summaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <[email protected]>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <[email protected]>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp3110
1 files changed, 3110 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp b/contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp
new file mode 100644
index 00000000000..0f6d9b888f4
--- /dev/null
+++ b/contrib/libs/llvm12/lib/CodeGen/MachineVerifier.cpp
@@ -0,0 +1,3110 @@
+//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Pass to verify generated machine code. The following is checked:
+//
+// Operand counts: All explicit operands must be present.
+//
+// Register classes: All physical and virtual register operands must be
+// compatible with the register class required by the instruction descriptor.
+//
+// Register live intervals: Registers must be defined only once, and must be
+// defined before use.
+//
+// The machine code verifier is enabled with the command-line option
+// -verify-machineinstrs.
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervalCalc.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/LiveStacks.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBundle.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/StackMaps.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCTargetOptions.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <iterator>
+#include <string>
+#include <utility>
+
+using namespace llvm;
+
+namespace {
+
+ struct MachineVerifier {
+ MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
+
+ unsigned verify(const MachineFunction &MF);
+
+ Pass *const PASS;
+ const char *Banner;
+ const MachineFunction *MF;
+ const TargetMachine *TM;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+
+ unsigned foundErrors;
+
+ // Avoid querying the MachineFunctionProperties for each operand.
+ bool isFunctionRegBankSelected;
+ bool isFunctionSelected;
+
+ using RegVector = SmallVector<Register, 16>;
+ using RegMaskVector = SmallVector<const uint32_t *, 4>;
+ using RegSet = DenseSet<Register>;
+ using RegMap = DenseMap<Register, const MachineInstr *>;
+ using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
+
+ const MachineInstr *FirstNonPHI;
+ const MachineInstr *FirstTerminator;
+ BlockSet FunctionBlocks;
+
+ BitVector regsReserved;
+ RegSet regsLive;
+ RegVector regsDefined, regsDead, regsKilled;
+ RegMaskVector regMasks;
+
+ SlotIndex lastIndex;
+
+ // Add Reg and any sub-registers to RV
+ void addRegWithSubRegs(RegVector &RV, Register Reg) {
+ RV.push_back(Reg);
+ if (Reg.isPhysical())
+ append_range(RV, TRI->subregs(Reg.asMCReg()));
+ }
+
+ struct BBInfo {
+ // Is this MBB reachable from the MF entry point?
+ bool reachable = false;
+
+ // Vregs that must be live in because they are used without being
+ // defined. Map value is the user. vregsLiveIn doesn't include regs
+ // that only are used by PHI nodes.
+ RegMap vregsLiveIn;
+
+ // Regs killed in MBB. They may be defined again, and will then be in both
+ // regsKilled and regsLiveOut.
+ RegSet regsKilled;
+
+ // Regs defined in MBB and live out. Note that vregs passing through may
+ // be live out without being mentioned here.
+ RegSet regsLiveOut;
+
+ // Vregs that pass through MBB untouched. This set is disjoint from
+ // regsKilled and regsLiveOut.
+ RegSet vregsPassed;
+
+ // Vregs that must pass through MBB because they are needed by a successor
+ // block. This set is disjoint from regsLiveOut.
+ RegSet vregsRequired;
+
+ // Set versions of block's predecessor and successor lists.
+ BlockSet Preds, Succs;
+
+ BBInfo() = default;
+
+ // Add register to vregsRequired if it belongs there. Return true if
+ // anything changed.
+ bool addRequired(Register Reg) {
+ if (!Reg.isVirtual())
+ return false;
+ if (regsLiveOut.count(Reg))
+ return false;
+ return vregsRequired.insert(Reg).second;
+ }
+
+ // Same for a full set.
+ bool addRequired(const RegSet &RS) {
+ bool Changed = false;
+ for (Register Reg : RS)
+ Changed |= addRequired(Reg);
+ return Changed;
+ }
+
+ // Same for a full map.
+ bool addRequired(const RegMap &RM) {
+ bool Changed = false;
+ for (const auto &I : RM)
+ Changed |= addRequired(I.first);
+ return Changed;
+ }
+
+ // Live-out registers are either in regsLiveOut or vregsPassed.
+ bool isLiveOut(Register Reg) const {
+ return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
+ }
+ };
+
+ // Extra register info per MBB.
+ DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
+
+ bool isReserved(Register Reg) {
+ return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
+ }
+
+ bool isAllocatable(Register Reg) const {
+ return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
+ !regsReserved.test(Reg.id());
+ }
+
+ // Analysis information if available
+ LiveVariables *LiveVars;
+ LiveIntervals *LiveInts;
+ LiveStacks *LiveStks;
+ SlotIndexes *Indexes;
+
+ void visitMachineFunctionBefore();
+ void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
+ void visitMachineBundleBefore(const MachineInstr *MI);
+
+ bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
+ void verifyPreISelGenericInstruction(const MachineInstr *MI);
+ void visitMachineInstrBefore(const MachineInstr *MI);
+ void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
+ void visitMachineBundleAfter(const MachineInstr *MI);
+ void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
+ void visitMachineFunctionAfter();
+
+ void report(const char *msg, const MachineFunction *MF);
+ void report(const char *msg, const MachineBasicBlock *MBB);
+ void report(const char *msg, const MachineInstr *MI);
+ void report(const char *msg, const MachineOperand *MO, unsigned MONum,
+ LLT MOVRegType = LLT{});
+
+ void report_context(const LiveInterval &LI) const;
+ void report_context(const LiveRange &LR, Register VRegUnit,
+ LaneBitmask LaneMask) const;
+ void report_context(const LiveRange::Segment &S) const;
+ void report_context(const VNInfo &VNI) const;
+ void report_context(SlotIndex Pos) const;
+ void report_context(MCPhysReg PhysReg) const;
+ void report_context_liverange(const LiveRange &LR) const;
+ void report_context_lanemask(LaneBitmask LaneMask) const;
+ void report_context_vreg(Register VReg) const;
+ void report_context_vreg_regunit(Register VRegOrUnit) const;
+
+ void verifyInlineAsm(const MachineInstr *MI);
+
+ void checkLiveness(const MachineOperand *MO, unsigned MONum);
+ void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
+ SlotIndex UseIdx, const LiveRange &LR,
+ Register VRegOrUnit,
+ LaneBitmask LaneMask = LaneBitmask::getNone());
+ void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
+ SlotIndex DefIdx, const LiveRange &LR,
+ Register VRegOrUnit, bool SubRangeCheck = false,
+ LaneBitmask LaneMask = LaneBitmask::getNone());
+
+ void markReachable(const MachineBasicBlock *MBB);
+ void calcRegsPassed();
+ void checkPHIOps(const MachineBasicBlock &MBB);
+
+ void calcRegsRequired();
+ void verifyLiveVariables();
+ void verifyLiveIntervals();
+ void verifyLiveInterval(const LiveInterval&);
+ void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
+ LaneBitmask);
+ void verifyLiveRangeSegment(const LiveRange &,
+ const LiveRange::const_iterator I, Register,
+ LaneBitmask);
+ void verifyLiveRange(const LiveRange &, Register,
+ LaneBitmask LaneMask = LaneBitmask::getNone());
+
+ void verifyStackFrame();
+
+ void verifySlotIndexes() const;
+ void verifyProperties(const MachineFunction &MF);
+ };
+
+ struct MachineVerifierPass : public MachineFunctionPass {
+ static char ID; // Pass ID, replacement for typeid
+
+ const std::string Banner;
+
+ MachineVerifierPass(std::string banner = std::string())
+ : MachineFunctionPass(ID), Banner(std::move(banner)) {
+ initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
+ if (FoundErrors)
+ report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
+ return false;
+ }
+ };
+
+} // end anonymous namespace
+
+char MachineVerifierPass::ID = 0;
+
+INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
+ "Verify generated machine code", false, false)
+
+FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
+ return new MachineVerifierPass(Banner);
+}
+
+void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
+ const std::string &Banner,
+ const MachineFunction &MF) {
+ // TODO: Use MFAM after porting below analyses.
+ // LiveVariables *LiveVars;
+ // LiveIntervals *LiveInts;
+ // LiveStacks *LiveStks;
+ // SlotIndexes *Indexes;
+ unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
+ if (FoundErrors)
+ report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
+}
+
+bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
+ const {
+ MachineFunction &MF = const_cast<MachineFunction&>(*this);
+ unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
+ if (AbortOnErrors && FoundErrors)
+ report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
+ return FoundErrors == 0;
+}
+
+void MachineVerifier::verifySlotIndexes() const {
+ if (Indexes == nullptr)
+ return;
+
+ // Ensure the IdxMBB list is sorted by slot indexes.
+ SlotIndex Last;
+ for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
+ E = Indexes->MBBIndexEnd(); I != E; ++I) {
+ assert(!Last.isValid() || I->first > Last);
+ Last = I->first;
+ }
+}
+
+void MachineVerifier::verifyProperties(const MachineFunction &MF) {
+ // If a pass has introduced virtual registers without clearing the
+ // NoVRegs property (or set it without allocating the vregs)
+ // then report an error.
+ if (MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoVRegs) &&
+ MRI->getNumVirtRegs())
+ report("Function has NoVRegs property but there are VReg operands", &MF);
+}
+
+unsigned MachineVerifier::verify(const MachineFunction &MF) {
+ foundErrors = 0;
+
+ this->MF = &MF;
+ TM = &MF.getTarget();
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+
+ const bool isFunctionFailedISel = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::FailedISel);
+
+ // If we're mid-GlobalISel and we already triggered the fallback path then
+ // it's expected that the MIR is somewhat broken but that's ok since we'll
+ // reset it and clear the FailedISel attribute in ResetMachineFunctions.
+ if (isFunctionFailedISel)
+ return foundErrors;
+
+ isFunctionRegBankSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::RegBankSelected);
+ isFunctionSelected = MF.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected);
+
+ LiveVars = nullptr;
+ LiveInts = nullptr;
+ LiveStks = nullptr;
+ Indexes = nullptr;
+ if (PASS) {
+ LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
+ // We don't want to verify LiveVariables if LiveIntervals is available.
+ if (!LiveInts)
+ LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
+ LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
+ Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
+ }
+
+ verifySlotIndexes();
+
+ verifyProperties(MF);
+
+ visitMachineFunctionBefore();
+ for (const MachineBasicBlock &MBB : MF) {
+ visitMachineBasicBlockBefore(&MBB);
+ // Keep track of the current bundle header.
+ const MachineInstr *CurBundle = nullptr;
+ // Do we expect the next instruction to be part of the same bundle?
+ bool InBundle = false;
+
+ for (const MachineInstr &MI : MBB.instrs()) {
+ if (MI.getParent() != &MBB) {
+ report("Bad instruction parent pointer", &MBB);
+ errs() << "Instruction: " << MI;
+ continue;
+ }
+
+ // Check for consistent bundle flags.
+ if (InBundle && !MI.isBundledWithPred())
+ report("Missing BundledPred flag, "
+ "BundledSucc was set on predecessor",
+ &MI);
+ if (!InBundle && MI.isBundledWithPred())
+ report("BundledPred flag is set, "
+ "but BundledSucc not set on predecessor",
+ &MI);
+
+ // Is this a bundle header?
+ if (!MI.isInsideBundle()) {
+ if (CurBundle)
+ visitMachineBundleAfter(CurBundle);
+ CurBundle = &MI;
+ visitMachineBundleBefore(CurBundle);
+ } else if (!CurBundle)
+ report("No bundle header", &MI);
+ visitMachineInstrBefore(&MI);
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
+ const MachineOperand &Op = MI.getOperand(I);
+ if (Op.getParent() != &MI) {
+ // Make sure to use correct addOperand / RemoveOperand / ChangeTo
+ // functions when replacing operands of a MachineInstr.
+ report("Instruction has operand with wrong parent set", &MI);
+ }
+
+ visitMachineOperand(&Op, I);
+ }
+
+ // Was this the last bundled instruction?
+ InBundle = MI.isBundledWithSucc();
+ }
+ if (CurBundle)
+ visitMachineBundleAfter(CurBundle);
+ if (InBundle)
+ report("BundledSucc flag set on last instruction in block", &MBB.back());
+ visitMachineBasicBlockAfter(&MBB);
+ }
+ visitMachineFunctionAfter();
+
+ // Clean up.
