aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp2195
1 files changed, 2195 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp b/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp
new file mode 100644
index 0000000000..095da09ea8
--- /dev/null
+++ b/contrib/libs/llvm12/lib/CodeGen/ModuloSchedule.cpp
@@ -0,0 +1,2195 @@
+//===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/ModuloSchedule.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "pipeliner"
+using namespace llvm;
+
+void ModuloSchedule::print(raw_ostream &OS) {
+ for (MachineInstr *MI : ScheduledInstrs)
+ OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
+}
+
+//===----------------------------------------------------------------------===//
+// ModuloScheduleExpander implementation
+//===----------------------------------------------------------------------===//
+
+/// Return the register values for the operands of a Phi instruction.
+/// This function assume the instruction is a Phi.
+static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
+ unsigned &InitVal, unsigned &LoopVal) {
+ assert(Phi.isPHI() && "Expecting a Phi.");
+
+ InitVal = 0;
+ LoopVal = 0;
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != Loop)
+ InitVal = Phi.getOperand(i).getReg();
+ else
+ LoopVal = Phi.getOperand(i).getReg();
+
+ assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
+}
+
+/// Return the Phi register value that comes from the incoming block.
+static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return the Phi register value that comes the loop block.
+static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() == LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+void ModuloScheduleExpander::expand() {
+ BB = Schedule.getLoop()->getTopBlock();
+ Preheader = *BB->pred_begin();
+ if (Preheader == BB)
+ Preheader = *std::next(BB->pred_begin());
+
+ // Iterate over the definitions in each instruction, and compute the
+ // stage difference for each use. Keep the maximum value.
+ for (MachineInstr *MI : Schedule.getInstructions()) {
+ int DefStage = Schedule.getStage(MI);
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &Op = MI->getOperand(i);
+ if (!Op.isReg() || !Op.isDef())
+ continue;
+
+ Register Reg = Op.getReg();
+ unsigned MaxDiff = 0;
+ bool PhiIsSwapped = false;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ int UseStage = Schedule.getStage(UseMI);
+ unsigned Diff = 0;
+ if (UseStage != -1 && UseStage >= DefStage)
+ Diff = UseStage - DefStage;
+ if (MI->isPHI()) {
+ if (isLoopCarried(*MI))
+ ++Diff;
+ else
+ PhiIsSwapped = true;
+ }
+ MaxDiff = std::max(Diff, MaxDiff);
+ }
+ RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
+ }
+ }
+
+ generatePipelinedLoop();
+}
+
+void ModuloScheduleExpander::generatePipelinedLoop() {
+ LoopInfo = TII->analyzeLoopForPipelining(BB);
+ assert(LoopInfo && "Must be able to analyze loop!");
+
+ // Create a new basic block for the kernel and add it to the CFG.
+ MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+
+ unsigned MaxStageCount = Schedule.getNumStages() - 1;
+
+ // Remember the registers that are used in different stages. The index is
+ // the iteration, or stage, that the instruction is scheduled in. This is
+ // a map between register names in the original block and the names created
+ // in each stage of the pipelined loop.
+ ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
+ InstrMapTy InstrMap;
+
+ SmallVector<MachineBasicBlock *, 4> PrologBBs;
+
+ // Generate the prolog instructions that set up the pipeline.
+ generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
+ MF.insert(BB->getIterator(), KernelBB);
+
+ // Rearrange the instructions to generate the new, pipelined loop,
+ // and update register names as needed.
+ for (MachineInstr *CI : Schedule.getInstructions()) {
+ if (CI->isPHI())
+ continue;
+ unsigned StageNum = Schedule.getStage(CI);
+ MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
+ updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = CI;
+ }
+
+ // Copy any terminator instructions to the new kernel, and update
+ // names as needed.
+ for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
+ E = BB->instr_end();
+ I != E; ++I) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
+ updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
+ KernelBB->push_back(NewMI);
+ InstrMap[NewMI] = &*I;
+ }
+
+ NewKernel = KernelBB;
+ KernelBB->transferSuccessors(BB);
+ KernelBB->replaceSuccessor(BB, KernelBB);
+
+ generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
+ InstrMap, MaxStageCount, MaxStageCount, false);
+ generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, InstrMap,
+ MaxStageCount, MaxStageCount, false);
+
+ LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
+
+ SmallVector<MachineBasicBlock *, 4> EpilogBBs;
+ // Generate the epilog instructions to complete the pipeline.
+ generateEpilog(MaxStageCount, KernelBB, VRMap, EpilogBBs, PrologBBs);
+
+ // We need this step because the register allocation doesn't handle some
+ // situations well, so we insert copies to help out.
+ splitLifetimes(KernelBB, EpilogBBs);
+
+ // Remove dead instructions due to loop induction variables.
+ removeDeadInstructions(KernelBB, EpilogBBs);
+
+ // Add branches between prolog and epilog blocks.
+ addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
+
+ delete[] VRMap;
+}
+
+void ModuloScheduleExpander::cleanup() {
+ // Remove the original loop since it's no longer referenced.
+ for (auto &I : *BB)
+ LIS.RemoveMachineInstrFromMaps(I);
+ BB->clear();
+ BB->eraseFromParent();
+}
+
+/// Generate the pipeline prolog code.
+void ModuloScheduleExpander::generateProlog(unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &PrologBBs) {
+ MachineBasicBlock *PredBB = Preheader;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which will be generated in the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ for (unsigned i = 0; i < LastStage; ++i) {
+ // Create and insert the prolog basic block prior to the original loop
+ // basic block. The original loop is removed later.
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+ PrologBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+ NewBB->transferSuccessors(PredBB);
+ PredBB->addSuccessor(NewBB);
+ PredBB = NewBB;
+
+ // Generate instructions for each appropriate stage. Process instructions
+ // in original program order.
+ for (int StageNum = i; StageNum >= 0; --StageNum) {
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstTerminator();
+ BBI != BBE; ++BBI) {
+ if (Schedule.getStage(&*BBI) == StageNum) {
+ if (BBI->isPHI())
+ continue;
+ MachineInstr *NewMI =
+ cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
+ updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = &*BBI;
+ }
+ }
+ }
+ rewritePhiValues(NewBB, i, VRMap, InstrMap);
+ LLVM_DEBUG({
+ dbgs() << "prolog:\n";
+ NewBB->dump();
+ });
+ }
+
+ PredBB->replaceSuccessor(BB, KernelBB);
+
+ // Check if we need to remove the branch from the preheader to the original
+ // loop, and replace it with a branch to the new loop.
+ unsigned numBranches = TII->removeBranch(*Preheader);
+ if (numBranches) {
+ SmallVector<MachineOperand, 0> Cond;
+ TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
+ }
+}
+
+/// Generate the pipeline epilog code. The epilog code finishes the iterations
+/// that were started in either the prolog or the kernel. We create a basic
+/// block for each stage that needs to complete.
+void ModuloScheduleExpander::generateEpilog(unsigned LastStage,
+ MachineBasicBlock *KernelBB,
+ ValueMapTy *VRMap,
+ MBBVectorTy &EpilogBBs,
+ MBBVectorTy &PrologBBs) {
+ // We need to change the branch from the kernel to the first epilog block, so
+ // this call to analyze branch uses the kernel rather than the original BB.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
+ assert(!checkBranch && "generateEpilog must be able to analyze the branch");
+ if (checkBranch)
+ return;
+
+ MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
+ if (*LoopExitI == KernelBB)
+ ++LoopExitI;
+ assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
+ MachineBasicBlock *LoopExitBB = *LoopExitI;
+
+ MachineBasicBlock *PredBB = KernelBB;
+ MachineBasicBlock *EpilogStart = LoopExitBB;
+ InstrMapTy InstrMap;
+
+ // Generate a basic block for each stage, not including the last stage,
+ // which was generated for the kernel. Each basic block may contain
+ // instructions from multiple stages/iterations.
+ int EpilogStage = LastStage + 1;
+ for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
+ EpilogBBs.push_back(NewBB);
+ MF.insert(BB->getIterator(), NewBB);
+
+ PredBB->replaceSuccessor(LoopExitBB, NewBB);
+ NewBB->addSuccessor(LoopExitBB);
+
+ if (EpilogStart == LoopExitBB)
+ EpilogStart = NewBB;
+
+ // Add instructions to the epilog depending on the current block.
+ // Process instructions in original program order.
+ for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
+ for (auto &BBI : *BB) {
+ if (BBI.isPHI())
+ continue;
+ MachineInstr *In = &BBI;
+ if ((unsigned)Schedule.getStage(In) == StageNum) {
+ // Instructions with memoperands in the epilog are updated with
+ // conservative values.
+ MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
+ updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
+ NewBB->push_back(NewMI);
+ InstrMap[NewMI] = In;
+ }
+ }
+ }
+ generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
+ InstrMap, LastStage, EpilogStage, i == 1);
+ generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, InstrMap,
+ LastStage, EpilogStage, i == 1);
+ PredBB = NewBB;
+
+ LLVM_DEBUG({
+ dbgs() << "epilog:\n";
+ NewBB->dump();
+ });
+ }
+
+ // Fix any Phi nodes in the loop exit block.
