diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp | 2195 |
1 files changed, 2195 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp b/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp new file mode 100644 index 0000000000..095da09ea8 --- /dev/null +++ b/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp @@ -0,0 +1,2195 @@ +//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/ModuloSchedule.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/InitializePasses.h" +#include "llvm/MC/MCContext.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "pipeliner" +using namespace llvm; + +void ModuloSchedule::print(raw_ostream &OS) { + for (MachineInstr *MI : ScheduledInstrs) + OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleExpander implementation +//===----------------------------------------------------------------------===// + +/// Return the register values for the operands of a Phi instruction. +/// This function assume the instruction is a Phi. +static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, + unsigned &InitVal, unsigned &LoopVal) { + assert(Phi.isPHI() && "Expecting a Phi."); + + InitVal = 0; + LoopVal = 0; + for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) + if (Phi.getOperand(i + 1).getMBB() != Loop) + InitVal = Phi.getOperand(i).getReg(); + else + LoopVal = Phi.getOperand(i).getReg(); + + assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); +} + +/// Return the Phi register value that comes from the incoming block. +static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { + for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) + if (Phi.getOperand(i + 1).getMBB() != LoopBB) + return Phi.getOperand(i).getReg(); + return 0; +} + +/// Return the Phi register value that comes the loop block. +static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { + for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) + if (Phi.getOperand(i + 1).getMBB() == LoopBB) + return Phi.getOperand(i).getReg(); + return 0; +} + +void ModuloScheduleExpander::expand() { + BB = Schedule.getLoop()->getTopBlock(); + Preheader = *BB->pred_begin(); + if (Preheader == BB) + Preheader = *std::next(BB->pred_begin()); + + // Iterate over the definitions in each instruction, and compute the + // stage difference for each use. Keep the maximum value. + for (MachineInstr *MI : Schedule.getInstructions()) { + int DefStage = Schedule.getStage(MI); + for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (!Op.isReg() || !Op.isDef()) + continue; + + Register Reg = Op.getReg(); + unsigned MaxDiff = 0; + bool PhiIsSwapped = false; + for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), + EI = MRI.use_end(); + UI != EI; ++UI) { + MachineOperand &UseOp = *UI; + MachineInstr *UseMI = UseOp.getParent(); + int UseStage = Schedule.getStage(UseMI); + unsigned Diff = 0; + if (UseStage != -1 && UseStage >= DefStage) + Diff = UseStage - DefStage; + if (MI->isPHI()) { + if (isLoopCarried(*MI)) + ++Diff; + else + PhiIsSwapped = true; + } + MaxDiff = std::max(Diff, MaxDiff); + } + RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); + } + } + + generatePipelinedLoop(); +} + +void ModuloScheduleExpander::generatePipelinedLoop() { + LoopInfo = TII->analyzeLoopForPipelining(BB); + assert(LoopInfo && "Must be able to analyze loop!"); + + // Create a new basic block for the kernel and add it to the CFG. + MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); + + unsigned MaxStageCount = Schedule.getNumStages() - 1; + + // Remember the registers that are used in different stages. The index is + // the iteration, or stage, that the instruction is scheduled in. This is + // a map between register names in the original block and the names created + // in each stage of the pipelined loop. + ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; + InstrMapTy InstrMap; + + SmallVector<MachineBasicBlock *, 4> PrologBBs; + + // Generate the prolog instructions that set up the pipeline. + generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); + MF.insert(BB->getIterator(), KernelBB); + + // Rearrange the instructions to generate the new, pipelined loop, + // and update register names as needed. + for (MachineInstr *CI : Schedule.getInstructions()) { + if (CI->isPHI()) + continue; + unsigned StageNum = Schedule.getStage(CI); + MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); + updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); + KernelBB->push_back(NewMI); + InstrMap[NewMI] = CI; + } + + // Copy any terminator instructions to the new kernel, and update + // names as needed. + for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), + E = BB->instr_end(); + I != E; ++I) { + MachineInstr *NewMI = MF.CloneMachineInstr(&*I); + updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); + KernelBB->push_back(NewMI); + InstrMap[NewMI] = &*I; + } + + NewKernel = KernelBB; + KernelBB->transferSuccessors(BB); + KernelBB->replaceSuccessor(BB, KernelBB); + + generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, + InstrMap, MaxStageCount, MaxStageCount, false); + generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap, + MaxStageCount, MaxStageCount, false); + + LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); + + SmallVector<MachineBasicBlock *, 4> EpilogBBs; + // Generate the epilog instructions to complete the pipeline. + generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs); + + // We need this step because the register allocation doesn't handle some + // situations well, so we insert copies to help out. + splitLifetimes(KernelBB, EpilogBBs); + + // Remove dead instructions due to loop induction variables. + removeDeadInstructions(KernelBB, EpilogBBs); + + // Add branches between prolog and epilog blocks. + addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); + + delete[] VRMap; +} + +void ModuloScheduleExpander::cleanup() { + // Remove the original loop since it's no longer referenced. + for (auto &I : *BB) + LIS.RemoveMachineInstrFromMaps(I); + BB->clear(); + BB->eraseFromParent(); +} + +/// Generate the pipeline prolog code. +void ModuloScheduleExpander::generateProlog(unsigned LastStage, + MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, + MBBVectorTy &PrologBBs) { + MachineBasicBlock *PredBB = Preheader; + InstrMapTy InstrMap; + + // Generate a basic block for each stage, not including the last stage, + // which will be generated in the kernel. Each basic block may contain + // instructions from multiple stages/iterations. + for (unsigned i = 0; i < LastStage; ++i) { + // Create and insert the prolog basic block prior to the original loop + // basic block. The original loop is removed later. + MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); + PrologBBs.push_back(NewBB); + MF.insert(BB->getIterator(), NewBB); + NewBB->transferSuccessors(PredBB); + PredBB->addSuccessor(NewBB); + PredBB = NewBB; + + // Generate instructions for each appropriate stage. Process instructions + // in original program order. + for (int StageNum = i; StageNum >= 0; --StageNum) { + for (MachineBasicBlock::iterator BBI = BB->instr_begin(), + BBE = BB->getFirstTerminator(); + BBI != BBE; ++BBI) { + if (Schedule.getStage(&*BBI) == StageNum) { + if (BBI->isPHI()) + continue; + MachineInstr *NewMI = + cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); + updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); + NewBB->push_back(NewMI); + InstrMap[NewMI] = &*BBI; + } + } + } + rewritePhiValues(NewBB, i, VRMap, InstrMap); + LLVM_DEBUG({ + dbgs() << "prolog:\n"; + NewBB->dump(); + }); + } + + PredBB->replaceSuccessor(BB, KernelBB); + + // Check if we need to remove the branch from the preheader to the original + // loop, and replace it with a branch to the new loop. + unsigned numBranches = TII->removeBranch(*Preheader); + if (numBranches) { + SmallVector<MachineOperand, 0> Cond; + TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); + } +} + +/// Generate the pipeline epilog code. The epilog code finishes the iterations +/// that were started in either the prolog or the kernel. We create a basic +/// block for each stage that needs to complete. +void ModuloScheduleExpander::generateEpilog(unsigned LastStage, + MachineBasicBlock *KernelBB, + ValueMapTy *VRMap, + MBBVectorTy &EpilogBBs, + MBBVectorTy &PrologBBs) { + // We need to change the branch from the kernel to the first epilog block, so + // this call to analyze branch uses the kernel rather than the original BB. + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); + assert(!checkBranch && "generateEpilog must be able to analyze the branch"); + if (checkBranch) + return; + + MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); + if (*LoopExitI == KernelBB) + ++LoopExitI; + assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); + MachineBasicBlock *LoopExitBB = *LoopExitI; + + MachineBasicBlock *PredBB = KernelBB; + MachineBasicBlock *EpilogStart = LoopExitBB; + InstrMapTy InstrMap; + + // Generate a basic block for each stage, not including the last stage, + // which was generated for the kernel. Each basic block may contain + // instructions from multiple stages/iterations. + int EpilogStage = LastStage + 1; + for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { + MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); + EpilogBBs.push_back(NewBB); + MF.insert(BB->getIterator(), NewBB); + + PredBB->replaceSuccessor(LoopExitBB, NewBB); + NewBB->addSuccessor(LoopExitBB); + + if (EpilogStart == LoopExitBB) + EpilogStart = NewBB; + + // Add instructions to the epilog