diff options
| author | orivej <[email protected]> | 2022-02-10 16:44:49 +0300 |
|---|---|---|
| committer | Daniil Cherednik <[email protected]> | 2022-02-10 16:44:49 +0300 |
| commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
| tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp | |
| parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
Restoring authorship annotation for <[email protected]>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp')
| -rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp | 4338 |
1 files changed, 2169 insertions, 2169 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp b/contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp index b6cfd7dcbfb..f947c2fd453 100644 --- a/contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/MachineInstr.cpp @@ -1,1143 +1,1143 @@ -//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Methods common to all machine instructions. -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/FoldingSet.h" -#include "llvm/ADT/Hashing.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallBitVector.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/Loads.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/CodeGen/GlobalISel/RegisterBank.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineInstrBundle.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/PseudoSourceValue.h" +//===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Methods common to all machine instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/CodeGen/GlobalISel/RegisterBank.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineInstrBundle.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/StackMaps.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/ModuleSlotTracker.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/MC/MCInstrDesc.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/MC/MCSymbol.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/FormattedStream.h" -#include "llvm/Support/LowLevelTypeImpl.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetIntrinsicInfo.h" -#include "llvm/Target/TargetMachine.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <cstring> -#include <iterator> -#include <utility> - -using namespace llvm; - -static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { - if (const MachineBasicBlock *MBB = MI.getParent()) - if (const MachineFunction *MF = MBB->getParent()) - return MF; - return nullptr; -} - -// Try to crawl up to the machine function and get TRI and IntrinsicInfo from -// it. -static void tryToGetTargetInfo(const MachineInstr &MI, - const TargetRegisterInfo *&TRI, - const MachineRegisterInfo *&MRI, - const TargetIntrinsicInfo *&IntrinsicInfo, - const TargetInstrInfo *&TII) { - - if (const MachineFunction *MF = getMFIfAvailable(MI)) { - TRI = MF->getSubtarget().getRegisterInfo(); - MRI = &MF->getRegInfo(); - IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); - TII = MF->getSubtarget().getInstrInfo(); - } -} - -void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { - if (MCID->ImplicitDefs) - for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; - ++ImpDefs) - addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); - if (MCID->ImplicitUses) - for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; - ++ImpUses) - addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); -} - -/// MachineInstr ctor - This constructor creates a MachineInstr and adds the -/// implicit operands. It reserves space for the number of operands specified by -/// the MCInstrDesc. -MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, - DebugLoc dl, bool NoImp) +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSlotTracker.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetIntrinsicInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <iterator> +#include <utility> + +using namespace llvm; + +static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { + if (const MachineBasicBlock *MBB = MI.getParent()) + if (const MachineFunction *MF = MBB->getParent()) + return MF; + return nullptr; +} + +// Try to crawl up to the machine function and get TRI and IntrinsicInfo from +// it. +static void tryToGetTargetInfo(const MachineInstr &MI, + const TargetRegisterInfo *&TRI, + const MachineRegisterInfo *&MRI, + const TargetIntrinsicInfo *&IntrinsicInfo, + const TargetInstrInfo *&TII) { + + if (const MachineFunction *MF = getMFIfAvailable(MI)) { + TRI = MF->getSubtarget().getRegisterInfo(); + MRI = &MF->getRegInfo(); + IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); + TII = MF->getSubtarget().getInstrInfo(); + } +} + +void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { + if (MCID->ImplicitDefs) + for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; + ++ImpDefs) + addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); + if (MCID->ImplicitUses) + for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; + ++ImpUses) + addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); +} + +/// MachineInstr ctor - This constructor creates a MachineInstr and adds the +/// implicit operands. It reserves space for the number of operands specified by +/// the MCInstrDesc. +MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, + DebugLoc dl, bool NoImp) : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) { - assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); - - // Reserve space for the expected number of operands. - if (unsigned NumOps = MCID->getNumOperands() + - MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { - CapOperands = OperandCapacity::get(NumOps); - Operands = MF.allocateOperandArray(CapOperands); - } - - if (!NoImp) - addImplicitDefUseOperands(MF); -} - + assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + + // Reserve space for the expected number of operands. + if (unsigned NumOps = MCID->getNumOperands() + + MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { + CapOperands = OperandCapacity::get(NumOps); + Operands = MF.allocateOperandArray(CapOperands); + } + + if (!NoImp) + addImplicitDefUseOperands(MF); +} + /// MachineInstr ctor - Copies MachineInstr arg exactly. /// Does not copy the number from debug instruction numbering, to preserve /// uniqueness. -MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) +MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()), DebugInstrNum(0) { - assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); - - CapOperands = OperandCapacity::get(MI.getNumOperands()); - Operands = MF.allocateOperandArray(CapOperands); - - // Copy operands. - for (const MachineOperand &MO : MI.operands()) - addOperand(MF, MO); - - // Copy all the sensible flags. - setFlags(MI.Flags); -} - + assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); + + CapOperands = OperandCapacity::get(MI.getNumOperands()); + Operands = MF.allocateOperandArray(CapOperands); + + // Copy operands. + for (const MachineOperand &MO : MI.operands()) + addOperand(MF, MO); + + // Copy all the sensible flags. + setFlags(MI.Flags); +} + void MachineInstr::moveBefore(MachineInstr *MovePos) { MovePos->getParent()->splice(MovePos, getParent(), getIterator()); } -/// getRegInfo - If this instruction is embedded into a MachineFunction, -/// return the MachineRegisterInfo object for the current function, otherwise -/// return null. -MachineRegisterInfo *MachineInstr::getRegInfo() { - if (MachineBasicBlock *MBB = getParent()) - return &MBB->getParent()->getRegInfo(); - return nullptr; -} - -/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in -/// this instruction from their respective use lists. This requires that the -/// operands already be on their use lists. -void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { - for (MachineOperand &MO : operands()) - if (MO.isReg()) - MRI.removeRegOperandFromUseList(&MO); -} - -/// AddRegOperandsToUseLists - Add all of the register operands in -/// this instruction from their respective use lists. This requires that the -/// operands not be on their use lists yet. -void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { - for (MachineOperand &MO : operands()) - if (MO.isReg()) - MRI.addRegOperandToUseList(&MO); -} - -void MachineInstr::addOperand(const MachineOperand &Op) { - MachineBasicBlock *MBB = getParent(); - assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); - MachineFunction *MF = MBB->getParent(); - assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); - addOperand(*MF, Op); -} - -/// Move NumOps MachineOperands from Src to Dst, with support for overlapping -/// ranges. If MRI is non-null also update use-def chains. -static void moveOperands(MachineOperand *Dst, MachineOperand *Src, - unsigned NumOps, MachineRegisterInfo *MRI) { - if (MRI) - return MRI->moveOperands(Dst, Src, NumOps); - // MachineOperand is a trivially copyable type so we can just use memmove. - assert(Dst && Src && "Unknown operands"); - std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); -} - -/// addOperand - Add the specified operand to the instruction. If it is an -/// implicit operand, it is added to the end of the operand list. If it is -/// an explicit operand it is added at the end of the explicit operand list -/// (before the first implicit operand). -void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { - assert(MCID && "Cannot add operands before providing an instr descriptor"); - - // Check if we're adding one of our existing operands. - if (&Op >= Operands && &Op < Operands + NumOperands) { - // This is unusual: MI->addOperand(MI->getOperand(i)). - // If adding Op requires reallocating or moving existing operands around, - // the Op reference could go stale. Support it by copying Op. - MachineOperand CopyOp(Op); - return addOperand(MF, CopyOp); - } - - // Find the insert location for the new operand. Implicit registers go at - // the end, everything else goes before the implicit regs. - // - // FIXME: Allow mixed explicit and implicit operands on inline asm. - // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as - // implicit-defs, but they must not be moved around. See the FIXME in - // InstrEmitter.cpp. - unsigned OpNo = getNumOperands(); - bool isImpReg = Op.isReg() && Op.isImplicit(); - if (!isImpReg && !isInlineAsm()) { - while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { - --OpNo; - assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); - } - } - -#ifndef NDEBUG - bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || - Op.getType() == MachineOperand::MO_MCSymbol; - // OpNo now points as the desired insertion point. Unless this is a variadic - // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). - // RegMask operands go between the explicit and implicit operands. - assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || - OpNo < MCID->getNumOperands() || isDebugOp) && - "Trying to add an operand to a machine instr that is already done!"); -#endif - - MachineRegisterInfo *MRI = getRegInfo(); - - // Determine if the Operands array needs to be reallocated. - // Save the old capacity and operand array. - OperandCapacity OldCap = CapOperands; - MachineOperand *OldOperands = Operands; - if (!OldOperands || OldCap.getSize() == getNumOperands()) { - CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); - Operands = MF.allocateOperandArray(CapOperands); - // Move the operands before the insertion point. - if (OpNo) - moveOperands(Operands, OldOperands, OpNo, MRI); - } - - // Move the operands following the insertion point. - if (OpNo != NumOperands) - moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, - MRI); - ++NumOperands; - - // Deallocate the old operand array. - if (OldOperands != Operands && OldOperands) - MF.deallocateOperandArray(OldCap, OldOperands); - - // Copy Op into place. It still needs to be inserted into the MRI use lists. - MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); - NewMO->ParentMI = this; - - // When adding a register operand, tell MRI about it. - if (NewMO->isReg()) { - // Ensure isOnRegUseList() returns false, regardless of Op's status. - NewMO->Contents.Reg.Prev = nullptr; - // Ignore existing ties. This is not a property that can be copied. - NewMO->TiedTo = 0; - // Add the new operand to MRI, but only for instructions in an MBB. - if (MRI) - MRI->addRegOperandToUseList(NewMO); - // The MCID operand information isn't accurate until we start adding - // explicit operands. The implicit operands are added first, then the - // explicits are inserted before them. - if (!isImpReg) { - // Tie uses to defs as indicated in MCInstrDesc. - if (NewMO->isUse()) { - int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); - if (DefIdx != -1) - tieOperands(DefIdx, OpNo); - } - // If the register operand is flagged as early, mark the operand as such. - if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) - NewMO->setIsEarlyClobber(true); - } - } -} - -/// RemoveOperand - Erase an operand from an instruction, leaving it with one -/// fewer operand than it started with. -/// -void MachineInstr::RemoveOperand(unsigned OpNo) { - assert(OpNo < getNumOperands() && "Invalid operand number"); - untieRegOperand(OpNo); - -#ifndef NDEBUG - // Moving tied operands would break the ties. - for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) - if (Operands[i].isReg()) - assert(!Operands[i].isTied() && "Cannot move tied operands"); -#endif - - MachineRegisterInfo *MRI = getRegInfo(); - if (MRI && Operands[OpNo].isReg()) - MRI->removeRegOperandFromUseList(Operands + OpNo); - - // Don't call the MachineOperand destructor. A lot of this code depends on - // MachineOperand having a trivial destructor anyway, and adding a call here - // wouldn't make it 'destructor-correct'. - - if (unsigned N = NumOperands - 1 - OpNo) - moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); - --NumOperands; -} - -void MachineInstr::setExtraInfo(MachineFunction &MF, - ArrayRef<MachineMemOperand *> MMOs, - MCSymbol *PreInstrSymbol, - MCSymbol *PostInstrSymbol, - MDNode *HeapAllocMarker) { - bool HasPreInstrSymbol = PreInstrSymbol != nullptr; - bool HasPostInstrSymbol = PostInstrSymbol != nullptr; - bool HasHeapAllocMarker = HeapAllocMarker != nullptr; - int NumPointers = - MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; - - // Drop all extra info if there is none. - if (NumPointers <= 0) { - Info.clear(); - return; - } - - // If more than one pointer, then store out of line. Store heap alloc markers - // out of line because PointerSumType cannot hold more than 4 tag types with - // 32-bit pointers. - // FIXME: Maybe we should make the symbols in the extra info mutable? - else if (NumPointers > 1 || HasHeapAllocMarker) { - Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( - MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); - return; - } - - // Otherwise store the single pointer inline. - if (HasPreInstrSymbol) - Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); - else if (HasPostInstrSymbol) - Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); - else - Info.set<EIIK_MMO>(MMOs[0]); -} - -void MachineInstr::dropMemRefs(MachineFunction &MF) { - if (memoperands_empty()) - return; - - setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), - getHeapAllocMarker()); -} - -void MachineInstr::setMemRefs(MachineFunction &MF, - ArrayRef<MachineMemOperand *> MMOs) { - if (MMOs.empty()) { - dropMemRefs(MF); - return; - } - - setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), - getHeapAllocMarker()); -} - -void MachineInstr::addMemOperand(MachineFunction &MF, - MachineMemOperand *MO) { - SmallVector<MachineMemOperand *, 2> MMOs; - MMOs.append(memoperands_begin(), memoperands_end()); - MMOs.push_back(MO); - setMemRefs(MF, MMOs); -} - -void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { - if (this == &MI) - // Nothing to do for a self-clone! - return; - - assert(&MF == MI.getMF() && - "Invalid machine functions when cloning memory refrences!"); - // See if we can just steal the extra info already allocated for the - // instruction. We can do this whenever the pre- and post-instruction symbols - // are the same (including null). - if (getPreInstrSymbol() == MI.getPreInstrSymbol() && - getPostInstrSymbol() == MI.getPostInstrSymbol() && - getHeapAllocMarker() == MI.getHeapAllocMarker()) { - Info = MI.Info; - return; - } - - // Otherwise, fall back on a copy-based clone. - setMemRefs(MF, MI.memoperands()); -} - -/// Check to see if the MMOs pointed to by the two MemRefs arrays are -/// identical. -static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, - ArrayRef<MachineMemOperand *> RHS) { - if (LHS.size() != RHS.size()) - return false; - - auto LHSPointees = make_pointee_range(LHS); - auto RHSPointees = make_pointee_range(RHS); - return std::equal(LHSPointees.begin(), LHSPointees.end(), - RHSPointees.begin()); -} - -void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, - ArrayRef<const MachineInstr *> MIs) { - // Try handling easy numbers of MIs with simpler mechanisms. - if (MIs.empty()) { - dropMemRefs(MF); - return; - } - if (MIs.size() == 1) { - cloneMemRefs(MF, *MIs[0]); - return; - } - // Because an empty memoperands list provides *no* information and must be - // handled conservatively (assuming the instruction can do anything), the only - // way to merge with it is to drop all other memoperands. - if (MIs[0]->memoperands_empty()) { - dropMemRefs(MF); - return; - } - - // Handle the general case. - SmallVector<MachineMemOperand *, 2> MergedMMOs; - // Start with the first instruction. - assert(&MF == MIs[0]->getMF() && - "Invalid machine functions when cloning memory references!"); - MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); - // Now walk all the other instructions and accumulate any different MMOs. - for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { - assert(&MF == MI.getMF() && - "Invalid machine functions when cloning memory references!"); - - // Skip MIs with identical operands to the first. This is a somewhat - // arbitrary hack but will catch common cases without being quadratic. - // TODO: We could fully implement merge semantics here if needed. - if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) - continue; - - // Because an empty memoperands list provides *no* information and must be - // handled conservatively (assuming the instruction can do anything), the - // only way to merge with it is to drop all other memoperands. - if (MI.memoperands_empty()) { - dropMemRefs(MF); - return; - } - - // Otherwise accumulate these into our temporary buffer of the merged state. - MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); - } - - setMemRefs(MF, MergedMMOs); -} - -void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { - // Do nothing if old and new symbols are the same. - if (Symbol == getPreInstrSymbol()) - return; - - // If there was only one symbol and we're removing it, just clear info. - if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { - Info.clear(); - return; - } - - setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), - getHeapAllocMarker()); -} - -void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { - // Do nothing if old and new symbols are the same. - if (Symbol == getPostInstrSymbol()) - return; - - // If there was only one symbol and we're removing it, just clear info. - if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { - Info.clear(); - return; - } - - setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, - getHeapAllocMarker()); -} - -void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { - // Do nothing if old and new symbols are the same. - if (Marker == getHeapAllocMarker()) - return; - - setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), - Marker); -} - -void MachineInstr::cloneInstrSymbols(MachineFunction &MF, - const MachineInstr &MI) { - if (this == &MI) - // Nothing to do for a self-clone! - return; - - assert(&MF == MI.getMF() && - "Invalid machine functions when cloning instruction symbols!"); - - setPreInstrSymbol(MF, MI.getPreInstrSymbol()); - setPostInstrSymbol(MF, MI.getPostInstrSymbol()); - setHeapAllocMarker(MF, MI.getHeapAllocMarker()); -} - -uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { - // For now, the just return the union of the flags. If the flags get more - // complicated over time, we might need more logic here. - return getFlags() | Other.getFlags(); -} - -uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { - uint16_t MIFlags = 0; - // Copy the wrapping flags. - if (const OverflowingBinaryOperator *OB = - dyn_cast<OverflowingBinaryOperator>(&I)) { - if (OB->hasNoSignedWrap()) - MIFlags |= MachineInstr::MIFlag::NoSWrap; - if (OB->hasNoUnsignedWrap()) - MIFlags |= MachineInstr::MIFlag::NoUWrap; - } - - // Copy the exact flag. - if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) - if (PE->isExact()) - MIFlags |= MachineInstr::MIFlag::IsExact; - - // Copy the fast-math flags. - if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { - const FastMathFlags Flags = FP->getFastMathFlags(); - if (Flags.noNaNs()) - MIFlags |= MachineInstr::MIFlag::FmNoNans; - if (Flags.noInfs()) - MIFlags |= MachineInstr::MIFlag::FmNoInfs; - if (Flags.noSignedZeros()) - MIFlags |= MachineInstr::MIFlag::FmNsz; - if (Flags.allowReciprocal()) - MIFlags |= MachineInstr::MIFlag::FmArcp; - if (Flags.allowContract()) - MIFlags |= MachineInstr::MIFlag::FmContract; - if (Flags.approxFunc()) - MIFlags |= MachineInstr::MIFlag::FmAfn; - if (Flags.allowReassoc()) - MIFlags |= MachineInstr::MIFlag::FmReassoc; - } - - return MIFlags; -} - -void MachineInstr::copyIRFlags(const Instruction &I) { - Flags = copyFlagsFromInstruction(I); -} - -bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { - assert(!isBundledWithPred() && "Must be called on bundle header"); - for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { - if (MII->getDesc().getFlags() & Mask) { - if (Type == AnyInBundle) - return true; - } else { - if (Type == AllInBundle && !MII->isBundle()) - return false; - } - // This was the last instruction in the bundle. - if (!MII->isBundledWithSucc()) - return Type == AllInBundle; - } -} - -bool MachineInstr::isIdenticalTo(const MachineInstr &Other, - MICheckType Check) const { - // If opcodes or number of operands are not the same then the two - // instructions are obviously not identical. - if (Other.getOpcode() != getOpcode() || - Other.getNumOperands() != getNumOperands()) - return false; - - if (isBundle()) { - // We have passed the test above that both instructions have the same - // opcode, so we know that both instructions are bundles here. Let's compare - // MIs inside the bundle. - assert(Other.isBundle() && "Expected that both instructions are bundles."); - MachineBasicBlock::const_instr_iterator I1 = getIterator(); - MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); - // Loop until we analysed the last intruction inside at least one of the - // bundles. - while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { - ++I1; - ++I2; - if (!I1->isIdenticalTo(*I2, Check)) - return false; - } - // If we've reached the end of just one of the two bundles, but not both, - // the instructions are not identical. - if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) - return false; - } - - // Check operands to make sure they match. - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - const MachineOperand &OMO = Other.getOperand(i); - if (!MO.isReg()) { - if (!MO.isIdenticalTo(OMO)) - return false; - continue; - } - - // Clients may or may not want to ignore defs when testing for equality. - // For example, machine CSE pass only cares about finding common - // subexpressions, so it's safe to ignore virtual register defs. - if (MO.isDef()) { - if (Check == IgnoreDefs) - continue; - else if (Check == IgnoreVRegDefs) { - if (!Register::isVirtualRegister(MO.getReg()) || - !Register::isVirtualRegister(OMO.getReg())) - if (!MO.isIdenticalTo(OMO)) - return false; - } else { - if (!MO.isIdenticalTo(OMO)) - return false; - if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) - return false; - } - } else { - if (!MO.isIdenticalTo(OMO)) - return false; - if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) - return false; - } - } - // If DebugLoc does not match then two debug instructions are not identical. - if (isDebugInstr()) - if (getDebugLoc() && Other.getDebugLoc() && - getDebugLoc() != Other.getDebugLoc()) - return false; - return true; -} - -const MachineFunction *MachineInstr::getMF() const { - return getParent()->getParent(); -} - -MachineInstr *MachineInstr::removeFromParent() { - assert(getParent() && "Not embedded in a basic block!"); - return getParent()->remove(this); -} - -MachineInstr *MachineInstr::removeFromBundle() { - assert(getParent() && "Not embedded in a basic block!"); - return getParent()->remove_instr(this); -} - -void MachineInstr::eraseFromParent() { - assert(getParent() && "Not embedded in a basic block!"); - getParent()->erase(this); -} - -void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { - assert(getParent() && "Not embedded in a basic block!"); - MachineBasicBlock *MBB = getParent(); - MachineFunction *MF = MBB->getParent(); - assert(MF && "Not embedded in a function!"); - - MachineInstr *MI = (MachineInstr *)this; - MachineRegisterInfo &MRI = MF->getRegInfo(); - - for (const MachineOperand &MO : MI->operands()) { - if (!MO.isReg() || !MO.isDef()) - continue; - Register Reg = MO.getReg(); - if (!Reg.isVirtual()) - continue; - MRI.markUsesInDebugValueAsUndef(Reg); - } - MI->eraseFromParent(); -} - -void MachineInstr::eraseFromBundle() { - assert(getParent() && "Not embedded in a basic block!"); - getParent()->erase_instr(this); -} - -bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { - if (!isCall(Type)) - return false; - switch (getOpcode()) { - case TargetOpcode::PATCHPOINT: - case TargetOpcode::STACKMAP: - case TargetOpcode::STATEPOINT: +/// getRegInfo - If this instruction is embedded into a MachineFunction, +/// return the MachineRegisterInfo object for the current function, otherwise +/// return null. +MachineRegisterInfo *MachineInstr::getRegInfo() { + if (MachineBasicBlock *MBB = getParent()) + return &MBB->getParent()->getRegInfo(); + return nullptr; +} + +/// RemoveRegOperandsFromUseLists - Unlink all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands already be on their use lists. +void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { + for (MachineOperand &MO : operands()) + if (MO.isReg()) + MRI.removeRegOperandFromUseList(&MO); +} + +/// AddRegOperandsToUseLists - Add all of the register operands in +/// this instruction from their respective use lists. This requires that the +/// operands not be on their use lists yet. +void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { + for (MachineOperand &MO : operands()) + if (MO.isReg()) + MRI.addRegOperandToUseList(&MO); +} + +void MachineInstr::addOperand(const MachineOperand &Op) { + MachineBasicBlock *MBB = getParent(); + assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); + MachineFunction *MF = MBB->getParent(); + assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); + addOperand(*MF, Op); +} + +/// Move NumOps MachineOperands from Src to Dst, with support for overlapping +/// ranges. If MRI is non-null also update use-def chains. +static void moveOperands(MachineOperand *Dst, MachineOperand *Src, + unsigned NumOps, MachineRegisterInfo *MRI) { + if (MRI) + return MRI->moveOperands(Dst, Src, NumOps); + // MachineOperand is a trivially copyable type so we can just use memmove. + assert(Dst && Src && "Unknown operands"); + std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); +} + +/// addOperand - Add the specified operand to the instruction. If it is an +/// implicit operand, it is added to the end of the operand list. If it is +/// an explicit operand it is added at the end of the explicit operand list +/// (before the first implicit operand). +void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { + assert(MCID && "Cannot add operands before providing an instr descriptor"); + + // Check if we're adding one of our existing operands. + if (&Op >= Operands && &Op < Operands + NumOperands) { + // This is unusual: MI->addOperand(MI->getOperand(i)). + // If adding Op requires reallocating or moving existing operands around, + // the Op reference could go stale. Support it by copying Op. + MachineOperand CopyOp(Op); + return addOperand(MF, CopyOp); + } + + // Find the insert location for the new operand. Implicit registers go at + // the end, everything else goes before the implicit regs. + // + // FIXME: Allow mixed explicit and implicit operands on inline asm. + // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as + // implicit-defs, but they must not be moved around. See the FIXME in + // InstrEmitter.cpp. + unsigned OpNo = getNumOperands(); + bool isImpReg = Op.isReg() && Op.isImplicit(); + if (!isImpReg && !isInlineAsm()) { + while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { + --OpNo; + assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); + } + } + +#ifndef NDEBUG + bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || + Op.getType() == MachineOperand::MO_MCSymbol; + // OpNo now points as the desired insertion point. Unless this is a variadic + // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). + // RegMask operands go between the explicit and implicit operands. + assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || + OpNo < MCID->getNumOperands() || isDebugOp) && + "Trying to add an operand to a machine instr that is already done!"); +#endif + + MachineRegisterInfo *MRI = getRegInfo(); + + // Determine if the Operands array needs to be reallocated. + // Save the old capacity and operand array. + OperandCapacity OldCap = CapOperands; + MachineOperand *OldOperands = Operands; + if (!OldOperands || OldCap.getSize() == getNumOperands()) { + CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); + Operands = MF.allocateOperandArray(CapOperands); + // Move the operands before the insertion