+ LoopExitBB->replacePhiUsesWith(BB, PredBB);
+
+ // Create a branch to the new epilog from the kernel.
+ // Remove the original branch and add a new branch to the epilog.
+ TII->removeBranch(*KernelBB);
+ TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
+ // Add a branch to the loop exit.
+ if (EpilogBBs.size() > 0) {
+ MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
+ SmallVector<MachineOperand, 4> Cond1;
+ TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
+ }
+}
+
+/// Replace all uses of FromReg that appear outside the specified
+/// basic block with ToReg.
+static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
+ MachineBasicBlock *MBB,
+ MachineRegisterInfo &MRI,
+ LiveIntervals &LIS) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
+ E = MRI.use_end();
+ I != E;) {
+ MachineOperand &O = *I;
+ ++I;
+ if (O.getParent()->getParent() != MBB)
+ O.setReg(ToReg);
+ }
+ if (!LIS.hasInterval(ToReg))
+ LIS.createEmptyInterval(ToReg);
+}
+
+/// Return true if the register has a use that occurs outside the
+/// specified loop.
+static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
+ MachineRegisterInfo &MRI) {
+ for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
+ E = MRI.use_end();
+ I != E; ++I)
+ if (I->getParent()->getParent() != BB)
+ return true;
+ return false;
+}
+
+/// Generate Phis for the specific block in the generated pipelined code.
+/// This function looks at the Phis from the original code to guide the
+/// creation of new Phis.
+void ModuloScheduleExpander::generateExistingPhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
+ // Compute the stage number for the initial value of the Phi, which
+ // comes from the prolog. The prolog to use depends on to which kernel/
+ // epilog that we're adding the Phi.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ bool InKernel = (LastStageNum == CurStageNum);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - (CurStageNum - LastStageNum);
+ PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
+ BBE = BB->getFirstNonPHI();
+ BBI != BBE; ++BBI) {
+ Register Def = BBI->getOperand(0).getReg();
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*BBI, BB, InitVal, LoopVal);
+
+ unsigned PhiOp1 = 0;
+ // The Phi value from the loop body typically is defined in the loop, but
+ // not always. So, we need to check if the value is defined in the loop.
+ unsigned PhiOp2 = LoopVal;
+ if (VRMap[LastStageNum].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum][LoopVal];
+
+ int StageScheduled = Schedule.getStage(&*BBI);
+ int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
+ unsigned NumStages = getStagesForReg(Def, CurStageNum);
+ if (NumStages == 0) {
+ // We don't need to generate a Phi anymore, but we need to rename any uses
+ // of the Phi value.
+ unsigned NewReg = VRMap[PrevStage][LoopVal];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
+ InitVal, NewReg);
+ if (VRMap[CurStageNum].count(LoopVal))
+ VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
+ }
+ // Adjust the number of Phis needed depending on the number of prologs left,
+ // and the distance from where the Phi is first scheduled. The number of
+ // Phis cannot exceed the number of prolog stages. Each stage can
+ // potentially define two values.
+ unsigned MaxPhis = PrologStage + 2;
+ if (!InKernel && (int)PrologStage <= LoopValStage)
+ MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
+ unsigned NumPhis = std::min(NumStages, MaxPhis);
+
+ unsigned NewReg = 0;
+ unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
+ // In the epilog, we may need to look back one stage to get the correct
+ // Phi name, because the epilog and prolog blocks execute the same stage.
+ // The correct name is from the previous block only when the Phi has
+ // been completely scheduled prior to the epilog, and Phi value is not
+ // needed in multiple stages.
+ int StageDiff = 0;
+ if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
+ NumPhis == 1)
+ StageDiff = 1;
+ // Adjust the computations below when the phi and the loop definition
+ // are scheduled in different stages.
+ if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiff = StageScheduled - LoopValStage;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ // If the Phi hasn't been scheduled, then use the initial Phi operand
+ // value. Otherwise, use the scheduled version of the instruction. This
+ // is a little complicated when a Phi references another Phi.
+ if (np > PrologStage || StageScheduled >= (int)LastStageNum)
+ PhiOp1 = InitVal;
+ // Check if the Phi has already been scheduled in a prolog stage.
+ else if (PrologStage >= AccessStage + StageDiff + np &&
+ VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
+ PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
+ // Check if the Phi has already been scheduled, but the loop instruction
+ // is either another Phi, or doesn't occur in the loop.
+ else if (PrologStage >= AccessStage + StageDiff + np) {
+ // If the Phi references another Phi, we need to examine the other
+ // Phi to get the correct value.
+ PhiOp1 = LoopVal;
+ MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
+ int Indirects = 1;
+ while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
+ int PhiStage = Schedule.getStage(InstOp1);
+ if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
+ PhiOp1 = getInitPhiReg(*InstOp1, BB);
+ else
+ PhiOp1 = getLoopPhiReg(*InstOp1, BB);
+ InstOp1 = MRI.getVRegDef(PhiOp1);
+ int PhiOpStage = Schedule.getStage(InstOp1);
+ int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
+ if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
+ VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
+ PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
+ break;
+ }
+ ++Indirects;
+ }
+ } else
+ PhiOp1 = InitVal;
+ // If this references a generated Phi in the kernel, get the Phi operand
+ // from the incoming block.
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+
+ MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
+ bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
+ // In the epilog, a map lookup is needed to get the value from the kernel,
+ // or previous epilog block. How is does this depends on if the
+ // instruction is scheduled in the previous block.
+ if (!InKernel) {
+ int StageDiffAdj = 0;
+ if (LoopValStage != -1 && StageScheduled > LoopValStage)
+ StageDiffAdj = StageScheduled - LoopValStage;
+ // Use the loop value defined in the kernel, unless the kernel
+ // contains the last definition of the Phi.
+ if (np == 0 && PrevStage == LastStageNum &&
+ (StageScheduled != 0 || LoopValStage != 0) &&
+ VRMap[PrevStage - StageDiffAdj].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
+ // Use the value defined by the Phi. We add one because we switch
+ // from looking at the loop value to the Phi definition.
+ else if (np > 0 && PrevStage == LastStageNum &&
+ VRMap[PrevStage - np + 1].count(Def))
+ PhiOp2 = VRMap[PrevStage - np + 1][Def];
+ // Use the loop value defined in the kernel.
+ else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
+ VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
+ PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
+ // Use the value defined by the Phi, unless we're generating the first
+ // epilog and the Phi refers to a Phi in a different stage.
+ else if (VRMap[PrevStage - np].count(Def) &&
+ (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
+ (LoopValStage == StageScheduled)))
+ PhiOp2 = VRMap[PrevStage - np][Def];
+ }
+
+ // Check if we can reuse an existing Phi. This occurs when a Phi
+ // references another Phi, and the other Phi is scheduled in an
+ // earlier stage. We can try to reuse an existing Phi up until the last
+ // stage of the current Phi.
+ if (LoopDefIsPhi) {
+ if (static_cast<int>(PrologStage - np) >= StageScheduled) {
+ int LVNumStages = getStagesForPhi(LoopVal);
+ int StageDiff = (StageScheduled - LoopValStage);
+ LVNumStages -= StageDiff;
+ // Make sure the loop value Phi has been processed already.
+ if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
+ NewReg = PhiOp2;
+ unsigned ReuseStage = CurStageNum;
+ if (isLoopCarried(*PhiInst))
+ ReuseStage -= LVNumStages;
+ // Check if the Phi to reuse has been generated yet. If not, then
+ // there is nothing to reuse.
+ if (VRMap[ReuseStage - np].count(LoopVal)) {
+ NewReg = VRMap[ReuseStage - np][LoopVal];
+
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
+ Def, NewReg);
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ PhiOp2 = NewReg;
+ if (VRMap[LastStageNum - np - 1].count(LoopVal))
+ PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
+
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ continue;
+ }
+ }
+ }
+ if (InKernel && StageDiff > 0 &&
+ VRMap[CurStageNum - StageDiff - np].count(LoopVal))
+ PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
+ }
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // We define the Phis after creating the new pipelined code, so
+ // we need to rename the Phi values in scheduled instructions.
+
+ unsigned PrevReg = 0;
+ if (InKernel && VRMap[PrevStage - np].count(LoopVal))
+ PrevReg = VRMap[PrevStage - np][LoopVal];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
+ NewReg, PrevReg);
+ // If the Phi has been scheduled, use the new name for rewriting.
+ if (VRMap[CurStageNum - np].count(Def)) {
+ unsigned R = VRMap[CurStageNum - np][Def];
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
+ NewReg);
+ }
+
+ // Check if we need to rename any uses that occurs after the loop. The
+ // register to replace depends on whether the Phi is scheduled in the
+ // epilog.
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+
+ // In the kernel, a dependent Phi uses the value from this Phi.