+ regsLive.clear();
+ regsDefined.clear();
+ regsDead.clear();
+ regsKilled.clear();
+ regMasks.clear();
+ MBBInfoMap.clear();
+
+ return foundErrors;
+}
+
+void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
+ assert(MF);
+ errs() << '\n';
+ if (!foundErrors++) {
+ if (Banner)
+ errs() << "# " << Banner << '\n';
+ if (LiveInts != nullptr)
+ LiveInts->print(errs());
+ else
+ MF->print(errs(), Indexes);
+ }
+ errs() << "*** Bad machine code: " << msg << " ***\n"
+ << "- function: " << MF->getName() << "\n";
+}
+
+void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
+ assert(MBB);
+ report(msg, MBB->getParent());
+ errs() << "- basic block: " << printMBBReference(*MBB) << ' '
+ << MBB->getName() << " (" << (const void *)MBB << ')';
+ if (Indexes)
+ errs() << " [" << Indexes->getMBBStartIdx(MBB)
+ << ';' << Indexes->getMBBEndIdx(MBB) << ')';
+ errs() << '\n';
+}
+
+void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
+ assert(MI);
+ report(msg, MI->getParent());
+ errs() << "- instruction: ";
+ if (Indexes && Indexes->hasIndex(*MI))
+ errs() << Indexes->getInstructionIndex(*MI) << '\t';
+ MI->print(errs(), /*IsStandalone=*/true);
+}
+
+void MachineVerifier::report(const char *msg, const MachineOperand *MO,
+ unsigned MONum, LLT MOVRegType) {
+ assert(MO);
+ report(msg, MO->getParent());
+ errs() << "- operand " << MONum << ": ";
+ MO->print(errs(), MOVRegType, TRI);
+ errs() << "\n";
+}
+
+void MachineVerifier::report_context(SlotIndex Pos) const {
+ errs() << "- at: " << Pos << '\n';
+}
+
+void MachineVerifier::report_context(const LiveInterval &LI) const {
+ errs() << "- interval: " << LI << '\n';
+}
+
+void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
+ LaneBitmask LaneMask) const {
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegUnit);
+ if (LaneMask.any())
+ report_context_lanemask(LaneMask);
+}
+
+void MachineVerifier::report_context(const LiveRange::Segment &S) const {
+ errs() << "- segment: " << S << '\n';
+}
+
+void MachineVerifier::report_context(const VNInfo &VNI) const {
+ errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
+}
+
+void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
+ errs() << "- liverange: " << LR << '\n';
+}
+
+void MachineVerifier::report_context(MCPhysReg PReg) const {
+ errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
+}
+
+void MachineVerifier::report_context_vreg(Register VReg) const {
+ errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
+}
+
+void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
+ if (Register::isVirtualRegister(VRegOrUnit)) {
+ report_context_vreg(VRegOrUnit);
+ } else {
+ errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
+ }
+}
+
+void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
+ errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
+}
+
+void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ if (!MInfo.reachable) {
+ MInfo.reachable = true;
+ for (const MachineBasicBlock *Succ : MBB->successors())
+ markReachable(Succ);
+ }
+}
+
+void MachineVerifier::visitMachineFunctionBefore() {
+ lastIndex = SlotIndex();
+ regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
+ : TRI->getReservedRegs(*MF);
+
+ if (!MF->empty())
+ markReachable(&MF->front());
+
+ // Build a set of the basic blocks in the function.
+ FunctionBlocks.clear();
+ for (const auto &MBB : *MF) {
+ FunctionBlocks.insert(&MBB);
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
+ if (MInfo.Preds.size() != MBB.pred_size())
+ report("MBB has duplicate entries in its predecessor list.", &MBB);
+
+ MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
+ if (MInfo.Succs.size() != MBB.succ_size())
+ report("MBB has duplicate entries in its successor list.", &MBB);
+ }
+
+ // Check that the register use lists are sane.
+ MRI->verifyUseLists();
+
+ if (!MF->empty())
+ verifyStackFrame();
+}
+
+void
+MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
+ FirstTerminator = nullptr;
+ FirstNonPHI = nullptr;
+
+ if (!MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
+ // If this block has allocatable physical registers live-in, check that
+ // it is an entry block or landing pad.
+ for (const auto &LI : MBB->liveins()) {
+ if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
+ MBB->getIterator() != MBB->getParent()->begin()) {
+ report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
+ report_context(LI.PhysReg);
+ }
+ }
+ }
+
+ // Count the number of landing pad successors.
+ SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
+ for (const auto *succ : MBB->successors()) {
+ if (succ->isEHPad())
+ LandingPadSuccs.insert(succ);
+ if (!FunctionBlocks.count(succ))
+ report("MBB has successor that isn't part of the function.", MBB);
+ if (!MBBInfoMap[succ].Preds.count(MBB)) {
+ report("Inconsistent CFG", MBB);
+ errs() << "MBB is not in the predecessor list of the successor "
+ << printMBBReference(*succ) << ".\n";
+ }
+ }
+
+ // Check the predecessor list.
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (!FunctionBlocks.count(Pred))
+ report("MBB has predecessor that isn't part of the function.", MBB);
+ if (!MBBInfoMap[Pred].Succs.count(MBB)) {
+ report("Inconsistent CFG", MBB);
+ errs() << "MBB is not in the successor list of the predecessor "
+ << printMBBReference(*Pred) << ".\n";
+ }
+ }
+
+ const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
+ const BasicBlock *BB = MBB->getBasicBlock();
+ const Function &F = MF->getFunction();
+ if (LandingPadSuccs.size() > 1 &&
+ !(AsmInfo &&
+ AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
+ BB && isa<SwitchInst>(BB->getTerminator())) &&
+ !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
+ report("MBB has more than one landing pad successor", MBB);
+
+ // Call analyzeBranch. If it succeeds, there several more conditions to check.
+ MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
+ SmallVector<MachineOperand, 4> Cond;
+ if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
+ Cond)) {
+ // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
+ // check whether its answers match up with reality.
+ if (!TBB && !FBB) {
+ // Block falls through to its successor.
+ if (!MBB->empty() && MBB->back().isBarrier() &&
+ !TII->isPredicated(MBB->back())) {
+ report("MBB exits via unconditional fall-through but ends with a "
+ "barrier instruction!", MBB);
+ }
+ if (!Cond.empty()) {
+ report("MBB exits via unconditional fall-through but has a condition!",
+ MBB);
+ }
+ } else if (TBB && !FBB && Cond.empty()) {
+ // Block unconditionally branches somewhere.
+ if (MBB->empty()) {
+ report("MBB exits via unconditional branch but doesn't contain "
+ "any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via unconditional branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via unconditional branch but the branch isn't a "
+ "terminator instruction!", MBB);
+ }
+ } else if (TBB && !FBB && !Cond.empty()) {
+ // Block conditionally branches somewhere, otherwise falls through.
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/fall-through but doesn't "
+ "contain any instructions!", MBB);
+ } else if (MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/fall-through but ends with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/fall-through but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ } else if (TBB && FBB) {
+ // Block conditionally branches somewhere, otherwise branches
+ // somewhere else.
+ if (MBB->empty()) {
+ report("MBB exits via conditional branch/branch but doesn't "
+ "contain any instructions!", MBB);
+ } else if (!MBB->back().isBarrier()) {
+ report("MBB exits via conditional branch/branch but doesn't end with a "
+ "barrier instruction!", MBB);
+ } else if (!MBB->back().isTerminator()) {
+ report("MBB exits via conditional branch/branch but the branch "
+ "isn't a terminator instruction!", MBB);
+ }
+ if (Cond.empty()) {
+ report("MBB exits via conditional branch/branch but there's no "
+ "condition!", MBB);
+ }
+ } else {
+ report("analyzeBranch returned invalid data!", MBB);
+ }
+
+ // Now check that the successors match up with the answers reported by
+ // analyzeBranch.
+ if (TBB && !MBB->isSuccessor(TBB))
+ report("MBB exits via jump or conditional branch, but its target isn't a "
+ "CFG successor!",
+ MBB);
+ if (FBB && !MBB->isSuccessor(FBB))
+ report("MBB exits via conditional branch, but its target isn't a CFG "
+ "successor!",
+ MBB);
+
+ // There might be a fallthrough to the next block if there's either no
+ // unconditional true branch, or if there's a condition, and one of the
+ // branches is missing.
+ bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
+
+ // A conditional fallthrough must be an actual CFG successor, not
+ // unreachable. (Conversely, an unconditional fallthrough might not really
+ // be a successor, because the block might end in unreachable.)
+ if (!Cond.empty() && !FBB) {
+ MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
+ if (MBBI == MF->end()) {
+ report("MBB conditionally falls through out of function!", MBB);
+ } else if (!MBB->isSuccessor(&*MBBI))
+ report("MBB exits via conditional branch/fall-through but the CFG "
+ "successors don't match the actual successors!",
+ MBB);
+ }
+
+ // Verify that there aren't any extra un-accounted-for successors.
+ for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
+ // If this successor is one of the branch targets, it's okay.
+ if (SuccMBB == TBB || SuccMBB == FBB)
+ continue;
+ // If we might have a fallthrough, and the successor is the fallthrough
+ // block, that's also ok.
+ if (Fallthrough && SuccMBB == MBB->getNextNode())
+ continue;
+ // Also accept successors which are for exception-handling or might be
+ // inlineasm_br targets.
+ if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
+ continue;
+ report("MBB has unexpected successors which are not branch targets, "
+ "fallthrough, EHPads, or inlineasm_br targets.",
+ MBB);
+ }
+ }
+
+ regsLive.clear();
+ if (MRI->tracksLiveness()) {
+ for (const auto &LI : MBB->liveins()) {
+ if (!Register::isPhysicalRegister(LI.PhysReg)) {
+ report("MBB live-in list contains non-physical register", MBB);
+ continue;
+ }
+ for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
+ regsLive.insert(SubReg);
+ }
+ }
+
+ const MachineFrameInfo &MFI = MF->getFrameInfo();
+ BitVector PR = MFI.getPristineRegs(*MF);
+ for (unsigned I : PR.set_bits()) {
+ for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
+ regsLive.insert(SubReg);
+ }
+
+ regsKilled.clear();
+ regsDefined.clear();
+
+ if (Indexes)
+ lastIndex = Indexes->getMBBStartIdx(MBB);
+}
+
+// This function gets called for all bundle headers, including normal
+// stand-alone unbundled instructions.
+void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
+ if (Indexes && Indexes->hasIndex(*MI)) {
+ SlotIndex idx = Indexes->getInstructionIndex(*MI);
+ if (!(idx > lastIndex)) {
+ report("Instruction index out of order", MI);
+ errs() << "Last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = idx;
+ }
+
+ // Ensure non-terminators don't follow terminators.
+ if (MI->isTerminator()) {
+ if (!FirstTerminator)
+ FirstTerminator = MI;
+ } else if (FirstTerminator) {
+ report("Non-terminator instruction after the first terminator", MI);
+ errs() << "First terminator was:\t" << *FirstTerminator;
+ }
+}
+
+// The operands on an INLINEASM instruction must follow a template.
+// Verify that the flag operands make sense.
+void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
+ // The first two operands on INLINEASM are the asm string and global flags.
+ if (MI->getNumOperands() < 2) {
+ report("Too few operands on inline asm", MI);
+ return;
+ }
+ if (!MI->getOperand(0).isSymbol())
+ report("Asm string must be an external symbol", MI);
+ if (!MI->getOperand(1).isImm())
+ report("Asm flags must be an immediate", MI);
+ // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
+ // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
+ // and Extra_IsConvergent = 32.
+ if (!isUInt<6>(MI->getOperand(1).getImm()))
+ report("Unknown asm flags", &MI->getOperand(1), 1);
+
+ static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
+
+ unsigned OpNo = InlineAsm::MIOp_FirstOperand;
+ unsigned NumOps;
+ for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ // There may be implicit ops after the fixed operands.
+ if (!MO.isImm())
+ break;
+ NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
+ }
+
+ if (OpNo > MI->getNumOperands())
+ report("Missing operands in last group", MI);
+
+ // An optional MDNode follows the groups.