depending on the current block. + // Process instructions in original program order. + for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { + for (auto &BBI : *BB) { + if (BBI.isPHI()) + continue; + MachineInstr *In = &BBI; + if ((unsigned)Schedule.getStage(In) == StageNum) { + // Instructions with memoperands in the epilog are updated with + // conservative values. + MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); + updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); + NewBB->push_back(NewMI); + InstrMap[NewMI] = In; + } + } + } + generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, + InstrMap, LastStage, EpilogStage, i == 1); + generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap, + LastStage, EpilogStage, i == 1); + PredBB = NewBB; + + LLVM_DEBUG({ + dbgs() << "epilog:\n"; + NewBB->dump(); + }); + } + + // Fix any Phi nodes in the loop exit block. + LoopExitBB->replacePhiUsesWith(BB, PredBB); + + // Create a branch to the new epilog from the kernel. + // Remove the original branch and add a new branch to the epilog. + TII->removeBranch(*KernelBB); + TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); + // Add a branch to the loop exit. + if (EpilogBBs.size() > 0) { + MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); + SmallVector<MachineOperand, 4> Cond1; + TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); + } +} + +/// Replace all uses of FromReg that appear outside the specified +/// basic block with ToReg. +static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, + MachineBasicBlock *MBB, + MachineRegisterInfo &MRI, + LiveIntervals &LIS) { + for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), + E = MRI.use_end(); + I != E;) { + MachineOperand &O = *I; + ++I; + if (O.getParent()->getParent() != MBB) + O.setReg(ToReg); + } + if (!LIS.hasInterval(ToReg)) + LIS.createEmptyInterval(ToReg); +} + +/// Return true if the register has a use that occurs outside the +/// specified loop. +static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, + MachineRegisterInfo &MRI) { + for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), + E = MRI.use_end(); + I != E; ++I) + if (I->getParent()->getParent() != BB) + return true; + return false; +} + +/// Generate Phis for the specific block in the generated pipelined code. +/// This function looks at the Phis from the original code to guide the +/// creation of new Phis. +void ModuloScheduleExpander::generateExistingPhis( + MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, + MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, + unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { + // Compute the stage number for the initial value of the Phi, which + // comes from the prolog. The prolog to use depends on to which kernel/ + // epilog that we're adding the Phi. + unsigned PrologStage = 0; + unsigned PrevStage = 0; + bool InKernel = (LastStageNum == CurStageNum); + if (InKernel) { + PrologStage = LastStageNum - 1; + PrevStage = CurStageNum; + } else { + PrologStage = LastStageNum - (CurStageNum - LastStageNum); + PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; + } + + for (MachineBasicBlock::iterator BBI = BB->instr_begin(), + BBE = BB->getFirstNonPHI(); + BBI != BBE; ++BBI) { + Register Def = BBI->getOperand(0).getReg(); + + unsigned InitVal = 0; + unsigned LoopVal = 0; + getPhiRegs(*BBI, BB, InitVal, LoopVal); + + unsigned PhiOp1 = 0; + // The Phi value from the loop body typically is defined in the loop, but + // not always. So, we need to check if the value is defined in the loop. + unsigned PhiOp2 = LoopVal; + if (VRMap[LastStageNum].count(LoopVal)) + PhiOp2 = VRMap[LastStageNum][LoopVal]; + + int StageScheduled = Schedule.getStage(&*BBI); + int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); + unsigned NumStages = getStagesForReg(Def, CurStageNum); + if (NumStages == 0) { + // We don't need to generate a Phi anymore, but we need to rename any uses + // of the Phi value. + unsigned NewReg = VRMap[PrevStage][LoopVal]; + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, + InitVal, NewReg); + if (VRMap[CurStageNum].count(LoopVal)) + VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; + } + // Adjust the number of Phis needed depending on the number of prologs left, + // and the distance from where the Phi is first scheduled. The number of + // Phis cannot exceed the number of prolog stages. Each stage can + // potentially define two values. + unsigned MaxPhis = PrologStage + 2; + if (!InKernel && (int)PrologStage <= LoopValStage) + MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); + unsigned NumPhis = std::min(NumStages, MaxPhis); + + unsigned NewReg = 0; + unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; + // In the epilog, we may need to look back one stage to get the correct + // Phi name, because the epilog and prolog blocks execute the same stage. + // The correct name is from the previous block only when the Phi has + // been completely scheduled prior to the epilog, and Phi value is not + // needed in multiple stages. + int StageDiff = 0; + if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && + NumPhis == 1) + StageDiff = 1; + // Adjust the computations below when the phi and the loop definition + // are scheduled in different stages. + if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) + StageDiff = StageScheduled - LoopValStage; + for (unsigned np = 0; np < NumPhis; ++np) { + // If the Phi hasn't been scheduled, then use the initial Phi operand + // value. Otherwise, use the scheduled version of the instruction. This + // is a little complicated when a Phi references another Phi. + if (np > PrologStage || StageScheduled >= (int)LastStageNum) + PhiOp1 = InitVal; + // Check if the Phi has already been scheduled in a prolog stage. + else if (PrologStage >= AccessStage + StageDiff + np && + VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) + PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; + // Check if the Phi has already been scheduled, but the loop instruction + // is either another Phi, or doesn't occur in the loop. + else if (PrologStage >= AccessStage + StageDiff + np) { + // If the Phi references another Phi, we need to examine the other + // Phi to get the correct value. + PhiOp1 = LoopVal; + MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); + int Indirects = 1; + while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { + int PhiStage = Schedule.getStage(InstOp1); + if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) + PhiOp1 = getInitPhiReg(*InstOp1, BB); + else + PhiOp1 = getLoopPhiReg(*InstOp1, BB); + InstOp1 = MRI.getVRegDef(PhiOp1); + int PhiOpStage = Schedule.getStage(InstOp1); + int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); + if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && + VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { + PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; + break; + } + ++Indirects; + } + } else + PhiOp1 = InitVal; + // If this references a generated Phi in the kernel, get the Phi operand + // from the incoming block. + if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) + if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) + PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); + + MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); + bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); + // In the epilog, a map lookup is needed to get the value from the kernel, + // or previous epilog block. How is does this depends on if the + // instruction is scheduled in the previous block. + if (!InKernel) { + int StageDiffAdj = 0; + if (LoopValStage != -1 && StageScheduled > LoopValStage) + StageDiffAdj = StageScheduled - LoopValStage; + // Use the loop value defined in the kernel, unless the kernel + // contains the last definition of the Phi. + if (np == 0 && PrevStage == LastStageNum && + (StageScheduled != 0 || LoopValStage != 0) && + VRMap[PrevStage - StageDiffAdj].count(LoopVal)) + PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; + // Use the value defined by the Phi. We add one because we switch + // from looking at the loop value to the Phi definition. + else if (np > 0 && PrevStage == LastStageNum && + VRMap[PrevStage - np + 1].count(Def)) + PhiOp2 = VRMap[PrevStage - np + 1][Def]; + // Use the loop value defined in the kernel. + else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && + VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) + PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; + // Use the value defined by the Phi, unless we're generating the first + // epilog and the Phi refers to a Phi in a different stage. + else if (VRMap[PrevStage - np].count(Def) && + (!LoopDefIsPhi || (PrevStage != LastStageNum) || + (LoopValStage == StageScheduled))) + PhiOp2 = VRMap[PrevStage - np][Def]; + } + + // Check if we can reuse an existing Phi. This occurs when a Phi + // references another Phi, and the other Phi is scheduled in an + // earlier stage. We can try to reuse an existing Phi up until the last + // stage of the current Phi. + if (LoopDefIsPhi) { + if (static_cast<int>(PrologStage - np) >= StageScheduled) { + int LVNumStages = getStagesForPhi(LoopVal); + int StageDiff = (StageScheduled - LoopValStage); + LVNumStages -= StageDiff; + // Make sure the loop value Phi has been processed already. + if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { + NewReg = PhiOp2; + unsigned ReuseStage = CurStageNum; + if (isLoopCarried(*PhiInst)) + ReuseStage -= LVNumStages; + // Check