point. + if (OpNo) + moveOperands(Operands, OldOperands, OpNo, MRI); + } + + // Move the operands following the insertion point. + if (OpNo != NumOperands) + moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, + MRI); + ++NumOperands; + + // Deallocate the old operand array. + if (OldOperands != Operands && OldOperands) + MF.deallocateOperandArray(OldCap, OldOperands); + + // Copy Op into place. It still needs to be inserted into the MRI use lists. + MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); + NewMO->ParentMI = this; + + // When adding a register operand, tell MRI about it. + if (NewMO->isReg()) { + // Ensure isOnRegUseList() returns false, regardless of Op's status. + NewMO->Contents.Reg.Prev = nullptr; + // Ignore existing ties. This is not a property that can be copied. + NewMO->TiedTo = 0; + // Add the new operand to MRI, but only for instructions in an MBB. + if (MRI) + MRI->addRegOperandToUseList(NewMO); + // The MCID operand information isn't accurate until we start adding + // explicit operands. The implicit operands are added first, then the + // explicits are inserted before them. + if (!isImpReg) { + // Tie uses to defs as indicated in MCInstrDesc. + if (NewMO->isUse()) { + int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); + if (DefIdx != -1) + tieOperands(DefIdx, OpNo); + } + // If the register operand is flagged as early, mark the operand as such. + if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) + NewMO->setIsEarlyClobber(true); + } + } +} + +/// RemoveOperand - Erase an operand from an instruction, leaving it with one +/// fewer operand than it started with. +/// +void MachineInstr::RemoveOperand(unsigned OpNo) { + assert(OpNo < getNumOperands() && "Invalid operand number"); + untieRegOperand(OpNo); + +#ifndef NDEBUG + // Moving tied operands would break the ties. + for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) + if (Operands[i].isReg()) + assert(!Operands[i].isTied() && "Cannot move tied operands"); +#endif + + MachineRegisterInfo *MRI = getRegInfo(); + if (MRI && Operands[OpNo].isReg()) + MRI->removeRegOperandFromUseList(Operands + OpNo); + + // Don't call the MachineOperand destructor. A lot of this code depends on + // MachineOperand having a trivial destructor anyway, and adding a call here + // wouldn't make it 'destructor-correct'. + + if (unsigned N = NumOperands - 1 - OpNo) + moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); + --NumOperands; +} + +void MachineInstr::setExtraInfo(MachineFunction &MF, + ArrayRef<MachineMemOperand *> MMOs, + MCSymbol *PreInstrSymbol, + MCSymbol *PostInstrSymbol, + MDNode *HeapAllocMarker) { + bool HasPreInstrSymbol = PreInstrSymbol != nullptr; + bool HasPostInstrSymbol = PostInstrSymbol != nullptr; + bool HasHeapAllocMarker = HeapAllocMarker != nullptr; + int NumPointers = + MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; + + // Drop all extra info if there is none. + if (NumPointers <= 0) { + Info.clear(); + return; + } + + // If more than one pointer, then store out of line. Store heap alloc markers + // out of line because PointerSumType cannot hold more than 4 tag types with + // 32-bit pointers. + // FIXME: Maybe we should make the symbols in the extra info mutable? + else if (NumPointers > 1 || HasHeapAllocMarker) { + Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( + MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); + return; + } + + // Otherwise store the single pointer inline. + if (HasPreInstrSymbol) + Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); + else if (HasPostInstrSymbol) + Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); + else + Info.set<EIIK_MMO>(MMOs[0]); +} + +void MachineInstr::dropMemRefs(MachineFunction &MF) { + if (memoperands_empty()) + return; + + setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::setMemRefs(MachineFunction &MF, + ArrayRef<MachineMemOperand *> MMOs) { + if (MMOs.empty()) { + dropMemRefs(MF); + return; + } + + setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::addMemOperand(MachineFunction &MF, + MachineMemOperand *MO) { + SmallVector<MachineMemOperand *, 2> MMOs; + MMOs.append(memoperands_begin(), memoperands_end()); + MMOs.push_back(MO); + setMemRefs(MF, MMOs); +} + +void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { + if (this == &MI) + // Nothing to do for a self-clone! + return; + + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning memory refrences!"); + // See if we can just steal the extra info already allocated for the + // instruction. We can do this whenever the pre- and post-instruction symbols + // are the same (including null). + if (getPreInstrSymbol() == MI.getPreInstrSymbol() && + getPostInstrSymbol() == MI.getPostInstrSymbol() && + getHeapAllocMarker() == MI.getHeapAllocMarker()) { + Info = MI.Info; + return; + } + + // Otherwise, fall back on a copy-based clone. + setMemRefs(MF, MI.memoperands()); +} + +/// Check to see if the MMOs pointed to by the two MemRefs arrays are +/// identical. +static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, + ArrayRef<MachineMemOperand *> RHS) { + if (LHS.size() != RHS.size()) + return false; + + auto LHSPointees = make_pointee_range(LHS); + auto RHSPointees = make_pointee_range(RHS); + return std::equal(LHSPointees.begin(), LHSPointees.end(), + RHSPointees.begin()); +} + +void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, + ArrayRef<const MachineInstr *> MIs) { + // Try handling easy numbers of MIs with simpler mechanisms. + if (MIs.empty()) { + dropMemRefs(MF); + return; + } + if (MIs.size() == 1) { + cloneMemRefs(MF, *MIs[0]); + return; + } + // Because an empty memoperands list provides *no* information and must be + // handled conservatively (assuming the instruction can do anything), the only + // way to merge with it is to drop all other memoperands. + if (MIs[0]->memoperands_empty()) { + dropMemRefs(MF); + return; + } + + // Handle the general case. + SmallVector<MachineMemOperand *, 2> MergedMMOs; + // Start with the first instruction. + assert(&MF == MIs[0]->getMF() && + "Invalid machine functions when cloning memory references!"); + MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); + // Now walk all the other instructions and accumulate any different MMOs. + for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning memory references!"); + + // Skip MIs with identical operands to the first. This is a somewhat + // arbitrary hack but will catch common cases without being quadratic. + // TODO: We could fully implement merge semantics here if needed. + if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) + continue; + + // Because an empty memoperands list provides *no* information and must be + // handled conservatively (assuming the instruction can do anything), the + // only way to merge with it is to drop all other memoperands. + if (MI.memoperands_empty()) { + dropMemRefs(MF); + return; + } + + // Otherwise accumulate these into our temporary buffer of the merged state. + MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); + } + + setMemRefs(MF, MergedMMOs); +} + +void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { + // Do nothing if old and new symbols are the same. + if (Symbol == getPreInstrSymbol()) + return; + + // If there was only one symbol and we're removing it, just clear info. + if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { + Info.clear(); + return; + } + + setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), + getHeapAllocMarker()); +} + +void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { + // Do nothing if old and new symbols are the same. + if (Symbol == getPostInstrSymbol()) + return; + + // If there was only one symbol and we're removing it, just clear info. + if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { + Info.clear(); + return; + } + + setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, + getHeapAllocMarker()); +} + +void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { + // Do nothing if old and new symbols are the same. + if (Marker == getHeapAllocMarker()) + return; + + setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), + Marker); +} + +void MachineInstr::cloneInstrSymbols(MachineFunction &MF, + const MachineInstr &MI) { + if (this == &MI) + // Nothing to do for a self-clone! + return; + + assert(&MF == MI.getMF() && + "Invalid machine functions when cloning instruction symbols!"); + + setPreInstrSymbol(MF, MI.getPreInstrSymbol()); + setPostInstrSymbol(MF, MI.getPostInstrSymbol()); + setHeapAllocMarker(MF, MI.getHeapAllocMarker()); +} + +uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { + // For now, the just return the union of the flags. If the flags get more + // complicated over time, we might need more logic here. + return getFlags() | Other.getFlags(); +} + +uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { + uint16_t MIFlags = 0; + // Copy the wrapping flags. + if (const OverflowingBinaryOperator *OB = + dyn_cast<OverflowingBinaryOperator>(&I)) { + if (OB->hasNoSignedWrap()) + MIFlags |= MachineInstr::MIFlag::NoSWrap; + if (OB->hasNoUnsignedWrap()) + MIFlags |= MachineInstr::MIFlag::NoUWrap; + } + + // Copy the exact flag. + if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) + if (PE->isExact()) + MIFlags |= MachineInstr::MIFlag::IsExact; + + // Copy the fast-math flags. + if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { + const FastMathFlags Flags = FP->getFastMathFlags(); + if (Flags.noNaNs()) + MIFlags |= MachineInstr::MIFlag::FmNoNans; + if (Flags.noInfs()) + MIFlags |= MachineInstr::MIFlag::FmNoInfs; + if (Flags.noSignedZeros()) + MIFlags |= MachineInstr::MIFlag::FmNsz; + if (Flags.allowReciprocal()) + MIFlags |= MachineInstr::MIFlag::FmArcp; + if (Flags.allowContract()) + MIFlags |= MachineInstr::MIFlag::FmContract; + if (Flags.approxFunc()) + MIFlags |= MachineInstr::MIFlag::FmAfn; + if (Flags.allowReassoc()) + MIFlags |= MachineInstr::MIFlag::FmReassoc; + } + + return MIFlags; +} + +void MachineInstr::copyIRFlags(const Instruction &I) { + Flags = copyFlagsFromInstruction(I); +} + +bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { + assert(!isBundledWithPred() && "Must be called on bundle header"); + for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { + if (MII->getDesc().getFlags() & Mask) { + if (Type == AnyInBundle) + return true; + } else { + if (Type == AllInBundle && !MII->isBundle()) + return false; + } + // This was the last instruction in the bundle. + if (!MII->isBundledWithSucc()) + return Type == AllInBundle; + } +} + +bool MachineInstr::isIdenticalTo(const MachineInstr &Other, + MICheckType Check) const { + // If opcodes or number of operands are not the same then the two + // instructions are obviously not identical. + if (Other.getOpcode() != getOpcode() || + Other.getNumOperands() != getNumOperands()) + return false; + + if (isBundle()) { + // We have passed the test above that both instructions have the same + // opcode, so we know that both instructions are bundles here. Let's compare + // MIs inside the bundle. + assert(Other.isBundle() && "Expected that both instructions are bundles."); + MachineBasicBlock::const_instr_iterator I1 = getIterator(); + MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); + // Loop until we analysed the last intruction inside at least one of the + // bundles. + while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { + ++I1; + ++I2; + if (!I1->isIdenticalTo(*I2, Check)) + return false; + } + // If we've reached the end of just one of the two bundles, but not both, + // the instructions are not identical. + if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) + return false; + } + + // Check operands to make sure they match. + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + const MachineOperand &OMO = Other.getOperand(i); + if (!MO.isReg()) { + if (!MO.isIdenticalTo(OMO)) + return false; + continue; + } + + // Clients may or may not want to ignore defs when testing for equality. + // For example, machine CSE pass only cares about finding common + // subexpressions, so it's safe to ignore virtual register defs. + if (MO.isDef()) { + if (Check == IgnoreDefs) + continue; + else if (Check == IgnoreVRegDefs) { + if (!Register::isVirtualRegister(MO.getReg()) || + !Register::isVirtualRegister(OMO.getReg())) + if (!MO.isIdenticalTo(OMO)) + return false; + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) + return false; + } + } else { + if (!MO.isIdenticalTo(OMO)) + return false; + if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) + return false; + } + } + // If DebugLoc does not match then two debug instructions are not identical. + if (isDebugInstr()) + if (getDebugLoc() && Other.getDebugLoc() && + getDebugLoc() != Other.getDebugLoc()) + return false; + return true; +} + +const MachineFunction *MachineInstr::getMF() const { + return getParent()->getParent(); +} + +MachineInstr *MachineInstr::removeFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + return getParent()->remove(this); +} + +MachineInstr *MachineInstr::removeFromBundle() { + assert(getParent() && "Not embedded in a basic block!"); + return getParent()->remove_instr(this); +} + +void MachineInstr::eraseFromParent() { + assert(getParent() && "Not embedded in a basic block!"); + getParent()->erase(this); +} + +void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { + assert(getParent() && "Not embedded in a basic block!"); + MachineBasicBlock *MBB = getParent(); + MachineFunction *MF = MBB->getParent(); + assert(MF && "Not embedded in a function!"); + + MachineInstr *MI = (MachineInstr *)this; + MachineRegisterInfo &MRI = MF->getRegInfo(); + + for (const MachineOperand &MO : MI->operands()) { + if (!MO.isReg() || !MO.isDef()) + continue; + Register Reg = MO.getReg(); + if (!Reg.isVirtual()) + continue; + MRI.markUsesInDebugValueAsUndef(Reg); + } + MI->eraseFromParent(); +} + +void MachineInstr::eraseFromBundle() { + assert(getParent() && "Not embedded in a basic block!"); + getParent()->erase_instr(this); +} + +bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { + if (!isCall(Type)) + return false; + switch (getOpcode()) { + case TargetOpcode::PATCHPOINT: + case TargetOpcode::STACKMAP: + case TargetOpcode::STATEPOINT: case TargetOpcode::FENTRY_CALL: - return false; - } - return true; -} - -bool MachineInstr::shouldUpdateCallSiteInfo() const { - if (isBundle()) - return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); - return isCandidateForCallSiteEntry(); -} - -unsigned MachineInstr::getNumExplicitOperands() const { - unsigned NumOperands = MCID->getNumOperands(); - if (!MCID->isVariadic()) - return NumOperands; - - for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { - const MachineOperand &MO = getOperand(I); - // The operands must always be in the following order: - // - explicit reg defs, - // - other explicit operands (reg uses, immediates, etc.), - // - implicit reg defs - // - implicit reg uses - if (MO.isReg() && MO.isImplicit()) - break; - ++NumOperands; - } - return