+ if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
+ ++OpNo;
+
+ // All trailing operands must be implicit registers.
+ for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
+ const MachineOperand &MO = MI->getOperand(OpNo);
+ if (!MO.isReg() || !MO.isImplicit())
+ report("Expected implicit register after groups", &MO, OpNo);
+ }
+}
+
+/// Check that types are consistent when two operands need to have the same
+/// number of vector elements.
+/// \return true if the types are valid.
+bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
+ const MachineInstr *MI) {
+ if (Ty0.isVector() != Ty1.isVector()) {
+ report("operand types must be all-vector or all-scalar", MI);
+ // Generally we try to report as many issues as possible at once, but in
+ // this case it's not clear what should we be comparing the size of the
+ // scalar with: the size of the whole vector or its lane. Instead of
+ // making an arbitrary choice and emitting not so helpful message, let's
+ // avoid the extra noise and stop here.
+ return false;
+ }
+
+ if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
+ report("operand types must preserve number of vector elements", MI);
+ return false;
+ }
+
+ return true;
+}
+
+void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
+ if (isFunctionSelected)
+ report("Unexpected generic instruction in a Selected function", MI);
+
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumOps = MI->getNumOperands();
+
+ // Branches must reference a basic block if they are not indirect
+ if (MI->isBranch() && !MI->isIndirectBranch()) {
+ bool HasMBB = false;
+ for (const MachineOperand &Op : MI->operands()) {
+ if (Op.isMBB()) {
+ HasMBB = true;
+ break;
+ }
+ }
+
+ if (!HasMBB) {
+ report("Branch instruction is missing a basic block operand or "
+ "isIndirectBranch property",
+ MI);
+ }
+ }
+
+ // Check types.
+ SmallVector<LLT, 4> Types;
+ for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
+ I != E; ++I) {
+ if (!MCID.OpInfo[I].isGenericType())
+ continue;
+ // Generic instructions specify type equality constraints between some of
+ // their operands. Make sure these are consistent.
+ size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
+ Types.resize(std::max(TypeIdx + 1, Types.size()));
+
+ const MachineOperand *MO = &MI->getOperand(I);
+ if (!MO->isReg()) {
+ report("generic instruction must use register operands", MI);
+ continue;
+ }
+
+ LLT OpTy = MRI->getType(MO->getReg());
+ // Don't report a type mismatch if there is no actual mismatch, only a
+ // type missing, to reduce noise:
+ if (OpTy.isValid()) {
+ // Only the first valid type for a type index will be printed: don't
+ // overwrite it later so it's always clear which type was expected:
+ if (!Types[TypeIdx].isValid())
+ Types[TypeIdx] = OpTy;
+ else if (Types[TypeIdx] != OpTy)
+ report("Type mismatch in generic instruction", MO, I, OpTy);
+ } else {
+ // Generic instructions must have types attached to their operands.
+ report("Generic instruction is missing a virtual register type", MO, I);
+ }
+ }
+
+ // Generic opcodes must not have physical register operands.
+ for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
+ const MachineOperand *MO = &MI->getOperand(I);
+ if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
+ report("Generic instruction cannot have physical register", MO, I);
+ }
+
+ // Avoid out of bounds in checks below. This was already reported earlier.
+ if (MI->getNumOperands() < MCID.getNumOperands())
+ return;
+
+ StringRef ErrorInfo;
+ if (!TII->verifyInstruction(*MI, ErrorInfo))
+ report(ErrorInfo.data(), MI);
+
+ // Verify properties of various specific instruction types
+ switch (MI->getOpcode()) {
+ case TargetOpcode::G_CONSTANT:
+ case TargetOpcode::G_FCONSTANT: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ if (DstTy.isVector())
+ report("Instruction cannot use a vector result type", MI);
+
+ if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
+ if (!MI->getOperand(1).isCImm()) {
+ report("G_CONSTANT operand must be cimm", MI);
+ break;
+ }
+
+ const ConstantInt *CI = MI->getOperand(1).getCImm();
+ if (CI->getBitWidth() != DstTy.getSizeInBits())
+ report("inconsistent constant size", MI);
+ } else {
+ if (!MI->getOperand(1).isFPImm()) {
+ report("G_FCONSTANT operand must be fpimm", MI);
+ break;
+ }
+ const ConstantFP *CF = MI->getOperand(1).getFPImm();
+
+ if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
+ DstTy.getSizeInBits()) {
+ report("inconsistent constant size", MI);
+ }
+ }
+
+ break;
+ }
+ case TargetOpcode::G_LOAD:
+ case TargetOpcode::G_STORE:
+ case TargetOpcode::G_ZEXTLOAD:
+ case TargetOpcode::G_SEXTLOAD: {
+ LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!PtrTy.isPointer())
+ report("Generic memory instruction must access a pointer", MI);
+
+ // Generic loads and stores must have a single MachineMemOperand
+ // describing that access.
+ if (!MI->hasOneMemOperand()) {
+ report("Generic instruction accessing memory must have one mem operand",
+ MI);
+ } else {
+ const MachineMemOperand &MMO = **MI->memoperands_begin();
+ if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
+ MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
+ if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
+ report("Generic extload must have a narrower memory type", MI);
+ } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
+ if (MMO.getSize() > ValTy.getSizeInBytes())
+ report("load memory size cannot exceed result size", MI);
+ } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
+ if (ValTy.getSizeInBytes() < MMO.getSize())
+ report("store memory size cannot exceed value size", MI);
+ }
+ }
+
+ break;
+ }
+ case TargetOpcode::G_PHI: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
+ [this, &DstTy](const MachineOperand &MO) {
+ if (!MO.isReg())
+ return true;
+ LLT Ty = MRI->getType(MO.getReg());
+ if (!Ty.isValid() || (Ty != DstTy))
+ return false;
+ return true;
+ }))
+ report("Generic Instruction G_PHI has operands with incompatible/missing "
+ "types",
+ MI);
+ break;
+ }
+ case TargetOpcode::G_BITCAST: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isValid() || !SrcTy.isValid())
+ break;
+
+ if (SrcTy.isPointer() != DstTy.isPointer())
+ report("bitcast cannot convert between pointers and other types", MI);
+
+ if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
+ report("bitcast sizes must match", MI);
+
+ if (SrcTy == DstTy)
+ report("bitcast must change the type", MI);
+
+ break;
+ }
+ case TargetOpcode::G_INTTOPTR:
+ case TargetOpcode::G_PTRTOINT:
+ case TargetOpcode::G_ADDRSPACE_CAST: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isValid() || !SrcTy.isValid())
+ break;
+
+ verifyVectorElementMatch(DstTy, SrcTy, MI);
+
+ DstTy = DstTy.getScalarType();
+ SrcTy = SrcTy.getScalarType();
+
+ if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
+ if (!DstTy.isPointer())
+ report("inttoptr result type must be a pointer", MI);
+ if (SrcTy.isPointer())
+ report("inttoptr source type must not be a pointer", MI);
+ } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
+ if (!SrcTy.isPointer())
+ report("ptrtoint source type must be a pointer", MI);
+ if (DstTy.isPointer())
+ report("ptrtoint result type must not be a pointer", MI);
+ } else {
+ assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
+ if (!SrcTy.isPointer() || !DstTy.isPointer())
+ report("addrspacecast types must be pointers", MI);
+ else {
+ if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
+ report("addrspacecast must convert different address spaces", MI);
+ }
+ }
+
+ break;
+ }
+ case TargetOpcode::G_PTR_ADD: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
+ LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
+ if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
+ break;
+
+ if (!PtrTy.getScalarType().isPointer())
+ report("gep first operand must be a pointer", MI);
+
+ if (OffsetTy.getScalarType().isPointer())
+ report("gep offset operand must not be a pointer", MI);
+
+ // TODO: Is the offset allowed to be a scalar with a vector?
+ break;
+ }
+ case TargetOpcode::G_PTRMASK: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
+ if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
+ break;
+
+ if (!DstTy.getScalarType().isPointer())
+ report("ptrmask result type must be a pointer", MI);
+
+ if (!MaskTy.getScalarType().isScalar())
+ report("ptrmask mask type must be an integer", MI);
+
+ verifyVectorElementMatch(DstTy, MaskTy, MI);
+ break;
+ }
+ case TargetOpcode::G_SEXT:
+ case TargetOpcode::G_ZEXT:
+ case TargetOpcode::G_ANYEXT:
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_FPEXT:
+ case TargetOpcode::G_FPTRUNC: {
+ // Number of operands and presense of types is already checked (and
+ // reported in case of any issues), so no need to report them again. As
+ // we're trying to report as many issues as possible at once, however, the
+ // instructions aren't guaranteed to have the right number of operands or
+ // types attached to them at this point
+ assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isValid() || !SrcTy.isValid())
+ break;
+
+ LLT DstElTy = DstTy.getScalarType();
+ LLT SrcElTy = SrcTy.getScalarType();
+ if (DstElTy.isPointer() || SrcElTy.isPointer())
+ report("Generic extend/truncate can not operate on pointers", MI);
+
+ verifyVectorElementMatch(DstTy, SrcTy, MI);
+
+ unsigned DstSize = DstElTy.getSizeInBits();
+ unsigned SrcSize = SrcElTy.getSizeInBits();
+ switch (MI->getOpcode()) {
+ default:
+ if (DstSize <= SrcSize)
+ report("Generic extend has destination type no larger than source", MI);
+ break;
+ case TargetOpcode::G_TRUNC:
+ case TargetOpcode::G_FPTRUNC:
+ if (DstSize >= SrcSize)
+ report("Generic truncate has destination type no smaller than source",
+ MI);
+ break;
+ }
+ break;
+ }
+ case TargetOpcode::G_SELECT: {
+ LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!SelTy.isValid() || !CondTy.isValid())
+ break;
+
+ // Scalar condition select on a vector is valid.
+ if (CondTy.isVector())
+ verifyVectorElementMatch(SelTy, CondTy, MI);
+ break;
+ }
+ case TargetOpcode::G_MERGE_VALUES: {
+ // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
+ // e.g. s2N = MERGE sN, sN
+ // Merging multiple scalars into a vector is not allowed, should use
+ // G_BUILD_VECTOR for that.
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (DstTy.isVector() || SrcTy.isVector())
+ report("G_MERGE_VALUES cannot operate on vectors", MI);
+
+ const unsigned NumOps = MI->getNumOperands();
+ if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
+ report("G_MERGE_VALUES result size is inconsistent", MI);
+
+ for (unsigned I = 2; I != NumOps; ++I) {
+ if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
+ report("G_MERGE_VALUES source types do not match", MI);
+ }
+
+ break;
+ }
+ case TargetOpcode::G_UNMERGE_VALUES: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
+ // For now G_UNMERGE can split vectors.
+ for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
+ if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
+ report("G_UNMERGE_VALUES destination types do not match", MI);
+ }
+ if (SrcTy.getSizeInBits() !=
+ (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
+ report("G_UNMERGE_VALUES source operand does not cover dest operands",
+ MI);
+ }
+ break;
+ }
+ case TargetOpcode::G_BUILD_VECTOR: {
+ // Source types must be scalars, dest type a vector. Total size of scalars
+ // must match the dest vector size.
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isVector() || SrcEltTy.isVector()) {
+ report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
+ break;
+ }
+
+ if (DstTy.getElementType() != SrcEltTy)
+ report("G_BUILD_VECTOR result element type must match source type", MI);
+
+ if (DstTy.getNumElements() != MI->getNumOperands() - 1)
+ report("G_BUILD_VECTOR must have an operand for each elemement", MI);
+
+ for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
+ if (MRI->getType(MI->getOperand(1).getReg()) !=
+ MRI->getType(MI->getOperand(i).getReg()))
+ report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
+ }
+
+ break;
+ }
+ case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
+ // Source types must be scalars, dest type a vector. Scalar types must be
+ // larger than the dest vector elt type, as this is a truncating operation.
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isVector() || SrcEltTy.isVector())
+ report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
+ MI);
+ for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
+ if (MRI->getType(MI->getOperand(1).getReg()) !=
+ MRI->getType(MI->getOperand(i).getReg()))
+ report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
+ MI);
+ }
+ if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
+ report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
+ "dest elt type",
+ MI);
+ break;
+ }
+ case TargetOpcode::G_CONCAT_VECTORS: {
+ // Source types should be vectors, and total size should match the dest
+ // vector size.