if the Phi to reuse has been generated yet. If not, then + // there is nothing to reuse. + if (VRMap[ReuseStage - np].count(LoopVal)) { + NewReg = VRMap[ReuseStage - np][LoopVal]; + + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, + Def, NewReg); + // Update the map with the new Phi name. + VRMap[CurStageNum - np][Def] = NewReg; + PhiOp2 = NewReg; + if (VRMap[LastStageNum - np - 1].count(LoopVal)) + PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; + + if (IsLast && np == NumPhis - 1) + replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); + continue; + } + } + } + if (InKernel && StageDiff > 0 && + VRMap[CurStageNum - StageDiff - np].count(LoopVal)) + PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; + } + + const TargetRegisterClass *RC = MRI.getRegClass(Def); + NewReg = MRI.createVirtualRegister(RC); + + MachineInstrBuilder NewPhi = + BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), + TII->get(TargetOpcode::PHI), NewReg); + NewPhi.addReg(PhiOp1).addMBB(BB1); + NewPhi.addReg(PhiOp2).addMBB(BB2); + if (np == 0) + InstrMap[NewPhi] = &*BBI; + + // We define the Phis after creating the new pipelined code, so + // we need to rename the Phi values in scheduled instructions. + + unsigned PrevReg = 0; + if (InKernel && VRMap[PrevStage - np].count(LoopVal)) + PrevReg = VRMap[PrevStage - np][LoopVal]; + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, + NewReg, PrevReg); + // If the Phi has been scheduled, use the new name for rewriting. + if (VRMap[CurStageNum - np].count(Def)) { + unsigned R = VRMap[CurStageNum - np][Def]; + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, + NewReg); + } + + // Check if we need to rename any uses that occurs after the loop. The + // register to replace depends on whether the Phi is scheduled in the + // epilog. + if (IsLast && np == NumPhis - 1) + replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); + + // In the kernel, a dependent Phi uses the value from this Phi. + if (InKernel) + PhiOp2 = NewReg; + + // Update the map with the new Phi name. + VRMap[CurStageNum - np][Def] = NewReg; + } + + while (NumPhis++ < NumStages) { + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, + NewReg, 0); + } + + // Check if we need to rename a Phi that has been eliminated due to + // scheduling. + if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) + replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); + } +} + +/// Generate Phis for the specified block in the generated pipelined code. +/// These are new Phis needed because the definition is scheduled after the +/// use in the pipelined sequence. +void ModuloScheduleExpander::generatePhis( + MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, + MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, + unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { + // Compute the stage number that contains the initial Phi value, and + // the Phi from the previous stage. + unsigned PrologStage = 0; + unsigned PrevStage = 0; + unsigned StageDiff = CurStageNum - LastStageNum; + bool InKernel = (StageDiff == 0); + if (InKernel) { + PrologStage = LastStageNum - 1; + PrevStage = CurStageNum; + } else { + PrologStage = LastStageNum - StageDiff; + PrevStage = LastStageNum + StageDiff - 1; + } + + for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), + BBE = BB->instr_end(); + BBI != BBE; ++BBI) { + for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = BBI->getOperand(i); + if (!MO.isReg() || !MO.isDef() || + !Register::isVirtualRegister(MO.getReg())) + continue; + + int StageScheduled = Schedule.getStage(&*BBI); + assert(StageScheduled != -1 && "Expecting scheduled instruction."); + Register Def = MO.getReg(); + unsigned NumPhis = getStagesForReg(Def, CurStageNum); + // An instruction scheduled in stage 0 and is used after the loop + // requires a phi in the epilog for the last definition from either + // the kernel or prolog. + if (!InKernel && NumPhis == 0 && StageScheduled == 0 && + hasUseAfterLoop(Def, BB, MRI)) + NumPhis = 1; + if (!InKernel && (unsigned)StageScheduled > PrologStage) + continue; + + unsigned PhiOp2 = VRMap[PrevStage][Def]; + if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) + if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) + PhiOp2 = getLoopPhiReg(*InstOp2, BB2); + // The number of Phis can't exceed the number of prolog stages. The + // prolog stage number is zero based. + if (NumPhis > PrologStage + 1 - StageScheduled) + NumPhis = PrologStage + 1 - StageScheduled; + for (unsigned np = 0; np < NumPhis; ++np) { + unsigned PhiOp1 = VRMap[PrologStage][Def]; + if (np <= PrologStage) + PhiOp1 = VRMap[PrologStage - np][Def]; + if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { + if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) + PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); + if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) + PhiOp1 = getInitPhiReg(*InstOp1, NewBB); + } + if (!InKernel) + PhiOp2 = VRMap[PrevStage - np][Def]; + + const TargetRegisterClass *RC = MRI.getRegClass(Def); + Register NewReg = MRI.createVirtualRegister(RC); + + MachineInstrBuilder NewPhi = + BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), + TII->get(TargetOpcode::PHI), NewReg); + NewPhi.addReg(PhiOp1).addMBB(BB1); + NewPhi.addReg(PhiOp2).addMBB(BB2); + if (np == 0) + InstrMap[NewPhi] = &*BBI; + + // Rewrite uses and update the map. The actions depend upon whether + // we generating code for the kernel or epilog blocks. + if (InKernel) { + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, + NewReg); + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, + NewReg); + + PhiOp2 = NewReg; + VRMap[PrevStage - np - 1][Def] = NewReg; + } else { + VRMap[CurStageNum - np][Def] = NewReg; + if (np == NumPhis - 1) + rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, + NewReg); + } + if (IsLast && np == NumPhis - 1) + replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); + } + } + } +} + +/// Remove instructions that generate values with no uses. +/// Typically, these are induction variable operations that generate values +/// used in the loop itself. A dead instruction has a definition with +/// no uses, or uses that occur in the original loop only. +void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, + MBBVectorTy &EpilogBBs) { + // For each epilog block, check that the value defined by each instruction + // is used. If not, delete it. + for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), + MBE = EpilogBBs.rend(); + MBB != MBE; ++MBB) + for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), + ME = (*MBB)->instr_rend(); + MI != ME;) { + // From DeadMachineInstructionElem. Don't delete inline assembly. + if (MI->isInlineAsm()) { + ++MI; + continue; + } + bool SawStore = false; + // Check if it's safe to remove the instruction due to side effects. + // We can, and want to, remove Phis here. + if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { + ++MI; + continue; + } + bool used = true; + for (MachineInstr::mop_iterator MOI = MI->operands_begin(), + MOE = MI->operands_end(); + MOI != MOE; ++MOI) { + if (!MOI->isReg() || !MOI->isDef()) + continue; + Register reg = MOI->getReg(); + // Assume physical registers are used, unless they are marked dead. + if (Register::isPhysicalRegister(reg)) { + used = !MOI->isDead(); + if (used) + break; + continue; + } + unsigned realUses = 0; + for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), + EI = MRI.use_end(); + UI != EI; ++UI) { + // Check if there are any uses that occur only in the original + // loop. If so, that's not a real use. + if (UI->getParent()->getParent() != BB) { + realUses++; + used = true; + break; + } + } + if (realUses > 0) + break; + used = false; + } + if (!used) { + LIS.RemoveMachineInstrFromMaps(*MI); + MI++->eraseFromParent(); + continue; + } + ++MI; + } + // In the kernel block, check if we can remove a Phi that generates a value + // used in an instruction removed in the epilog block. + for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), + BBE = KernelBB->getFirstNonPHI(); + BBI != BBE;) { + MachineInstr *MI = &*BBI; + ++BBI; + Register reg = MI->getOperand(0).getReg(); + if (MRI.use_begin(reg) == MRI.use_end()) { + LIS.RemoveMachineInstrFromMaps(*MI); + MI->eraseFromParent(); + } + } +} + +/// For loop carried definitions, we split the lifetime of a virtual register +/// that has uses past the definition in the next iteration. A copy with a new +/// virtual register is inserted before the definition, which helps with +/// generating a better register assignment. +/// +/// v1 = phi(a, v2) v1 = phi(a, v2) +/// v2 = phi(b, v3) v2 = phi(b, v3) +/// v3 = .. v4 = copy v1 +/// .. = V1 v3 = .. +/// .. = v4 +void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, + MBBVectorTy &EpilogBBs) { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + for (auto &PHI : KernelBB->phis()) { + Register Def = PHI.getOperand(0).getReg(); + // Check for any Phi definition that used as an operand of another Phi + // in the same block. + for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), + E = MRI.use_instr_end(); + I != E; ++I) { + if (I->isPHI() && I->getParent() == KernelBB) { + // Get the loop carried definition. + unsigned LCDef = getLoopPhiReg(PHI, KernelBB); + if (!LCDef) + continue; + MachineInstr *MI = MRI.getVRegDef(LCDef); + if (!MI || MI->getParent() != KernelBB || MI->isPHI()) + continue; + // Search through the rest of the block looking for uses of the Phi + // definition. If one occurs, then split the lifetime. + unsigned