+ if (InKernel)
+ PhiOp2 = NewReg;
+
+ // Update the map with the new Phi name.
+ VRMap[CurStageNum - np][Def] = NewReg;
+ }
+
+ while (NumPhis++ < NumStages) {
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
+ NewReg, 0);
+ }
+
+ // Check if we need to rename a Phi that has been eliminated due to
+ // scheduling.
+ if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
+ replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
+ }
+}
+
+/// Generate Phis for the specified block in the generated pipelined code.
+/// These are new Phis needed because the definition is scheduled after the
+/// use in the pipelined sequence.
+void ModuloScheduleExpander::generatePhis(
+ MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
+ MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
+ unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
+ // Compute the stage number that contains the initial Phi value, and
+ // the Phi from the previous stage.
+ unsigned PrologStage = 0;
+ unsigned PrevStage = 0;
+ unsigned StageDiff = CurStageNum - LastStageNum;
+ bool InKernel = (StageDiff == 0);
+ if (InKernel) {
+ PrologStage = LastStageNum - 1;
+ PrevStage = CurStageNum;
+ } else {
+ PrologStage = LastStageNum - StageDiff;
+ PrevStage = LastStageNum + StageDiff - 1;
+ }
+
+ for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
+ BBE = BB->instr_end();
+ BBI != BBE; ++BBI) {
+ for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = BBI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef() ||
+ !Register::isVirtualRegister(MO.getReg()))
+ continue;
+
+ int StageScheduled = Schedule.getStage(&*BBI);
+ assert(StageScheduled != -1 && "Expecting scheduled instruction.");
+ Register Def = MO.getReg();
+ unsigned NumPhis = getStagesForReg(Def, CurStageNum);
+ // An instruction scheduled in stage 0 and is used after the loop
+ // requires a phi in the epilog for the last definition from either
+ // the kernel or prolog.
+ if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
+ hasUseAfterLoop(Def, BB, MRI))
+ NumPhis = 1;
+ if (!InKernel && (unsigned)StageScheduled > PrologStage)
+ continue;
+
+ unsigned PhiOp2 = VRMap[PrevStage][Def];
+ if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
+ if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
+ PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
+ // The number of Phis can't exceed the number of prolog stages. The
+ // prolog stage number is zero based.
+ if (NumPhis > PrologStage + 1 - StageScheduled)
+ NumPhis = PrologStage + 1 - StageScheduled;
+ for (unsigned np = 0; np < NumPhis; ++np) {
+ unsigned PhiOp1 = VRMap[PrologStage][Def];
+ if (np <= PrologStage)
+ PhiOp1 = VRMap[PrologStage - np][Def];
+ if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
+ if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
+ if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
+ PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
+ }
+ if (!InKernel)
+ PhiOp2 = VRMap[PrevStage - np][Def];
+
+ const TargetRegisterClass *RC = MRI.getRegClass(Def);
+ Register NewReg = MRI.createVirtualRegister(RC);
+
+ MachineInstrBuilder NewPhi =
+ BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
+ TII->get(TargetOpcode::PHI), NewReg);
+ NewPhi.addReg(PhiOp1).addMBB(BB1);
+ NewPhi.addReg(PhiOp2).addMBB(BB2);
+ if (np == 0)
+ InstrMap[NewPhi] = &*BBI;
+
+ // Rewrite uses and update the map. The actions depend upon whether
+ // we generating code for the kernel or epilog blocks.
+ if (InKernel) {
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
+ NewReg);
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
+ NewReg);
+
+ PhiOp2 = NewReg;
+ VRMap[PrevStage - np - 1][Def] = NewReg;
+ } else {
+ VRMap[CurStageNum - np][Def] = NewReg;
+ if (np == NumPhis - 1)
+ rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
+ NewReg);
+ }
+ if (IsLast && np == NumPhis - 1)
+ replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
+ }
+ }
+ }
+}
+
+/// Remove instructions that generate values with no uses.
+/// Typically, these are induction variable operations that generate values
+/// used in the loop itself. A dead instruction has a definition with
+/// no uses, or uses that occur in the original loop only.
+void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ // For each epilog block, check that the value defined by each instruction
+ // is used. If not, delete it.
+ for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
+ MBE = EpilogBBs.rend();
+ MBB != MBE; ++MBB)
+ for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
+ ME = (*MBB)->instr_rend();
+ MI != ME;) {
+ // From DeadMachineInstructionElem. Don't delete inline assembly.
+ if (MI->isInlineAsm()) {
+ ++MI;
+ continue;
+ }
+ bool SawStore = false;
+ // Check if it's safe to remove the instruction due to side effects.
+ // We can, and want to, remove Phis here.
+ if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
+ ++MI;
+ continue;
+ }
+ bool used = true;
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ Register reg = MOI->getReg();
+ // Assume physical registers are used, unless they are marked dead.
+ if (Register::isPhysicalRegister(reg)) {
+ used = !MOI->isDead();
+ if (used)
+ break;
+ continue;
+ }
+ unsigned realUses = 0;
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
+ EI = MRI.use_end();
+ UI != EI; ++UI) {
+ // Check if there are any uses that occur only in the original
+ // loop. If so, that's not a real use.
+ if (UI->getParent()->getParent() != BB) {
+ realUses++;
+ used = true;
+ break;
+ }
+ }
+ if (realUses > 0)
+ break;
+ used = false;
+ }
+ if (!used) {
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI++->eraseFromParent();
+ continue;
+ }
+ ++MI;
+ }
+ // In the kernel block, check if we can remove a Phi that generates a value
+ // used in an instruction removed in the epilog block.
+ for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
+ BBE = KernelBB->getFirstNonPHI();
+ BBI != BBE;) {
+ MachineInstr *MI = &*BBI;
+ ++BBI;
+ Register reg = MI->getOperand(0).getReg();
+ if (MRI.use_begin(reg) == MRI.use_end()) {
+ LIS.RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ }
+ }
+}
+
+/// For loop carried definitions, we split the lifetime of a virtual register
+/// that has uses past the definition in the next iteration. A copy with a new
+/// virtual register is inserted before the definition, which helps with
+/// generating a better register assignment.
+///
+/// v1 = phi(a, v2) v1 = phi(a, v2)
+/// v2 = phi(b, v3) v2 = phi(b, v3)
+/// v3 = .. v4 = copy v1
+/// .. = V1 v3 = ..
+/// .. = v4
+void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ for (auto &PHI : KernelBB->phis()) {
+ Register Def = PHI.getOperand(0).getReg();
+ // Check for any Phi definition that used as an operand of another Phi
+ // in the same block.
+ for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
+ E = MRI.use_instr_end();
+ I != E; ++I) {
+ if (I->isPHI() && I->getParent() == KernelBB) {
+ // Get the loop carried definition.
+ unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
+ if (!LCDef)
+ continue;
+ MachineInstr *MI = MRI.getVRegDef(LCDef);
+ if (!MI || MI->getParent() != KernelBB || MI->isPHI())
+ continue;
+ // Search through the rest of the block looking for uses of the Phi
+ // definition. If one occurs, then split the lifetime.
+ unsigned SplitReg = 0;
+ for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
+ KernelBB->instr_end()))
+ if (BBJ.readsRegister(Def)) {
+ // We split the lifetime when we find the first use.
+ if (SplitReg == 0) {
+ SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
+ BuildMI(*KernelBB, MI, MI->getDebugLoc(),
+ TII->get(TargetOpcode::COPY), SplitReg)
+ .addReg(Def);
+ }
+ BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
+ }
+ if (!SplitReg)
+ continue;
+ // Search through each of the epilog blocks for any uses to be renamed.
+ for (auto &Epilog : EpilogBBs)
+ for (auto &I : *Epilog)
+ if (I.readsRegister(Def))
+ I.substituteRegister(Def, SplitReg, 0, *TRI);
+ break;
+ }
+ }
+ }
+}
+
+/// Remove the incoming block from the Phis in a basic block.
+static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
+ for (MachineInstr &MI : *BB) {
+ if (!MI.isPHI())
+ break;
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
+ if (MI.getOperand(i + 1).getMBB() == Incoming) {
+ MI.RemoveOperand(i + 1);
+ MI.RemoveOperand(i);
+ break;
+ }
+ }
+}
+
+/// Create branches from each prolog basic block to the appropriate epilog
+/// block. These edges are needed if the loop ends before reaching the
+/// kernel.
+void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
+ MBBVectorTy &PrologBBs,
+ MachineBasicBlock *KernelBB,
+ MBBVectorTy &EpilogBBs,
+ ValueMapTy *VRMap) {
+ assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
+ MachineBasicBlock *LastPro = KernelBB;
+ MachineBasicBlock *LastEpi = KernelBB;
+
+ // Start from the blocks connected to the kernel and work "out"
+ // to the first prolog and the last epilog blocks.
+ SmallVector<MachineInstr *, 4> PrevInsts;
+ unsigned MaxIter = PrologBBs.size() - 1;
+ for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
+ // Add branches to the prolog that go to the corresponding
+ // epilog, and the fall-thru prolog/kernel block.