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isVector() || !SrcTy.isVector())
+ report("G_CONCAT_VECTOR requires vector source and destination operands",
+ MI);
+ for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
+ if (MRI->getType(MI->getOperand(1).getReg()) !=
+ MRI->getType(MI->getOperand(i).getReg()))
+ report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
+ }
+ if (DstTy.getNumElements() !=
+ SrcTy.getNumElements() * (MI->getNumOperands() - 1))
+ report("G_CONCAT_VECTOR num dest and source elements should match", MI);
+ break;
+ }
+ case TargetOpcode::G_ICMP:
+ case TargetOpcode::G_FCMP: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
+
+ if ((DstTy.isVector() != SrcTy.isVector()) ||
+ (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
+ report("Generic vector icmp/fcmp must preserve number of lanes", MI);
+
+ break;
+ }
+ case TargetOpcode::G_EXTRACT: {
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ if (!SrcOp.isReg()) {
+ report("extract source must be a register", MI);
+ break;
+ }
+
+ const MachineOperand &OffsetOp = MI->getOperand(2);
+ if (!OffsetOp.isImm()) {
+ report("extract offset must be a constant", MI);
+ break;
+ }
+
+ unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
+ unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
+ if (SrcSize == DstSize)
+ report("extract source must be larger than result", MI);
+
+ if (DstSize + OffsetOp.getImm() > SrcSize)
+ report("extract reads past end of register", MI);
+ break;
+ }
+ case TargetOpcode::G_INSERT: {
+ const MachineOperand &SrcOp = MI->getOperand(2);
+ if (!SrcOp.isReg()) {
+ report("insert source must be a register", MI);
+ break;
+ }
+
+ const MachineOperand &OffsetOp = MI->getOperand(3);
+ if (!OffsetOp.isImm()) {
+ report("insert offset must be a constant", MI);
+ break;
+ }
+
+ unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
+ unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
+
+ if (DstSize <= SrcSize)
+ report("inserted size must be smaller than total register", MI);
+
+ if (SrcSize + OffsetOp.getImm() > DstSize)
+ report("insert writes past end of register", MI);
+
+ break;
+ }
+ case TargetOpcode::G_JUMP_TABLE: {
+ if (!MI->getOperand(1).isJTI())
+ report("G_JUMP_TABLE source operand must be a jump table index", MI);
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ if (!DstTy.isPointer())
+ report("G_JUMP_TABLE dest operand must have a pointer type", MI);
+ break;
+ }
+ case TargetOpcode::G_BRJT: {
+ if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
+ report("G_BRJT src operand 0 must be a pointer type", MI);
+
+ if (!MI->getOperand(1).isJTI())
+ report("G_BRJT src operand 1 must be a jump table index", MI);
+
+ const auto &IdxOp = MI->getOperand(2);
+ if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
+ report("G_BRJT src operand 2 must be a scalar reg type", MI);
+ break;
+ }
+ case TargetOpcode::G_INTRINSIC:
+ case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
+ // TODO: Should verify number of def and use operands, but the current
+ // interface requires passing in IR types for mangling.
+ const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
+ if (!IntrIDOp.isIntrinsicID()) {
+ report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
+ break;
+ }
+
+ bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
+ unsigned IntrID = IntrIDOp.getIntrinsicID();
+ if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
+ AttributeList Attrs
+ = Intrinsic::getAttributes(MF->getFunction().getContext(),
+ static_cast<Intrinsic::ID>(IntrID));
+ bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
+ if (NoSideEffects && DeclHasSideEffects) {
+ report("G_INTRINSIC used with intrinsic that accesses memory", MI);
+ break;
+ }
+ if (!NoSideEffects && !DeclHasSideEffects) {
+ report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
+ break;
+ }
+ }
+
+ break;
+ }
+ case TargetOpcode::G_SEXT_INREG: {
+ if (!MI->getOperand(2).isImm()) {
+ report("G_SEXT_INREG expects an immediate operand #2", MI);
+ break;
+ }
+
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ verifyVectorElementMatch(DstTy, SrcTy, MI);
+
+ int64_t Imm = MI->getOperand(2).getImm();
+ if (Imm <= 0)
+ report("G_SEXT_INREG size must be >= 1", MI);
+ if (Imm >= SrcTy.getScalarSizeInBits())
+ report("G_SEXT_INREG size must be less than source bit width", MI);
+ break;
+ }
+ case TargetOpcode::G_SHUFFLE_VECTOR: {
+ const MachineOperand &MaskOp = MI->getOperand(3);
+ if (!MaskOp.isShuffleMask()) {
+ report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
+ break;
+ }
+
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
+ LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
+
+ if (Src0Ty != Src1Ty)
+ report("Source operands must be the same type", MI);
+
+ if (Src0Ty.getScalarType() != DstTy.getScalarType())
+ report("G_SHUFFLE_VECTOR cannot change element type", MI);
+
+ // Don't check that all operands are vector because scalars are used in
+ // place of 1 element vectors.
+ int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
+ int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
+
+ ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
+
+ if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
+ report("Wrong result type for shufflemask", MI);
+
+ for (int Idx : MaskIdxes) {
+ if (Idx < 0)
+ continue;
+
+ if (Idx >= 2 * SrcNumElts)
+ report("Out of bounds shuffle index", MI);
+ }
+
+ break;
+ }
+ case TargetOpcode::G_DYN_STACKALLOC: {
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &AllocOp = MI->getOperand(1);
+ const MachineOperand &AlignOp = MI->getOperand(2);
+
+ if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
+ report("dst operand 0 must be a pointer type", MI);
+ break;
+ }
+
+ if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
+ report("src operand 1 must be a scalar reg type", MI);
+ break;
+ }
+
+ if (!AlignOp.isImm()) {
+ report("src operand 2 must be an immediate type", MI);
+ break;
+ }
+ break;
+ }
+ case TargetOpcode::G_MEMCPY:
+ case TargetOpcode::G_MEMMOVE: {
+ ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
+ if (MMOs.size() != 2) {
+ report("memcpy/memmove must have 2 memory operands", MI);
+ break;
+ }
+
+ if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
+ (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
+ report("wrong memory operand types", MI);
+ break;
+ }
+
+ if (MMOs[0]->getSize() != MMOs[1]->getSize())
+ report("inconsistent memory operand sizes", MI);
+
+ LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
+
+ if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
+ report("memory instruction operand must be a pointer", MI);
+ break;
+ }
+
+ if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
+ report("inconsistent store address space", MI);
+ if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
+ report("inconsistent load address space", MI);
+
+ break;
+ }
+ case TargetOpcode::G_MEMSET: {
+ ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
+ if (MMOs.size() != 1) {
+ report("memset must have 1 memory operand", MI);
+ break;
+ }
+
+ if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
+ report("memset memory operand must be a store", MI);
+ break;
+ }
+
+ LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
+ if (!DstPtrTy.isPointer()) {
+ report("memset operand must be a pointer", MI);
+ break;
+ }
+
+ if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
+ report("inconsistent memset address space", MI);
+
+ break;
+ }
+ case TargetOpcode::G_VECREDUCE_SEQ_FADD:
+ case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
+ LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
+ if (!DstTy.isScalar())
+ report("Vector reduction requires a scalar destination type", MI);
+ if (!Src1Ty.isScalar())
+ report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
+ if (!Src2Ty.isVector())
+ report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
+ break;
+ }
+ case TargetOpcode::G_VECREDUCE_FADD:
+ case TargetOpcode::G_VECREDUCE_FMUL:
+ case TargetOpcode::G_VECREDUCE_FMAX:
+ case TargetOpcode::G_VECREDUCE_FMIN:
+ case TargetOpcode::G_VECREDUCE_ADD:
+ case TargetOpcode::G_VECREDUCE_MUL:
+ case TargetOpcode::G_VECREDUCE_AND:
+ case TargetOpcode::G_VECREDUCE_OR:
+ case TargetOpcode::G_VECREDUCE_XOR:
+ case TargetOpcode::G_VECREDUCE_SMAX:
+ case TargetOpcode::G_VECREDUCE_SMIN:
+ case TargetOpcode::G_VECREDUCE_UMAX:
+ case TargetOpcode::G_VECREDUCE_UMIN: {
+ LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
+ LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
+ if (!DstTy.isScalar())
+ report("Vector reduction requires a scalar destination type", MI);
+ if (!SrcTy.isVector())
+ report("Vector reduction requires vector source=", MI);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if (MI->getNumOperands() < MCID.getNumOperands()) {
+ report("Too few operands", MI);
+ errs() << MCID.getNumOperands() << " operands expected, but "
+ << MI->getNumOperands() << " given.\n";
+ }
+
+ if (MI->isPHI()) {
+ if (MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::NoPHIs))
+ report("Found PHI instruction with NoPHIs property set", MI);
+
+ if (FirstNonPHI)
+ report("Found PHI instruction after non-PHI", MI);
+ } else if (FirstNonPHI == nullptr)
+ FirstNonPHI = MI;
+
+ // Check the tied operands.
+ if (MI->isInlineAsm())
+ verifyInlineAsm(MI);
+
+ // Check that unspillable terminators define a reg and have at most one use.
+ if (TII->isUnspillableTerminator(MI)) {
+ if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
+ report("Unspillable Terminator does not define a reg", MI);
+ Register Def = MI->getOperand(0).getReg();
+ if (Def.isVirtual() &&
+ std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
+ report("Unspillable Terminator expected to have at most one use!", MI);
+ }
+
+ // A fully-formed DBG_VALUE must have a location. Ignore partially formed
+ // DBG_VALUEs: these are convenient to use in tests, but should never get
+ // generated.
+ if (MI->isDebugValue() && MI->getNumOperands() == 4)
+ if (!MI->getDebugLoc())
+ report("Missing DebugLoc for debug instruction", MI);
+
+ // Meta instructions should never be the subject of debug value tracking,
+ // they don't create a value in the output program at all.
+ if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
+ report("Metadata instruction should not have a value tracking number", MI);
+
+ // Check the MachineMemOperands for basic consistency.
+ for (MachineMemOperand *Op : MI->memoperands()) {
+ if (Op->isLoad() && !MI->mayLoad())
+ report("Missing mayLoad flag", MI);
+ if (Op->isStore() && !MI->mayStore())
+ report("Missing mayStore flag", MI);
+ }
+
+ // Debug values must not have a slot index.
+ // Other instructions must have one, unless they are inside a bundle.
+ if (LiveInts) {
+ bool mapped = !LiveInts->isNotInMIMap(*MI);
+ if (MI->isDebugInstr()) {
+ if (mapped)
+ report("Debug instruction has a slot index", MI);
+ } else if (MI->isInsideBundle()) {
+ if (mapped)
+ report("Instruction inside bundle has a slot index", MI);
+ } else {
+ if (!mapped)
+ report("Missing slot index", MI);
+ }
+ }
+
+ if (isPreISelGenericOpcode(MCID.getOpcode())) {
+ verifyPreISelGenericInstruction(MI);
+ return;
+ }
+
+ StringRef ErrorInfo;
+ if (!TII->verifyInstruction(*MI, ErrorInfo))
+ report(ErrorInfo.data(), MI);
+
+ // Verify properties of various specific instruction types
+ switch (MI->getOpcode()) {
+ case TargetOpcode::COPY: {
+ if (foundErrors)
+ break;
+ const MachineOperand &DstOp = MI->getOperand(0);
+ const MachineOperand &SrcOp = MI->getOperand(1);
+ LLT DstTy = MRI->getType(DstOp.getReg());
+ LLT SrcTy = MRI->getType(SrcOp.getReg());
+ if (SrcTy.isValid() && DstTy.isValid()) {
+ // If both types are valid, check that the types are the same.
+ if (SrcTy != DstTy) {
+ report("Copy Instruction is illegal with mismatching types", MI);
+ errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
+ }
+ }
+ if (SrcTy.isValid() || DstTy.isValid()) {
+ // If one of them have valid types, let's just check they have the same
+ // size.
+ unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
+ unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
+ assert(SrcSize && "Expecting size here");
+ assert(DstSize && "Expecting size here");
+ if (SrcSize != DstSize)
+ if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
+ report("Copy Instruction is illegal with mismatching sizes", MI);
+ errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
+ << "\n";
+ }
+ }
+ break;
+ }
+ case TargetOpcode::STATEPOINT: {
+ StatepointOpers SO(MI);
+ if (!MI->getOperand(SO.getIDPos()).isImm() ||
+ !MI->getOperand(SO.getNBytesPos()).isImm() ||
+ !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
+ report("meta operands to STATEPOINT not constant!", MI);
+ break;
+ }
+
+ auto VerifyStackMapConstant = [&](unsigned Offset) {
+ if (Offset >= MI->getNumOperands()) {
+ report("stack map constant to STATEPOINT is out of range!", MI);
+ return;
+ }
+ if (!MI->getOperand(Offset - 1).isImm() ||
+ MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
+ !MI->getOperand(Offset).isImm())
+ report("stack map constant to STATEPOINT not well formed!", MI);
+ };
+ VerifyStackMapConstant(SO.getCCIdx());
+ VerifyStackMapConstant(SO.getFlagsIdx());
+ VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
+ VerifyStackMapConstant(SO.getNumGCPtrIdx());
+ VerifyStackMapConstant(SO.getNumAllocaIdx());
+ VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
+
+ // Verify that all explicit statepoint defs are tied to gc operands as
+ // they are expected to be a relocation of gc operands.
+ unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
+ unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
+ for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
+ unsigned UseOpIdx;
+ if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
+ report("STATEPOINT defs expected to be tied", MI);
+ break;
+ }
+ if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
+ report("STATEPOINT def tied to non-gc operand", MI);
+ break;
+ }
+ }
+
+ // TODO: verify we have properly encoded deopt arguments
+ } break;
+ }
+}
+
+void
+MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const MCInstrDesc &MCID = MI->getDesc();
+ unsigned NumDefs = MCID.getNumDefs();
+ if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
+ NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
+
+ // The first MCID.NumDefs operands must be explicit register defines
+ if (MONum < NumDefs) {
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
+ if (!MO->isReg())
+ report("Explicit definition must be a register", MO, MONum);
+ else if (!MO->isDef() && !MCOI.isOptionalDef())
+ report("Explicit definition marked as use", MO, MONum);
+ else if (MO->isImplicit())
+ report("Explicit definition marked as implicit", MO, MONum);
+ } else if (MONum < MCID.getNumOperands()) {
+ const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
+ // Don't check if it's the last operand in a variadic instruction. See,
+ // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
+ bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
+ if (!IsOptional) {
+ if (MO->isReg()) {
+ if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
+ report("Explicit operand marked as def", MO, MONum);
+ if (MO->isImplicit())
+ report("Explicit operand marked as implicit", MO, MONum);
+ }
+
+ // Check that an instruction has register operands only as expected.
+ if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
+ !MO->isReg() && !MO->isFI())
+ report("Expected a register operand.", MO, MONum);
+ if ((MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
+ MCOI.OperandType == MCOI::OPERAND_PCREL) && MO->isReg())
+ report("Expected a non-register operand.", MO, MONum);
+ }
+
+ int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
+ if (TiedTo != -1) {
+ if (!MO->isReg())
+ report("Tied use must be a register", MO, MONum);
+ else if (!MO->isTied())
+ report("Operand should be tied", MO, MONum);
+ else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
+ report("Tied def doesn't match MCInstrDesc", MO, MONum);
+ else if (Register::isPhysicalRegister(MO->getReg())) {
+ const MachineOperand &MOTied = MI->getOperand(TiedTo);
+ if (!MOTied.isReg())
+ report("Tied counterpart must be a register", &MOTied, TiedTo);
+ else if (Register::isPhysicalRegister(MOTied.getReg()) &&
+ MO->getReg() != MOTied.getReg())
+ report("Tied physical registers must match.", &MOTied, TiedTo);
+ }
+ } else if (MO->isReg() && MO->isTied())
+ report("Explicit operand should not be tied", MO, MONum);
+ } else {
+ // ARM adds %reg0 operands to indicate predicates. We'll allow that.
+ if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
+ report("Extra explicit operand on non-variadic instruction", MO, MONum);
+ }
+
+ switch (MO->getType()) {
+ case MachineOperand::MO_Register: {
+ const Register Reg = MO->getReg();
+ if (!Reg)
+ return;
+ if (MRI->tracksLiveness() && !MI->isDebugValue())
+ checkLiveness(MO, MONum);
+
+ // Verify the consistency of tied operands.
+ if (MO->isTied()) {
+ unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
+ const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
+ if (!OtherMO.isReg())
+ report("Must be tied to a register", MO, MONum);
+ if (!OtherMO.isTied())
+ report("Missing tie flags on tied operand", MO, MONum);
+ if (MI->findTiedOperandIdx(OtherIdx) != MONum)
+ report("Inconsistent tie links", MO, MONum);
+ if (MONum < MCID.getNumDefs()) {
+ if (OtherIdx < MCID.getNumOperands()) {
+ if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
+ report("Explicit def tied to explicit use without tie constraint",
+ MO, MONum);
+ } else {
+ if (!OtherMO.isImplicit())
+ report("Explicit def should be tied to implicit use", MO, MONum);
+ }
+ }
+ }
+
+ // Verify two-address constraints after the twoaddressinstruction pass.
+ // Both twoaddressinstruction pass and phi-node-elimination pass call
+ // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
+ // twoaddressinstruction pass not after phi-node-elimination pass. So we
+ // shouldn't use the NoSSA as the condition, we should based on
+ // TiedOpsRewritten property to verify two-address constraints, this
+ // property will be set in twoaddressinstruction pass.
+ unsigned DefIdx;
+ if (MF->getProperties().hasProperty(
+ MachineFunctionProperties::Property::TiedOpsRewritten) &&
+ MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
+ Reg != MI->getOperand(DefIdx).getReg())
+ report("Two-address instruction operands must be identical", MO, MONum);
+
+ // Check register classes.
+ unsigned SubIdx = MO->getSubReg();
+
+ if (Register::isPhysicalRegister(Reg)) {
+ if (SubIdx) {
+ report("Illegal subregister index for physical register", MO, MONum);
+ return;
+ }
+ if (MONum < MCID.getNumOperands()) {
+ if (const TargetRegisterClass *DRC =
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ if (!DRC->contains(Reg)) {
+ report("Illegal physical register for instruction", MO, MONum);
+ errs() << printReg(Reg, TRI) << " is not a "
+ << TRI->getRegClassName(DRC) << " register.\n";
+ }
+ }
+ }
+ if (MO->isRenamable()) {
+ if (MRI->isReserved(Reg)) {
+ report("isRenamable set on reserved register", MO, MONum);
+ return;
+ }
+ }
+ if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
+ report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
+ return;
+ }
+ } else {
+ // Virtual register.
+ const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
+ if (!RC) {
+ // This is a generic virtual register.
+
+ // Do not allow undef uses for generic virtual registers. This ensures
+ // getVRegDef can never fail and return null on a generic register.
+ //
+ // FIXME: This restriction should probably be broadened to all SSA
+ // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
+ // run on the SSA function just before phi elimination.
+ if (MO->isUndef())
+ report("Generic virtual register use cannot be undef", MO, MONum);
+
+ // If we're post-Select, we can't have gvregs anymore.
+ if (isFunctionSelected) {
+ report("Generic virtual register invalid in a Selected function",
+ MO, MONum);
+ return;
+ }
+
+ // The gvreg must have a type and it must not have a SubIdx.
+ LLT Ty = MRI->getType(Reg);
+ if (!Ty.isValid()) {
+ report("Generic virtual register must have a valid type", MO,
+ MONum);
+ return;
+ }
+
+ const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
+
+ // If we're post-RegBankSelect, the gvreg must have a bank.
+ if (!RegBank && isFunctionRegBankSelected) {
+ report("Generic virtual register must have a bank in a "
+ "RegBankSelected function",
+ MO, MONum);
+ return;
+ }
+
+ // Make sure the register fits into its register bank if any.
+ if (RegBank && Ty.isValid() &&
+ RegBank->getSize() < Ty.getSizeInBits()) {
+ report("Register bank is too small for virtual register", MO,
+ MONum);
+ errs() << "Register bank " << RegBank->getName() << " too small("
+ << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
+ << "-bits\n";
+ return;
+ }
+ if (SubIdx) {
+ report("Generic virtual register does not allow subregister index", MO,
+ MONum);
+ return;
+ }
+
+ // If this is a target specific instruction and this operand
+ // has register class constraint, the virtual register must
+ // comply to it.
+ if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
+ MONum < MCID.getNumOperands() &&
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ report("Virtual register does not match instruction constraint", MO,
+ MONum);
+ errs() << "Expect register class "
+ << TRI->getRegClassName(
+ TII->getRegClass(MCID, MONum, TRI, *MF))
+ << " but got nothing\n";
+ return;
+ }
+
+ break;
+ }
+ if (SubIdx) {
+ const TargetRegisterClass *SRC =
+ TRI->getSubClassWithSubReg(RC, SubIdx);
+ if (!SRC) {
+ report("Invalid subregister index for virtual register", MO, MONum);
+ errs() << "Register class " << TRI->getRegClassName(RC)
+ << " does not support subreg index " << SubIdx << "\n";
+ return;
+ }
+ if (RC != SRC) {
+ report("Invalid register class for subregister index", MO, MONum);
+ errs() << "Register class " << TRI->getRegClassName(RC)
+ << " does not fully support subreg index " << SubIdx << "\n";
+ return;
+ }
+ }
+ if (MONum < MCID.getNumOperands()) {
+ if (const TargetRegisterClass *DRC =
+ TII->getRegClass(MCID, MONum, TRI, *MF)) {
+ if (SubIdx) {
+ const TargetRegisterClass *SuperRC =
+ TRI->getLargestLegalSuperClass(RC, *MF);
+ if (!SuperRC) {
+ report("No largest legal super class exists.", MO, MONum);
+ return;
+ }
+ DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
+ if (!DRC) {
+ report("No matching super-reg register class.", MO, MONum);
+ return;
+ }
+ }
+ if (!RC->hasSuperClassEq(DRC)) {
+ report("Illegal virtual register for instruction", MO, MONum);
+ errs() << "Expected a " << TRI->getRegClassName(DRC)
+ << " register, but got a " << TRI->getRegClassName(RC)
+ << " register\n";
+ }
+ }
+ }
+ }
+ break;
+ }
+
+ case MachineOperand::MO_RegisterMask:
+ regMasks.push_back(MO->getRegMask());
+ break;
+
+ case MachineOperand::MO_MachineBasicBlock:
+ if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
+ report("PHI operand is not in the CFG", MO, MONum);
+ break;
+
+ case MachineOperand::MO_FrameIndex:
+ if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
+ LiveInts && !LiveInts->isNotInMIMap(*MI)) {
+ int FI = MO->getIndex();
+ LiveInterval &LI = LiveStks->getInterval(FI);
+ SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
+
+ bool stores = MI->mayStore();
+ bool loads = MI->mayLoad();
+ // For a memory-to-memory move, we need to check if the frame
+ // index is used for storing or loading, by inspecting the
+ // memory operands.
+ if (stores && loads) {
+ for (auto *MMO : MI->memoperands()) {
+ const PseudoSourceValue *PSV = MMO->getPseudoValue();
+ if (PSV == nullptr) continue;
+ const FixedStackPseudoSourceValue *Value =
+ dyn_cast<FixedStackPseudoSourceValue>(PSV);
+ if (Value == nullptr) continue;
+ if (Value->getFrameIndex() != FI) continue;
+
+ if (MMO->isStore())
+ loads = false;
+ else
+ stores = false;
+ break;
+ }
+ if (loads == stores)
+ report("Missing fixed stack memoperand.", MI);
+ }
+ if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
+ report("Instruction loads from dead spill slot", MO, MONum);
+ errs() << "Live stack: " << LI << '\n';
+ }
+ if (stores && !LI.liveAt(Idx.getRegSlot())) {
+ report("Instruction stores to dead spill slot", MO, MONum);
+ errs() << "Live stack: " << LI << '\n';
+ }
+ }
+ break;
+
+ default:
+ break;
+ }
+}
+
+void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
+ unsigned MONum, SlotIndex UseIdx,
+ const LiveRange &LR,
+ Register VRegOrUnit,
+ LaneBitmask LaneMask) {
+ LiveQueryResult LRQ = LR.Query(UseIdx);
+ // Check if we have a segment at the use, note however that we only need one
+ // live subregister range, the others may be dead.