SplitReg = 0; + for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), + KernelBB->instr_end())) + if (BBJ.readsRegister(Def)) { + // We split the lifetime when we find the first use. + if (SplitReg == 0) { + SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); + BuildMI(*KernelBB, MI, MI->getDebugLoc(), + TII->get(TargetOpcode::COPY), SplitReg) + .addReg(Def); + } + BBJ.substituteRegister(Def, SplitReg, 0, *TRI); + } + if (!SplitReg) + continue; + // Search through each of the epilog blocks for any uses to be renamed. + for (auto &Epilog : EpilogBBs) + for (auto &I : *Epilog) + if (I.readsRegister(Def)) + I.substituteRegister(Def, SplitReg, 0, *TRI); + break; + } + } + } +} + +/// Remove the incoming block from the Phis in a basic block. +static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { + for (MachineInstr &MI : *BB) { + if (!MI.isPHI()) + break; + for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) + if (MI.getOperand(i + 1).getMBB() == Incoming) { + MI.RemoveOperand(i + 1); + MI.RemoveOperand(i); + break; + } + } +} + +/// Create branches from each prolog basic block to the appropriate epilog +/// block. These edges are needed if the loop ends before reaching the +/// kernel. +void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, + MBBVectorTy &PrologBBs, + MachineBasicBlock *KernelBB, + MBBVectorTy &EpilogBBs, + ValueMapTy *VRMap) { + assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); + MachineBasicBlock *LastPro = KernelBB; + MachineBasicBlock *LastEpi = KernelBB; + + // Start from the blocks connected to the kernel and work "out" + // to the first prolog and the last epilog blocks. + SmallVector<MachineInstr *, 4> PrevInsts; + unsigned MaxIter = PrologBBs.size() - 1; + for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { + // Add branches to the prolog that go to the corresponding + // epilog, and the fall-thru prolog/kernel block. + MachineBasicBlock *Prolog = PrologBBs[j]; + MachineBasicBlock *Epilog = EpilogBBs[i]; + + SmallVector<MachineOperand, 4> Cond; + Optional<bool> StaticallyGreater = + LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); + unsigned numAdded = 0; + if (!StaticallyGreater.hasValue()) { + Prolog->addSuccessor(Epilog); + numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); + } else if (*StaticallyGreater == false) { + Prolog->addSuccessor(Epilog); + Prolog->removeSuccessor(LastPro); + LastEpi->removeSuccessor(Epilog); + numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); + removePhis(Epilog, LastEpi); + // Remove the blocks that are no longer referenced. + if (LastPro != LastEpi) { + LastEpi->clear(); + LastEpi->eraseFromParent(); + } + if (LastPro == KernelBB) { + LoopInfo->disposed(); + NewKernel = nullptr; + } + LastPro->clear(); + LastPro->eraseFromParent(); + } else { + numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); + removePhis(Epilog, Prolog); + } + LastPro = Prolog; + LastEpi = Epilog; + for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), + E = Prolog->instr_rend(); + I != E && numAdded > 0; ++I, --numAdded) + updateInstruction(&*I, false, j, 0, VRMap); + } + + if (NewKernel) { + LoopInfo->setPreheader(PrologBBs[MaxIter]); + LoopInfo->adjustTripCount(-(MaxIter + 1)); + } +} + +/// Return true if we can compute the amount the instruction changes +/// during each iteration. Set Delta to the amount of the change. +bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + const MachineOperand *BaseOp; + int64_t Offset; + bool OffsetIsScalable; + if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) + return false; + + // FIXME: This algorithm assumes instructions have fixed-size offsets. + if (OffsetIsScalable) + return false; + + if (!BaseOp->isReg()) + return false; + + Register BaseReg = BaseOp->getReg(); + + MachineRegisterInfo &MRI = MF.getRegInfo(); + // Check if there is a Phi. If so, get the definition in the loop. + MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); + if (BaseDef && BaseDef->isPHI()) { + BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); + BaseDef = MRI.getVRegDef(BaseReg); + } + if (!BaseDef) + return false; + + int D = 0; + if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) + return false; + + Delta = D; + return true; +} + +/// Update the memory operand with a new offset when the pipeliner +/// generates a new copy of the instruction that refers to a +/// different memory location. +void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, + MachineInstr &OldMI, + unsigned Num) { + if (Num == 0) + return; + // If the instruction has memory operands, then adjust the offset + // when the instruction appears in different stages. + if (NewMI.memoperands_empty()) + return; + SmallVector<MachineMemOperand *, 2> NewMMOs; + for (MachineMemOperand *MMO : NewMI.memoperands()) { + // TODO: Figure out whether isAtomic is really necessary (see D57601). + if (MMO->isVolatile() || MMO->isAtomic() || + (MMO->isInvariant() && MMO->isDereferenceable()) || + (!MMO->getValue())) { + NewMMOs.push_back(MMO); + continue; + } + unsigned Delta; + if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { + int64_t AdjOffset = Delta * Num; + NewMMOs.push_back( + MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); + } else { + NewMMOs.push_back( + MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); + } + } + NewMI.setMemRefs(MF, NewMMOs); +} + +/// Clone the instruction for the new pipelined loop and update the +/// memory operands, if needed. +MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, + unsigned CurStageNum, + unsigned InstStageNum) { + MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); + // Check for tied operands in inline asm instructions. This should be handled + // elsewhere, but I'm not sure of the best solution. + if (OldMI->isInlineAsm()) + for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { + const auto &MO = OldMI->getOperand(i); + if (MO.isReg() && MO.isUse()) + break; + unsigned UseIdx; + if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) + NewMI->tieOperands(i, UseIdx); + } + updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); + return NewMI; +} + +/// Clone the instruction for the new pipelined loop. If needed, this +/// function updates the instruction using the values saved in the +/// InstrChanges structure. +MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( + MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { + MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); + auto It = InstrChanges.find(OldMI); + if (It != InstrChanges.end()) { + std::pair<unsigned, int64_t> RegAndOffset = It->second; + unsigned BasePos, OffsetPos; + if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) + return nullptr; + int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); + MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); + if (Schedule.getStage(LoopDef) > (signed)InstStageNum) + NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); + NewMI->getOperand(OffsetPos).setImm(NewOffset); + } + updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); + return NewMI; +} + +/// Update the machine instruction with new virtual registers. This +/// function may change the defintions and/or uses. +void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, + bool LastDef, + unsigned CurStageNum, + unsigned InstrStageNum, + ValueMapTy *VRMap) { + for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = NewMI->getOperand(i); + if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) + continue; + Register reg = MO.getReg(); + if (MO.isDef()) { + // Create a new virtual register for the definition. + const TargetRegisterClass *RC = MRI.getRegClass(reg); + Register NewReg = MRI.createVirtualRegister(RC); + MO.setReg(NewReg); + VRMap[CurStageNum][reg] = NewReg; + if (LastDef) + replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); + } else if (MO.isUse()) { + MachineInstr *Def = MRI.getVRegDef(reg); + // Compute the stage that contains the last definition for instruction. + int DefStageNum = Schedule.getStage(Def); + unsigned StageNum = CurStageNum; + if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { + // Compute the difference in stages between the defintion and the use. + unsigned StageDiff = (InstrStageNum - DefStageNum); + // Make an adjustment to get the last definition. + StageNum -= StageDiff; + } + if (VRMap[StageNum].count(reg)) + MO.setReg(VRMap[StageNum][reg]); + } + } +} + +/// Return the instruction in the loop that defines the register. +/// If the definition is a Phi, then follow the Phi operand to +/// the instruction in the loop. +MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { + SmallPtrSet<MachineInstr *, 8> Visited; + MachineInstr *Def = MRI.getVRegDef(Reg); + while (Def->isPHI()) { + if (!Visited.insert(Def).second) + break; + for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) + if (Def->getOperand(i + 1).getMBB() == BB) { + Def = MRI.getVRegDef(Def->getOperand(i).getReg()); + break; + } + } + return Def; +} + +/// Return the new name for the value from the previous stage. +unsigned ModuloScheduleExpander::getPrevMapVal( + unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, + ValueMapTy *VRMap, MachineBasicBlock *BB) { + unsigned PrevVal = 0; + if (StageNum > PhiStage) { + MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); + if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) + // The name is defined in the previous stage. + PrevVal = VRMap[StageNum - 1][LoopVal]; + else if (VRMap[StageNum].count(LoopVal)) + // The previous name is