+ MachineBasicBlock *Prolog = PrologBBs[j];
+ MachineBasicBlock *Epilog = EpilogBBs[i];
+
+ SmallVector<MachineOperand, 4> Cond;
+ Optional<bool> StaticallyGreater =
+ LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
+ unsigned numAdded = 0;
+ if (!StaticallyGreater.hasValue()) {
+ Prolog->addSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
+ } else if (*StaticallyGreater == false) {
+ Prolog->addSuccessor(Epilog);
+ Prolog->removeSuccessor(LastPro);
+ LastEpi->removeSuccessor(Epilog);
+ numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, LastEpi);
+ // Remove the blocks that are no longer referenced.
+ if (LastPro != LastEpi) {
+ LastEpi->clear();
+ LastEpi->eraseFromParent();
+ }
+ if (LastPro == KernelBB) {
+ LoopInfo->disposed();
+ NewKernel = nullptr;
+ }
+ LastPro->clear();
+ LastPro->eraseFromParent();
+ } else {
+ numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
+ removePhis(Epilog, Prolog);
+ }
+ LastPro = Prolog;
+ LastEpi = Epilog;
+ for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
+ E = Prolog->instr_rend();
+ I != E && numAdded > 0; ++I, --numAdded)
+ updateInstruction(&*I, false, j, 0, VRMap);
+ }
+
+ if (NewKernel) {
+ LoopInfo->setPreheader(PrologBBs[MaxIter]);
+ LoopInfo->adjustTripCount(-(MaxIter + 1));
+ }
+}
+
+/// Return true if we can compute the amount the instruction changes
+/// during each iteration. Set Delta to the amount of the change.
+bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ const MachineOperand *BaseOp;
+ int64_t Offset;
+ bool OffsetIsScalable;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
+ return false;
+
+ // FIXME: This algorithm assumes instructions have fixed-size offsets.
+ if (OffsetIsScalable)
+ return false;
+
+ if (!BaseOp->isReg())
+ return false;
+
+ Register BaseReg = BaseOp->getReg();
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ // Check if there is a Phi. If so, get the definition in the loop.
+ MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
+ if (BaseDef && BaseDef->isPHI()) {
+ BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
+ BaseDef = MRI.getVRegDef(BaseReg);
+ }
+ if (!BaseDef)
+ return false;
+
+ int D = 0;
+ if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
+ return false;
+
+ Delta = D;
+ return true;
+}
+
+/// Update the memory operand with a new offset when the pipeliner
+/// generates a new copy of the instruction that refers to a
+/// different memory location.
+void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
+ MachineInstr &OldMI,
+ unsigned Num) {
+ if (Num == 0)
+ return;
+ // If the instruction has memory operands, then adjust the offset
+ // when the instruction appears in different stages.
+ if (NewMI.memoperands_empty())
+ return;
+ SmallVector<MachineMemOperand *, 2> NewMMOs;
+ for (MachineMemOperand *MMO : NewMI.memoperands()) {
+ // TODO: Figure out whether isAtomic is really necessary (see D57601).
+ if (MMO->isVolatile() || MMO->isAtomic() ||
+ (MMO->isInvariant() && MMO->isDereferenceable()) ||
+ (!MMO->getValue())) {
+ NewMMOs.push_back(MMO);
+ continue;
+ }
+ unsigned Delta;
+ if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
+ int64_t AdjOffset = Delta * Num;
+ NewMMOs.push_back(
+ MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
+ } else {
+ NewMMOs.push_back(
+ MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
+ }
+ }
+ NewMI.setMemRefs(MF, NewMMOs);
+}
+
+/// Clone the instruction for the new pipelined loop and update the
+/// memory operands, if needed.
+MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
+ unsigned CurStageNum,
+ unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ // Check for tied operands in inline asm instructions. This should be handled
+ // elsewhere, but I'm not sure of the best solution.
+ if (OldMI->isInlineAsm())
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ const auto &MO = OldMI->getOperand(i);
+ if (MO.isReg() && MO.isUse())
+ break;
+ unsigned UseIdx;
+ if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
+ NewMI->tieOperands(i, UseIdx);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Clone the instruction for the new pipelined loop. If needed, this
+/// function updates the instruction using the values saved in the
+/// InstrChanges structure.
+MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
+ MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
+ auto It = InstrChanges.find(OldMI);
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
+ return nullptr;
+ int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
+ MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
+ if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
+ NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ }
+ updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
+ return NewMI;
+}
+
+/// Update the machine instruction with new virtual registers. This
+/// function may change the defintions and/or uses.
+void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
+ bool LastDef,
+ unsigned CurStageNum,
+ unsigned InstrStageNum,
+ ValueMapTy *VRMap) {
+ for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = NewMI->getOperand(i);
+ if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
+ continue;
+ Register reg = MO.getReg();
+ if (MO.isDef()) {
+ // Create a new virtual register for the definition.
+ const TargetRegisterClass *RC = MRI.getRegClass(reg);
+ Register NewReg = MRI.createVirtualRegister(RC);
+ MO.setReg(NewReg);
+ VRMap[CurStageNum][reg] = NewReg;
+ if (LastDef)
+ replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
+ } else if (MO.isUse()) {
+ MachineInstr *Def = MRI.getVRegDef(reg);
+ // Compute the stage that contains the last definition for instruction.
+ int DefStageNum = Schedule.getStage(Def);
+ unsigned StageNum = CurStageNum;
+ if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
+ // Compute the difference in stages between the defintion and the use.
+ unsigned StageDiff = (InstrStageNum - DefStageNum);
+ // Make an adjustment to get the last definition.
+ StageNum -= StageDiff;
+ }
+ if (VRMap[StageNum].count(reg))
+ MO.setReg(VRMap[StageNum][reg]);
+ }
+ }
+}
+
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
+MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
+/// Return the new name for the value from the previous stage.
+unsigned ModuloScheduleExpander::getPrevMapVal(
+ unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
+ ValueMapTy *VRMap, MachineBasicBlock *BB) {
+ unsigned PrevVal = 0;
+ if (StageNum > PhiStage) {
+ MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
+ if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
+ // The name is defined in the previous stage.
+ PrevVal = VRMap[StageNum - 1][LoopVal];
+ else if (VRMap[StageNum].count(LoopVal))
+ // The previous name is defined in the current stage when the instruction
+ // order is swapped.
+ PrevVal = VRMap[StageNum][LoopVal];
+ else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
+ // The loop value hasn't yet been scheduled.
+ PrevVal = LoopVal;
+ else if (StageNum == PhiStage + 1)
+ // The loop value is another phi, which has not been scheduled.
+ PrevVal = getInitPhiReg(*LoopInst, BB);
+ else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
+ // The loop value is another phi, which has been scheduled.
+ PrevVal =
+ getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
+ LoopStage, VRMap, BB);
+ }
+ return PrevVal;
+}
+
+/// Rewrite the Phi values in the specified block to use the mappings
+/// from the initial operand. Once the Phi is scheduled, we switch
+/// to using the loop value instead of the Phi value, so those names
+/// do not need to be rewritten.
+void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
+ unsigned StageNum,
+ ValueMapTy *VRMap,
+ InstrMapTy &InstrMap) {
+ for (auto &PHI : BB->phis()) {
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(PHI, BB, InitVal, LoopVal);
+ Register PhiDef = PHI.getOperand(0).getReg();
+
+ unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
+ unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
+ unsigned NumPhis = getStagesForPhi(PhiDef);
+ if (NumPhis > StageNum)
+ NumPhis = StageNum;
+ for (unsigned np = 0; np <= NumPhis; ++np) {
+ unsigned NewVal =
+ getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
+ if (!NewVal)
+ NewVal = InitVal;
+ rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
+ NewVal);
+ }
+ }
+}
+
+/// Rewrite a previously scheduled instruction to use the register value
+/// from the new instruction. Make sure the instruction occurs in the
+/// basic block, and we don't change the uses in the new instruction.
+void ModuloScheduleExpander::rewriteScheduledInstr(
+ MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
+ unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
+ unsigned PrevReg) {
+ bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
+ int StagePhi = Schedule.getStage(Phi) + PhiNum;
+ // Rewrite uses that have been scheduled already to use the new
+ // Phi register.
+ for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
+ EI = MRI.use_end();
+ UI != EI;) {
+ MachineOperand &UseOp = *UI;
+ MachineInstr *UseMI = UseOp.getParent();
+ ++UI;
+ if (UseMI->getParent() != BB)
+ continue;
+ if (UseMI->isPHI()) {
+ if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
+ continue;
+ if (getLoopPhiReg(*UseMI, BB) != OldReg)
+ continue;
+ }
+ InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
+ assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
+ MachineInstr *OrigMI = OrigInstr->second;
+ int StageSched = Schedule.getStage(OrigMI);
+ int CycleSched = Schedule.getCycle(OrigMI);
+ unsigned ReplaceReg = 0;
+ // This is the stage for the scheduled instruction.