NumOperands; -} - -unsigned MachineInstr::getNumExplicitDefs() const { - unsigned NumDefs = MCID->getNumDefs(); - if (!MCID->isVariadic()) - return NumDefs; - - for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { - const MachineOperand &MO = getOperand(I); - if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) - break; - ++NumDefs; - } - return NumDefs; -} - -void MachineInstr::bundleWithPred() { - assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); - setFlag(BundledPred); - MachineBasicBlock::instr_iterator Pred = getIterator(); - --Pred; - assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); - Pred->setFlag(BundledSucc); -} - -void MachineInstr::bundleWithSucc() { - assert(!isBundledWithSucc() && "MI is already bundled with its successor"); - setFlag(BundledSucc); - MachineBasicBlock::instr_iterator Succ = getIterator(); - ++Succ; - assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); - Succ->setFlag(BundledPred); -} - -void MachineInstr::unbundleFromPred() { - assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); - clearFlag(BundledPred); - MachineBasicBlock::instr_iterator Pred = getIterator(); - --Pred; - assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); - Pred->clearFlag(BundledSucc); -} - -void MachineInstr::unbundleFromSucc() { - assert(isBundledWithSucc() && "MI isn't bundled with its successor"); - clearFlag(BundledSucc); - MachineBasicBlock::instr_iterator Succ = getIterator(); - ++Succ; - assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); - Succ->clearFlag(BundledPred); -} - -bool MachineInstr::isStackAligningInlineAsm() const { - if (isInlineAsm()) { - unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); - if (ExtraInfo & InlineAsm::Extra_IsAlignStack) - return true; - } - return false; -} - -InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { - assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); - unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); - return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); -} - -int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, - unsigned *GroupNo) const { - assert(isInlineAsm() && "Expected an inline asm instruction"); - assert(OpIdx < getNumOperands() && "OpIdx out of range"); - - // Ignore queries about the initial operands. - if (OpIdx < InlineAsm::MIOp_FirstOperand) - return -1; - - unsigned Group = 0; - unsigned NumOps; - for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; - i += NumOps) { - const MachineOperand &FlagMO = getOperand(i); - // If we reach the implicit register operands, stop looking. - if (!FlagMO.isImm()) - return -1; - NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); - if (i + NumOps > OpIdx) { - if (GroupNo) - *GroupNo = Group; - return i; - } - ++Group; - } - return -1; -} - -const DILabel *MachineInstr::getDebugLabel() const { - assert(isDebugLabel() && "not a DBG_LABEL"); - return cast<DILabel>(getOperand(0).getMetadata()); -} - -const MachineOperand &MachineInstr::getDebugVariableOp() const { + return false; + } + return true; +} + +bool MachineInstr::shouldUpdateCallSiteInfo() const { + if (isBundle()) + return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); + return isCandidateForCallSiteEntry(); +} + +unsigned MachineInstr::getNumExplicitOperands() const { + unsigned NumOperands = MCID->getNumOperands(); + if (!MCID->isVariadic()) + return NumOperands; + + for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { + const MachineOperand &MO = getOperand(I); + // The operands must always be in the following order: + // - explicit reg defs, + // - other explicit operands (reg uses, immediates, etc.), + // - implicit reg defs + // - implicit reg uses + if (MO.isReg() && MO.isImplicit()) + break; + ++NumOperands; + } + return NumOperands; +} + +unsigned MachineInstr::getNumExplicitDefs() const { + unsigned NumDefs = MCID->getNumDefs(); + if (!MCID->isVariadic()) + return NumDefs; + + for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { + const MachineOperand &MO = getOperand(I); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + break; + ++NumDefs; + } + return NumDefs; +} + +void MachineInstr::bundleWithPred() { + assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); + setFlag(BundledPred); + MachineBasicBlock::instr_iterator Pred = getIterator(); + --Pred; + assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); + Pred->setFlag(BundledSucc); +} + +void MachineInstr::bundleWithSucc() { + assert(!isBundledWithSucc() && "MI is already bundled with its successor"); + setFlag(BundledSucc); + MachineBasicBlock::instr_iterator Succ = getIterator(); + ++Succ; + assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); + Succ->setFlag(BundledPred); +} + +void MachineInstr::unbundleFromPred() { + assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); + clearFlag(BundledPred); + MachineBasicBlock::instr_iterator Pred = getIterator(); + --Pred; + assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); + Pred->clearFlag(BundledSucc); +} + +void MachineInstr::unbundleFromSucc() { + assert(isBundledWithSucc() && "MI isn't bundled with its successor"); + clearFlag(BundledSucc); + MachineBasicBlock::instr_iterator Succ = getIterator(); + ++Succ; + assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); + Succ->clearFlag(BundledPred); +} + +bool MachineInstr::isStackAligningInlineAsm() const { + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + return true; + } + return false; +} + +InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { + assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); +} + +int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, + unsigned *GroupNo) const { + assert(isInlineAsm() && "Expected an inline asm instruction"); + assert(OpIdx < getNumOperands() && "OpIdx out of range"); + + // Ignore queries about the initial operands. + if (OpIdx < InlineAsm::MIOp_FirstOperand) + return -1; + + unsigned Group = 0; + unsigned NumOps; + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; + i += NumOps) { + const MachineOperand &FlagMO = getOperand(i); + // If we reach the implicit register operands, stop looking. + if (!FlagMO.isImm()) + return -1; + NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); + if (i + NumOps > OpIdx) { + if (GroupNo) + *GroupNo = Group; + return i; + } + ++Group; + } + return -1; +} + +const DILabel *MachineInstr::getDebugLabel() const { + assert(isDebugLabel() && "not a DBG_LABEL"); + return cast<DILabel>(getOperand(0).getMetadata()); +} + +const MachineOperand &MachineInstr::getDebugVariableOp() const { assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); - return getOperand(2); -} - -MachineOperand &MachineInstr::getDebugVariableOp() { + return getOperand(2); +} + +MachineOperand &MachineInstr::getDebugVariableOp() { assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); - return getOperand(2); -} - -const DILocalVariable *MachineInstr::getDebugVariable() const { + return getOperand(2); +} + +const DILocalVariable *MachineInstr::getDebugVariable() const { assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); - return cast<DILocalVariable>(getOperand(2).getMetadata()); -} - -MachineOperand &MachineInstr::getDebugExpressionOp() { + return cast<DILocalVariable>(getOperand(2).getMetadata()); +} + +MachineOperand &MachineInstr::getDebugExpressionOp() { assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); - return getOperand(3); -} - -const DIExpression *MachineInstr::getDebugExpression() const { + return getOperand(3); +} + +const DIExpression *MachineInstr::getDebugExpression() const { assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE"); - return cast<DIExpression>(getOperand(3).getMetadata()); -} - -bool MachineInstr::isDebugEntryValue() const { - return isDebugValue() && getDebugExpression()->isEntryValue(); -} - -const TargetRegisterClass* -MachineInstr::getRegClassConstraint(unsigned OpIdx, - const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI) const { - assert(getParent() && "Can't have an MBB reference here!"); - assert(getMF() && "Can't have an MF reference here!"); - const MachineFunction &MF = *getMF(); - - // Most opcodes have fixed constraints in their MCInstrDesc. - if (!isInlineAsm()) - return TII->getRegClass(getDesc(), OpIdx, TRI, MF); - - if (!getOperand(OpIdx).isReg()) - return nullptr; - - // For tied uses on inline asm, get the constraint from the def. - unsigned DefIdx; - if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) - OpIdx = DefIdx; - - // Inline asm stores register class constraints in the flag word. - int FlagIdx = findInlineAsmFlagIdx(OpIdx); - if (FlagIdx < 0) - return nullptr; - - unsigned Flag = getOperand(FlagIdx).getImm(); - unsigned RCID; - if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || - InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || - InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && - InlineAsm::hasRegClassConstraint(Flag, RCID)) - return TRI->getRegClass(RCID); - - // Assume that all registers in a memory operand are pointers. - if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) - return TRI->getPointerRegClass(MF); - - return nullptr; -} - -const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( - Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, - const TargetRegisterInfo *TRI, bool ExploreBundle) const { - // Check every operands inside the bundle if we have - // been asked to. - if (ExploreBundle) - for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; - ++OpndIt) - CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( - OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); - else - // Otherwise, just check the current operands. - for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) - CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); - return CurRC; -} - -const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( - unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, - const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { - assert(CurRC && "Invalid initial register class"); - // Check if Reg is constrained by some of its use/def from MI. - const MachineOperand &MO = getOperand(OpIdx); - if (!MO.isReg() || MO.getReg() != Reg) - return CurRC; - // If yes, accumulate the constraints through the operand. - return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); -} - -const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( - unsigned OpIdx, const TargetRegisterClass *CurRC, - const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { - const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); - const MachineOperand &MO = getOperand(OpIdx); - assert(MO.isReg() && - "Cannot get register constraints for non-register operand"); - assert(CurRC && "Invalid initial register class"); - if (unsigned SubIdx = MO.getSubReg()) { - if (OpRC) - CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); - else - CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); - } else if (OpRC) - CurRC = TRI->getCommonSubClass(CurRC, OpRC); - return CurRC; -} - -/// Return the number of instructions inside the MI bundle, not counting the -/// header instruction. -unsigned MachineInstr::getBundleSize() const { - MachineBasicBlock::const_instr_iterator I = getIterator(); - unsigned Size = 0; - while (I->isBundledWithSucc()) { - ++Size; - ++I; - } - return Size; -} - -/// Returns true if the MachineInstr has an implicit-use operand of exactly -/// the given register (not considering sub/super-registers). -bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) - return true; - } - return false; -} - -/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of -/// the specific register or -1 if it is not found. It further tightens -/// the search criteria to a use that kills the register if isKill is true. -int MachineInstr::findRegisterUseOperandIdx( - Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - if (!MO.isReg() || !MO.isUse()) - continue; - Register MOReg = MO.getReg(); - if (!MOReg) - continue; - if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) - if (!isKill || MO.isKill()) - return i; - } - return -1; -} - -/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) -/// indicating if this instruction reads or writes Reg. This also considers -/// partial defines. -std::pair<bool,bool> -MachineInstr::readsWritesVirtualRegister(Register Reg, - SmallVectorImpl<unsigned> *Ops) const { - bool PartDef = false; // Partial redefine. - bool FullDef = false; // Full define. - bool Use = false; - - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - if (!MO.isReg() || MO.getReg() != Reg) - continue; - if (Ops) - Ops->push_back(i); - if (MO.isUse()) - Use |= !MO.isUndef(); - else if (MO.getSubReg() && !MO.isUndef()) - // A partial def undef doesn't count as reading the register. - PartDef = true; - else - FullDef = true; - } - // A partial redefine uses Reg unless there is also a full define. - return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); -} - -/// findRegisterDefOperandIdx() - Returns the operand index that is a def of -/// the specified register or -1 if it is not found. If isDead is true, defs -/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it -/// also checks if there is a def of a super-register. -int -MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, - const TargetRegisterInfo *TRI) const { - bool isPhys = Register::isPhysicalRegister(Reg); - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - // Accept regmask operands when Overlap is set. - // Ignore them when looking for a specific def operand (Overlap == false). - if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) - return i; - if (!MO.isReg() || !MO.isDef()) - continue; - Register MOReg = MO.getReg(); - bool Found = (MOReg == Reg); - if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { - if (Overlap) - Found = TRI->regsOverlap(MOReg, Reg); - else - Found = TRI->isSubRegister(MOReg, Reg); - } - if (Found && (!isDead || MO.isDead())) - return i; - } - return -1; -} - -/// findFirstPredOperandIdx() - Find the index of the first operand in the -/// operand list that is used to represent the predicate. It returns -1 if -/// none is found. -int MachineInstr::findFirstPredOperandIdx() const { - // Don't call MCID.findFirstPredOperandIdx() because this variant - // is sometimes called on an instruction that's not yet complete, and - // so the number of operands is less than the MCID indicates. In - // particular, the PTX target does this. - const MCInstrDesc &MCID = getDesc(); - if (MCID.isPredicable()) { - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) - if (MCID.OpInfo[i].isPredicate()) - return i; - } - - return -1; -} - -// MachineOperand::TiedTo is 4 bits wide. -const unsigned TiedMax = 15; - -/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. -/// -/// Use and def operands can be tied together, indicated by a non-zero TiedTo -/// field. TiedTo can have these values: -/// -/// 0: Operand is not tied to