defined in the current stage when the instruction + // order is swapped. + PrevVal = VRMap[StageNum][LoopVal]; + else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) + // The loop value hasn't yet been scheduled. + PrevVal = LoopVal; + else if (StageNum == PhiStage + 1) + // The loop value is another phi, which has not been scheduled. + PrevVal = getInitPhiReg(*LoopInst, BB); + else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) + // The loop value is another phi, which has been scheduled. + PrevVal = + getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), + LoopStage, VRMap, BB); + } + return PrevVal; +} + +/// Rewrite the Phi values in the specified block to use the mappings +/// from the initial operand. Once the Phi is scheduled, we switch +/// to using the loop value instead of the Phi value, so those names +/// do not need to be rewritten. +void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, + unsigned StageNum, + ValueMapTy *VRMap, + InstrMapTy &InstrMap) { + for (auto &PHI : BB->phis()) { + unsigned InitVal = 0; + unsigned LoopVal = 0; + getPhiRegs(PHI, BB, InitVal, LoopVal); + Register PhiDef = PHI.getOperand(0).getReg(); + + unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); + unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); + unsigned NumPhis = getStagesForPhi(PhiDef); + if (NumPhis > StageNum) + NumPhis = StageNum; + for (unsigned np = 0; np <= NumPhis; ++np) { + unsigned NewVal = + getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); + if (!NewVal) + NewVal = InitVal; + rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, + NewVal); + } + } +} + +/// Rewrite a previously scheduled instruction to use the register value +/// from the new instruction. Make sure the instruction occurs in the +/// basic block, and we don't change the uses in the new instruction. +void ModuloScheduleExpander::rewriteScheduledInstr( + MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, + unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, + unsigned PrevReg) { + bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); + int StagePhi = Schedule.getStage(Phi) + PhiNum; + // Rewrite uses that have been scheduled already to use the new + // Phi register. + for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), + EI = MRI.use_end(); + UI != EI;) { + MachineOperand &UseOp = *UI; + MachineInstr *UseMI = UseOp.getParent(); + ++UI; + if (UseMI->getParent() != BB) + continue; + if (UseMI->isPHI()) { + if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) + continue; + if (getLoopPhiReg(*UseMI, BB) != OldReg) + continue; + } + InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); + assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); + MachineInstr *OrigMI = OrigInstr->second; + int StageSched = Schedule.getStage(OrigMI); + int CycleSched = Schedule.getCycle(OrigMI); + unsigned ReplaceReg = 0; + // This is the stage for the scheduled instruction. + if (StagePhi == StageSched && Phi->isPHI()) { + int CyclePhi = Schedule.getCycle(Phi); + if (PrevReg && InProlog) + ReplaceReg = PrevReg; + else if (PrevReg && !isLoopCarried(*Phi) && + (CyclePhi <= CycleSched || OrigMI->isPHI())) + ReplaceReg = PrevReg; + else + ReplaceReg = NewReg; + } + // The scheduled instruction occurs before the scheduled Phi, and the + // Phi is not loop carried. + if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) + ReplaceReg = NewReg; + if (StagePhi > StageSched && Phi->isPHI()) + ReplaceReg = NewReg; + if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) + ReplaceReg = NewReg; + if (ReplaceReg) { + MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); + UseOp.setReg(ReplaceReg); + } + } +} + +bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { + if (!Phi.isPHI()) + return false; + int DefCycle = Schedule.getCycle(&Phi); + int DefStage = Schedule.getStage(&Phi); + + unsigned InitVal = 0; + unsigned LoopVal = 0; + getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); + MachineInstr *Use = MRI.getVRegDef(LoopVal); + if (!Use || Use->isPHI()) + return true; + int LoopCycle = Schedule.getCycle(Use); + int LoopStage = Schedule.getStage(Use); + return (LoopCycle > DefCycle) || (LoopStage <= DefStage); +} + +//===----------------------------------------------------------------------===// +// PeelingModuloScheduleExpander implementation +//===----------------------------------------------------------------------===// +// This is a reimplementation of ModuloScheduleExpander that works by creating +// a fully correct steady-state kernel and peeling off the prolog and epilogs. +//===----------------------------------------------------------------------===// + +namespace { +// Remove any dead phis in MBB. Dead phis either have only one block as input +// (in which case they are the identity) or have no uses. +void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, + LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { + bool Changed = true; + while (Changed) { + Changed = false; + for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) { + MachineInstr &MI = *I++; + assert(MI.isPHI()); + if (MRI.use_empty(MI.getOperand(0).getReg())) { + if (LIS) + LIS->RemoveMachineInstrFromMaps(MI); + MI.eraseFromParent(); + Changed = true; + } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { + MRI.constrainRegClass(MI.getOperand(1).getReg(), + MRI.getRegClass(MI.getOperand(0).getReg())); + MRI.replaceRegWith(MI.getOperand(0).getReg(), + MI.getOperand(1).getReg()); + if (LIS) + LIS->RemoveMachineInstrFromMaps(MI); + MI.eraseFromParent(); + Changed = true; + } + } + } +} + +/// Rewrites the kernel block in-place to adhere to the given schedule. +/// KernelRewriter holds all of the state required to perform the rewriting. +class KernelRewriter { + ModuloSchedule &S; + MachineBasicBlock *BB; + MachineBasicBlock *PreheaderBB, *ExitBB; + MachineRegisterInfo &MRI; + const TargetInstrInfo *TII; + LiveIntervals *LIS; + + // Map from register class to canonical undef register for that class. + DenseMap<const TargetRegisterClass *, Register> Undefs; + // Map from <LoopReg, InitReg> to phi register for all created phis. Note that + // this map is only used when InitReg is non-undef. + DenseMap<std::pair<unsigned, unsigned>, Register> Phis; + // Map from LoopReg to phi register where the InitReg is undef. + DenseMap<Register, Register> UndefPhis; + + // Reg is used by MI. Return the new register MI should use to adhere to the + // schedule. Insert phis as necessary. + Register remapUse(Register Reg, MachineInstr &MI); + // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. + // If InitReg is not given it is chosen arbitrarily. It will either be undef + // or will be chosen so as to share another phi. + Register phi(Register LoopReg, Optional<Register> InitReg = {}, + const TargetRegisterClass *RC = nullptr); + // Create an undef register of the given register class. + Register undef(const TargetRegisterClass *RC); + +public: + KernelRewriter(MachineLoop &L, ModuloSchedule &S, + LiveIntervals *LIS = nullptr); + void rewrite(); +}; +} // namespace + +KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, + LiveIntervals *LIS) + : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()), + ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), + TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { + PreheaderBB = *BB->pred_begin(); + if (PreheaderBB == BB) + PreheaderBB = *std::next(BB->pred_begin()); +} + +void KernelRewriter::rewrite() { + // Rearrange the loop to be in schedule order. Note that the schedule may + // contain instructions that are not owned by the loop block (InstrChanges and + // friends), so we gracefully handle unowned instructions and delete any + // instructions that weren't in the schedule. + auto InsertPt = BB->getFirstTerminator(); + MachineInstr *FirstMI = nullptr; + for (MachineInstr *MI : S.getInstructions()) { + if (MI->isPHI()) + continue; + if (MI->getParent()) + MI->removeFromParent(); + BB->insert(InsertPt, MI); + if (!FirstMI) + FirstMI = MI; + } + assert(FirstMI && "Failed to find first MI in schedule"); + + // At this point all of the scheduled instructions are between FirstMI + // and the end of the block. Kill from the first non-phi to FirstMI. + for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { + if (LIS) + LIS->RemoveMachineInstrFromMaps(*I); + (I++)->eraseFromParent(); + } + + // Now remap every instruction in the loop. + for (MachineInstr &MI : *BB) { + if (MI.isPHI() || MI.isTerminator()) + continue; + for (MachineOperand &MO : MI.uses()) { + if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) + continue; + Register Reg = remapUse(MO.getReg(), MI); + MO.setReg(Reg); + } + } + EliminateDeadPhis(BB, MRI, LIS); + + // Ensure a phi exists for all instructions that are either referenced by + // an illegal phi or by an instruction outside the loop. This allows us to + // treat remaps of these values the same as "normal" values that come from + // loop-carried phis. + for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { + if (MI->isPHI()) { + Register R = MI->getOperand(0).getReg(); + phi(R); + continue; + } + + for (MachineOperand &Def : MI->defs()) { + for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { + if (MI.getParent() != BB) { + phi(Def.getReg()); + break; + } + } + } + } +} + +Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { + MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); + if (!Producer) + return Reg; + + int ConsumerStage = S.getStage(&MI); + if (!Producer->isPHI()) { + // Non-phi producers