+ if (!LRQ.valueIn() && LaneMask.none()) {
+ report("No live segment at use", MO, MONum);
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegOrUnit);
+ report_context(UseIdx);
+ }
+ if (MO->isKill() && !LRQ.isKill()) {
+ report("Live range continues after kill flag", MO, MONum);
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegOrUnit);
+ if (LaneMask.any())
+ report_context_lanemask(LaneMask);
+ report_context(UseIdx);
+ }
+}
+
+void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
+ unsigned MONum, SlotIndex DefIdx,
+ const LiveRange &LR,
+ Register VRegOrUnit,
+ bool SubRangeCheck,
+ LaneBitmask LaneMask) {
+ if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
+ assert(VNI && "NULL valno is not allowed");
+ if (VNI->def != DefIdx) {
+ report("Inconsistent valno->def", MO, MONum);
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegOrUnit);
+ if (LaneMask.any())
+ report_context_lanemask(LaneMask);
+ report_context(*VNI);
+ report_context(DefIdx);
+ }
+ } else {
+ report("No live segment at def", MO, MONum);
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegOrUnit);
+ if (LaneMask.any())
+ report_context_lanemask(LaneMask);
+ report_context(DefIdx);
+ }
+ // Check that, if the dead def flag is present, LiveInts agree.
+ if (MO->isDead()) {
+ LiveQueryResult LRQ = LR.Query(DefIdx);
+ if (!LRQ.isDeadDef()) {
+ assert(Register::isVirtualRegister(VRegOrUnit) &&
+ "Expecting a virtual register.");
+ // A dead subreg def only tells us that the specific subreg is dead. There
+ // could be other non-dead defs of other subregs, or we could have other
+ // parts of the register being live through the instruction. So unless we
+ // are checking liveness for a subrange it is ok for the live range to
+ // continue, given that we have a dead def of a subregister.
+ if (SubRangeCheck || MO->getSubReg() == 0) {
+ report("Live range continues after dead def flag", MO, MONum);
+ report_context_liverange(LR);
+ report_context_vreg_regunit(VRegOrUnit);
+ if (LaneMask.any())
+ report_context_lanemask(LaneMask);
+ }
+ }
+ }
+}
+
+void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
+ const MachineInstr *MI = MO->getParent();
+ const Register Reg = MO->getReg();
+
+ // Both use and def operands can read a register.
+ if (MO->readsReg()) {
+ if (MO->isKill())
+ addRegWithSubRegs(regsKilled, Reg);
+
+ // Check that LiveVars knows this kill.
+ if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ if (!is_contained(VI.Kills, MI))
+ report("Kill missing from LiveVariables", MO, MONum);
+ }
+
+ // Check LiveInts liveness and kill.
+ if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
+ SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
+ // Check the cached regunit intervals.
+ if (Reg.isPhysical() && !isReserved(Reg)) {
+ for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
+ ++Units) {
+ if (MRI->isReservedRegUnit(*Units))
+ continue;
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
+ checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
+ }
+ }
+
+ if (Register::isVirtualRegister(Reg)) {
+ if (LiveInts->hasInterval(Reg)) {
+ // This is a virtual register interval.
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
+
+ if (LI.hasSubRanges() && !MO->isDef()) {
+ unsigned SubRegIdx = MO->getSubReg();
+ LaneBitmask MOMask = SubRegIdx != 0
+ ? TRI->getSubRegIndexLaneMask(SubRegIdx)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+ LaneBitmask LiveInMask;
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((MOMask & SR.LaneMask).none())
+ continue;
+ checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
+ LiveQueryResult LRQ = SR.Query(UseIdx);
+ if (LRQ.valueIn())
+ LiveInMask |= SR.LaneMask;
+ }
+ // At least parts of the register has to be live at the use.
+ if ((LiveInMask & MOMask).none()) {
+ report("No live subrange at use", MO, MONum);
+ report_context(LI);
+ report_context(UseIdx);
+ }
+ }
+ } else {
+ report("Virtual register has no live interval", MO, MONum);
+ }
+ }
+ }
+
+ // Use of a dead register.
+ if (!regsLive.count(Reg)) {
+ if (Register::isPhysicalRegister(Reg)) {
+ // Reserved registers may be used even when 'dead'.
+ bool Bad = !isReserved(Reg);
+ // We are fine if just any subregister has a defined value.
+ if (Bad) {
+
+ for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
+ if (regsLive.count(SubReg)) {
+ Bad = false;
+ break;
+ }
+ }
+ }
+ // If there is an additional implicit-use of a super register we stop
+ // here. By definition we are fine if the super register is not
+ // (completely) dead, if the complete super register is dead we will
+ // get a report for its operand.
+ if (Bad) {
+ for (const MachineOperand &MOP : MI->uses()) {
+ if (!MOP.isReg() || !MOP.isImplicit())
+ continue;
+
+ if (!Register::isPhysicalRegister(MOP.getReg()))
+ continue;
+
+ for (const MCPhysReg &SubReg : TRI->subregs(MOP.getReg())) {
+ if (SubReg == Reg) {
+ Bad = false;
+ break;
+ }
+ }
+ }
+ }
+ if (Bad)
+ report("Using an undefined physical register", MO, MONum);
+ } else if (MRI->def_empty(Reg)) {
+ report("Reading virtual register without a def", MO, MONum);
+ } else {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ // We don't know which virtual registers are live in, so only complain
+ // if vreg was killed in this MBB. Otherwise keep track of vregs that
+ // must be live in. PHI instructions are handled separately.
+ if (MInfo.regsKilled.count(Reg))
+ report("Using a killed virtual register", MO, MONum);
+ else if (!MI->isPHI())
+ MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
+ }
+ }
+ }
+
+ if (MO->isDef()) {
+ // Register defined.
+ // TODO: verify that earlyclobber ops are not used.
+ if (MO->isDead())
+ addRegWithSubRegs(regsDead, Reg);
+ else
+ addRegWithSubRegs(regsDefined, Reg);
+
+ // Verify SSA form.
+ if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
+ std::next(MRI->def_begin(Reg)) != MRI->def_end())
+ report("Multiple virtual register defs in SSA form", MO, MONum);
+
+ // Check LiveInts for a live segment, but only for virtual registers.
+ if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
+ SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
+ DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
+
+ if (Register::isVirtualRegister(Reg)) {
+ if (LiveInts->hasInterval(Reg)) {
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
+
+ if (LI.hasSubRanges()) {
+ unsigned SubRegIdx = MO->getSubReg();
+ LaneBitmask MOMask = SubRegIdx != 0
+ ? TRI->getSubRegIndexLaneMask(SubRegIdx)
+ : MRI->getMaxLaneMaskForVReg(Reg);
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((SR.LaneMask & MOMask).none())
+ continue;
+ checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
+ }
+ }
+ } else {
+ report("Virtual register has no Live interval", MO, MONum);
+ }
+ }
+ }
+ }
+}
+
+// This function gets called after visiting all instructions in a bundle. The
+// argument points to the bundle header.
+// Normal stand-alone instructions are also considered 'bundles', and this
+// function is called for all of them.
+void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
+ BBInfo &MInfo = MBBInfoMap[MI->getParent()];
+ set_union(MInfo.regsKilled, regsKilled);
+ set_subtract(regsLive, regsKilled); regsKilled.clear();
+ // Kill any masked registers.
+ while (!regMasks.empty()) {
+ const uint32_t *Mask = regMasks.pop_back_val();
+ for (Register Reg : regsLive)
+ if (Reg.isPhysical() &&
+ MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
+ regsDead.push_back(Reg);
+ }
+ set_subtract(regsLive, regsDead); regsDead.clear();
+ set_union(regsLive, regsDefined); regsDefined.clear();
+}
+
+void
+MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
+ MBBInfoMap[MBB].regsLiveOut = regsLive;
+ regsLive.clear();
+
+ if (Indexes) {
+ SlotIndex stop = Indexes->getMBBEndIdx(MBB);
+ if (!(stop > lastIndex)) {
+ report("Block ends before last instruction index", MBB);
+ errs() << "Block ends at " << stop
+ << " last instruction was at " << lastIndex << '\n';
+ }
+ lastIndex = stop;
+ }
+}
+
+namespace {
+// This implements a set of registers that serves as a filter: can filter other
+// sets by passing through elements not in the filter and blocking those that
+// are. Any filter implicitly includes the full set of physical registers upon
+// creation, thus filtering them all out. The filter itself as a set only grows,
+// and needs to be as efficient as possible.
+struct VRegFilter {
+ // Add elements to the filter itself. \pre Input set \p FromRegSet must have
+ // no duplicates. Both virtual and physical registers are fine.
+ template <typename RegSetT> void add(const RegSetT &FromRegSet) {
+ SmallVector<Register, 0> VRegsBuffer;
+ filterAndAdd(FromRegSet, VRegsBuffer);
+ }
+ // Filter \p FromRegSet through the filter and append passed elements into \p
+ // ToVRegs. All elements appended are then added to the filter itself.
+ // \returns true if anything changed.
+ template <typename RegSetT>
+ bool filterAndAdd(const RegSetT &FromRegSet,
+ SmallVectorImpl<Register> &ToVRegs) {
+ unsigned SparseUniverse = Sparse.size();
+ unsigned NewSparseUniverse = SparseUniverse;
+ unsigned NewDenseSize = Dense.size();
+ size_t Begin = ToVRegs.size();
+ for (Register Reg : FromRegSet) {
+ if (!Reg.isVirtual())
+ continue;
+ unsigned Index = Register::virtReg2Index(Reg);
+ if (Index < SparseUniverseMax) {
+ if (Index < SparseUniverse && Sparse.test(Index))
+ continue;
+ NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
+ } else {
+ if (Dense.count(Reg))
+ continue;
+ ++NewDenseSize;
+ }
+ ToVRegs.push_back(Reg);
+ }
+ size_t End = ToVRegs.size();
+ if (Begin == End)
+ return false;
+ // Reserving space in sets once performs better than doing so continuously
+ // and pays easily for double look-ups (even in Dense with SparseUniverseMax
+ // tuned all the way down) and double iteration (the second one is over a
+ // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
+ Sparse.resize(NewSparseUniverse);
+ Dense.reserve(NewDenseSize);
+ for (unsigned I = Begin; I < End; ++I) {
+ Register Reg = ToVRegs[I];
+ unsigned Index = Register::virtReg2Index(Reg);
+ if (Index < SparseUniverseMax)
+ Sparse.set(Index);
+ else
+ Dense.insert(Reg);
+ }
+ return true;
+ }
+
+private:
+ static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
+ // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
+ // are tracked by Dense. The only purpose of the threashold and the Dense set
+ // is to have a reasonably growing memory usage in pathological cases (large
+ // number of very sparse VRegFilter instances live at the same time). In
+ // practice even in the worst-by-execution time cases having all elements
+ // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
+ // space efficient than if tracked by Dense. The threashold is set to keep the
+ // worst-case memory usage within 2x of figures determined empirically for
+ // "all Dense" scenario in such worst-by-execution-time cases.
+ BitVector Sparse;
+ DenseSet<unsigned> Dense;
+};
+
+// Implements both a transfer function and a (binary, in-place) join operator
+// for a dataflow over register sets with set union join and filtering transfer
+// (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
+// Maintains out_b as its state, allowing for O(n) iteration over it at any
+// time, where n is the size of the set (as opposed to O(U) where U is the
+// universe). filter_b implicitly contains all physical registers at all times.
+class FilteringVRegSet {
+ VRegFilter Filter;
+ SmallVector<Register, 0> VRegs;
+
+public:
+ // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
+ // Both virtual and physical registers are fine.