anything. -/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). -/// TiedMax: Tied to an operand >= TiedMax-1. -/// -/// The tied def must be one of the first TiedMax operands on a normal -/// instruction. INLINEASM instructions allow more tied defs. -/// -void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { - MachineOperand &DefMO = getOperand(DefIdx); - MachineOperand &UseMO = getOperand(UseIdx); - assert(DefMO.isDef() && "DefIdx must be a def operand"); - assert(UseMO.isUse() && "UseIdx must be a use operand"); - assert(!DefMO.isTied() && "Def is already tied to another use"); - assert(!UseMO.isTied() && "Use is already tied to another def"); - - if (DefIdx < TiedMax) - UseMO.TiedTo = DefIdx + 1; - else { + return cast<DIExpression>(getOperand(3).getMetadata()); +} + +bool MachineInstr::isDebugEntryValue() const { + return isDebugValue() && getDebugExpression()->isEntryValue(); +} + +const TargetRegisterClass* +MachineInstr::getRegClassConstraint(unsigned OpIdx, + const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI) const { + assert(getParent() && "Can't have an MBB reference here!"); + assert(getMF() && "Can't have an MF reference here!"); + const MachineFunction &MF = *getMF(); + + // Most opcodes have fixed constraints in their MCInstrDesc. + if (!isInlineAsm()) + return TII->getRegClass(getDesc(), OpIdx, TRI, MF); + + if (!getOperand(OpIdx).isReg()) + return nullptr; + + // For tied uses on inline asm, get the constraint from the def. + unsigned DefIdx; + if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) + OpIdx = DefIdx; + + // Inline asm stores register class constraints in the flag word. + int FlagIdx = findInlineAsmFlagIdx(OpIdx); + if (FlagIdx < 0) + return nullptr; + + unsigned Flag = getOperand(FlagIdx).getImm(); + unsigned RCID; + if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || + InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || + InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && + InlineAsm::hasRegClassConstraint(Flag, RCID)) + return TRI->getRegClass(RCID); + + // Assume that all registers in a memory operand are pointers. + if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) + return TRI->getPointerRegClass(MF); + + return nullptr; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( + Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, + const TargetRegisterInfo *TRI, bool ExploreBundle) const { + // Check every operands inside the bundle if we have + // been asked to. + if (ExploreBundle) + for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; + ++OpndIt) + CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( + OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); + else + // Otherwise, just check the current operands. + for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) + CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); + return CurRC; +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( + unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { + assert(CurRC && "Invalid initial register class"); + // Check if Reg is constrained by some of its use/def from MI. + const MachineOperand &MO = getOperand(OpIdx); + if (!MO.isReg() || MO.getReg() != Reg) + return CurRC; + // If yes, accumulate the constraints through the operand. + return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); +} + +const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( + unsigned OpIdx, const TargetRegisterClass *CurRC, + const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { + const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); + const MachineOperand &MO = getOperand(OpIdx); + assert(MO.isReg() && + "Cannot get register constraints for non-register operand"); + assert(CurRC && "Invalid initial register class"); + if (unsigned SubIdx = MO.getSubReg()) { + if (OpRC) + CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); + else + CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); + } else if (OpRC) + CurRC = TRI->getCommonSubClass(CurRC, OpRC); + return CurRC; +} + +/// Return the number of instructions inside the MI bundle, not counting the +/// header instruction. +unsigned MachineInstr::getBundleSize() const { + MachineBasicBlock::const_instr_iterator I = getIterator(); + unsigned Size = 0; + while (I->isBundledWithSucc()) { + ++Size; + ++I; + } + return Size; +} + +/// Returns true if the MachineInstr has an implicit-use operand of exactly +/// the given register (not considering sub/super-registers). +bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) + return true; + } + return false; +} + +/// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of +/// the specific register or -1 if it is not found. It further tightens +/// the search criteria to a use that kills the register if isKill is true. +int MachineInstr::findRegisterUseOperandIdx( + Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse()) + continue; + Register MOReg = MO.getReg(); + if (!MOReg) + continue; + if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) + if (!isKill || MO.isKill()) + return i; + } + return -1; +} + +/// readsWritesVirtualRegister - Return a pair of bools (reads, writes) +/// indicating if this instruction reads or writes Reg. This also considers +/// partial defines. +std::pair<bool,bool> +MachineInstr::readsWritesVirtualRegister(Register Reg, + SmallVectorImpl<unsigned> *Ops) const { + bool PartDef = false; // Partial redefine. + bool FullDef = false; // Full define. + bool Use = false; + + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + if (!MO.isReg() || MO.getReg() != Reg) + continue; + if (Ops) + Ops->push_back(i); + if (MO.isUse()) + Use |= !MO.isUndef(); + else if (MO.getSubReg() && !MO.isUndef()) + // A partial def undef doesn't count as reading the register. + PartDef = true; + else + FullDef = true; + } + // A partial redefine uses Reg unless there is also a full define. + return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); +} + +/// findRegisterDefOperandIdx() - Returns the operand index that is a def of +/// the specified register or -1 if it is not found. If isDead is true, defs +/// that are not dead are skipped. If TargetRegisterInfo is non-null, then it +/// also checks if there is a def of a super-register. +int +MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, + const TargetRegisterInfo *TRI) const { + bool isPhys = Register::isPhysicalRegister(Reg); + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + // Accept regmask operands when Overlap is set. + // Ignore them when looking for a specific def operand (Overlap == false). + if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) + return i; + if (!MO.isReg() || !MO.isDef()) + continue; + Register MOReg = MO.getReg(); + bool Found = (MOReg == Reg); + if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { + if (Overlap) + Found = TRI->regsOverlap(MOReg, Reg); + else + Found = TRI->isSubRegister(MOReg, Reg); + } + if (Found && (!isDead || MO.isDead())) + return i; + } + return -1; +} + +/// findFirstPredOperandIdx() - Find the index of the first operand in the +/// operand list that is used to represent the predicate. It returns -1 if +/// none is found. +int MachineInstr::findFirstPredOperandIdx() const { + // Don't call MCID.findFirstPredOperandIdx() because this variant + // is sometimes called on an instruction that's not yet complete, and + // so the number of operands is less than the MCID indicates. In + // particular, the PTX target does this. + const MCInstrDesc &MCID = getDesc(); + if (MCID.isPredicable()) { + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) + if (MCID.OpInfo[i].isPredicate()) + return i; + } + + return -1; +} + +// MachineOperand::TiedTo is 4 bits wide. +const unsigned TiedMax = 15; + +/// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. +/// +/// Use and def operands can be tied together, indicated by a non-zero TiedTo +/// field. TiedTo can have these values: +/// +/// 0: Operand is not tied to anything. +/// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). +/// TiedMax: Tied to an operand >= TiedMax-1. +/// +/// The tied def must be one of the first TiedMax operands on a normal +/// instruction. INLINEASM instructions allow more tied defs. +/// +void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { + MachineOperand &DefMO = getOperand(DefIdx); + MachineOperand &UseMO = getOperand(UseIdx); + assert(DefMO.isDef() && "DefIdx must be a def operand"); + assert(UseMO.isUse() && "UseIdx must be a use operand"); + assert(!DefMO.isTied() && "Def is already tied to another use"); + assert(!UseMO.isTied() && "Use is already tied to another def"); + + if (DefIdx < TiedMax) + UseMO.TiedTo = DefIdx + 1; + else { // Inline asm can use the group descriptors to find tied operands, // statepoint tied operands are trivial to match (1-1 reg def with reg use), // but on normal instruction, the tied def must be within the first TiedMax - // operands. + // operands. assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && "DefIdx out of range"); - UseMO.TiedTo = TiedMax; - } - - // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). - DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); -} - -/// Given the index of a tied register operand, find the operand it is tied to. -/// Defs are tied to uses and vice versa. Returns the index of the tied operand -/// which must exist. -unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { - const MachineOperand &MO = getOperand(OpIdx); - assert(MO.isTied() && "Operand isn't tied"); - - // Normally TiedTo is in range. - if (MO.TiedTo < TiedMax) - return MO.TiedTo - 1; - - // Uses on normal instructions can be out of range. + UseMO.TiedTo = TiedMax; + } + + // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). + DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); +} + +/// Given the index of a tied register operand, find the operand it is tied to. +/// Defs are tied to uses and vice versa. Returns the index of the tied operand +/// which must exist. +unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { + const MachineOperand &MO = getOperand(OpIdx); + assert(MO.isTied() && "Operand isn't tied"); + + // Normally TiedTo is in range. + if (MO.TiedTo < TiedMax) + return MO.TiedTo - 1; + + // Uses on normal instructions can be out of range. if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { - // Normal tied defs must be in the 0..TiedMax-1 range. - if (MO.isUse()) - return TiedMax - 1; - // MO is a def. Search for the tied use. - for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { - const MachineOperand &UseMO = getOperand(i); - if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) - return i; - } - llvm_unreachable("Can't find tied use"); - } - + // Normal tied defs must be in the 0..TiedMax-1 range. + if (MO.isUse()) + return TiedMax - 1; + // MO is a def. Search for the tied use. + for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { + const MachineOperand &UseMO = getOperand(i); + if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) + return i; + } + llvm_unreachable("Can't find tied use"); + } + if (getOpcode() == TargetOpcode::STATEPOINT) { // In STATEPOINT defs correspond 1-1 to GC pointer operands passed // on registers. @@ -1157,169 +1157,169 @@ unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { llvm_unreachable("Can't find tied use"); } - // Now deal with inline asm by parsing the operand group descriptor flags. - // Find the beginning of each operand group. - SmallVector<unsigned, 8> GroupIdx; - unsigned OpIdxGroup = ~0u; - unsigned NumOps; - for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; - i += NumOps) { - const MachineOperand &FlagMO = getOperand(i); - assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); - unsigned CurGroup = GroupIdx.size(); - GroupIdx.push_back(i); - NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); - // OpIdx belongs to this operand group. - if (OpIdx > i && OpIdx < i + NumOps) - OpIdxGroup = CurGroup; - unsigned TiedGroup; - if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) - continue; - // Operands in this group are tied to operands in TiedGroup which must be - // earlier. Find the number of operands between the two groups. - unsigned Delta = i - GroupIdx[TiedGroup]; - - // OpIdx is a use tied to TiedGroup. - if (OpIdxGroup == CurGroup) - return OpIdx - Delta; - - // OpIdx is a def tied to this use group. - if (OpIdxGroup == TiedGroup) - return OpIdx + Delta; - } - llvm_unreachable("Invalid tied operand on inline asm"); -} - -/// clearKillInfo - Clears kill flags on all operands. -/// -void MachineInstr::clearKillInfo() { - for (MachineOperand &MO : operands()) { - if (MO.isReg() && MO.isUse()) - MO.setIsKill(false); - } -} - -void MachineInstr::substituteRegister(Register FromReg, Register ToReg, - unsigned SubIdx, - const TargetRegisterInfo &RegInfo) { - if (Register::isPhysicalRegister(ToReg)) { - if (SubIdx) - ToReg = RegInfo.getSubReg(ToReg, SubIdx); - for (MachineOperand &MO : operands()) { - if (!MO.isReg() || MO.getReg() != FromReg) - continue; - MO.substPhysReg(ToReg, RegInfo); - } - } else { - for (MachineOperand &MO : operands()) { - if (!MO.isReg() || MO.getReg() != FromReg) - continue; - MO.substVirtReg(ToReg, SubIdx, RegInfo); - } - } -} - -/// isSafeToMove - Return true if it is safe to move this instruction. If -/// SawStore is set to true, it means that there is a store (or call) between -/// the instruction's location and its intended destination. -bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { - // Ignore stuff that we obviously can't move. - // - // Treat volatile loads as stores. This is not strictly necessary for - // volatiles, but it is required for atomic loads. It is not allowed to move - // a load across an atomic load with Ordering > Monotonic. - if (mayStore() || isCall() || isPHI() || - (mayLoad() && hasOrderedMemoryRef())) { - SawStore = true; - return false; - } - - if (isPosition() || isDebugInstr() || isTerminator() || - mayRaiseFPException() || hasUnmodeledSideEffects()) - return false; - - // See if this instruction does a load. If so, we have to guarantee that the - // loaded value doesn't change between the load and the its intended + // Now deal with inline asm by parsing the operand group descriptor flags. + // Find the beginning of each operand group. + SmallVector<unsigned, 8> GroupIdx; + unsigned OpIdxGroup = ~0u; + unsigned NumOps; + for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; + i += NumOps) { + const MachineOperand &FlagMO = getOperand(i); + assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); + unsigned CurGroup = GroupIdx.size(); + GroupIdx.push_back(i); + NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); + // OpIdx belongs to this operand group. + if (OpIdx > i && OpIdx < i + NumOps) + OpIdxGroup = CurGroup; + unsigned TiedGroup; + if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) + continue; + // Operands in this group are tied to operands in TiedGroup which must be + // earlier. Find