+ if (StagePhi == StageSched && Phi->isPHI()) {
+ int CyclePhi = Schedule.getCycle(Phi);
+ if (PrevReg && InProlog)
+ ReplaceReg = PrevReg;
+ else if (PrevReg && !isLoopCarried(*Phi) &&
+ (CyclePhi <= CycleSched || OrigMI->isPHI()))
+ ReplaceReg = PrevReg;
+ else
+ ReplaceReg = NewReg;
+ }
+ // The scheduled instruction occurs before the scheduled Phi, and the
+ // Phi is not loop carried.
+ if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
+ ReplaceReg = NewReg;
+ if (StagePhi > StageSched && Phi->isPHI())
+ ReplaceReg = NewReg;
+ if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
+ ReplaceReg = NewReg;
+ if (ReplaceReg) {
+ MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
+ UseOp.setReg(ReplaceReg);
+ }
+ }
+}
+
+bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
+ if (!Phi.isPHI())
+ return false;
+ int DefCycle = Schedule.getCycle(&Phi);
+ int DefStage = Schedule.getStage(&Phi);
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
+ MachineInstr *Use = MRI.getVRegDef(LoopVal);
+ if (!Use || Use->isPHI())
+ return true;
+ int LoopCycle = Schedule.getCycle(Use);
+ int LoopStage = Schedule.getStage(Use);
+ return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
+}
+
+//===----------------------------------------------------------------------===//
+// PeelingModuloScheduleExpander implementation
+//===----------------------------------------------------------------------===//
+// This is a reimplementation of ModuloScheduleExpander that works by creating
+// a fully correct steady-state kernel and peeling off the prolog and epilogs.
+//===----------------------------------------------------------------------===//
+
+namespace {
+// Remove any dead phis in MBB. Dead phis either have only one block as input
+// (in which case they are the identity) or have no uses.
+void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
+ LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
+ bool Changed = true;
+ while (Changed) {
+ Changed = false;
+ for (auto I = MBB->begin(); I != MBB->getFirstNonPHI();) {
+ MachineInstr &MI = *I++;
+ assert(MI.isPHI());
+ if (MRI.use_empty(MI.getOperand(0).getReg())) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI.eraseFromParent();
+ Changed = true;
+ } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
+ MRI.constrainRegClass(MI.getOperand(1).getReg(),
+ MRI.getRegClass(MI.getOperand(0).getReg()));
+ MRI.replaceRegWith(MI.getOperand(0).getReg(),
+ MI.getOperand(1).getReg());
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(MI);
+ MI.eraseFromParent();
+ Changed = true;
+ }
+ }
+ }
+}
+
+/// Rewrites the kernel block in-place to adhere to the given schedule.
+/// KernelRewriter holds all of the state required to perform the rewriting.
+class KernelRewriter {
+ ModuloSchedule &S;
+ MachineBasicBlock *BB;
+ MachineBasicBlock *PreheaderBB, *ExitBB;
+ MachineRegisterInfo &MRI;
+ const TargetInstrInfo *TII;
+ LiveIntervals *LIS;
+
+ // Map from register class to canonical undef register for that class.
+ DenseMap<const TargetRegisterClass *, Register> Undefs;
+ // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
+ // this map is only used when InitReg is non-undef.
+ DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
+ // Map from LoopReg to phi register where the InitReg is undef.
+ DenseMap<Register, Register> UndefPhis;
+
+ // Reg is used by MI. Return the new register MI should use to adhere to the
+ // schedule. Insert phis as necessary.
+ Register remapUse(Register Reg, MachineInstr &MI);
+ // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
+ // If InitReg is not given it is chosen arbitrarily. It will either be undef
+ // or will be chosen so as to share another phi.
+ Register phi(Register LoopReg, Optional<Register> InitReg = {},
+ const TargetRegisterClass *RC = nullptr);
+ // Create an undef register of the given register class.
+ Register undef(const TargetRegisterClass *RC);
+
+public:
+ KernelRewriter(MachineLoop &L, ModuloSchedule &S,
+ LiveIntervals *LIS = nullptr);
+ void rewrite();
+};
+} // namespace
+
+KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
+ LiveIntervals *LIS)
+ : S(S), BB(L.getTopBlock()), PreheaderBB(L.getLoopPreheader()),
+ ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
+ TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
+ PreheaderBB = *BB->pred_begin();
+ if (PreheaderBB == BB)
+ PreheaderBB = *std::next(BB->pred_begin());
+}
+
+void KernelRewriter::rewrite() {
+ // Rearrange the loop to be in schedule order. Note that the schedule may
+ // contain instructions that are not owned by the loop block (InstrChanges and
+ // friends), so we gracefully handle unowned instructions and delete any
+ // instructions that weren't in the schedule.
+ auto InsertPt = BB->getFirstTerminator();
+ MachineInstr *FirstMI = nullptr;
+ for (MachineInstr *MI : S.getInstructions()) {
+ if (MI->isPHI())
+ continue;
+ if (MI->getParent())
+ MI->removeFromParent();
+ BB->insert(InsertPt, MI);
+ if (!FirstMI)
+ FirstMI = MI;
+ }
+ assert(FirstMI && "Failed to find first MI in schedule");
+
+ // At this point all of the scheduled instructions are between FirstMI
+ // and the end of the block. Kill from the first non-phi to FirstMI.
+ for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*I);
+ (I++)->eraseFromParent();
+ }
+
+ // Now remap every instruction in the loop.
+ for (MachineInstr &MI : *BB) {
+ if (MI.isPHI() || MI.isTerminator())
+ continue;
+ for (MachineOperand &MO : MI.uses()) {
+ if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
+ continue;
+ Register Reg = remapUse(MO.getReg(), MI);
+ MO.setReg(Reg);
+ }
+ }
+ EliminateDeadPhis(BB, MRI, LIS);
+
+ // Ensure a phi exists for all instructions that are either referenced by
+ // an illegal phi or by an instruction outside the loop. This allows us to
+ // treat remaps of these values the same as "normal" values that come from
+ // loop-carried phis.
+ for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
+ if (MI->isPHI()) {
+ Register R = MI->getOperand(0).getReg();
+ phi(R);
+ continue;
+ }
+
+ for (MachineOperand &Def : MI->defs()) {
+ for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
+ if (MI.getParent() != BB) {
+ phi(Def.getReg());
+ break;
+ }
+ }
+ }
+ }
+}
+
+Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
+ MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
+ if (!Producer)
+ return Reg;
+
+ int ConsumerStage = S.getStage(&MI);
+ if (!Producer->isPHI()) {
+ // Non-phi producers are simple to remap. Insert as many phis as the
+ // difference between the consumer and producer stages.
+ if (Producer->getParent() != BB)
+ // Producer was not inside the loop. Use the register as-is.
+ return Reg;
+ int ProducerStage = S.getStage(Producer);
+ assert(ConsumerStage != -1 &&
+ "In-loop consumer should always be scheduled!");
+ assert(ConsumerStage >= ProducerStage);
+ unsigned StageDiff = ConsumerStage - ProducerStage;
+
+ for (unsigned I = 0; I < StageDiff; ++I)
+ Reg = phi(Reg);
+ return Reg;
+ }
+
+ // First, dive through the phi chain to find the defaults for the generated
+ // phis.
+ SmallVector<Optional<Register>, 4> Defaults;
+ Register LoopReg = Reg;
+ auto LoopProducer = Producer;
+ while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
+ LoopReg = getLoopPhiReg(*LoopProducer, BB);
+ Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
+ LoopProducer = MRI.getUniqueVRegDef(LoopReg);
+ assert(LoopProducer);
+ }
+ int LoopProducerStage = S.getStage(LoopProducer);
+
+ Optional<Register> IllegalPhiDefault;
+
+ if (LoopProducerStage == -1) {
+ // Do nothing.
+ } else if (LoopProducerStage > ConsumerStage) {
+ // This schedule is only representable if ProducerStage == ConsumerStage+1.
+ // In addition, Consumer's cycle must be scheduled after Producer in the
+ // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
+ // functions.
+#ifndef NDEBUG // Silence unused variables in non-asserts mode.
+ int LoopProducerCycle = S.getCycle(LoopProducer);
+ int ConsumerCycle = S.getCycle(&MI);
+#endif
+ assert(LoopProducerCycle <= ConsumerCycle);
+ assert(LoopProducerStage == ConsumerStage + 1);
+ // Peel off the first phi from Defaults and insert a phi between producer
+ // and consumer. This phi will not be at the front of the block so we
+ // consider it illegal. It will only exist during the rewrite process; it
+ // needs to exist while we peel off prologs because these could take the
+ // default value. After that we can replace all uses with the loop producer
+ // value.