+ template <typename RegSetT> void addToFilter(const RegSetT &RS) {
+ Filter.add(RS);
+ }
+ // Passes \p RS through the filter_b (transfer function) and adds what's left
+ // to itself (out_b).
+ template <typename RegSetT> bool add(const RegSetT &RS) {
+ // Double-duty the Filter: to maintain VRegs a set (and the join operation
+ // a set union) just add everything being added here to the Filter as well.
+ return Filter.filterAndAdd(RS, VRegs);
+ }
+ using const_iterator = decltype(VRegs)::const_iterator;
+ const_iterator begin() const { return VRegs.begin(); }
+ const_iterator end() const { return VRegs.end(); }
+ size_t size() const { return VRegs.size(); }
+};
+} // namespace
+
+// Calculate the largest possible vregsPassed sets. These are the registers that
+// can pass through an MBB live, but may not be live every time. It is assumed
+// that all vregsPassed sets are empty before the call.
+void MachineVerifier::calcRegsPassed() {
+ if (MF->empty())
+ // ReversePostOrderTraversal doesn't handle empty functions.
+ return;
+
+ for (const MachineBasicBlock *MB :
+ ReversePostOrderTraversal<const MachineFunction *>(MF)) {
+ FilteringVRegSet VRegs;
+ BBInfo &Info = MBBInfoMap[MB];
+ assert(Info.reachable);
+
+ VRegs.addToFilter(Info.regsKilled);
+ VRegs.addToFilter(Info.regsLiveOut);
+ for (const MachineBasicBlock *Pred : MB->predecessors()) {
+ const BBInfo &PredInfo = MBBInfoMap[Pred];
+ if (!PredInfo.reachable)
+ continue;
+
+ VRegs.add(PredInfo.regsLiveOut);
+ VRegs.add(PredInfo.vregsPassed);
+ }
+ Info.vregsPassed.reserve(VRegs.size());
+ Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
+ }
+}
+
+// Calculate the set of virtual registers that must be passed through each basic
+// block in order to satisfy the requirements of successor blocks. This is very
+// similar to calcRegsPassed, only backwards.
+void MachineVerifier::calcRegsRequired() {
+ // First push live-in regs to predecessors' vregsRequired.
+ SmallPtrSet<const MachineBasicBlock*, 8> todo;
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (const MachineBasicBlock *Pred : MBB.predecessors()) {
+ BBInfo &PInfo = MBBInfoMap[Pred];
+ if (PInfo.addRequired(MInfo.vregsLiveIn))
+ todo.insert(Pred);
+ }
+
+ // Handle the PHI node.
+ for (const MachineInstr &MI : MBB.phis()) {
+ for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
+ // Skip those Operands which are undef regs or not regs.
+ if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
+ continue;
+
+ // Get register and predecessor for one PHI edge.
+ Register Reg = MI.getOperand(i).getReg();
+ const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
+
+ BBInfo &PInfo = MBBInfoMap[Pred];
+ if (PInfo.addRequired(Reg))
+ todo.insert(Pred);
+ }
+ }
+ }
+
+ // Iteratively push vregsRequired to predecessors. This will converge to the
+ // same final state regardless of DenseSet iteration order.
+ while (!todo.empty()) {
+ const MachineBasicBlock *MBB = *todo.begin();
+ todo.erase(MBB);
+ BBInfo &MInfo = MBBInfoMap[MBB];
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (Pred == MBB)
+ continue;
+ BBInfo &SInfo = MBBInfoMap[Pred];
+ if (SInfo.addRequired(MInfo.vregsRequired))
+ todo.insert(Pred);
+ }
+ }
+}
+
+// Check PHI instructions at the beginning of MBB. It is assumed that
+// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
+void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ SmallPtrSet<const MachineBasicBlock*, 8> seen;
+ for (const MachineInstr &Phi : MBB) {
+ if (!Phi.isPHI())
+ break;
+ seen.clear();
+
+ const MachineOperand &MODef = Phi.getOperand(0);
+ if (!MODef.isReg() || !MODef.isDef()) {
+ report("Expected first PHI operand to be a register def", &MODef, 0);
+ continue;
+ }
+ if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
+ MODef.isEarlyClobber() || MODef.isDebug())
+ report("Unexpected flag on PHI operand", &MODef, 0);
+ Register DefReg = MODef.getReg();
+ if (!Register::isVirtualRegister(DefReg))
+ report("Expected first PHI operand to be a virtual register", &MODef, 0);
+
+ for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
+ const MachineOperand &MO0 = Phi.getOperand(I);
+ if (!MO0.isReg()) {
+ report("Expected PHI operand to be a register", &MO0, I);
+ continue;
+ }
+ if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
+ MO0.isDebug() || MO0.isTied())
+ report("Unexpected flag on PHI operand", &MO0, I);
+
+ const MachineOperand &MO1 = Phi.getOperand(I + 1);
+ if (!MO1.isMBB()) {
+ report("Expected PHI operand to be a basic block", &MO1, I + 1);
+ continue;
+ }
+
+ const MachineBasicBlock &Pre = *MO1.getMBB();
+ if (!Pre.isSuccessor(&MBB)) {
+ report("PHI input is not a predecessor block", &MO1, I + 1);
+ continue;
+ }
+
+ if (MInfo.reachable) {
+ seen.insert(&Pre);
+ BBInfo &PrInfo = MBBInfoMap[&Pre];
+ if (!MO0.isUndef() && PrInfo.reachable &&
+ !PrInfo.isLiveOut(MO0.getReg()))
+ report("PHI operand is not live-out from predecessor", &MO0, I);
+ }
+ }
+
+ // Did we see all predecessors?
+ if (MInfo.reachable) {
+ for (MachineBasicBlock *Pred : MBB.predecessors()) {
+ if (!seen.count(Pred)) {
+ report("Missing PHI operand", &Phi);
+ errs() << printMBBReference(*Pred)
+ << " is a predecessor according to the CFG.\n";
+ }
+ }
+ }
+ }
+}
+
+void MachineVerifier::visitMachineFunctionAfter() {
+ calcRegsPassed();
+
+ for (const MachineBasicBlock &MBB : *MF)
+ checkPHIOps(MBB);
+
+ // Now check liveness info if available
+ calcRegsRequired();
+
+ // Check for killed virtual registers that should be live out.
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+ for (Register VReg : MInfo.vregsRequired)
+ if (MInfo.regsKilled.count(VReg)) {
+ report("Virtual register killed in block, but needed live out.", &MBB);
+ errs() << "Virtual register " << printReg(VReg)
+ << " is used after the block.\n";
+ }
+ }
+
+ if (!MF->empty()) {
+ BBInfo &MInfo = MBBInfoMap[&MF->front()];
+ for (Register VReg : MInfo.vregsRequired) {
+ report("Virtual register defs don't dominate all uses.", MF);
+ report_context_vreg(VReg);
+ }
+ }
+
+ if (LiveVars)
+ verifyLiveVariables();
+ if (LiveInts)
+ verifyLiveIntervals();
+
+ // Check live-in list of each MBB. If a register is live into MBB, check
+ // that the register is in regsLiveOut of each predecessor block. Since
+ // this must come from a definition in the predecesssor or its live-in
+ // list, this will catch a live-through case where the predecessor does not
+ // have the register in its live-in list. This currently only checks
+ // registers that have no aliases, are not allocatable and are not
+ // reserved, which could mean a condition code register for instance.
+ if (MRI->tracksLiveness())
+ for (const auto &MBB : *MF)
+ for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
+ MCPhysReg LiveInReg = P.PhysReg;
+ bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
+ if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
+ continue;
+ for (const MachineBasicBlock *Pred : MBB.predecessors()) {
+ BBInfo &PInfo = MBBInfoMap[Pred];
+ if (!PInfo.regsLiveOut.count(LiveInReg)) {
+ report("Live in register not found to be live out from predecessor.",
+ &MBB);
+ errs() << TRI->getName(LiveInReg)
+ << " not found to be live out from "
+ << printMBBReference(*Pred) << "\n";
+ }
+ }
+ }
+
+ for (auto CSInfo : MF->getCallSitesInfo())
+ if (!CSInfo.first->isCall())
+ report("Call site info referencing instruction that is not call", MF);
+
+ // If there's debug-info, check that we don't have any duplicate value
+ // tracking numbers.
+ if (MF->getFunction().getSubprogram()) {
+ DenseSet<unsigned> SeenNumbers;
+ for (auto &MBB : *MF) {
+ for (auto &MI : MBB) {
+ if (auto Num = MI.peekDebugInstrNum()) {
+ auto Result = SeenNumbers.insert((unsigned)Num);
+ if (!Result.second)
+ report("Instruction has a duplicated value tracking number", &MI);
+ }
+ }
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveVariables() {
+ assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
+ for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
+ Register Reg = Register::index2VirtReg(I);
+ LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
+ for (const auto &MBB : *MF) {
+ BBInfo &MInfo = MBBInfoMap[&MBB];
+
+ // Our vregsRequired should be identical to LiveVariables' AliveBlocks
+ if (MInfo.vregsRequired.count(Reg)) {
+ if (!VI.AliveBlocks.test(MBB.getNumber())) {
+ report("LiveVariables: Block missing from AliveBlocks", &MBB);
+ errs() << "Virtual register " << printReg(Reg)
+ << " must be live through the block.\n";
+ }
+ } else {
+ if (VI.AliveBlocks.test(MBB.getNumber())) {
+ report("LiveVariables: Block should not be in AliveBlocks", &MBB);
+ errs() << "Virtual register " << printReg(Reg)
+ << " is not needed live through the block.\n";
+ }
+ }
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveIntervals() {
+ assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
+ for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
+ Register Reg = Register::index2VirtReg(I);
+
+ // Spilling and splitting may leave unused registers around. Skip them.
+ if (MRI->reg_nodbg_empty(Reg))
+ continue;
+
+ if (!LiveInts->hasInterval(Reg)) {
+ report("Missing live interval for virtual register", MF);
+ errs() << printReg(Reg, TRI) << " still has defs or uses\n";
+ continue;
+ }
+
+ const LiveInterval &LI = LiveInts->getInterval(Reg);
+ assert(Reg == LI.reg() && "Invalid reg to interval mapping");
+ verifyLiveInterval(LI);
+ }
+
+ // Verify all the cached regunit intervals.
+ for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
+ if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
+ verifyLiveRange(*LR, i);
+}
+
+void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
+ const VNInfo *VNI, Register Reg,
+ LaneBitmask LaneMask) {
+ if (VNI->isUnused())
+ return;
+
+ const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
+
+ if (!DefVNI) {
+ report("Value not live at VNInfo def and not marked unused", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ return;
+ }
+
+ if (DefVNI != VNI) {
+ report("Live segment at def has different VNInfo", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ return;
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
+ if (!MBB) {
+ report("Invalid VNInfo definition index", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ return;
+ }
+
+ if (VNI->isPHIDef()) {
+ if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
+ report("PHIDef VNInfo is not defined at MBB start", MBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ }
+ return;
+ }
+
+ // Non-PHI def.
+ const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
+ if (!MI) {
+ report("No instruction at VNInfo def index", MBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ return;
+ }
+
+ if (Reg != 0) {
+ bool hasDef = false;
+ bool isEarlyClobber = false;
+ for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || !MOI->isDef())
+ continue;
+ if (Register::isVirtualRegister(Reg)) {
+ if (MOI->getReg() != Reg)
+ continue;
+ } else {
+ if (!Register::isPhysicalRegister(MOI->getReg()) ||
+ !TRI->hasRegUnit(MOI->getReg(), Reg))
+ continue;
+ }
+ if (LaneMask.any() &&
+ (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
+ continue;
+ hasDef = true;
+ if (MOI->isEarlyClobber())
+ isEarlyClobber = true;
+ }
+
+ if (!hasDef) {
+ report("Defining instruction does not modify register", MI);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ }
+
+ // Early clobber defs begin at USE slots, but other defs must begin at
+ // DEF slots.