the number of operands between the two groups. + unsigned Delta = i - GroupIdx[TiedGroup]; + + // OpIdx is a use tied to TiedGroup. + if (OpIdxGroup == CurGroup) + return OpIdx - Delta; + + // OpIdx is a def tied to this use group. + if (OpIdxGroup == TiedGroup) + return OpIdx + Delta; + } + llvm_unreachable("Invalid tied operand on inline asm"); +} + +/// clearKillInfo - Clears kill flags on all operands. +/// +void MachineInstr::clearKillInfo() { + for (MachineOperand &MO : operands()) { + if (MO.isReg() && MO.isUse()) + MO.setIsKill(false); + } +} + +void MachineInstr::substituteRegister(Register FromReg, Register ToReg, + unsigned SubIdx, + const TargetRegisterInfo &RegInfo) { + if (Register::isPhysicalRegister(ToReg)) { + if (SubIdx) + ToReg = RegInfo.getSubReg(ToReg, SubIdx); + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substPhysReg(ToReg, RegInfo); + } + } else { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.getReg() != FromReg) + continue; + MO.substVirtReg(ToReg, SubIdx, RegInfo); + } + } +} + +/// isSafeToMove - Return true if it is safe to move this instruction. If +/// SawStore is set to true, it means that there is a store (or call) between +/// the instruction's location and its intended destination. +bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { + // Ignore stuff that we obviously can't move. + // + // Treat volatile loads as stores. This is not strictly necessary for + // volatiles, but it is required for atomic loads. It is not allowed to move + // a load across an atomic load with Ordering > Monotonic. + if (mayStore() || isCall() || isPHI() || + (mayLoad() && hasOrderedMemoryRef())) { + SawStore = true; + return false; + } + + if (isPosition() || isDebugInstr() || isTerminator() || + mayRaiseFPException() || hasUnmodeledSideEffects()) + return false; + + // See if this instruction does a load. If so, we have to guarantee that the + // loaded value doesn't change between the load and the its intended // destination. The check for isInvariantLoad gives the target the chance to - // classify the load as always returning a constant, e.g. a constant pool - // load. - if (mayLoad() && !isDereferenceableInvariantLoad(AA)) - // Otherwise, this is a real load. If there is a store between the load and - // end of block, we can't move it. - return !SawStore; - - return true; -} - + // classify the load as always returning a constant, e.g. a constant pool + // load. + if (mayLoad() && !isDereferenceableInvariantLoad(AA)) + // Otherwise, this is a real load. If there is a store between the load and + // end of block, we can't move it. + return !SawStore; + + return true; +} + static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, bool UseTBAA, const MachineMemOperand *MMOa, const MachineMemOperand *MMOb) { // The following interface to AA is fashioned after DAGCombiner::isAlias and // operates with MachineMemOperand offset with some important assumptions: - // - LLVM fundamentally assumes flat address spaces. + // - LLVM fundamentally assumes flat address spaces. // - MachineOperand offset can *only* result from legalization and cannot // affect queries other than the trivial case of overlap checking. // - These offsets never wrap and never step outside of allocated objects. - // - There should never be any negative offsets here. - // - // FIXME: Modify API to hide this math from "user" + // - There should never be any negative offsets here. + // + // FIXME: Modify API to hide this math from "user" // Even before we go to AA we can reason locally about some memory objects. It // can save compile time, and possibly catch some corner cases not currently // covered. - - int64_t OffsetA = MMOa->getOffset(); - int64_t OffsetB = MMOb->getOffset(); - int64_t MinOffset = std::min(OffsetA, OffsetB); - - uint64_t WidthA = MMOa->getSize(); - uint64_t WidthB = MMOb->getSize(); - bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; - bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; - - const Value *ValA = MMOa->getValue(); - const Value *ValB = MMOb->getValue(); - bool SameVal = (ValA && ValB && (ValA == ValB)); - if (!SameVal) { - const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); - const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); - if (PSVa && ValB && !PSVa->mayAlias(&MFI)) - return false; - if (PSVb && ValA && !PSVb->mayAlias(&MFI)) - return false; - if (PSVa && PSVb && (PSVa == PSVb)) - SameVal = true; - } - - if (SameVal) { - if (!KnownWidthA || !KnownWidthB) - return true; - int64_t MaxOffset = std::max(OffsetA, OffsetB); - int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; - return (MinOffset + LowWidth > MaxOffset); - } - - if (!AA) - return true; - - if (!ValA || !ValB) - return true; - - assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); - assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); - + + int64_t OffsetA = MMOa->getOffset(); + int64_t OffsetB = MMOb->getOffset(); + int64_t MinOffset = std::min(OffsetA, OffsetB); + + uint64_t WidthA = MMOa->getSize(); + uint64_t WidthB = MMOb->getSize(); + bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; + bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; + + const Value *ValA = MMOa->getValue(); + const Value *ValB = MMOb->getValue(); + bool SameVal = (ValA && ValB && (ValA == ValB)); + if (!SameVal) { + const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); + const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); + if (PSVa && ValB && !PSVa->mayAlias(&MFI)) + return false; + if (PSVb && ValA && !PSVb->mayAlias(&MFI)) + return false; + if (PSVa && PSVb && (PSVa == PSVb)) + SameVal = true; + } + + if (SameVal) { + if (!KnownWidthA || !KnownWidthB) + return true; + int64_t MaxOffset = std::max(OffsetA, OffsetB); + int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; + return (MinOffset + LowWidth > MaxOffset); + } + + if (!AA) + return true; + + if (!ValA || !ValB) + return true; + + assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); + assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); + int64_t OverlapA = KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; int64_t OverlapB = KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; - - AliasResult AAResult = AA->alias( + + AliasResult AAResult = AA->alias( MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), - MemoryLocation(ValB, OverlapB, - UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); - - return (AAResult != NoAlias); -} - + MemoryLocation(ValB, OverlapB, + UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); + + return (AAResult != NoAlias); +} + bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const { const MachineFunction *MF = getMF(); @@ -1364,922 +1364,922 @@ bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, return false; } -/// hasOrderedMemoryRef - Return true if this instruction may have an ordered -/// or volatile memory reference, or if the information describing the memory -/// reference is not available. Return false if it is known to have no ordered -/// memory references. -bool MachineInstr::hasOrderedMemoryRef() const { - // An instruction known never to access memory won't have a volatile access. - if (!mayStore() && - !mayLoad() && - !isCall() && - !hasUnmodeledSideEffects()) - return false; - - // Otherwise, if the instruction has no memory reference information, - // conservatively assume it wasn't preserved. - if (memoperands_empty()) - return true; - - // Check if any of our memory operands are ordered. - return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { - return !MMO->isUnordered(); - }); -} - -/// isDereferenceableInvariantLoad - Return true if this instruction will never -/// trap and is loading from a location whose value is invariant across a run of -/// this function. -bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { - // If the instruction doesn't load at all, it isn't an invariant load. - if (!mayLoad()) - return false; - - // If the instruction has lost its memoperands, conservatively assume that - // it may not be an invariant load. - if (memoperands_empty()) - return false; - - const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); - - for (MachineMemOperand *MMO : memoperands()) { - if (!MMO->isUnordered()) - // If the memory operand has ordering side effects, we can't move the - // instruction. Such an instruction is technically an invariant load, - // but the caller code would need updated to expect that. - return false; - if (MMO->isStore()) return false; - if (MMO->isInvariant() && MMO->isDereferenceable()) - continue; - - // A load from a constant PseudoSourceValue is invariant. - if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) - if (PSV->isConstant(&MFI)) - continue; - - if (const Value *V = MMO->getValue()) { - // If we have an AliasAnalysis, ask it whether the memory is constant. - if (AA && - AA->pointsToConstantMemory( - MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) - continue; - } - - // Otherwise assume conservatively. - return false; - } - - // Everything checks out. - return true; -} - -/// isConstantValuePHI - If the specified instruction is a PHI that always -/// merges together the same virtual register, return the register, otherwise -/// return 0. -unsigned MachineInstr::isConstantValuePHI() const { - if (!isPHI()) - return 0; - assert(getNumOperands() >= 3 && - "It's illegal to have a PHI without source operands"); - - Register Reg = getOperand(1).getReg(); - for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) - if (getOperand(i).getReg() != Reg) - return 0; - return Reg; -} - -bool MachineInstr::hasUnmodeledSideEffects() const { - if (hasProperty(MCID::UnmodeledSideEffects)) - return true; - if (isInlineAsm()) { - unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); - if (ExtraInfo & InlineAsm::Extra_HasSideEffects) - return true; - } - - return false; -} - -bool MachineInstr::isLoadFoldBarrier() const { +/// hasOrderedMemoryRef - Return true if this instruction may have an ordered +/// or volatile memory reference, or if the information describing the memory +/// reference is not available. Return false if it is known to have no ordered +/// memory references. +bool MachineInstr::hasOrderedMemoryRef() const { + // An instruction known never to access memory won't have a volatile access. + if (!mayStore() && + !mayLoad() && + !isCall() && + !hasUnmodeledSideEffects()) + return false; + + // Otherwise, if the instruction has no memory reference information, + // conservatively assume it wasn't preserved. + if (memoperands_empty()) + return true; + + // Check if any of our memory operands are ordered. + return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { + return !MMO->isUnordered(); + }); +} + +/// isDereferenceableInvariantLoad - Return true if this instruction will never +/// trap and is loading from a location whose value is invariant across a run of +/// this function. +bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { + // If the instruction doesn't load at all, it isn't an invariant load. + if (!mayLoad()) + return false; + + // If the instruction has lost its memoperands, conservatively assume that + // it may not be an invariant load. + if (memoperands_empty()) + return false; + + const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); + + for (MachineMemOperand *MMO : memoperands()) { + if (!MMO->isUnordered()) + // If the memory operand has ordering side effects, we can't move the + // instruction. Such an instruction is technically an invariant load, + // but the caller code would need updated to expect that. + return false; + if (MMO->isStore()) return false; + if (MMO->isInvariant() && MMO->isDereferenceable()) + continue; + + // A load from a constant PseudoSourceValue is invariant. + if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) + if (PSV->isConstant(&MFI)) + continue; + + if (const Value *V = MMO->getValue()) { + // If we have an AliasAnalysis, ask it whether the memory is constant. + if (AA && + AA->pointsToConstantMemory( + MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) + continue; + } + + // Otherwise assume conservatively. + return false; + } + + // Everything checks out. + return true; +} + +/// isConstantValuePHI - If the specified instruction is a PHI that always +/// merges together the same virtual register, return the register, otherwise +/// return 0. +unsigned MachineInstr::isConstantValuePHI() const { + if (!isPHI()) + return 0; + assert(getNumOperands() >= 3 && + "It's illegal to have a PHI without source operands"); + + Register Reg = getOperand(1).getReg(); + for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) + if (getOperand(i).getReg() != Reg) + return 0; + return Reg; +} + +bool MachineInstr::hasUnmodeledSideEffects() const { + if (hasProperty(MCID::UnmodeledSideEffects)) + return true; + if (isInlineAsm()) { + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + return true; + } + + return false; +} + +bool MachineInstr::isLoadFoldBarrier() const { return mayStore() || isCall() || (hasUnmodeledSideEffects() && !isPseudoProbe()); -} - -/// allDefsAreDead - Return true if all the defs of this instruction are dead. -/// -bool MachineInstr::allDefsAreDead() const { - for (const MachineOperand &MO : operands()) { - if (!MO.isReg() || MO.isUse()) - continue; - if (!MO.isDead()) - return false; - } - return true; -} - -/// copyImplicitOps - Copy implicit register operands from specified -/// instruction to this instruction. -void MachineInstr::copyImplicitOps(MachineFunction &MF, - const MachineInstr &MI) { - for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); - i != e; ++i) { - const MachineOperand &MO = MI.getOperand(i); - if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) - addOperand(MF, MO); - } -} - -bool MachineInstr::hasComplexRegisterTies() const { - const MCInstrDesc &MCID = getDesc(); +} + +/// allDefsAreDead - Return true if all the defs of this instruction are dead. +/// +bool MachineInstr::allDefsAreDead() const { + for (const MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.isUse()) + continue; + if (!MO.isDead()) + return false; + } + return true; +} + +/// copyImplicitOps - Copy implicit register operands from specified +/// instruction to this instruction. +void MachineInstr::copyImplicitOps(MachineFunction &MF, + const MachineInstr &MI) { + for (unsigned i = MI.getDesc().getNumOperands(), e = MI.getNumOperands(); + i != e; ++i) { + const MachineOperand &MO = MI.getOperand(i); + if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) + addOperand(MF, MO); + } +} + +bool MachineInstr::hasComplexRegisterTies() const { + const MCInstrDesc &MCID = getDesc(); if (MCID.Opcode == TargetOpcode::STATEPOINT) return true; - for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { - const auto &Operand = getOperand(I); - if (!Operand.isReg() || Operand.isDef()) - // Ignore the defined registers as MCID marks only the uses as