+ IllegalPhiDefault = Defaults.front();
+ Defaults.erase(Defaults.begin());
+ } else {
+ assert(ConsumerStage >= LoopProducerStage);
+ int StageDiff = ConsumerStage - LoopProducerStage;
+ if (StageDiff > 0) {
+ LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
+ << " to " << (Defaults.size() + StageDiff) << "\n");
+ // If we need more phis than we have defaults for, pad out with undefs for
+ // the earliest phis, which are at the end of the defaults chain (the
+ // chain is in reverse order).
+ Defaults.resize(Defaults.size() + StageDiff, Defaults.empty()
+ ? Optional<Register>()
+ : Defaults.back());
+ }
+ }
+
+ // Now we know the number of stages to jump back, insert the phi chain.
+ auto DefaultI = Defaults.rbegin();
+ while (DefaultI != Defaults.rend())
+ LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
+
+ if (IllegalPhiDefault.hasValue()) {
+ // The consumer optionally consumes LoopProducer in the same iteration
+ // (because the producer is scheduled at an earlier cycle than the consumer)
+ // or the initial value. To facilitate this we create an illegal block here
+ // by embedding a phi in the middle of the block. We will fix this up
+ // immediately prior to pruning.
+ auto RC = MRI.getRegClass(Reg);
+ Register R = MRI.createVirtualRegister(RC);
+ MachineInstr *IllegalPhi =
+ BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
+ .addReg(IllegalPhiDefault.getValue())
+ .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
+ .addReg(LoopReg)
+ .addMBB(BB); // Block choice is arbitrary and has no effect.
+ // Illegal phi should belong to the producer stage so that it can be
+ // filtered correctly during peeling.
+ S.setStage(IllegalPhi, LoopProducerStage);
+ return R;
+ }
+
+ return LoopReg;
+}
+
+Register KernelRewriter::phi(Register LoopReg, Optional<Register> InitReg,
+ const TargetRegisterClass *RC) {
+ // If the init register is not undef, try and find an existing phi.
+ if (InitReg.hasValue()) {
+ auto I = Phis.find({LoopReg, InitReg.getValue()});
+ if (I != Phis.end())
+ return I->second;
+ } else {
+ for (auto &KV : Phis) {
+ if (KV.first.first == LoopReg)
+ return KV.second;
+ }
+ }
+
+ // InitReg is either undef or no existing phi takes InitReg as input. Try and
+ // find a phi that takes undef as input.
+ auto I = UndefPhis.find(LoopReg);
+ if (I != UndefPhis.end()) {
+ Register R = I->second;
+ if (!InitReg.hasValue())
+ // Found a phi taking undef as input, and this input is undef so return
+ // without any more changes.
+ return R;
+ // Found a phi taking undef as input, so rewrite it to take InitReg.
+ MachineInstr *MI = MRI.getVRegDef(R);
+ MI->getOperand(1).setReg(InitReg.getValue());
+ Phis.insert({{LoopReg, InitReg.getValue()}, R});
+ MRI.constrainRegClass(R, MRI.getRegClass(InitReg.getValue()));
+ UndefPhis.erase(I);
+ return R;
+ }
+
+ // Failed to find any existing phi to reuse, so create a new one.
+ if (!RC)
+ RC = MRI.getRegClass(LoopReg);
+ Register R = MRI.createVirtualRegister(RC);
+ if (InitReg.hasValue())
+ MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
+ BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
+ .addReg(InitReg.hasValue() ? *InitReg : undef(RC))
+ .addMBB(PreheaderBB)
+ .addReg(LoopReg)
+ .addMBB(BB);
+ if (!InitReg.hasValue())
+ UndefPhis[LoopReg] = R;
+ else
+ Phis[{LoopReg, *InitReg}] = R;
+ return R;
+}
+
+Register KernelRewriter::undef(const TargetRegisterClass *RC) {
+ Register &R = Undefs[RC];
+ if (R == 0) {
+ // Create an IMPLICIT_DEF that defines this register if we need it.
+ // All uses of this should be removed by the time we have finished unrolling
+ // prologs and epilogs.
+ R = MRI.createVirtualRegister(RC);
+ auto *InsertBB = &PreheaderBB->getParent()->front();
+ BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
+ TII->get(TargetOpcode::IMPLICIT_DEF), R);
+ }
+ return R;
+}
+
+namespace {
+/// Describes an operand in the kernel of a pipelined loop. Characteristics of
+/// the operand are discovered, such as how many in-loop PHIs it has to jump
+/// through and defaults for these phis.
+class KernelOperandInfo {
+ MachineBasicBlock *BB;
+ MachineRegisterInfo &MRI;
+ SmallVector<Register, 4> PhiDefaults;
+ MachineOperand *Source;
+ MachineOperand *Target;
+
+public:
+ KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
+ const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
+ : MRI(MRI) {
+ Source = MO;
+ BB = MO->getParent()->getParent();
+ while (isRegInLoop(MO)) {
+ MachineInstr *MI = MRI.getVRegDef(MO->getReg());
+ if (MI->isFullCopy()) {
+ MO = &MI->getOperand(1);
+ continue;
+ }
+ if (!MI->isPHI())
+ break;
+ // If this is an illegal phi, don't count it in distance.
+ if (IllegalPhis.count(MI)) {
+ MO = &MI->getOperand(3);
+ continue;
+ }
+
+ Register Default = getInitPhiReg(*MI, BB);
+ MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
+ : &MI->getOperand(3);
+ PhiDefaults.push_back(Default);
+ }
+ Target = MO;
+ }
+
+ bool operator==(const KernelOperandInfo &Other) const {
+ return PhiDefaults.size() == Other.PhiDefaults.size();
+ }
+
+ void print(raw_ostream &OS) const {
+ OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
+ << *Source->getParent();
+ }
+
+private:
+ bool isRegInLoop(MachineOperand *MO) {
+ return MO->isReg() && MO->getReg().isVirtual() &&
+ MRI.getVRegDef(MO->getReg())->getParent() == BB;
+ }
+};
+} // namespace
+
+MachineBasicBlock *
+PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
+ MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
+ if (LPD == LPD_Front)
+ PeeledFront.push_back(NewBB);
+ else
+ PeeledBack.push_front(NewBB);
+ for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
+ ++I, ++NI) {
+ CanonicalMIs[&*I] = &*I;
+ CanonicalMIs[&*NI] = &*I;
+ BlockMIs[{NewBB, &*I}] = &*NI;
+ BlockMIs[{BB, &*I}] = &*I;
+ }
+ return NewBB;
+}
+
+void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
+ int MinStage) {
+ for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
+ I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
+ MachineInstr *MI = &*I++;
+ int Stage = getStage(MI);
+ if (Stage == -1 || Stage >= MinStage)
+ continue;
+
+ for (MachineOperand &DefMO : MI->defs()) {
+ SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
+ for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
+ // Only PHIs can use values from this block by construction.
+ // Match with the equivalent PHI in B.
+ assert(UseMI.isPHI());
+ Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
+ MI->getParent());
+ Subs.emplace_back(&UseMI, Reg);
+ }
+ for (auto &Sub : Subs)
+ Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
+ *MRI.getTargetRegisterInfo());
+ }
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ }
+}
+
+void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
+ MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
+ auto InsertPt = DestBB->getFirstNonPHI();
+ DenseMap<Register, Register> Remaps;
+ for (auto I = SourceBB->getFirstNonPHI(); I != SourceBB->end();) {
+ MachineInstr *MI = &*I++;
+ if (MI->isPHI()) {
+ // This is an illegal PHI. If we move any instructions using an illegal
+ // PHI, we need to create a legal Phi.
+ if (getStage(MI) != Stage) {
+ // The legal Phi is not necessary if the illegal phi's stage
+ // is being moved.
+ Register PhiR = MI->getOperand(0).getReg();
+ auto RC = MRI.getRegClass(PhiR);
+ Register NR = MRI.createVirtualRegister(RC);
+ MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
+ DebugLoc(), TII->get(TargetOpcode::PHI), NR)
+ .addReg(PhiR)
+ .addMBB(SourceBB);
+ BlockMIs[{DestBB, CanonicalMIs[MI]}] = NI;
+ CanonicalMIs[NI] = CanonicalMIs[MI];
+ Remaps[PhiR] = NR;
+ }
+ }
+ if (getStage(MI) != Stage)
+ continue;
+ MI->removeFromParent();
+ DestBB->insert(InsertPt, MI);
+ auto *KernelMI = CanonicalMIs[MI];
+ BlockMIs[{DestBB, KernelMI}] = MI;
+ BlockMIs.erase({SourceBB, KernelMI});
+ }
+ SmallVector<MachineInstr *, 4> PhiToDelete;
+ for (MachineInstr &MI : DestBB->phis()) {
+ assert(MI.getNumOperands() == 3);
+ MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
+ // If the instruction referenced by the phi is moved inside the block
+ // we don't need the phi anymore.
