't want us to simplify this into a zext of a compare, + // don't do it. + if (NotExtCompare && N2C->isOne()) + return SDValue(); + + SDValue Temp, SCC; + // zext (setcc n0, n1) + if (LegalTypes) { + SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC); + if (VT.bitsLT(SCC.getValueType())) + Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT); + else + Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); + } else { + SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC); + Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC); + } + + AddToWorklist(SCC.getNode()); + AddToWorklist(Temp.getNode()); + + if (N2C->isOne()) + return Temp; + + unsigned ShCt = N2C->getAPIntValue().logBase2(); + if (TLI.shouldAvoidTransformToShift(VT, ShCt)) + return SDValue(); + + // shl setcc result by log2 n2c + return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp, + DAG.getConstant(ShCt, SDLoc(Temp), + getShiftAmountTy(Temp.getValueType()))); + } + + // select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X) + // select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X) + // select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X) + // select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X) + // select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X) + // select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X) + // select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X) + // select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X) + if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { + SDValue ValueOnZero = N2; + SDValue Count = N3; + // If the condition is NE instead of E, swap the operands. + if (CC == ISD::SETNE) + std::swap(ValueOnZero, Count); + // Check if the value on zero is a constant equal to the bits in the type. + if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) { + if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) { + // If the other operand is cttz/cttz_zero_undef of N0, and cttz is + // legal, combine to just cttz. + if ((Count.getOpcode() == ISD::CTTZ || + Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) && + N0 == Count.getOperand(0) && + (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT))) + return DAG.getNode(ISD::CTTZ, DL, VT, N0); + // If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is + // legal, combine to just ctlz. + if ((Count.getOpcode() == ISD::CTLZ || + Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) && + N0 == Count.getOperand(0) && + (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT))) + return DAG.getNode(ISD::CTLZ, DL, VT, N0); + } + } + } + + return SDValue(); +} + +/// This is a stub for TargetLowering::SimplifySetCC. +SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, + ISD::CondCode Cond, const SDLoc &DL, + bool foldBooleans) { + TargetLowering::DAGCombinerInfo + DagCombineInfo(DAG, Level, false, this); + return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL); +} + +/// Given an ISD::SDIV node expressing a divide by constant, return +/// a DAG expression to select that will generate the same value by multiplying +/// by a magic number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue DAGCombiner::BuildSDIV(SDNode *N) { + // when optimising for minimum size, we don't want to expand a div to a mul + // and a shift. + if (DAG.getMachineFunction().getFunction().hasMinSize()) + return SDValue(); + + SmallVector<SDNode *, 8> Built; + if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) { + for (SDNode *N : Built) + AddToWorklist(N); + return S; + } + + return SDValue(); +} + +/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a +/// DAG expression that will generate the same value by right shifting. +SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) { + ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1)); + if (!C) + return SDValue(); + + // Avoid division by zero. + if (C->isNullValue()) + return SDValue(); + + SmallVector<SDNode *, 8> Built; + if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) { + for (SDNode *N : Built) + AddToWorklist(N); + return S; + } + + return SDValue(); +} + +/// Given an ISD::UDIV node expressing a divide by constant, return a DAG +/// expression that will generate the same value by multiplying by a magic +/// number. +/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". +SDValue DAGCombiner::BuildUDIV(SDNode *N) { + // when optimising for minimum size, we don't want to expand a div to a mul + // and a shift. + if (DAG.getMachineFunction().getFunction().hasMinSize()) + return SDValue(); + + SmallVector<SDNode *, 8> Built; + if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) { + for (SDNode *N : Built) + AddToWorklist(N); + return S; + } + + return SDValue(); +} + +/// Determines the LogBase2 value for a non-null input value using the +/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V). +SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) { + EVT VT = V.getValueType(); + SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V); SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT); - SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); - return LogBase2; -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal, we need to find the zero of the function: -/// F(X) = A X - 1 [which has a zero at X = 1/A] -/// => -/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form -/// does not require additional intermediate precision] -/// For the last iteration, put numerator N into it to gain more precision: -/// Result = N X_i + X_i (N - N A X_i) -SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, - SDNodeFlags Flags) { - if (LegalDAG) - return SDValue(); - - // TODO: Handle half and/or extended types? - EVT VT = Op.getValueType(); - if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) - return SDValue(); - - // If estimates are explicitly disabled for this function, we're done. - MachineFunction &MF = DAG.getMachineFunction(); - int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); - if (Enabled == TLI.ReciprocalEstimate::Disabled) - return SDValue(); - - // Estimates may be explicitly enabled for this type with a custom number of - // refinement steps. - int Iterations = TLI.getDivRefinementSteps(VT, MF); - if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { - AddToWorklist(Est.getNode()); - - SDLoc DL(Op); - if (Iterations) { - SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); - - // Newton iterations: Est = Est + Est (N - Arg * Est) - // If this is the last iteration, also multiply by the numerator. - for (int i = 0; i < Iterations; ++i) { - SDValue MulEst = Est; - - if (i == Iterations - 1) { - MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); - AddToWorklist(MulEst.getNode()); - } - - SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FSUB, DL, VT, - (i == Iterations - 1 ? N : FPOne), NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); - AddToWorklist(NewEst.getNode()); - - Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); - AddToWorklist(Est.getNode()); - } - } else { - // If no iterations are available, multiply with N. - Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); - AddToWorklist(Est.getNode()); - } - - return Est; - } - - return SDValue(); -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal sqrt, we need to find the zero of the function: -/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] -/// => -/// X_{i+1} = X_i (1.5 - A X_i^2 / 2) -/// As a result, we precompute A/2 prior to the iteration loop. -SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, - unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal) { - EVT VT = Arg.getValueType(); - SDLoc DL(Arg); - SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); - - // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that - // this entire sequence requires only one FP constant. - SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); - HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); - - // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) - for (unsigned i = 0; i < Iterations; ++i) { - SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); - NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); - NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); - Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); - } - - // If non-reciprocal square root is requested, multiply the result by Arg. - if (!Reciprocal) - Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); - - return Est; -} - -/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) -/// For the reciprocal sqrt, we need to find the zero of the function: -/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] -/// => -/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) -SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, - unsigned Iterations, - SDNodeFlags Flags, bool Reciprocal) { - EVT VT = Arg.getValueType(); - SDLoc DL(Arg); - SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); - SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); - - // This routine must enter the loop below to work correctly - // when (Reciprocal == false). - assert(Iterations > 0); - - // Newton iterations for reciprocal square root: - // E = (E * -0.5) * ((A * E) * E + -3.0) - for (unsigned i = 0; i < Iterations; ++i) { - SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); - SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); - SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); - - // When calculating a square root at the last iteration build: - // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) - // (notice a common subexpression) - SDValue LHS; - if (Reciprocal || (i + 1) < Iterations) { - // RSQRT: LHS = (E * -0.5) - LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); - } else { - // SQRT: LHS = (A * E) * -0.5 - LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); - } - - Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); - } - - return Est; -} - -/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case -/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if -/// Op can be zero. -SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, - bool Reciprocal) { - if (LegalDAG) - return SDValue(); - - // TODO: Handle half and/or extended types? - EVT VT = Op.getValueType(); - if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) - return SDValue(); - - // If estimates are explicitly disabled for this function, we're done. - MachineFunction &MF = DAG.getMachineFunction(); - int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); - if (Enabled == TLI.ReciprocalEstimate::Disabled) - return SDValue(); - - // Estimates may be explicitly enabled for this type with a custom number of - // refinement steps. - int Iterations = TLI.getSqrtRefinementSteps(VT, MF); - - bool UseOneConstNR = false; - if (SDValue Est = - TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, - Reciprocal)) { - AddToWorklist(Est.getNode()); - + SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz); + return LogBase2; +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal, we need to find the zero of the function: +/// F(X) = A X - 1 [which has a zero at X = 1/A] +/// => +/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form +/// does not require additional intermediate precision] +/// For the last iteration, put numerator N into it to gain more precision: +/// Result = N X_i + X_i (N - N A X_i) +SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op, + SDNodeFlags Flags) { + if (LegalDAG) + return SDValue(); + + // TODO: Handle half and/or extended types? + EVT VT = Op.getValueType(); + if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) + return SDValue(); + + // If estimates are explicitly disabled for this function, we're done. + MachineFunction &MF = DAG.getMachineFunction(); + int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF); + if (Enabled == TLI.ReciprocalEstimate::Disabled) + return SDValue(); + + // Estimates