tied. - continue; - int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); - int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; - if (ExpectedTiedIdx != TiedIdx) - return true; - } - return false; -} - -LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, - const MachineRegisterInfo &MRI) const { - const MachineOperand &Op = getOperand(OpIdx); - if (!Op.isReg()) - return LLT{}; - - if (isVariadic() || OpIdx >= getNumExplicitOperands()) - return MRI.getType(Op.getReg()); - - auto &OpInfo = getDesc().OpInfo[OpIdx]; - if (!OpInfo.isGenericType()) - return MRI.getType(Op.getReg()); - - if (PrintedTypes[OpInfo.getGenericTypeIndex()]) - return LLT{}; - - LLT TypeToPrint = MRI.getType(Op.getReg()); - // Don't mark the type index printed if it wasn't actually printed: maybe - // another operand with the same type index has an actual type attached: - if (TypeToPrint.isValid()) - PrintedTypes.set(OpInfo.getGenericTypeIndex()); - return TypeToPrint; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void MachineInstr::dump() const { - dbgs() << " "; - print(dbgs()); -} - -LLVM_DUMP_METHOD void MachineInstr::dumprImpl( - const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, - SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { - if (Depth >= MaxDepth) - return; - if (!AlreadySeenInstrs.insert(this).second) - return; - // PadToColumn always inserts at least one space. - // Don't mess up the alignment if we don't want any space. - if (Depth) - fdbgs().PadToColumn(Depth * 2); - print(fdbgs()); - for (const MachineOperand &MO : operands()) { - if (!MO.isReg() || MO.isDef()) - continue; - Register Reg = MO.getReg(); - if (Reg.isPhysical()) - continue; - const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); - if (NewMI == nullptr) - continue; - NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); - } -} - -LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, - unsigned MaxDepth) const { - SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; - dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); -} -#endif - -void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, - bool SkipDebugLoc, bool AddNewLine, - const TargetInstrInfo *TII) const { - const Module *M = nullptr; - const Function *F = nullptr; - if (const MachineFunction *MF = getMFIfAvailable(*this)) { - F = &MF->getFunction(); - M = F->getParent(); - if (!TII) - TII = MF->getSubtarget().getInstrInfo(); - } - - ModuleSlotTracker MST(M); - if (F) - MST.incorporateFunction(*F); - print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); -} - -void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, - bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, - bool AddNewLine, const TargetInstrInfo *TII) const { - // We can be a bit tidier if we know the MachineFunction. - const TargetRegisterInfo *TRI = nullptr; - const MachineRegisterInfo *MRI = nullptr; - const TargetIntrinsicInfo *IntrinsicInfo = nullptr; - tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); - - if (isCFIInstruction()) - assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); - - SmallBitVector PrintedTypes(8); - bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); - auto getTiedOperandIdx = [&](unsigned OpIdx) { - if (!ShouldPrintRegisterTies) - return 0U; - const MachineOperand &MO = getOperand(OpIdx); - if (MO.isReg() && MO.isTied() && !MO.isDef()) - return findTiedOperandIdx(OpIdx); - return 0U; - }; - unsigned StartOp = 0; - unsigned e = getNumOperands(); - - // Print explicitly defined operands on the left of an assignment syntax. - while (StartOp < e) { - const MachineOperand &MO = getOperand(StartOp); - if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) - break; - - if (StartOp != 0) - OS << ", "; - - LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; - unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); - MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, - ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); - ++StartOp; - } - - if (StartOp != 0) - OS << " = "; - - if (getFlag(MachineInstr::FrameSetup)) - OS << "frame-setup "; - if (getFlag(MachineInstr::FrameDestroy)) - OS << "frame-destroy "; - if (getFlag(MachineInstr::FmNoNans)) - OS << "nnan "; - if (getFlag(MachineInstr::FmNoInfs)) - OS << "ninf "; - if (getFlag(MachineInstr::FmNsz)) - OS << "nsz "; - if (getFlag(MachineInstr::FmArcp)) - OS << "arcp "; - if (getFlag(MachineInstr::FmContract)) - OS << "contract "; - if (getFlag(MachineInstr::FmAfn)) - OS << "afn "; - if (getFlag(MachineInstr::FmReassoc)) - OS << "reassoc "; - if (getFlag(MachineInstr::NoUWrap)) - OS << "nuw "; - if (getFlag(MachineInstr::NoSWrap)) - OS << "nsw "; - if (getFlag(MachineInstr::IsExact)) - OS << "exact "; - if (getFlag(MachineInstr::NoFPExcept)) - OS << "nofpexcept "; - if (getFlag(MachineInstr::NoMerge)) - OS << "nomerge "; - - // Print the opcode name. - if (TII) - OS << TII->getName(getOpcode()); - else - OS << "UNKNOWN"; - - if (SkipOpers) - return; - - // Print the rest of the operands. - bool FirstOp = true; - unsigned AsmDescOp = ~0u; - unsigned AsmOpCount = 0; - - if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { - // Print asm string. - OS << " "; - const unsigned OpIdx = InlineAsm::MIOp_AsmString; - LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; - unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); - getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, - ShouldPrintRegisterTies, TiedOperandIdx, TRI, - IntrinsicInfo); - - // Print HasSideEffects, MayLoad, MayStore, IsAlignStack - unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); - if (ExtraInfo & InlineAsm::Extra_HasSideEffects) - OS << " [sideeffect]"; - if (ExtraInfo & InlineAsm::Extra_MayLoad) - OS << " [mayload]"; - if (ExtraInfo & InlineAsm::Extra_MayStore) - OS << " [maystore]"; - if (ExtraInfo & InlineAsm::Extra_IsConvergent) - OS << " [isconvergent]"; - if (ExtraInfo & InlineAsm::Extra_IsAlignStack) - OS << " [alignstack]"; - if (getInlineAsmDialect() == InlineAsm::AD_ATT) - OS << " [attdialect]"; - if (getInlineAsmDialect() == InlineAsm::AD_Intel) - OS << " [inteldialect]"; - - StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; - FirstOp = false; - } - - for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { - const MachineOperand &MO = getOperand(i); - - if (FirstOp) FirstOp = false; else OS << ","; - OS << " "; - - if (isDebugValue() && MO.isMetadata()) { - // Pretty print DBG_VALUE instructions. - auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); - if (DIV && !DIV->getName().empty()) - OS << "!\"" << DIV->getName() << '\"'; - else { - LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; - unsigned TiedOperandIdx = getTiedOperandIdx(i); - MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, - ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); - } - } else if (isDebugLabel() && MO.isMetadata()) { - // Pretty print DBG_LABEL instructions. - auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); - if (DIL && !DIL->getName().empty()) - OS << "\"" << DIL->getName() << '\"'; - else { - LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; - unsigned TiedOperandIdx = getTiedOperandIdx(i); - MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, - ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); - } - } else if (i == AsmDescOp && MO.isImm()) { - // Pretty print the inline asm operand descriptor. - OS << '$' << AsmOpCount++; - unsigned Flag = MO.getImm(); - OS << ":["; - OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); - - unsigned RCID = 0; - if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && - InlineAsm::hasRegClassConstraint(Flag, RCID)) { - if (TRI) { - OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); - } else - OS << ":RC" << RCID; - } - - if (InlineAsm::isMemKind(Flag)) { - unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); - OS << ":" << InlineAsm::getMemConstraintName(MCID); - } - - unsigned TiedTo = 0; - if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) - OS << " tiedto:$" << TiedTo; - - OS << ']'; - - // Compute the index of the next operand descriptor. - AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); - } else { - LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; - unsigned TiedOperandIdx = getTiedOperandIdx(i); - if (MO.isImm() && isOperandSubregIdx(i)) - MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); - else - MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, - ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); - } - } - - // Print any optional symbols attached to this instruction as-if they were - // operands. - if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { - if (!FirstOp) { - FirstOp = false; - OS << ','; - } - OS << " pre-instr-symbol "; - MachineOperand::printSymbol(OS, *PreInstrSymbol); - } - if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { - if (!FirstOp) { - FirstOp = false; - OS << ','; - } - OS << " post-instr-symbol "; - MachineOperand::printSymbol(OS, *PostInstrSymbol); - } - if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { - if (!FirstOp) { - FirstOp = false; - OS << ','; - } - OS << " heap-alloc-marker "; - HeapAllocMarker->printAsOperand(OS, MST); - } - + for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { + const auto &Operand = getOperand(I); + if (!Operand.isReg() || Operand.isDef()) + // Ignore the defined registers as MCID marks only the uses as tied. + continue; + int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); + int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; + if (ExpectedTiedIdx != TiedIdx) + return true; + } + return false; +} + +LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, + const MachineRegisterInfo &MRI) const { + const MachineOperand &Op = getOperand(OpIdx); + if (!Op.isReg()) + return LLT{}; + + if (isVariadic() || OpIdx >= getNumExplicitOperands()) + return MRI.getType(Op.getReg()); + + auto &OpInfo = getDesc().OpInfo[OpIdx]; + if (!OpInfo.isGenericType()) + return MRI.getType(Op.getReg()); + + if (PrintedTypes[OpInfo.getGenericTypeIndex()]) + return LLT{}; + + LLT TypeToPrint = MRI.getType(Op.getReg()); + // Don't mark the type index printed if it wasn't actually printed: maybe + // another operand with the same type index has an actual type attached: + if (TypeToPrint.isValid()) + PrintedTypes.set(OpInfo.getGenericTypeIndex()); + return TypeToPrint; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void MachineInstr::dump() const { + dbgs() << " "; + print(dbgs()); +} + +LLVM_DUMP_METHOD void MachineInstr::dumprImpl( + const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, + SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { + if (Depth >= MaxDepth) + return; + if (!AlreadySeenInstrs.insert(this).second) + return; + // PadToColumn always inserts at least one space. + // Don't mess up the alignment if we don't want any space. + if (Depth) + fdbgs().PadToColumn(Depth * 2); + print(fdbgs()); + for (const MachineOperand &MO : operands()) { + if (!MO.isReg() || MO.isDef()) + continue; + Register Reg = MO.getReg(); + if (Reg.isPhysical()) + continue; + const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); + if (NewMI == nullptr) + continue; + NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); + } +} + +LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, + unsigned MaxDepth) const { + SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; + dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); +} +#endif + +void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, + bool SkipDebugLoc, bool AddNewLine, + const TargetInstrInfo *TII) const { + const Module *M = nullptr; + const Function *F = nullptr; + if (const MachineFunction *MF = getMFIfAvailable(*this)) { + F = &MF->getFunction(); + M = F->getParent(); + if (!TII) + TII = MF->getSubtarget().getInstrInfo(); + } + + ModuleSlotTracker MST(M); + if (F) + MST.incorporateFunction(*F); + print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); +} + +void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, + bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, + bool AddNewLine, const TargetInstrInfo *TII) const { + // We can be a bit tidier if we know the MachineFunction. + const TargetRegisterInfo *TRI = nullptr; + const MachineRegisterInfo *MRI = nullptr; + const TargetIntrinsicInfo *IntrinsicInfo = nullptr; + tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); + + if (isCFIInstruction()) + assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); + + SmallBitVector PrintedTypes(8); + bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); + auto getTiedOperandIdx = [&](unsigned OpIdx) { + if (!ShouldPrintRegisterTies) + return 0U; + const MachineOperand &MO = getOperand(OpIdx); + if (MO.isReg() && MO.isTied() && !MO.isDef()) + return findTiedOperandIdx(OpIdx); + return 0U; + }; + unsigned StartOp = 0; + unsigned e = getNumOperands(); + + // Print explicitly defined operands on the left of an assignment syntax. + while (StartOp < e) { + const MachineOperand &MO = getOperand(StartOp); + if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) + break; + + if (StartOp != 0) + OS << ", "; + + LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); + MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + ++StartOp; + } + + if (StartOp != 0) + OS << " = "; + + if (getFlag(MachineInstr::FrameSetup)) + OS << "frame-setup "; + if (getFlag(MachineInstr::FrameDestroy)) + OS << "frame-destroy "; + if (getFlag(MachineInstr::FmNoNans)) + OS << "nnan "; + if (getFlag(MachineInstr::FmNoInfs)) + OS << "ninf "; + if (getFlag(MachineInstr::FmNsz)) + OS << "nsz "; + if (getFlag(MachineInstr::FmArcp)) + OS << "arcp "; + if (getFlag(MachineInstr::FmContract)) + OS << "contract "; + if (getFlag(MachineInstr::FmAfn)) + OS << "afn "; + if (getFlag(MachineInstr::FmReassoc)) + OS << "reassoc "; + if (getFlag(MachineInstr::NoUWrap)) + OS << "nuw "; + if (getFlag(MachineInstr::NoSWrap)) + OS << "nsw "; + if (getFlag(MachineInstr::IsExact)) + OS << "exact "; + if (getFlag(MachineInstr::NoFPExcept)) + OS << "nofpexcept "; + if (getFlag(MachineInstr::NoMerge)) + OS << "nomerge "; + + // Print the opcode name. + if (TII) + OS << TII->getName(getOpcode()); + else + OS << "UNKNOWN"; + + if (SkipOpers) + return; + + // Print the rest of the operands. + bool FirstOp = true; + unsigned AsmDescOp = ~0u; + unsigned AsmOpCount = 0; + + if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { + // Print asm string. + OS << " "; + const unsigned OpIdx = InlineAsm::MIOp_AsmString; + LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); + getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, + IntrinsicInfo); + + // Print HasSideEffects, MayLoad, MayStore, IsAlignStack + unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); + if (ExtraInfo & InlineAsm::Extra_HasSideEffects) + OS << " [sideeffect]"; + if (ExtraInfo & InlineAsm::Extra_MayLoad) + OS << " [mayload]"; + if (ExtraInfo & InlineAsm::Extra_MayStore) + OS << " [maystore]"; + if (ExtraInfo & InlineAsm::Extra_IsConvergent) + OS << " [isconvergent]"; + if (ExtraInfo & InlineAsm::Extra_IsAlignStack) + OS << " [alignstack]"; + if (getInlineAsmDialect() == InlineAsm::AD_ATT) + OS << " [attdialect]"; + if (getInlineAsmDialect() == InlineAsm::AD_Intel) + OS << " [inteldialect]"; + + StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; + FirstOp = false; + } + + for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { + const MachineOperand &MO = getOperand(i); + + if (FirstOp) FirstOp = false; else OS << ","; + OS << " "; + + if (isDebugValue() && MO.isMetadata()) { + // Pretty print DBG_VALUE instructions. + auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); + if (DIV && !DIV->getName().empty()) + OS << "!