+ if (getStage(Def) == Stage) {
+ Register PhiReg = MI.getOperand(0).getReg();
+ assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
+ MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
+ MI.getOperand(0).setReg(PhiReg);
+ PhiToDelete.push_back(&MI);
+ }
+ }
+ for (auto *P : PhiToDelete)
+ P->eraseFromParent();
+ InsertPt = DestBB->getFirstNonPHI();
+ // Helper to clone Phi instructions into the destination block. We clone Phi
+ // greedily to avoid combinatorial explosion of Phi instructions.
+ auto clonePhi = [&](MachineInstr *Phi) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
+ DestBB->insert(InsertPt, NewMI);
+ Register OrigR = Phi->getOperand(0).getReg();
+ Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
+ NewMI->getOperand(0).setReg(R);
+ NewMI->getOperand(1).setReg(OrigR);
+ NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
+ Remaps[OrigR] = R;
+ CanonicalMIs[NewMI] = CanonicalMIs[Phi];
+ BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
+ PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
+ return R;
+ };
+ for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
+ for (MachineOperand &MO : I->uses()) {
+ if (!MO.isReg())
+ continue;
+ if (Remaps.count(MO.getReg()))
+ MO.setReg(Remaps[MO.getReg()]);
+ else {
+ // If we are using a phi from the source block we need to add a new phi
+ // pointing to the old one.
+ MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
+ if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
+ Register R = clonePhi(Use);
+ MO.setReg(R);
+ }
+ }
+ }
+ }
+}
+
+Register
+PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
+ MachineInstr *Phi) {
+ unsigned distance = PhiNodeLoopIteration[Phi];
+ MachineInstr *CanonicalUse = CanonicalPhi;
+ Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
+ for (unsigned I = 0; I < distance; ++I) {
+ assert(CanonicalUse->isPHI());
+ assert(CanonicalUse->getNumOperands() == 5);
+ unsigned LoopRegIdx = 3, InitRegIdx = 1;
+ if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
+ std::swap(LoopRegIdx, InitRegIdx);
+ CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
+ CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
+ }
+ return CanonicalUseReg;
+}
+
+void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
+ BitVector LS(Schedule.getNumStages(), true);
+ BitVector AS(Schedule.getNumStages(), true);
+ LiveStages[BB] = LS;
+ AvailableStages[BB] = AS;
+
+ // Peel out the prologs.
+ LS.reset();
+ for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
+ LS[I] = 1;
+ Prologs.push_back(peelKernel(LPD_Front));
+ LiveStages[Prologs.back()] = LS;
+ AvailableStages[Prologs.back()] = LS;
+ }
+
+ // Create a block that will end up as the new loop exiting block (dominated by
+ // all prologs and epilogs). It will only contain PHIs, in the same order as
+ // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
+ // that the exiting block is a (sub) clone of BB. This in turn gives us the
+ // property that any value deffed in BB but used outside of BB is used by a
+ // PHI in the exiting block.
+ MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
+ EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
+ // Push out the epilogs, again in reverse order.
+ // We can't assume anything about the minumum loop trip count at this point,
+ // so emit a fairly complex epilog.
+
+ // We first peel number of stages minus one epilogue. Then we remove dead
+ // stages and reorder instructions based on their stage. If we have 3 stages
+ // we generate first:
+ // E0[3, 2, 1]
+ // E1[3', 2']
+ // E2[3'']
+ // And then we move instructions based on their stages to have:
+ // E0[3]
+ // E1[2, 3']
+ // E2[1, 2', 3'']
+ // The transformation is legal because we only move instructions past
+ // instructions of a previous loop iteration.
+ for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
+ Epilogs.push_back(peelKernel(LPD_Back));
+ MachineBasicBlock *B = Epilogs.back();
+ filterInstructions(B, Schedule.getNumStages() - I);
+ // Keep track at which iteration each phi belongs to. We need it to know
+ // what version of the variable to use during prologue/epilogue stitching.
+ EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
+ for (auto Phi = B->begin(), IE = B->getFirstNonPHI(); Phi != IE; ++Phi)
+ PhiNodeLoopIteration[&*Phi] = Schedule.getNumStages() - I;
+ }
+ for (size_t I = 0; I < Epilogs.size(); I++) {
+ LS.reset();
+ for (size_t J = I; J < Epilogs.size(); J++) {
+ int Iteration = J;
+ unsigned Stage = Schedule.getNumStages() - 1 + I - J;
+ // Move stage one block at a time so that Phi nodes are updated correctly.
+ for (size_t K = Iteration; K > I; K--)
+ moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
+ LS[Stage] = 1;
+ }
+ LiveStages[Epilogs[I]] = LS;
+ AvailableStages[Epilogs[I]] = AS;
+ }
+
+ // Now we've defined all the prolog and epilog blocks as a fallthrough
+ // sequence, add the edges that will be followed if the loop trip count is
+ // lower than the number of stages (connecting prologs directly with epilogs).
+ auto PI = Prologs.begin();
+ auto EI = Epilogs.begin();
+ assert(Prologs.size() == Epilogs.size());
+ for (; PI != Prologs.end(); ++PI, ++EI) {
+ MachineBasicBlock *Pred = *(*EI)->pred_begin();
+ (*PI)->addSuccessor(*EI);
+ for (MachineInstr &MI : (*EI)->phis()) {
+ Register Reg = MI.getOperand(1).getReg();
+ MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
+ if (Use && Use->getParent() == Pred) {
+ MachineInstr *CanonicalUse = CanonicalMIs[Use];
+ if (CanonicalUse->isPHI()) {
+ // If the use comes from a phi we need to skip as many phi as the
+ // distance between the epilogue and the kernel. Trace through the phi
+ // chain to find the right value.
+ Reg = getPhiCanonicalReg(CanonicalUse, Use);
+ }
+ Reg = getEquivalentRegisterIn(Reg, *PI);
+ }
+ MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
+ MI.addOperand(MachineOperand::CreateMBB(*PI));
+ }
+ }
+
+ // Create a list of all blocks in order.
+ SmallVector<MachineBasicBlock *, 8> Blocks;
+ llvm::copy(PeeledFront, std::back_inserter(Blocks));
+ Blocks.push_back(BB);
+ llvm::copy(PeeledBack, std::back_inserter(Blocks));
+
+ // Iterate in reverse order over all instructions, remapping as we go.
+ for (MachineBasicBlock *B : reverse(Blocks)) {
+ for (auto I = B->getFirstInstrTerminator()->getReverseIterator();
+ I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
+ MachineInstr *MI = &*I++;
+ rewriteUsesOf(MI);
+ }
+ }
+ for (auto *MI : IllegalPhisToDelete) {
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+ }
+ IllegalPhisToDelete.clear();
+
+ // Now all remapping has been done, we're free to optimize the generated code.
+ for (MachineBasicBlock *B : reverse(Blocks))
+ EliminateDeadPhis(B, MRI, LIS);
+ EliminateDeadPhis(ExitingBB, MRI, LIS);
+}
+
+MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
+ MachineFunction &MF = *BB->getParent();
+ MachineBasicBlock *Exit = *BB->succ_begin();
+ if (Exit == BB)
+ Exit = *std::next(BB->succ_begin());
+
+ MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
+ MF.insert(std::next(BB->getIterator()), NewBB);
+
+ // Clone all phis in BB into NewBB and rewrite.
+ for (MachineInstr &MI : BB->phis()) {
+ auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
+ Register OldR = MI.getOperand(3).getReg();
+ Register R = MRI.createVirtualRegister(RC);
+ SmallVector<MachineInstr *, 4> Uses;
+ for (MachineInstr &Use : MRI.use_instructions(OldR))
+ if (Use.getParent() != BB)
+ Uses.push_back(&Use);
+ for (MachineInstr *Use : Uses)
+ Use->substituteRegister(OldR, R, /*SubIdx=*/0,
+ *MRI.getTargetRegisterInfo());
+ MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
+ .addReg(OldR)
+ .addMBB(BB);
+ BlockMIs[{NewBB, &MI}] = NI;
+ CanonicalMIs[NI] = &MI;
+ }
+ BB->replaceSuccessor(Exit, NewBB);
+ Exit->replacePhiUsesWith(BB, NewBB);
+ NewBB->addSuccessor(Exit);
+
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
+ (void)CanAnalyzeBr;
+ assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
+ TII->removeBranch(*BB);
+ TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
+ Cond, DebugLoc());
+ TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
+ return NewBB;
+}
+
+Register
+PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
+ MachineBasicBlock *BB) {
+ MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
+ unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
+ return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
+}
+
+void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
+ if (MI->isPHI()) {
+ // This is an illegal PHI. The loop-carried (desired) value is operand 3,
+ // and it is produced by this block.
+ Register PhiR = MI->getOperand(0).getReg();
+ Register R = MI->getOperand(3).getReg();
+ int RMIStage = getStage(MRI.getUniqueVRegDef(R));
+ if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
+ R = MI->getOperand(1).getReg();
+ MRI.setRegClass(R, MRI.getRegClass(PhiR));
+ MRI.replaceRegWith(PhiR, R);
+ // Postpone deleting the Phi as it may be referenced by BlockMIs and used
+ // later to figure out how to remap registers.