are simple to remap. Insert as many phis as the + // difference between the consumer and producer stages. + if (Producer->getParent() != BB) + // Producer was not inside the loop. Use the register as-is. + return Reg; + int ProducerStage = S.getStage(Producer); + assert(ConsumerStage != -1 && + "In-loop consumer should always be scheduled!"); + assert(ConsumerStage >= ProducerStage); + unsigned StageDiff = ConsumerStage - ProducerStage; + + for (unsigned I = 0; I < StageDiff; ++I) + Reg = phi(Reg); + return Reg; + } + + // First, dive through the phi chain to find the defaults for the generated + // phis. + SmallVector<Optional<Register>, 4> Defaults; + Register LoopReg = Reg; + auto LoopProducer = Producer; + while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { + LoopReg = getLoopPhiReg(*LoopProducer, BB); + Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); + LoopProducer = MRI.getUniqueVRegDef(LoopReg); + assert(LoopProducer); + } + int LoopProducerStage = S.getStage(LoopProducer); + + Optional<Register> IllegalPhiDefault; + + if (LoopProducerStage == -1) { + // Do nothing. + } else if (LoopProducerStage > ConsumerStage) { + // This schedule is only representable if ProducerStage == ConsumerStage+1. + // In addition, Consumer's cycle must be scheduled after Producer in the + // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP + // functions. +#ifndef NDEBUG // Silence unused variables in non-asserts mode. + int LoopProducerCycle = S.getCycle(LoopProducer); + int ConsumerCycle = S.getCycle(&MI); +#endif + assert(LoopProducerCycle <= ConsumerCycle); + assert(LoopProducerStage == ConsumerStage + 1); + // Peel off the first phi from Defaults and insert a phi between producer + // and consumer. This phi will not be at the front of the block so we + // consider it illegal. It will only exist during the rewrite process; it + // needs to exist while we peel off prologs because these could take the + // default value. After that we can replace all uses with the loop producer + // value. + IllegalPhiDefault = Defaults.front(); + Defaults.erase(Defaults.begin()); + } else { + assert(ConsumerStage >= LoopProducerStage); + int StageDiff = ConsumerStage - LoopProducerStage; + if (StageDiff > 0) { + LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() + << " to " << (Defaults.size() + StageDiff) << "\n"); + // If we need more phis than we have defaults for, pad out with undefs for + // the earliest phis, which are at the end of the defaults chain (the + // chain is in reverse order). + Defaults.resize(Defaults.size() + StageDiff, Defaults.empty() + ? Optional<Register>() + : Defaults.back()); + } + } + + // Now we know the number of stages to jump back, insert the phi chain. + auto DefaultI = Defaults.rbegin(); + while (DefaultI != Defaults.rend()) + LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); + + if (IllegalPhiDefault.hasValue()) { + // The consumer optionally consumes LoopProducer in the same iteration + // (because the producer is scheduled at an earlier cycle than the consumer) + // or the initial value. To facilitate this we create an illegal block here + // by embedding a phi in the middle of the block. We will fix this up + // immediately prior to pruning. + auto RC = MRI.getRegClass(Reg); + Register R = MRI.createVirtualRegister(RC); + MachineInstr *IllegalPhi = + BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) + .addReg(IllegalPhiDefault.getValue()) + .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. + .addReg(LoopReg) + .addMBB(BB); // Block choice is arbitrary and has no effect. + // Illegal phi should belong to the producer stage so that it can be + // filtered correctly during peeling. + S.setStage(IllegalPhi, LoopProducerStage); + return R; + } + + return LoopReg; +} + +Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg, + const TargetRegisterClass *RC) { + // If the init register is not undef, try and find an existing phi. + if (InitReg.hasValue()) { + auto I = Phis.find({LoopReg, InitReg.getValue()}); + if (I != Phis.end()) + return I->second; + } else { + for (auto &KV : Phis) { + if (KV.first.first == LoopReg) + return KV.second; + } + } + + // InitReg is either undef or no existing phi takes InitReg as input. Try and + // find a phi that takes undef as input. + auto I = UndefPhis.find(LoopReg); + if (I != UndefPhis.end()) { + Register R = I->second; + if (!InitReg.hasValue()) + // Found a phi taking undef as input, and this input is undef so return + // without any more changes. + return R; + // Found a phi taking undef as input, so rewrite it to take InitReg. + MachineInstr *MI = MRI.getVRegDef(R); + MI->getOperand(1).setReg(InitReg.getValue()); + Phis.insert({{LoopReg, InitReg.getValue()}, R}); + MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue())); + UndefPhis.erase(I); + return R; + } + + // Failed to find any existing phi to reuse, so create a new one. + if (!RC) + RC = MRI.getRegClass(LoopReg); + Register R = MRI.createVirtualRegister(RC); + if (InitReg.hasValue()) + MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); + BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) + .addReg(InitReg.hasValue() ? *InitReg : undef(RC)) + .addMBB(PreheaderBB) + .addReg(LoopReg) + .addMBB(BB); + if (!InitReg.hasValue()) + UndefPhis[LoopReg] = R; + else + Phis[{LoopReg, *InitReg}] = R; + return R; +} + +Register KernelRewriter::undef(const TargetRegisterClass *RC) { + Register &R = Undefs[RC]; + if (R == 0) { + // Create an IMPLICIT_DEF that defines this register if we need it. + // All uses of this should be removed by the time we have finished unrolling + // prologs and epilogs. + R = MRI.createVirtualRegister(RC); + auto *InsertBB = &PreheaderBB->getParent()->front(); + BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), + TII->get(TargetOpcode::IMPLICIT_DEF), R); + } + return R; +} + +namespace { +/// Describes an operand in the kernel of a pipelined loop. Characteristics of +/// the operand are discovered, such as how many in-loop PHIs it has to jump +/// through and defaults for these phis. +class KernelOperandInfo { + MachineBasicBlock *BB; + MachineRegisterInfo &MRI; + SmallVector<Register, 4> PhiDefaults; + MachineOperand *Source; + MachineOperand *Target; + +public: + KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, + const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) + : MRI(MRI) { + Source = MO; + BB = MO->getParent()->getParent(); + while (isRegInLoop(MO)) { + MachineInstr *MI = MRI.getVRegDef(MO->getReg()); + if (MI->isFullCopy()) { + MO = &MI->getOperand(1); + continue; + } + if (!MI->isPHI()) + break; + // If this is an illegal phi, don't count it in distance. + if (IllegalPhis.count(MI)) { + MO = &MI->getOperand(3); + continue; + } + + Register Default = getInitPhiReg(*MI, BB); + MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) + : &MI->getOperand(3); + PhiDefaults.push_back(Default); + } + Target = MO; + } + + bool operator==(const KernelOperandInfo &Other) const { + return PhiDefaults.size() == Other.PhiDefaults.size(); + } + + void print(raw_ostream &OS) const { + OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " + << *Source->getParent(); + } + +private: + bool isRegInLoop(MachineOperand *MO) { + return MO->isReg() && MO->getReg().isVirtual() && + MRI.getVRegDef(MO->getReg())->getParent() == BB; + } +}; +} // namespace + +MachineBasicBlock * +PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { + MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); + if (LPD == LPD_Front) + PeeledFront.push_back(NewBB); + else + PeeledBack.push_front(NewBB); + for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); + ++I, ++NI) { + CanonicalMIs[&*I] = &*I; + CanonicalMIs[&*NI] = &*I; + BlockMIs[{NewBB, &*I}] = &*NI; + BlockMIs[{BB, &*I}] = &*I; + } + return NewBB; +} + +void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, + int MinStage) { + for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); + I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { + MachineInstr *MI = &*I++; + int Stage = getStage(MI); + if (Stage == -1 || Stage >= MinStage) + continue; + + for (MachineOperand &DefMO : MI->defs()) { + SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; + for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { + // Only PHIs can use values from this block by construction. + // Match with the equivalent PHI in B. + assert(UseMI.isPHI()); + Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), + MI->getParent()); + Subs.emplace_back(&UseMI, Reg); + } + for (auto &Sub : Subs) + Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, + *MRI.getTargetRegisterInfo()); + } + if (LIS) + LIS->RemoveMachineInstrFromMaps(*MI); + MI->eraseFromParent(); + } +} + +void PeelingModuloScheduleExpander::moveStageBetweenBlocks( + MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { + auto InsertPt = DestBB->getFirstNonPHI(); + DenseMap<Register, Register> Remaps; + for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) { + MachineInstr *MI = &*I++; + if (MI->isPHI()) { + // This is an illegal PHI. If we move any instructions using an illegal + // PHI, we need to create a legal Phi. + if (getStage(MI) != Stage) { + // The legal Phi is not necessary if the illegal phi's stage + // is being moved. + Register PhiR = MI->getOperand(0).getReg(); + auto RC = MRI.getRegClass(PhiR); + Register NR = MRI.createVirtualRegister(RC); + MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), + DebugLoc(), TII->get(TargetOpcode::PHI), NR) + .addReg(PhiR) + .addMBB(SourceBB); + BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI; + CanonicalMIs[NI] = CanonicalMIs[MI]; + Remaps[PhiR] = NR; + } + } + if (getStage(MI) != Stage) + continue; + MI->removeFromParent(); + DestBB->insert(InsertPt, MI); + auto *KernelMI = CanonicalMIs[MI]; + BlockMIs[{DestBB, KernelMI}] = MI; + BlockMIs.erase({SourceBB, KernelMI}); + } + SmallVector<MachineInstr *, 4> PhiToDelete; + for (MachineInstr &MI : DestBB->phis()) { + assert(MI.getNumOperands() == 3); + MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); + // If the instruction referenced by the phi is moved inside the block + // we don't need the phi anymore. + if (getStage(Def) == Stage) { + Register PhiReg = MI.getOperand(0).getReg(); + assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1); + MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); + MI.getOperand(0).setReg(PhiReg); + PhiToDelete.push_back(&MI); + } + } + for (auto *P : PhiToDelete) + P->eraseFromParent(); + InsertPt = DestBB->getFirstNonPHI(); + // Helper to clone Phi instructions into the destination block. We clone Phi + // greedily to avoid combinatorial explosion of Phi instructions. + auto clonePhi = [&](MachineInstr *Phi) { + MachineInstr *NewMI = MF.CloneMachineInstr(Phi); + DestBB->insert(InsertPt, NewMI); + Register OrigR = Phi->getOperand(0).getReg(); + Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); + NewMI->getOperand(0).setReg(R); + NewMI->getOperand(1).setReg(OrigR); + NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); + Remaps[OrigR] = R; + CanonicalMIs[NewMI] = CanonicalMIs[Phi]; + BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; + PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; + return R; + }; + for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { + for (MachineOperand &MO : I->uses()) { + if (!MO.isReg()) + continue; + if (Remaps.count(MO.getReg())) + MO.setReg(Remaps[MO.getReg()]); + else { + // If we are using a phi from the source block we need to add a new phi + // pointing to the old one. + MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); + if (Use && Use->isPHI() && Use->getParent() == SourceBB) { + Register R = clonePhi(Use); + MO.setReg(R); + } + } + } + } +} + +Register +PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, + MachineInstr *Phi) { + unsigned distance = PhiNodeLoopIteration[Phi]; + MachineInstr *CanonicalUse = CanonicalPhi; + Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); + for (unsigned I = 0; I < distance; ++I) { + assert(CanonicalUse->isPHI()); + assert(CanonicalUse->getNumOperands() == 5); + unsigned LoopRegIdx = 3, InitRegIdx = 1; + if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) + std::swap(LoopRegIdx, InitRegIdx); + CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); + CanonicalUse = MRI.getVRegDef(CanonicalUseReg); + } + return CanonicalUseReg; +} + +void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { + BitVector LS(Schedule.getNumStages(), true); + BitVector AS(Schedule.getNumStages(), true); + LiveStages[BB] = LS; + AvailableStages[BB] = AS; + + // Peel out the prologs. + LS.reset(); + for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { + LS[I] = 1; + Prologs.push_back(peelKernel(LPD_Front)); + LiveStages[Prologs.back()] = LS; + AvailableStages[Prologs.back()] = LS; + } + + // Create a block that will end up as the new loop exiting block (dominated by + // all prologs and epilogs). It will only contain PHIs, in the same order as + // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property + // that the exiting block is a (sub) clone of BB. This in turn gives us the + // property that any value deffed in BB but used outside of BB is used by a + // PHI in the exiting block. + MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); + EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); + // Push out the epilogs, again in reverse order. + // We can't assume anything about the minumum loop trip count at this point, + // so emit a fairly complex epilog. + + // We first peel number of stages minus one epilogue. Then we remove dead + // stages and reorder instructions based on their stage. If we have 3 stages + // we generate first: + // E0[3, 2, 1] + // E1[3', 2'] + // E2[3''] + // And then we move instructions based on their stages to have: + // E0[3] + // E1[2, 3'] + // E2[1, 2', 3''] + // The transformation is legal because we only move instructions past + // instructions of a previous loop iteration. + for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { + Epilogs.push_back(peelKernel(LPD_Back)); + MachineBasicBlock *B = Epilogs.back(); + filterInstructions(B, Schedule.getNumStages() - I); + // Keep track at which iteration each phi belongs to. We need it to know + // what version of the variable to use during prologue/epilogue stitching. + EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); + for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi) + PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I; + } + for (size_t I = 0; I < Epilogs.size(); I++) { + LS.reset(); + for (size_t J = I; J < Epilogs.size(); J++) { + int Iteration = J; + unsigned Stage = Schedule.getNumStages() - 1 + I - J; + // Move stage one block at a time so that Phi nodes are updated correctly. + for (size_t K = Iteration; K > I; K--) + moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); + LS[Stage] = 1; + } + LiveStages[Epilogs[I]] = LS; + AvailableStages[Epilogs[I]] = AS; + } + + // Now we've defined all the prolog and epilog blocks as a fallthrough + // sequence, add the edges that will be followed if the loop trip count is + // lower than the number of stages (connecting prologs directly with epilogs). + auto PI = Prologs.begin(); + auto EI = Epilogs.begin(); + assert(Prologs.size() == Epilogs.size()); + for (; PI != Prologs.end(); ++PI, ++EI) { + MachineBasicBlock *Pred = *(*EI)->pred_begin(); + (*PI)->addSuccessor(*EI); + for (MachineInstr &MI : (*EI)->phis()) { + Register Reg = MI.getOperand(1).getReg(); + MachineInstr *Use = MRI.getUniqueVRegDef(Reg); + if (Use && Use->getParent() == Pred) { + MachineInstr *CanonicalUse = CanonicalMIs[Use]; + if (CanonicalUse->isPHI()) { + // If the use comes from a phi we need to skip as many phi as the + // distance between the epilogue and the kernel. Trace through the phi + // chain to find the right value. + Reg = getPhiCanonicalReg(CanonicalUse, Use); + } + Reg = getEquivalentRegisterIn(Reg, *PI); + } + MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); + MI.addOperand(MachineOperand::CreateMBB(*PI)); + } + } + + // Create a list of all blocks in order. + SmallVector<MachineBasicBlock *, 8> Blocks; + llvm::copy(PeeledFront, std::back_inserter(Blocks)); + Blocks.push_back(BB); + llvm::copy(PeeledBack, std::back_inserter(Blocks)); + + // Iterate in reverse order over all instructions, remapping as we go. + for (MachineBasicBlock *B : reverse(Blocks)) { + for (auto I = B->getFirstInstrTerminator()->getReverseIterator(); + I != std::next(B->getFirstNonPHI()->getReverseIterator());) { + MachineInstr *MI = &*I++; + rewriteUsesOf(MI); + } + } + for (auto *MI : IllegalPhisToDelete) { + if (LIS) + LIS->RemoveMachineInstrFromMaps(*MI); + MI->eraseFromParent(); + } + IllegalPhisToDelete.clear(); + + // Now all remapping has been done, we're free to optimize the generated code. + for (MachineBasicBlock *B : reverse(Blocks)) + EliminateDeadPhis(B, MRI, LIS); + EliminateDeadPhis(ExitingBB, MRI, LIS); +} + +MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { + MachineFunction &MF = *BB->getParent(); + MachineBasicBlock *Exit = *BB->succ_begin(); + if (Exit == BB) + Exit = *std::next(BB->succ_begin()); + + MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); + MF.insert(std::next(BB->getIterator()), NewBB); + + // Clone all phis in BB into NewBB and rewrite. + for (MachineInstr &MI : BB->phis()) { + auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); + Register OldR = MI.getOperand(3).getReg(); + Register R = MRI.createVirtualRegister(RC); + SmallVector<MachineInstr *, 4> Uses; + for (MachineInstr &Use : MRI.use_instructions(OldR)) + if (Use.getParent() != BB) + Uses.push_back(&Use); + for (MachineInstr *Use : Uses) + Use->substituteRegister(OldR, R, /*SubIdx=*/0, + *MRI.getTargetRegisterInfo()); + MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) + .addReg(OldR) + .addMBB(BB); + BlockMIs[{NewBB, &MI}] = NI; + CanonicalMIs[NI] = &MI; + } + BB->replaceSuccessor(Exit, NewBB); + Exit->replacePhiUsesWith(BB, NewBB); + NewBB->addSuccessor(Exit); + + MachineBasicBlock *TBB = nullptr, *FBB = nullptr; + SmallVector<MachineOperand, 4> Cond; + bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); + (void)CanAnalyzeBr; + assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); + TII->removeBranch(*BB); + TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, + Cond, DebugLoc()); + TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); + return NewBB; +} + +Register +PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, + MachineBasicBlock *BB) { + MachineInstr *MI = MRI.getUniqueVRegDef(Reg); + unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg); + return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); +} + +void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { + if (MI->isPHI()) { + // This is an illegal PHI. The loop-carried (desired) value is operand 3, + // and it is produced by this block. + Register PhiR = MI->getOperand(0).getReg(); + Register R = MI->getOperand(3).getReg(); + int RMIStage = getStage(MRI.getUniqueVRegDef(R)); + if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) + R = MI->getOperand(1).getReg(); + MRI.setRegClass(R, MRI.getRegClass(PhiR)); + MRI.replaceRegWith(PhiR, R); + // Postpone deleting the Phi as it may be referenced by BlockMIs and used + // later to figure out how to remap registers. + MI->getOperand(0).setReg(PhiR); + IllegalPhisToDelete.push_back(MI); + return; + } + + int Stage = getStage(MI); + if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || + LiveStages[MI->getParent()].test(Stage)) + // Instruction is live, no rewriting to do. + return; + + for (MachineOperand &DefMO : MI->defs()) { + SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; + for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { + // Only PHIs can use values from this block by construction. + // Match with the equivalent PHI in B. + assert(UseMI.isPHI()); + Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), + MI->getParent()); + Subs.emplace_back(&UseMI, Reg); + } + for (auto &Sub : Subs) + Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, + *MRI.getTargetRegisterInfo()); + } + if (LIS) + LIS->RemoveMachineInstrFromMaps(*MI); + MI->eraseFromParent(); +} + +void PeelingModuloScheduleExpander::fixupBranches() { + // Work outwards from the kernel. + bool KernelDisposed = false; + int TC = Schedule.getNumStages() - 1; + for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); + ++PI, ++EI, --TC) { + MachineBasicBlock *Prolog = *PI; + MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); + MachineBasicBlock *Epilog = *EI; + SmallVector<MachineOperand, 4> Cond; + TII->removeBranch(*Prolog); + Optional<bool> StaticallyGreater = + LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); + if (!StaticallyGreater.hasValue()) { + LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); + // Dynamically branch based on Cond. + TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); + } else if (*StaticallyGreater == false) { + LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); + // Prolog never falls through; branch to epilog and orphan interior + // blocks. Leave it to unreachable-block-elim to clean up. + Prolog->removeSuccessor(Fallthrough); + for (MachineInstr &P : Fallthrough->phis()) { + P.RemoveOperand(2); + P.RemoveOperand(1); + } + TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); + KernelDisposed = true; + } else { + LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); + // Prolog always falls through; remove incoming values in epilog. + Prolog->removeSuccessor(Epilog); + for (MachineInstr &P : Epilog->phis()) { + P.RemoveOperand(4); + P.RemoveOperand(3); + } + } + } + + if (!KernelDisposed) { + LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); + LoopInfo->setPreheader(Prologs.back()); + } else { + LoopInfo->disposed(); + } +} + +void PeelingModuloScheduleExpander::rewriteKernel() { + KernelRewriter KR(*Schedule.getLoop(), Schedule); + KR.rewrite(); +} + +void PeelingModuloScheduleExpander::expand() { + BB = Schedule.getLoop()->getTopBlock(); + Preheader = Schedule.getLoop()->getLoopPreheader(); + LLVM_DEBUG(Schedule.dump()); + LoopInfo = TII->analyzeLoopForPipelining(BB); + assert(LoopInfo); + + rewriteKernel(); + peelPrologAndEpilogs(); + fixupBranches(); +} + +void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { + BB = Schedule.getLoop()->getTopBlock(); + Preheader = Schedule.getLoop()->getLoopPreheader(); + + // Dump the schedule before we invalidate and remap all its instructions. + // Stash it in a string so we can print it if we found an error. + std::string ScheduleDump; + raw_string_ostream OS(ScheduleDump); + Schedule.print(OS); + OS.flush(); + + // First, run the normal ModuleScheduleExpander. We don't support any + // InstrChanges. + assert(LIS && "Requires LiveIntervals!"); + ModuloScheduleExpander MSE(MF, Schedule, *LIS, + ModuloScheduleExpander::InstrChangesTy()); + MSE.expand(); + MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); + if (!ExpandedKernel) { + // The expander optimized away the kernel. We can't do any useful checking. + MSE.cleanup(); + return; + } + // Before running the KernelRewriter, re-add BB into the CFG. + Preheader->addSuccessor(BB); + + // Now run the new expansion algorithm. + KernelRewriter KR(*Schedule.getLoop(), Schedule); + KR.rewrite(); + peelPrologAndEpilogs(); + + // Collect all illegal phis that the new algorithm created. We'll give these + // to KernelOperandInfo. + SmallPtrSet<MachineInstr *, 4> IllegalPhis; + for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { + if (NI->isPHI()) + IllegalPhis.insert(&*NI); + } + + // Co-iterate across both kernels. We expect them to be identical apart from + // phis and full COPYs (we look through both). + SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; + auto OI = ExpandedKernel->begin(); + auto NI = BB->begin(); + for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { + while (OI->isPHI() || OI->isFullCopy()) + ++OI; + while (NI->isPHI() || NI->isFullCopy()) + ++NI; + assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); + // Analyze every operand separately. + for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); + OOpI != OI->operands_end(); ++OOpI, ++NOpI) + KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), + KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); + } + + bool Failed = false; + for (auto &OldAndNew : KOIs) { + if (OldAndNew.first == OldAndNew.second) + continue; + Failed = true; + errs() << "Modulo kernel validation error: [\n"; + errs() << " [golden] "; + OldAndNew.first.print(errs()); + errs() << " "; + OldAndNew.second.print(errs()); + errs() << "]\n"; + } + + if (Failed) { + errs() << "Golden reference kernel:\n"; + ExpandedKernel->print(errs()); + errs() << "New kernel:\n"; + BB->print(errs()); + errs() << ScheduleDump; + report_fatal_error( + "Modulo kernel validation (-pipeliner-experimental-cg) failed"); + } + + // Cleanup by removing BB from the CFG again as the original + // ModuloScheduleExpander intended. + Preheader->removeSuccessor(BB); + MSE.cleanup(); +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleTestPass implementation +//===----------------------------------------------------------------------===// +// This pass constructs a ModuloSchedule from its module and runs +// ModuloScheduleExpander. +// +// The module is expected to contain a single-block analyzable loop. +// The total order of instructions is taken from the loop as-is. +// Instructions are expected to be annotated with a PostInstrSymbol. +// This PostInstrSymbol must have the following format: +// "Stage=%d Cycle=%d". +//===----------------------------------------------------------------------===// + +namespace { +class ModuloScheduleTest : public MachineFunctionPass { +public: + static char ID; + + ModuloScheduleTest() : MachineFunctionPass(ID) { + initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + void runOnLoop(MachineFunction &MF, MachineLoop &L); + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineLoopInfo>(); + AU.addRequired<LiveIntervals>(); + MachineFunctionPass::getAnalysisUsage(AU); + } +}; +} // namespace + +char ModuloScheduleTest::ID = 0; + +INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", + "Modulo Schedule test pass", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", + "Modulo Schedule test pass", false, false) + +bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { + MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); + for (auto *L : MLI) { + if (L->getTopBlock() != L->getBottomBlock()) + continue; + runOnLoop(MF, *L); + return false; + } + return false; +} + +static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { + std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); + std::pair<StringRef, StringRef> StageTokenAndValue = + getToken(StageAndCycle.first, "-"); + std::pair<StringRef, StringRef> CycleTokenAndValue = + getToken(StageAndCycle.second, "-"); + if (StageTokenAndValue.first != "Stage" || + CycleTokenAndValue.first != "_Cycle") { + llvm_unreachable( + "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); + return; + } + + StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); + CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); + + dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; +} + +void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { + LiveIntervals &LIS = getAnalysis<LiveIntervals>(); + MachineBasicBlock *BB = L.getTopBlock(); + dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; + + DenseMap<MachineInstr *, int> Cycle, Stage; + std::vector<MachineInstr *> Instrs; + for (MachineInstr &MI : *BB) { + if (MI.isTerminator()) + continue; + Instrs.push_back(&MI); + if (MCSymbol *Sym = MI.getPostInstrSymbol()) { + dbgs() << "Parsing post-instr symbol for " << MI; + parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); + } + } + + ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), + std::move(Stage)); + ModuloScheduleExpander MSE( + MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); + MSE.expand(); + MSE.cleanup(); +} + +//===----------------------------------------------------------------------===// +// ModuloScheduleTestAnnotater implementation +//===----------------------------------------------------------------------===// + +void ModuloScheduleTestAnnotater::annotate() { + for (MachineInstr *MI : S.getInstructions()) { + SmallVector<char, 16> SV; + raw_svector_ostream OS(SV); + OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); + MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); + MI->setPostInstrSymbol(MF, Sym); + } +} |