+ if (isEarlyClobber) {
+ if (!VNI->def.isEarlyClobber()) {
+ report("Early clobber def must be at an early-clobber slot", MBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ }
+ } else if (!VNI->def.isRegister()) {
+ report("Non-PHI, non-early clobber def must be at a register slot", MBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ }
+ }
+}
+
+void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
+ const LiveRange::const_iterator I,
+ Register Reg,
+ LaneBitmask LaneMask) {
+ const LiveRange::Segment &S = *I;
+ const VNInfo *VNI = S.valno;
+ assert(VNI && "Live segment has no valno");
+
+ if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
+ report("Foreign valno in live segment", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ report_context(*VNI);
+ }
+
+ if (VNI->isUnused()) {
+ report("Live segment valno is marked unused", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+
+ const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
+ if (!MBB) {
+ report("Bad start of live segment, no basic block", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ return;
+ }
+ SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
+ if (S.start != MBBStartIdx && S.start != VNI->def) {
+ report("Live segment must begin at MBB entry or valno def", MBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+
+ const MachineBasicBlock *EndMBB =
+ LiveInts->getMBBFromIndex(S.end.getPrevSlot());
+ if (!EndMBB) {
+ report("Bad end of live segment, no basic block", MF);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ return;
+ }
+
+ // No more checks for live-out segments.
+ if (S.end == LiveInts->getMBBEndIdx(EndMBB))
+ return;
+
+ // RegUnit intervals are allowed dead phis.
+ if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
+ S.start == VNI->def && S.end == VNI->def.getDeadSlot())
+ return;
+
+ // The live segment is ending inside EndMBB
+ const MachineInstr *MI =
+ LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
+ if (!MI) {
+ report("Live segment doesn't end at a valid instruction", EndMBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ return;
+ }
+
+ // The block slot must refer to a basic block boundary.
+ if (S.end.isBlock()) {
+ report("Live segment ends at B slot of an instruction", EndMBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+
+ if (S.end.isDead()) {
+ // Segment ends on the dead slot.
+ // That means there must be a dead def.
+ if (!SlotIndex::isSameInstr(S.start, S.end)) {
+ report("Live segment ending at dead slot spans instructions", EndMBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+ }
+
+ // A live segment can only end at an early-clobber slot if it is being
+ // redefined by an early-clobber def.
+ if (S.end.isEarlyClobber()) {
+ if (I+1 == LR.end() || (I+1)->start != S.end) {
+ report("Live segment ending at early clobber slot must be "
+ "redefined by an EC def in the same instruction", EndMBB);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+ }
+
+ // The following checks only apply to virtual registers. Physreg liveness
+ // is too weird to check.
+ if (Register::isVirtualRegister(Reg)) {
+ // A live segment can end with either a redefinition, a kill flag on a
+ // use, or a dead flag on a def.
+ bool hasRead = false;
+ bool hasSubRegDef = false;
+ bool hasDeadDef = false;
+ for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
+ if (!MOI->isReg() || MOI->getReg() != Reg)
+ continue;
+ unsigned Sub = MOI->getSubReg();
+ LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
+ : LaneBitmask::getAll();
+ if (MOI->isDef()) {
+ if (Sub != 0) {
+ hasSubRegDef = true;
+ // An operand %0:sub0 reads %0:sub1..n. Invert the lane
+ // mask for subregister defs. Read-undef defs will be handled by
+ // readsReg below.
+ SLM = ~SLM;
+ }
+ if (MOI->isDead())
+ hasDeadDef = true;
+ }
+ if (LaneMask.any() && (LaneMask & SLM).none())
+ continue;
+ if (MOI->readsReg())
+ hasRead = true;
+ }
+ if (S.end.isDead()) {
+ // Make sure that the corresponding machine operand for a "dead" live
+ // range has the dead flag. We cannot perform this check for subregister
+ // liveranges as partially dead values are allowed.
+ if (LaneMask.none() && !hasDeadDef) {
+ report("Instruction ending live segment on dead slot has no dead flag",
+ MI);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+ } else {
+ if (!hasRead) {
+ // When tracking subregister liveness, the main range must start new
+ // values on partial register writes, even if there is no read.
+ if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
+ !hasSubRegDef) {
+ report("Instruction ending live segment doesn't read the register",
+ MI);
+ report_context(LR, Reg, LaneMask);
+ report_context(S);
+ }
+ }
+ }
+ }
+
+ // Now check all the basic blocks in this live segment.
+ MachineFunction::const_iterator MFI = MBB->getIterator();
+ // Is this live segment the beginning of a non-PHIDef VN?
+ if (S.start == VNI->def && !VNI->isPHIDef()) {
+ // Not live-in to any blocks.
+ if (MBB == EndMBB)
+ return;
+ // Skip this block.
+ ++MFI;
+ }
+
+ SmallVector<SlotIndex, 4> Undefs;
+ if (LaneMask.any()) {
+ LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
+ OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
+ }
+
+ while (true) {
+ assert(LiveInts->isLiveInToMBB(LR, &*MFI));
+ // We don't know how to track physregs into a landing pad.
+ if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ continue;
+ }
+
+ // Is VNI a PHI-def in the current block?
+ bool IsPHI = VNI->isPHIDef() &&
+ VNI->def == LiveInts->getMBBStartIdx(&*MFI);
+
+ // Check that VNI is live-out of all predecessors.
+ for (const MachineBasicBlock *Pred : MFI->predecessors()) {
+ SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
+ const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
+
+ // All predecessors must have a live-out value. However for a phi
+ // instruction with subregister intervals
+ // only one of the subregisters (not necessarily the current one) needs to
+ // be defined.
+ if (!PVNI && (LaneMask.none() || !IsPHI)) {
+ if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
+ continue;
+ report("Register not marked live out of predecessor", Pred);
+ report_context(LR, Reg, LaneMask);
+ report_context(*VNI);
+ errs() << " live into " << printMBBReference(*MFI) << '@'
+ << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
+ << PEnd << '\n';
+ continue;
+ }
+
+ // Only PHI-defs can take different predecessor values.
+ if (!IsPHI && PVNI != VNI) {
+ report("Different value live out of predecessor", Pred);
+ report_context(LR, Reg, LaneMask);
+ errs() << "Valno #" << PVNI->id << " live out of "
+ << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
+ << VNI->id << " live into " << printMBBReference(*MFI) << '@'
+ << LiveInts->getMBBStartIdx(&*MFI) << '\n';
+ }
+ }
+ if (&*MFI == EndMBB)
+ break;
+ ++MFI;
+ }
+}
+
+void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
+ LaneBitmask LaneMask) {
+ for (const VNInfo *VNI : LR.valnos)
+ verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
+
+ for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
+ verifyLiveRangeSegment(LR, I, Reg, LaneMask);
+}
+
+void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
+ Register Reg = LI.reg();
+ assert(Register::isVirtualRegister(Reg));
+ verifyLiveRange(LI, Reg);
+
+ LaneBitmask Mask;
+ LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
+ for (const LiveInterval::SubRange &SR : LI.subranges()) {
+ if ((Mask & SR.LaneMask).any()) {
+ report("Lane masks of sub ranges overlap in live interval", MF);
+ report_context(LI);
+ }
+ if ((SR.LaneMask & ~MaxMask).any()) {
+ report("Subrange lanemask is invalid", MF);
+ report_context(LI);
+ }
+ if (SR.empty()) {
+ report("Subrange must not be empty", MF);
+ report_context(SR, LI.reg(), SR.LaneMask);
+ }
+ Mask |= SR.LaneMask;
+ verifyLiveRange(SR, LI.reg(), SR.LaneMask);
+ if (!LI.covers(SR)) {
+ report("A Subrange is not covered by the main range", MF);
+ report_context(LI);
+ }
+ }
+
+ // Check the LI only has one connected component.
+ ConnectedVNInfoEqClasses ConEQ(*LiveInts);
+ unsigned NumComp = ConEQ.Classify(LI);
+ if (NumComp > 1) {
+ report("Multiple connected components in live interval", MF);
+ report_context(LI);
+ for (unsigned comp = 0; comp != NumComp; ++comp) {
+ errs() << comp << ": valnos";
+ for (const VNInfo *I : LI.valnos)
+ if (comp == ConEQ.getEqClass(I))
+ errs() << ' ' << I->id;
+ errs() << '\n';
+ }
+ }
+}
+
+namespace {
+
+ // FrameSetup and FrameDestroy can have zero adjustment, so using a single
+ // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
+ // value is zero.
+ // We use a bool plus an integer to capture the stack state.
+ struct StackStateOfBB {
+ StackStateOfBB() = default;
+ StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
+ EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
+ ExitIsSetup(ExitSetup) {}
+
+ // Can be negative, which means we are setting up a frame.
+ int EntryValue = 0;
+ int ExitValue = 0;
+ bool EntryIsSetup = false;
+ bool ExitIsSetup = false;
+ };
+
+} // end anonymous namespace
+
+/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
+/// by a FrameDestroy <n>, stack adjustments are identical on all
+/// CFG edges to a merge point, and frame is destroyed at end of a return block.
+void MachineVerifier::verifyStackFrame() {
+ unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+ if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
+ return;
+
+ SmallVector<StackStateOfBB, 8> SPState;
+ SPState.resize(MF->getNumBlockIDs());
+ df_iterator_default_set<const MachineBasicBlock*> Reachable;
+
+ // Visit the MBBs in DFS order.
+ for (df_ext_iterator<const MachineFunction *,
+ df_iterator_default_set<const MachineBasicBlock *>>
+ DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
+ DFI != DFE; ++DFI) {
+ const MachineBasicBlock *MBB = *DFI;
+
+ StackStateOfBB BBState;
+ // Check the exit state of the DFS stack predecessor.
+ if (DFI.getPathLength() >= 2) {
+ const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
+ assert(Reachable.count(StackPred) &&
+ "DFS stack predecessor is already visited.\n");
+ BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
+ BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
+ BBState.ExitValue = BBState.EntryValue;
+ BBState.ExitIsSetup = BBState.EntryIsSetup;
+ }
+
+ // Update stack state by checking contents of MBB.
+ for (const auto &I : *MBB) {
+ if (I.getOpcode() == FrameSetupOpcode) {
+ if (BBState.ExitIsSetup)
+ report("FrameSetup is after another FrameSetup", &I);
+ BBState.ExitValue -= TII->getFrameTotalSize(I);
+ BBState.ExitIsSetup = true;
+ }
+
+ if (I.getOpcode() == FrameDestroyOpcode) {
+ int Size = TII->getFrameTotalSize(I);
+ if (!BBState.ExitIsSetup)
+ report("FrameDestroy is not after a FrameSetup", &I);
+ int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
+ BBState.ExitValue;
+ if (BBState.ExitIsSetup && AbsSPAdj != Size) {
+ report("FrameDestroy <n> is after FrameSetup <m>", &I);
+ errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
+ << AbsSPAdj << ">.\n";
+ }
+ BBState.ExitValue += Size;
+ BBState.ExitIsSetup = false;
+ }
+ }
+ SPState[MBB->getNumber()] = BBState;
+
+ // Make sure the exit state of any predecessor is consistent with the entry
+ // state.
+ for (const MachineBasicBlock *Pred : MBB->predecessors()) {
+ if (Reachable.count(Pred) &&
+ (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
+ SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
+ report("The exit stack state of a predecessor is inconsistent.", MBB);
+ errs() << "Predecessor " << printMBBReference(*Pred)
+ << " has exit state (" << SPState[Pred->getNumber()].ExitValue
+ << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
+ << printMBBReference(*MBB) << " has entry state ("
+ << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
+ }
+ }
+
+ // Make sure the entry state of any successor is consistent with the exit
+ // state.
+ for (const MachineBasicBlock *Succ : MBB->successors()) {
+ if (Reachable.count(Succ) &&
+ (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
+ SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
+ report("The entry stack state of a successor is inconsistent.", MBB);
+ errs() << "Successor " << printMBBReference(*Succ)
+ << " has entry state (" << SPState[Succ->getNumber()].EntryValue
+ << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
+ << printMBBReference(*MBB) << " has exit state ("
+ << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
+ }
+ }
+
+ // Make sure a basic block with return ends with zero stack adjustment.
+ if (!MBB->empty() && MBB->back().isReturn()) {
+ if (BBState.ExitIsSetup)
+ report("A return block ends with a FrameSetup.", MBB);
+ if (BBState.ExitValue)
+ report("A return block ends with a nonzero stack adjustment.", MBB);
+ }
+ }
+}