+ MI->getOperand(0).setReg(PhiR);
+ IllegalPhisToDelete.push_back(MI);
+ return;
+ }
+
+ int Stage = getStage(MI);
+ if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
+ LiveStages[MI->getParent()].test(Stage))
+ // Instruction is live, no rewriting to do.
+ return;
+
+ for (MachineOperand &DefMO : MI->defs()) {
+ SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
+ for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
+ // Only PHIs can use values from this block by construction.
+ // Match with the equivalent PHI in B.
+ assert(UseMI.isPHI());
+ Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
+ MI->getParent());
+ Subs.emplace_back(&UseMI, Reg);
+ }
+ for (auto &Sub : Subs)
+ Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
+ *MRI.getTargetRegisterInfo());
+ }
+ if (LIS)
+ LIS->RemoveMachineInstrFromMaps(*MI);
+ MI->eraseFromParent();
+}
+
+void PeelingModuloScheduleExpander::fixupBranches() {
+ // Work outwards from the kernel.
+ bool KernelDisposed = false;
+ int TC = Schedule.getNumStages() - 1;
+ for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
+ ++PI, ++EI, --TC) {
+ MachineBasicBlock *Prolog = *PI;
+ MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
+ MachineBasicBlock *Epilog = *EI;
+ SmallVector<MachineOperand, 4> Cond;
+ TII->removeBranch(*Prolog);
+ Optional<bool> StaticallyGreater =
+ LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
+ if (!StaticallyGreater.hasValue()) {
+ LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
+ // Dynamically branch based on Cond.
+ TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
+ } else if (*StaticallyGreater == false) {
+ LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
+ // Prolog never falls through; branch to epilog and orphan interior
+ // blocks. Leave it to unreachable-block-elim to clean up.
+ Prolog->removeSuccessor(Fallthrough);
+ for (MachineInstr &P : Fallthrough->phis()) {
+ P.RemoveOperand(2);
+ P.RemoveOperand(1);
+ }
+ TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
+ KernelDisposed = true;
+ } else {
+ LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
+ // Prolog always falls through; remove incoming values in epilog.
+ Prolog->removeSuccessor(Epilog);
+ for (MachineInstr &P : Epilog->phis()) {
+ P.RemoveOperand(4);
+ P.RemoveOperand(3);
+ }
+ }
+ }
+
+ if (!KernelDisposed) {
+ LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
+ LoopInfo->setPreheader(Prologs.back());
+ } else {
+ LoopInfo->disposed();
+ }
+}
+
+void PeelingModuloScheduleExpander::rewriteKernel() {
+ KernelRewriter KR(*Schedule.getLoop(), Schedule);
+ KR.rewrite();
+}
+
+void PeelingModuloScheduleExpander::expand() {
+ BB = Schedule.getLoop()->getTopBlock();
+ Preheader = Schedule.getLoop()->getLoopPreheader();
+ LLVM_DEBUG(Schedule.dump());
+ LoopInfo = TII->analyzeLoopForPipelining(BB);
+ assert(LoopInfo);
+
+ rewriteKernel();
+ peelPrologAndEpilogs();
+ fixupBranches();
+}
+
+void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
+ BB = Schedule.getLoop()->getTopBlock();
+ Preheader = Schedule.getLoop()->getLoopPreheader();
+
+ // Dump the schedule before we invalidate and remap all its instructions.
+ // Stash it in a string so we can print it if we found an error.
+ std::string ScheduleDump;
+ raw_string_ostream OS(ScheduleDump);
+ Schedule.print(OS);
+ OS.flush();
+
+ // First, run the normal ModuleScheduleExpander. We don't support any
+ // InstrChanges.
+ assert(LIS && "Requires LiveIntervals!");
+ ModuloScheduleExpander MSE(MF, Schedule, *LIS,
+ ModuloScheduleExpander::InstrChangesTy());
+ MSE.expand();
+ MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
+ if (!ExpandedKernel) {
+ // The expander optimized away the kernel. We can't do any useful checking.
+ MSE.cleanup();
+ return;
+ }
+ // Before running the KernelRewriter, re-add BB into the CFG.
+ Preheader->addSuccessor(BB);
+
+ // Now run the new expansion algorithm.
+ KernelRewriter KR(*Schedule.getLoop(), Schedule);
+ KR.rewrite();
+ peelPrologAndEpilogs();
+
+ // Collect all illegal phis that the new algorithm created. We'll give these
+ // to KernelOperandInfo.
+ SmallPtrSet<MachineInstr *, 4> IllegalPhis;
+ for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
+ if (NI->isPHI())
+ IllegalPhis.insert(&*NI);
+ }
+
+ // Co-iterate across both kernels. We expect them to be identical apart from
+ // phis and full COPYs (we look through both).
+ SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
+ auto OI = ExpandedKernel->begin();
+ auto NI = BB->begin();
+ for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
+ while (OI->isPHI() || OI->isFullCopy())
+ ++OI;
+ while (NI->isPHI() || NI->isFullCopy())
+ ++NI;
+ assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
+ // Analyze every operand separately.
+ for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
+ OOpI != OI->operands_end(); ++OOpI, ++NOpI)
+ KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
+ KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
+ }
+
+ bool Failed = false;
+ for (auto &OldAndNew : KOIs) {
+ if (OldAndNew.first == OldAndNew.second)
+ continue;
+ Failed = true;
+ errs() << "Modulo kernel validation error: [\n";
+ errs() << " [golden] ";
+ OldAndNew.first.print(errs());
+ errs() << " ";
+ OldAndNew.second.print(errs());
+ errs() << "]\n";
+ }
+
+ if (Failed) {
+ errs() << "Golden reference kernel:\n";
+ ExpandedKernel->print(errs());
+ errs() << "New kernel:\n";
+ BB->print(errs());
+ errs() << ScheduleDump;
+ report_fatal_error(
+ "Modulo kernel validation (-pipeliner-experimental-cg) failed");
+ }
+
+ // Cleanup by removing BB from the CFG again as the original
+ // ModuloScheduleExpander intended.
+ Preheader->removeSuccessor(BB);
+ MSE.cleanup();
+}
+
+//===----------------------------------------------------------------------===//
+// ModuloScheduleTestPass implementation
+//===----------------------------------------------------------------------===//
+// This pass constructs a ModuloSchedule from its module and runs
+// ModuloScheduleExpander.
+//
+// The module is expected to contain a single-block analyzable loop.
+// The total order of instructions is taken from the loop as-is.
+// Instructions are expected to be annotated with a PostInstrSymbol.
+// This PostInstrSymbol must have the following format:
+// "Stage=%d Cycle=%d".
+//===----------------------------------------------------------------------===//
+
+namespace {
+class ModuloScheduleTest : public MachineFunctionPass {
+public:
+ static char ID;
+
+ ModuloScheduleTest() : MachineFunctionPass(ID) {
+ initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ void runOnLoop(MachineFunction &MF, MachineLoop &L);
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<LiveIntervals>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+} // namespace
+
+char ModuloScheduleTest::ID = 0;
+
+INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
+ "Modulo Schedule test pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
+ "Modulo Schedule test pass", false, false)
+
+bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
+ MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
+ for (auto *L : MLI) {
+ if (L->getTopBlock() != L->getBottomBlock())
+ continue;
+ runOnLoop(MF, *L);
+ return false;
+ }
+ return false;
+}
+
+static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
+ std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
+ std::pair<StringRef, StringRef> StageTokenAndValue =
+ getToken(StageAndCycle.first, "-");
+ std::pair<StringRef, StringRef> CycleTokenAndValue =
+ getToken(StageAndCycle.second, "-");
+ if (StageTokenAndValue.first != "Stage" ||
+ CycleTokenAndValue.first != "_Cycle") {
+ llvm_unreachable(
+ "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
+ return;
+ }
+
+ StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
+ CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
+
+ dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
+}
+
+void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
+ LiveIntervals &LIS = getAnalysis<LiveIntervals>();
+ MachineBasicBlock *BB = L.getTopBlock();
+ dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
+
+ DenseMap<MachineInstr *, int> Cycle, Stage;
+ std::vector<MachineInstr *> Instrs;
+ for (MachineInstr &MI : *BB) {
+ if (MI.isTerminator())
+ continue;
+ Instrs.push_back(&MI);
+ if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
+ dbgs() << "Parsing post-instr symbol for " << MI;
+ parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
+ }
+ }
+
+ ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
+ std::move(Stage));
+ ModuloScheduleExpander MSE(
+ MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
+ MSE.expand();
+ MSE.cleanup();
+}
+
+//===----------------------------------------------------------------------===//
+// ModuloScheduleTestAnnotater implementation
+//===----------------------------------------------------------------------===//
+
+void ModuloScheduleTestAnnotater::annotate() {
+ for (MachineInstr *MI : S.getInstructions()) {
+ SmallVector<char, 16> SV;
+ raw_svector_ostream OS(SV);
+ OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
+ MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
+ MI->setPostInstrSymbol(MF, Sym);
+ }
+}