may be explicitly enabled for this type with a custom number of + // refinement steps. + int Iterations = TLI.getDivRefinementSteps(VT, MF); + if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) { + AddToWorklist(Est.getNode()); + + SDLoc DL(Op); + if (Iterations) { + SDValue FPOne = DAG.getConstantFP(1.0, DL, VT); + + // Newton iterations: Est = Est + Est (N - Arg * Est) + // If this is the last iteration, also multiply by the numerator. + for (int i = 0; i < Iterations; ++i) { + SDValue MulEst = Est; + + if (i == Iterations - 1) { + MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags); + AddToWorklist(MulEst.getNode()); + } + + SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags); + AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FSUB, DL, VT, + (i == Iterations - 1 ? N : FPOne), NewEst, Flags); + AddToWorklist(NewEst.getNode()); + + NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); + AddToWorklist(NewEst.getNode()); + + Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags); + AddToWorklist(Est.getNode()); + } + } else { + // If no iterations are available, multiply with N. + Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags); + AddToWorklist(Est.getNode()); + } + + return Est; + } + + return SDValue(); +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal sqrt, we need to find the zero of the function: +/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] +/// => +/// X_{i+1} = X_i (1.5 - A X_i^2 / 2) +/// As a result, we precompute A/2 prior to the iteration loop. +SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est, + unsigned Iterations, + SDNodeFlags Flags, bool Reciprocal) { + EVT VT = Arg.getValueType(); + SDLoc DL(Arg); + SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT); + + // We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that + // this entire sequence requires only one FP constant. + SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags); + HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags); + + // Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est) + for (unsigned i = 0; i < Iterations; ++i) { + SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags); + NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags); + NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags); + Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags); + } + + // If non-reciprocal square root is requested, multiply the result by Arg. + if (!Reciprocal) + Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags); + + return Est; +} + +/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i) +/// For the reciprocal sqrt, we need to find the zero of the function: +/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)] +/// => +/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0)) +SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est, + unsigned Iterations, + SDNodeFlags Flags, bool Reciprocal) { + EVT VT = Arg.getValueType(); + SDLoc DL(Arg); + SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT); + SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT); + + // This routine must enter the loop below to work correctly + // when (Reciprocal == false). + assert(Iterations > 0); + + // Newton iterations for reciprocal square root: + // E = (E * -0.5) * ((A * E) * E + -3.0) + for (unsigned i = 0; i < Iterations; ++i) { + SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags); + SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags); + SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags); + + // When calculating a square root at the last iteration build: + // S = ((A * E) * -0.5) * ((A * E) * E + -3.0) + // (notice a common subexpression) + SDValue LHS; + if (Reciprocal || (i + 1) < Iterations) { + // RSQRT: LHS = (E * -0.5) + LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags); + } else { + // SQRT: LHS = (A * E) * -0.5 + LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags); + } + + Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags); + } + + return Est; +} + +/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case +/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if +/// Op can be zero. +SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, + bool Reciprocal) { + if (LegalDAG) + return SDValue(); + + // TODO: Handle half and/or extended types? + EVT VT = Op.getValueType(); + if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64) + return SDValue(); + + // If estimates are explicitly disabled for this function, we're done. + MachineFunction &MF = DAG.getMachineFunction(); + int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF); + if (Enabled == TLI.ReciprocalEstimate::Disabled) + return SDValue(); + + // Estimates may be explicitly enabled for this type with a custom number of + // refinement steps. + int Iterations = TLI.getSqrtRefinementSteps(VT, MF); + + bool UseOneConstNR = false; + if (SDValue Est = + TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR, + Reciprocal)) { + AddToWorklist(Est.getNode()); + if (Iterations) - Est = UseOneConstNR - ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) - : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); + Est = UseOneConstNR + ? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal) + : buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal); if (!Reciprocal) { SDLoc DL(Op); // Try the target specific test first. SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT)); - + // The estimate is now completely wrong if the input was exactly 0.0 or // possibly a denormal. Force the answer to 0.0 or value provided by // target for those cases. Est = DAG.getNode( Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est); - } - return Est; - } - - return SDValue(); -} - -SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { - return buildSqrtEstimateImpl(Op, Flags, true); -} - -SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { - return buildSqrtEstimateImpl(Op, Flags, false); -} - -/// Return true if there is any possibility that the two addresses overlap. -bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { - - struct MemUseCharacteristics { - bool IsVolatile; - bool IsAtomic; - SDValue BasePtr; - int64_t Offset; - Optional<int64_t> NumBytes; - MachineMemOperand *MMO; - }; - - auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { - if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { - int64_t Offset = 0; - if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) - Offset = (LSN->getAddressingMode() == ISD::PRE_INC) - ? C->getSExtValue() - : (LSN->getAddressingMode() == ISD::PRE_DEC) - ? -1 * C->getSExtValue() - : 0; - uint64_t Size = - MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); - return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), - Offset /*base offset*/, - Optional<int64_t>(Size), - LSN->getMemOperand()}; - } - if (const auto *LN = cast<LifetimeSDNode>(N)) - return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), - (LN->hasOffset()) ? LN->getOffset() : 0, - (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) - : Optional<int64_t>(), - (MachineMemOperand *)nullptr}; - // Default. - return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), - (int64_t)0 /*offset*/, - Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; - }; - - MemUseCharacteristics MUC0 = getCharacteristics(Op0), - MUC1 = getCharacteristics(Op1); - - // If they are to the same address, then they must be aliases. - if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && - MUC0.Offset == MUC1.Offset) - return true; - - // If they are both volatile then they cannot be reordered. - if (MUC0.IsVolatile && MUC1.IsVolatile) - return true; - - // Be conservative about atomics for the moment - // TODO: This is way overconservative for unordered atomics (see D66309) - if (MUC0.IsAtomic && MUC1.IsAtomic) - return true; - - if (MUC0.MMO && MUC1.MMO) { - if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || - (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) - return false; - } - - // Try to prove that there is aliasing, or that there is no aliasing. Either - // way, we can return now. If nothing can be proved, proceed with more tests. - bool IsAlias; - if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, - DAG, IsAlias)) - return IsAlias; - - // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if - // either are not known. - if (!MUC0.MMO || !MUC1.MMO) - return true; - - // If one operation reads from invariant memory, and the other may store, they - // cannot alias. These should really be checking the equivalent of mayWrite, - // but it only matters for memory nodes other than load /store. - if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || - (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) - return false; - - // If we know required SrcValue1 and SrcValue2 have relatively large - // alignment compared to the size and offset of the access, we may be able - // to prove they do not alias. This check is conservative for now to catch - // cases created by splitting vector types, it only works when the offsets are - // multiples of the size of the data. - int64_t SrcValOffset0 = MUC0.MMO->getOffset(); - int64_t SrcValOffset1 = MUC1.MMO->getOffset(); - Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); - Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); - auto &Size0 = MUC0.NumBytes; - auto &Size1 = MUC1.NumBytes; - if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && - Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && - OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && - SrcValOffset1 % *Size1 == 0) { - int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); - int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); - - // There is no overlap between these relatively aligned accesses of - // similar size. Return no alias. - if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) - return false; - } - - bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 - ? CombinerGlobalAA - : DAG.getSubtarget().useAA(); -#ifndef NDEBUG - if (CombinerAAOnlyFunc.getNumOccurrences() && - CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) - UseAA = false; -#endif - - if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && - Size0.hasValue() && Size1.hasValue()) { - // Use alias analysis information. - int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); - int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; - int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; - AliasResult AAResult = AA->alias( - MemoryLocation(MUC0.MMO->getValue(), Overlap0, - UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), - MemoryLocation(MUC1.MMO->getValue(), Overlap1, - UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); - if (AAResult == NoAlias) - return false; - } - - // Otherwise we have to assume they alias. - return true; -} - -/// Walk up chain skipping non-aliasing memory nodes, -/// looking for aliasing nodes and adding them to the Aliases vector. -void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, - SmallVectorImpl<SDValue> &Aliases) { - SmallVector<SDValue, 8> Chains; // List of chains to visit. - SmallPtrSet<SDNode *, 16> Visited; // Visited node set. - - // Get alias information for node. - // TODO: relax aliasing for unordered atomics (see D66309) - const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); - - // Starting off. - Chains.push_back(OriginalChain); - unsigned Depth = 0; - - // Attempt to improve chain by a single step - std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { - switch (C.getOpcode()) { - case ISD::EntryToken: - // No need to mark EntryToken. - C = SDValue(); - return true; - case ISD::LOAD: - case ISD::STORE: { - // Get alias information for C. - // TODO: Relax aliasing for unordered atomics (see D66309) - bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && - cast<LSBaseSDNode>(C.getNode())->isSimple(); - if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { - // Look further up the chain. - C = C.getOperand(0); - return true; - } - // Alias, so stop here. - return false; - } - - case ISD::CopyFromReg: - // Always forward past past CopyFromReg. - C = C.getOperand(0); - return true; - - case ISD::LIFETIME_START: - case ISD::LIFETIME_END: { - // We can forward past any lifetime start/end that can be proven not to - // alias the memory access. - if (!isAlias(N, C.getNode())) { - // Look further up the chain. - C = C.getOperand(0); - return true; - } - return false; - } - default: - return false; - } - }; - - // Look at each chain and determine if it is an alias. If so, add it to the - // aliases list. If not, then continue up the chain looking for the next - // candidate. - while (!Chains.empty()) { - SDValue Chain = Chains.pop_back_val(); - - // Don't bother if we've seen Chain before. - if (!Visited.insert(Chain.getNode()).second) - continue; - - // For TokenFactor nodes, look at each operand and only continue up the - // chain until we reach the depth limit. - // - // FIXME: The depth check could be made to return the last non-aliasing - // chain we found before we hit a tokenfactor rather than the original - // chain. - if (Depth > TLI.getGatherAllAliasesMaxDepth()) { - Aliases.clear(); - Aliases.push_back(OriginalChain); - return; - } - - if (Chain.getOpcode() == ISD::TokenFactor) { - // We have to check each of the operands of the token factor for "small" - // token factors, so we queue them up. Adding the operands to the queue - // (stack) in reverse order maintains the original order and increases the - // likelihood that getNode will find a matching token factor (CSE.) - if (Chain.getNumOperands() > 16) { - Aliases.push_back(Chain); - continue; - } - for (unsigned n = Chain.getNumOperands(); n;) - Chains.push_back(Chain.getOperand(--n)); - ++Depth; - continue; - } - // Everything else - if (ImproveChain(Chain)) { - // Updated Chain Found, Consider new chain if one exists. - if (Chain.getNode()) - Chains.push_back(Chain); - ++Depth; - continue; - } - // No Improved Chain Possible, treat as Alias. - Aliases.push_back(Chain); - } -} - -/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain -/// (aliasing node.) -SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { - if (OptLevel == CodeGenOpt::None) - return OldChain; - - // Ops for replacing token factor. - SmallVector<SDValue, 8> Aliases; - - // Accumulate all the aliases to this node. - GatherAllAliases(N, OldChain, Aliases); - - // If no operands then chain to entry token. - if (Aliases.size() == 0) - return DAG.getEntryNode(); - - // If a single operand then chain to it. We don't need to revisit it. - if (Aliases.size() == 1) - return Aliases[0]; - - // Construct a custom tailored token factor. - return DAG.getTokenFactor(SDLoc(N), Aliases); -} - -namespace { -// TODO: Replace with with std::monostate when we move to C++17. -struct UnitT { } Unit; -bool operator==(const UnitT &, const UnitT &) { return true; } -bool operator!=(const UnitT &, const UnitT &) { return false; } -} // namespace - -// This function tries to collect a bunch of potentially interesting -// nodes to improve the chains of, all at once. This might seem -// redundant, as this function gets called when visiting every store -// node, so why not let the work be done on each store as it's visited? -// -// I believe this is mainly important because mergeConsecutiveStores -// is unable to deal with merging stores of different sizes, so unless -// we improve the chains of all the potential candidates up-front -// before running mergeConsecutiveStores, it might only see some of -// the nodes that will eventually be candidates, and then not be able -// to go from a partially-merged state to the desired final -// fully-merged state. - -bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { - SmallVector<StoreSDNode *, 8> ChainedStores; - StoreSDNode *STChain = St; - // Intervals records which offsets from BaseIndex have been covered. In - // the common case, every store writes to the immediately previous address - // space and thus merged with the previous interval at insertion time. - - using IMap = - llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; - IMap::Allocator A; - IMap Intervals(A); - - // This holds the base pointer, index, and the offset in bytes from the base - // pointer. - const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); - - // We must have a base and an offset. - if (!BasePtr.getBase().getNode()) - return false; - - // Do not handle stores to undef base pointers. - if (BasePtr.getBase().isUndef()) - return false; - - // BaseIndexOffset assumes that offsets are fixed-size, which - // is not valid for scalable vectors where the offsets are - // scaled by `vscale`, so bail out early. - if (St->getMemoryVT().isScalableVector()) - return false; - - // Add ST's interval. - Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); - - while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { - // If the chain has more than one use, then we can't reorder the mem ops. - if (!SDValue(Chain, 0)->hasOneUse()) - break; - // TODO: Relax for unordered atomics (see D66309) - if (!Chain->isSimple() || Chain->isIndexed()) - break; - - // Find the base pointer and offset for this memory node. - const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); - // Check that the base pointer is the same as the original one. - int64_t Offset; - if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) - break; - int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; - // Make sure we don't overlap with other intervals by checking the ones to - // the left or right before inserting. - auto I = Intervals.find(Offset); - // If there's a next interval, we should end before it. - if (I != Intervals.end() && I.start() < (Offset + Length)) - break; - // If there's a previous interval, we should start after it. - if (I != Intervals.begin() && (--I).stop() <= Offset) - break; - Intervals.insert(Offset, Offset + Length, Unit); - - ChainedStores.push_back(Chain); - STChain = Chain; - } - - // If we didn't find a chained store, exit. - if (ChainedStores.size() == 0) - return false; - - // Improve all chained stores (St and ChainedStores members) starting from - // where the store chain ended and return single TokenFactor. - SDValue NewChain = STChain->getChain(); - SmallVector<SDValue, 8> TFOps; - for (unsigned I = ChainedStores.size(); I;) { - StoreSDNode *S = ChainedStores[--I]; - SDValue BetterChain = FindBetterChain(S, NewChain); - S = cast<StoreSDNode>(DAG.UpdateNodeOperands( - S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); - TFOps.push_back(SDValue(S, 0)); - ChainedStores[I] = S; - } - - // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. - SDValue BetterChain = FindBetterChain(St, NewChain); - SDValue NewST; - if (St->isTruncatingStore()) - NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), - St->getBasePtr(), St->getMemoryVT(), - St->getMemOperand()); - else - NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), - St->getBasePtr(), St->getMemOperand()); - - TFOps.push_back(NewST); - - // If we improved every element of TFOps, then we've lost the dependence on - // NewChain to successors of St and we need to add it back to TFOps. Do so at - // the beginning to keep relative order consistent with FindBetterChains. - auto hasImprovedChain = [&](SDValue ST) -> bool { - return ST->getOperand(0) != NewChain; - }; - bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); - if (AddNewChain) - TFOps.insert(TFOps.begin(), NewChain); - - SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); - CombineTo(St, TF); - - // Add TF and its operands to the worklist. - AddToWorklist(TF.getNode()); - for (const SDValue &Op : TF->ops()) - AddToWorklist(Op.getNode()); - AddToWorklist(STChain); - return true; -} - -bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { - if (OptLevel == CodeGenOpt::None) - return false; - - const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); - - // We must have a base and an offset. - if (!BasePtr.getBase().getNode()) - return false; - - // Do not handle stores to undef base pointers. - if (BasePtr.getBase().isUndef()) - return false; - - // Directly improve a chain of disjoint stores starting at St. - if (parallelizeChainedStores(St)) - return true; - - // Improve St's Chain.. - SDValue BetterChain = FindBetterChain(St, St->getChain()); - if (St->getChain() != BetterChain) { - replaceStoreChain(St, BetterChain); - return true; - } - return false; -} - -/// This is the entry point for the file. -void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, - CodeGenOpt::Level OptLevel) { - /// This is the main entry point to this class. - DAGCombiner(*this, AA, OptLevel).Run(Level); -} + } + return Est; + } + + return SDValue(); +} + +SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) { + return buildSqrtEstimateImpl(Op, Flags, true); +} + +SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) { + return buildSqrtEstimateImpl(Op, Flags, false); +} + +/// Return true if there is any possibility that the two addresses overlap. +bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const { + + struct MemUseCharacteristics { + bool IsVolatile; + bool IsAtomic; + SDValue BasePtr; + int64_t Offset; + Optional<int64_t> NumBytes; + MachineMemOperand *MMO; + }; + + auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics { + if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) { + int64_t Offset = 0; + if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset())) + Offset = (LSN->getAddressingMode() == ISD::PRE_INC) + ? C->getSExtValue() + : (LSN->getAddressingMode() == ISD::PRE_DEC) + ? -1 * C->getSExtValue() + : 0; + uint64_t Size = + MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize()); + return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(), + Offset /*base offset*/, + Optional<int64_t>(Size), + LSN->getMemOperand()}; + } + if (const auto *LN = cast<LifetimeSDNode>(N)) + return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1), + (LN->hasOffset()) ? LN->getOffset() : 0, + (LN->hasOffset()) ? Optional<int64_t>(LN->getSize()) + : Optional<int64_t>(), + (MachineMemOperand *)nullptr}; + // Default. + return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(), + (int64_t)0 /*offset*/, + Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr}; + }; + + MemUseCharacteristics MUC0 = getCharacteristics(Op0), + MUC1 = getCharacteristics(Op1); + + // If they are to the same address, then they must be aliases. + if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr && + MUC0.Offset == MUC1.Offset) + return true; + + // If they are both volatile then they cannot be reordered. + if (MUC0.IsVolatile && MUC1.IsVolatile) + return true; + + // Be conservative about atomics for the moment + // TODO: This is way overconservative for unordered atomics (see D66309) + if (MUC0.IsAtomic && MUC1.IsAtomic) + return true; + + if (MUC0.MMO && MUC1.MMO) { + if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || + (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) + return false; + } + + // Try to prove that there is aliasing, or that there is no aliasing. Either + // way, we can return now. If nothing can be proved, proceed with more tests. + bool IsAlias; + if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes, + DAG, IsAlias)) + return IsAlias; + + // The following all rely on MMO0 and MMO1 being valid. Fail conservatively if + // either are not known. + if (!MUC0.MMO || !MUC1.MMO) + return true; + + // If one operation reads from invariant memory, and the other may store, they + // cannot alias. These should really be checking the equivalent of mayWrite, + // but it only matters for memory nodes other than load /store. + if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) || + (MUC1.MMO->isInvariant() && MUC0.MMO->isStore())) + return false; + + // If we know required SrcValue1 and SrcValue2 have relatively large + // alignment compared to the size and offset of the access, we may be able + // to prove they do not alias. This check is conservative for now to catch + // cases created by splitting vector types, it only works when the offsets are + // multiples of the size of the data. + int64_t SrcValOffset0 = MUC0.MMO->getOffset(); + int64_t SrcValOffset1 = MUC1.MMO->getOffset(); + Align OrigAlignment0 = MUC0.MMO->getBaseAlign(); + Align OrigAlignment1 = MUC1.MMO->getBaseAlign(); + auto &Size0 = MUC0.NumBytes; + auto &Size1 = MUC1.NumBytes; + if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 && + Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 && + OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 && + SrcValOffset1 % *Size1 == 0) { + int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value(); + int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value(); + + // There is no overlap between these relatively aligned accesses of + // similar size. Return no alias. + if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0) + return false; + } + + bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0 + ? CombinerGlobalAA + : DAG.getSubtarget().useAA(); +#ifndef NDEBUG + if (CombinerAAOnlyFunc.getNumOccurrences() && + CombinerAAOnlyFunc != DAG.getMachineFunction().getName()) + UseAA = false; +#endif + + if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() && + Size0.hasValue() && Size1.hasValue()) { + // Use alias analysis information. + int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1); + int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset; + int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset; + AliasResult AAResult = AA->alias( + MemoryLocation(MUC0.MMO->getValue(), Overlap0, + UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()), + MemoryLocation(MUC1.MMO->getValue(), Overlap1, + UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())); + if (AAResult == NoAlias) + return false; + } + + // Otherwise we have to assume they alias. + return true; +} + +/// Walk up chain skipping non-aliasing memory nodes, +/// looking for aliasing nodes and adding them to the Aliases vector. +void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain, + SmallVectorImpl<SDValue> &Aliases) { + SmallVector<SDValue, 8> Chains; // List of chains to visit. + SmallPtrSet<SDNode *, 16> Visited; // Visited node set. + + // Get alias information for node. + // TODO: relax aliasing for unordered atomics (see D66309) + const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple(); + + // Starting off. + Chains.push_back(OriginalChain); + unsigned Depth = 0; + + // Attempt to improve chain by a single step + std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool { + switch (C.getOpcode()) { + case ISD::EntryToken: + // No need to mark EntryToken. + C = SDValue(); + return true; + case ISD::LOAD: + case ISD::STORE: { + // Get alias information for C. + // TODO: Relax aliasing for unordered atomics (see D66309) + bool IsOpLoad = isa<LoadSDNode>(C.getNode()) && + cast<LSBaseSDNode>(C.getNode())->isSimple(); + if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) { + // Look further up the chain. + C = C.getOperand(0); + return true; + } + // Alias, so stop here. + return false; + } + + case ISD::CopyFromReg: + // Always forward past past CopyFromReg. + C = C.getOperand(0); + return true; + + case ISD::LIFETIME_START: + case ISD::LIFETIME_END: { + // We can forward past any lifetime start/end that can be proven not to + // alias the memory access. + if (!isAlias(N, C.getNode())) { + // Look further up the chain. + C = C.getOperand(0); + return true; + } + return false; + } + default: + return false; + } + }; + + // Look at each chain and determine if it is an alias. If so, add it to the + // aliases list. If not, then continue up the chain looking for the next + // candidate. + while (!Chains.empty()) { + SDValue Chain = Chains.pop_back_val(); + + // Don't bother if we've seen Chain before. + if (!Visited.insert(Chain.getNode()).second) + continue; + + // For TokenFactor nodes, look at each operand and only continue up the + // chain until we reach the depth limit. + // + // FIXME: The depth check could be made to return the last non-aliasing + // chain we found before we hit a tokenfactor rather than the original + // chain. + if (Depth > TLI.getGatherAllAliasesMaxDepth()) { + Aliases.clear(); + Aliases.push_back(OriginalChain); + return; + } + + if (Chain.getOpcode() == ISD::TokenFactor) { + // We have to check each of the operands of the token factor for "small" + // token factors, so we queue them up. Adding the operands to the queue + // (stack) in reverse order maintains the original order and increases the + // likelihood that getNode will find a matching token factor (CSE.) + if (Chain.getNumOperands() > 16) { + Aliases.push_back(Chain); + continue; + } + for (unsigned n = Chain.getNumOperands(); n;) + Chains.push_back(Chain.getOperand(--n)); + ++Depth; + continue; + } + // Everything else + if (ImproveChain(Chain)) { + // Updated Chain Found, Consider new chain if one exists. + if (Chain.getNode()) + Chains.push_back(Chain); + ++Depth; + continue; + } + // No Improved Chain Possible, treat as Alias. + Aliases.push_back(Chain); + } +} + +/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain +/// (aliasing node.) +SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) { + if (OptLevel == CodeGenOpt::None) + return OldChain; + + // Ops for replacing token factor. + SmallVector<SDValue, 8> Aliases; + + // Accumulate all the aliases to this node. + GatherAllAliases(N, OldChain, Aliases); + + // If no operands then chain to entry token. + if (Aliases.size() == 0) + return DAG.getEntryNode(); + + // If a single operand then chain to it. We don't need to revisit it. + if (Aliases.size() == 1) + return Aliases[0]; + + // Construct a custom tailored token factor. + return DAG.getTokenFactor(SDLoc(N), Aliases); +} + +namespace { +// TODO: Replace with with std::monostate when we move to C++17. +struct UnitT { } Unit; +bool operator==(const UnitT &, const UnitT &) { return true; } +bool operator!=(const UnitT &, const UnitT &) { return false; } +} // namespace + +// This function tries to collect a bunch of potentially interesting +// nodes to improve the chains of, all at once. This might seem +// redundant, as this function gets called when visiting every store +// node, so why not let the work be done on each store as it's visited? +// +// I believe this is mainly important because mergeConsecutiveStores +// is unable to deal with merging stores of different sizes, so unless +// we improve the chains of all the potential candidates up-front +// before running mergeConsecutiveStores, it might only see some of +// the nodes that will eventually be candidates, and then not be able +// to go from a partially-merged state to the desired final +// fully-merged state. + +bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) { + SmallVector<StoreSDNode *, 8> ChainedStores; + StoreSDNode *STChain = St; + // Intervals records which offsets from BaseIndex have been covered. In + // the common case, every store writes to the immediately previous address + // space and thus merged with the previous interval at insertion time. + + using IMap = + llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>; + IMap::Allocator A; + IMap Intervals(A); + + // This holds the base pointer, index, and the offset in bytes from the base + // pointer. + const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); + + // We must have a base and an offset. + if (!BasePtr.getBase().getNode()) + return false; + + // Do not handle stores to undef base pointers. + if (BasePtr.getBase().isUndef()) + return false; + + // BaseIndexOffset assumes that offsets are fixed-size, which + // is not valid for scalable vectors where the offsets are + // scaled by `vscale`, so bail out early. + if (St->getMemoryVT().isScalableVector()) + return false; + + // Add ST's interval. + Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit); + + while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) { + // If the chain has more than one use, then we can't reorder the mem ops. + if (!SDValue(Chain, 0)->hasOneUse()) + break; + // TODO: Relax for unordered atomics (see D66309) + if (!Chain->isSimple() || Chain->isIndexed()) + break; + + // Find the base pointer and offset for this memory node. + const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG); + // Check that the base pointer is the same as the original one. + int64_t Offset; + if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset)) + break; + int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8; + // Make sure we don't overlap with other intervals by checking the ones to + // the left or right before inserting. + auto I = Intervals.find(Offset); + // If there's a next interval, we should end before it. + if (I != Intervals.end() && I.start() < (Offset + Length)) + break; + // If there's a previous interval, we should start after it. + if (I != Intervals.begin() && (--I).stop() <= Offset) + break; + Intervals.insert(Offset, Offset + Length, Unit); + + ChainedStores.push_back(Chain); + STChain = Chain; + } + + // If we didn't find a chained store, exit. + if (ChainedStores.size() == 0) + return false; + + // Improve all chained stores (St and ChainedStores members) starting from + // where the store chain ended and return single TokenFactor. + SDValue NewChain = STChain->getChain(); + SmallVector<SDValue, 8> TFOps; + for (unsigned I = ChainedStores.size(); I;) { + StoreSDNode *S = ChainedStores[--I]; + SDValue BetterChain = FindBetterChain(S, NewChain); + S = cast<StoreSDNode>(DAG.UpdateNodeOperands( + S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3))); + TFOps.push_back(SDValue(S, 0)); + ChainedStores[I] = S; + } + + // Improve St's chain. Use a new node to avoid creating a loop from CombineTo. + SDValue BetterChain = FindBetterChain(St, NewChain); + SDValue NewST; + if (St->isTruncatingStore()) + NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(), + St->getBasePtr(), St->getMemoryVT(), + St->getMemOperand()); + else + NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(), + St->getBasePtr(), St->getMemOperand()); + + TFOps.push_back(NewST); + + // If we improved every element of TFOps, then we've lost the dependence on + // NewChain to successors of St and we need to add it back to TFOps. Do so at + // the beginning to keep relative order consistent with FindBetterChains. + auto hasImprovedChain = [&](SDValue ST) -> bool { + return ST->getOperand(0) != NewChain; + }; + bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain); + if (AddNewChain) + TFOps.insert(TFOps.begin(), NewChain); + + SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps); + CombineTo(St, TF); + + // Add TF and its operands to the worklist. + AddToWorklist(TF.getNode()); + for (const SDValue &Op : TF->ops()) + AddToWorklist(Op.getNode()); + AddToWorklist(STChain); + return true; +} + +bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) { + if (OptLevel == CodeGenOpt::None) + return false; + + const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG); + + // We must have a base and an offset. + if (!BasePtr.getBase().getNode()) + return false; + + // Do not handle stores to undef base pointers. + if (BasePtr.getBase().isUndef()) + return false; + + // Directly improve a chain of disjoint stores starting at St. + if (parallelizeChainedStores(St)) + return true; + + // Improve St's Chain.. + SDValue BetterChain = FindBetterChain(St, St->getChain()); + if (St->getChain() != BetterChain) { + replaceStoreChain(St, BetterChain); + return true; + } + return false; +} + +/// This is the entry point for the file. +void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA, + CodeGenOpt::Level OptLevel) { + /// This is the main entry point to this class. + DAGCombiner(*this, AA, OptLevel).Run(Level); +} |