\"" << DIV->getName() << '\"'; + else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } else if (isDebugLabel() && MO.isMetadata()) { + // Pretty print DBG_LABEL instructions. + auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); + if (DIL && !DIL->getName().empty()) + OS << "\"" << DIL->getName() << '\"'; + else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } else if (i == AsmDescOp && MO.isImm()) { + // Pretty print the inline asm operand descriptor. + OS << '$' << AsmOpCount++; + unsigned Flag = MO.getImm(); + OS << ":["; + OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); + + unsigned RCID = 0; + if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && + InlineAsm::hasRegClassConstraint(Flag, RCID)) { + if (TRI) { + OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); + } else + OS << ":RC" << RCID; + } + + if (InlineAsm::isMemKind(Flag)) { + unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); + OS << ":" << InlineAsm::getMemConstraintName(MCID); + } + + unsigned TiedTo = 0; + if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) + OS << " tiedto:$" << TiedTo; + + OS << ']'; + + // Compute the index of the next operand descriptor. + AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); + } else { + LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; + unsigned TiedOperandIdx = getTiedOperandIdx(i); + if (MO.isImm() && isOperandSubregIdx(i)) + MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); + else + MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, + ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); + } + } + + // Print any optional symbols attached to this instruction as-if they were + // operands. + if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " pre-instr-symbol "; + MachineOperand::printSymbol(OS, *PreInstrSymbol); + } + if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " post-instr-symbol "; + MachineOperand::printSymbol(OS, *PostInstrSymbol); + } + if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { + if (!FirstOp) { + FirstOp = false; + OS << ','; + } + OS << " heap-alloc-marker "; + HeapAllocMarker->printAsOperand(OS, MST); + } + if (DebugInstrNum) { if (!FirstOp) OS << ","; OS << " debug-instr-number " << DebugInstrNum; } - if (!SkipDebugLoc) { - if (const DebugLoc &DL = getDebugLoc()) { - if (!FirstOp) - OS << ','; - OS << " debug-location "; - DL->printAsOperand(OS, MST); - } - } - - if (!memoperands_empty()) { - SmallVector<StringRef, 0> SSNs; - const LLVMContext *Context = nullptr; - std::unique_ptr<LLVMContext> CtxPtr; - const MachineFrameInfo *MFI = nullptr; - if (const MachineFunction *MF = getMFIfAvailable(*this)) { - MFI = &MF->getFrameInfo(); - Context = &MF->getFunction().getContext(); - } else { - CtxPtr = std::make_unique<LLVMContext>(); - Context = CtxPtr.get(); - } - - OS << " :: "; - bool NeedComma = false; - for (const MachineMemOperand *Op : memoperands()) { - if (NeedComma) - OS << ", "; - Op->print(OS, MST, SSNs, *Context, MFI, TII); - NeedComma = true; - } - } - - if (SkipDebugLoc) - return; - - bool HaveSemi = false; - - // Print debug location information. - if (const DebugLoc &DL = getDebugLoc()) { - if (!HaveSemi) { - OS << ';'; - HaveSemi = true; - } - OS << ' '; - DL.print(OS); - } - - // Print extra comments for DEBUG_VALUE. - if (isDebugValue() && getDebugVariableOp().isMetadata()) { - if (!HaveSemi) { - OS << ";"; - HaveSemi = true; - } - auto *DV = getDebugVariable(); - OS << " line no:" << DV->getLine(); - if (isIndirectDebugValue()) - OS << " indirect"; - } - // TODO: DBG_LABEL - - if (AddNewLine) - OS << '\n'; -} - -bool MachineInstr::addRegisterKilled(Register IncomingReg, - const TargetRegisterInfo *RegInfo, - bool AddIfNotFound) { - bool isPhysReg = Register::isPhysicalRegister(IncomingReg); - bool hasAliases = isPhysReg && - MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); - bool Found = false; - SmallVector<unsigned,4> DeadOps; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - MachineOperand &MO = getOperand(i); - if (!MO.isReg() || !MO.isUse() || MO.isUndef()) - continue; - - // DEBUG_VALUE nodes do not contribute to code generation and should - // always be ignored. Failure to do so may result in trying to modify - // KILL flags on DEBUG_VALUE nodes. - if (MO.isDebug()) - continue; - - Register Reg = MO.getReg(); - if (!Reg) - continue; - - if (Reg == IncomingReg) { - if (!Found) { - if (MO.isKill()) - // The register is already marked kill. - return true; - if (isPhysReg && isRegTiedToDefOperand(i)) - // Two-address uses of physregs must not be marked kill. - return true; - MO.setIsKill(); - Found = true; - } - } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { - // A super-register kill already exists. - if (RegInfo->isSuperRegister(IncomingReg, Reg)) - return true; - if (RegInfo->isSubRegister(IncomingReg, Reg)) - DeadOps.push_back(i); - } - } - - // Trim unneeded kill operands. - while (!DeadOps.empty()) { - unsigned OpIdx = DeadOps.back(); - if (getOperand(OpIdx).isImplicit() && - (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) - RemoveOperand(OpIdx); - else - getOperand(OpIdx).setIsKill(false); - DeadOps.pop_back(); - } - - // If not found, this means an alias of one of the operands is killed. Add a - // new implicit operand if required. - if (!Found && AddIfNotFound) { - addOperand(MachineOperand::CreateReg(IncomingReg, - false /*IsDef*/, - true /*IsImp*/, - true /*IsKill*/)); - return true; - } - return Found; -} - -void MachineInstr::clearRegisterKills(Register Reg, - const TargetRegisterInfo *RegInfo) { - if (!Register::isPhysicalRegister(Reg)) - RegInfo = nullptr; - for (MachineOperand &MO : operands()) { - if (!MO.isReg() || !MO.isUse() || !MO.isKill()) - continue; - Register OpReg = MO.getReg(); - if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) - MO.setIsKill(false); - } -} - -bool MachineInstr::addRegisterDead(Register Reg, - const TargetRegisterInfo *RegInfo, - bool AddIfNotFound) { - bool isPhysReg = Register::isPhysicalRegister(Reg); - bool hasAliases = isPhysReg && - MCRegAliasIterator(Reg, RegInfo, false).isValid(); - bool Found = false; - SmallVector<unsigned,4> DeadOps; - for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { - MachineOperand &MO = getOperand(i); - if (!MO.isReg() || !MO.isDef()) - continue; - Register MOReg = MO.getReg(); - if (!MOReg) - continue; - - if (MOReg == Reg) { - MO.setIsDead(); - Found = true; - } else if (hasAliases && MO.isDead() && - Register::isPhysicalRegister(MOReg)) { - // There exists a super-register that's marked dead. - if (RegInfo->isSuperRegister(Reg, MOReg)) - return true; - if (RegInfo->isSubRegister(Reg, MOReg)) - DeadOps.push_back(i); - } - } - - // Trim unneeded dead operands. - while (!DeadOps.empty()) { - unsigned OpIdx = DeadOps.back(); - if (getOperand(OpIdx).isImplicit() && - (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) - RemoveOperand(OpIdx); - else - getOperand(OpIdx).setIsDead(false); - DeadOps.pop_back(); - } - - // If not found, this means an alias of one of the operands is dead. Add a - // new implicit operand if required. - if (Found || !AddIfNotFound) - return Found; - - addOperand(MachineOperand::CreateReg(Reg, - true /*IsDef*/, - true /*IsImp*/, - false /*IsKill*/, - true /*IsDead*/)); - return true; -} - -void MachineInstr::clearRegisterDeads(Register Reg) { - for (MachineOperand &MO : operands()) { - if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) - continue; - MO.setIsDead(false); - } -} - -void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { - for (MachineOperand &MO : operands()) { - if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) - continue; - MO.setIsUndef(IsUndef); - } -} - -void MachineInstr::addRegisterDefined(Register Reg, - const TargetRegisterInfo *RegInfo) { - if (Register::isPhysicalRegister(Reg)) { - MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); - if (MO) - return; - } else { - for (const MachineOperand &MO : operands()) { - if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && - MO.getSubReg() == 0) - return; - } - } - addOperand(MachineOperand::CreateReg(Reg, - true /*IsDef*/, - true /*IsImp*/)); -} - -void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, - const TargetRegisterInfo &TRI) { - bool HasRegMask = false; - for (MachineOperand &MO : operands()) { - if (MO.isRegMask()) { - HasRegMask = true; - continue; - } - if (!MO.isReg() || !MO.isDef()) continue; - Register Reg = MO.getReg(); - if (!Reg.isPhysical()) - continue; - // If there are no uses, including partial uses, the def is dead. - if (llvm::none_of(UsedRegs, - [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) - MO.setIsDead(); - } - - // This is a call with a register mask operand. - // Mask clobbers are always dead, so add defs for the non-dead defines. - if (HasRegMask) - for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); - I != E; ++I) - addRegisterDefined(*I, &TRI); -} - -unsigned -MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { - // Build up a buffer of hash code components. - SmallVector<size_t, 16> HashComponents; - HashComponents.reserve(MI->getNumOperands() + 1); - HashComponents.push_back(MI->getOpcode()); - for (const MachineOperand &MO : MI->operands()) { - if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) - continue; // Skip virtual register defs. - - HashComponents.push_back(hash_value(MO)); - } - return hash_combine_range(HashComponents.begin(), HashComponents.end()); -} - -void MachineInstr::emitError(StringRef Msg) const { - // Find the source location cookie. - unsigned LocCookie = 0; - const MDNode *LocMD = nullptr; - for (unsigned i = getNumOperands(); i != 0; --i) { - if (getOperand(i-1).isMetadata() && - (LocMD = getOperand(i-1).getMetadata()) && - LocMD->getNumOperands() != 0) { - if (const ConstantInt *CI = - mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { - LocCookie = CI->getZExtValue(); - break; - } - } - } - - if (const MachineBasicBlock *MBB = getParent()) - if (const MachineFunction *MF = MBB->getParent()) - return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); - report_fatal_error(Msg); -} - -MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, - const MCInstrDesc &MCID, bool IsIndirect, - Register Reg, const MDNode *Variable, - const MDNode *Expr) { - assert(isa<DILocalVariable>(Variable) && "not a variable"); - assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); - assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && - "Expected inlined-at fields to agree"); - auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); - if (IsIndirect) - MIB.addImm(0U); - else - MIB.addReg(0U, RegState::Debug); - return MIB.addMetadata(Variable).addMetadata(Expr); -} - -MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, - const MCInstrDesc &MCID, bool IsIndirect, - MachineOperand &MO, const MDNode *Variable, - const MDNode *Expr) { - assert(isa<DILocalVariable>(Variable) && "not a variable"); - assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); - assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && - "Expected inlined-at fields to agree"); - if (MO.isReg()) - return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); - - auto MIB = BuildMI(MF, DL, MCID).add(MO); - if (IsIndirect) - MIB.addImm(0U); - else - MIB.addReg(0U, RegState::Debug); - return MIB.addMetadata(Variable).addMetadata(Expr); - } - -MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, - MachineBasicBlock::iterator I, - const DebugLoc &DL, const MCInstrDesc &MCID, - bool IsIndirect, Register Reg, - const MDNode *Variable, const MDNode *Expr) { - MachineFunction &MF = *BB.getParent(); - MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); - BB.insert(I, MI); - return MachineInstrBuilder(MF, MI); -} - -MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, - MachineBasicBlock::iterator I, - const DebugLoc &DL, const MCInstrDesc &MCID, - bool IsIndirect, MachineOperand &MO, - const MDNode *Variable, const MDNode *Expr) { - MachineFunction &MF = *BB.getParent(); - MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); - BB.insert(I, MI); - return MachineInstrBuilder(MF, *MI); -} - -/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. -/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. -static const DIExpression *computeExprForSpill(const MachineInstr &MI) { - assert(MI.getOperand(0).isReg() && "can't spill non-register"); - assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && - "Expected inlined-at fields to agree"); - - const DIExpression *Expr = MI.getDebugExpression(); - if (MI.isIndirectDebugValue()) { - assert(MI.getDebugOffset().getImm() == 0 && - "DBG_VALUE with nonzero offset"); - Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); - } - return Expr; -} - -MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, - MachineBasicBlock::iterator I, - const MachineInstr &Orig, - int FrameIndex) { - const DIExpression *Expr = computeExprForSpill(Orig); - return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) - .addFrameIndex(FrameIndex) - .addImm(0U) - .addMetadata(Orig.getDebugVariable()) - .addMetadata(Expr); -} - -void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { - const DIExpression *Expr = computeExprForSpill(Orig); - Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex); - Orig.getDebugOffset().ChangeToImmediate(0U); - Orig.getDebugExpressionOp().setMetadata(Expr); -} - -void MachineInstr::collectDebugValues( - SmallVectorImpl<MachineInstr *> &DbgValues) { - MachineInstr &MI = *this; - if (!MI.getOperand(0).isReg()) - return; - - MachineBasicBlock::iterator DI = MI; ++DI; - for (MachineBasicBlock::iterator DE = MI.getParent()->end(); - DI != DE; ++DI) { - if (!DI->isDebugValue()) - return; - if (DI->getDebugOperandForReg(MI.getOperand(0).getReg())) - DbgValues.push_back(&*DI); - } -} - -void MachineInstr::changeDebugValuesDefReg(Register Reg) { - // Collect matching debug values. - SmallVector<MachineInstr *, 2> DbgValues; - - if (!getOperand(0).isReg()) - return; - - Register DefReg = getOperand(0).getReg(); - auto *MRI = getRegInfo(); - for (auto &MO : MRI->use_operands(DefReg)) { - auto *DI = MO.getParent(); - if (!DI->isDebugValue()) - continue; - if (DI->getDebugOperandForReg(DefReg)) { - DbgValues.push_back(DI); - } - } - - // Propagate Reg to debug value instructions. - for (auto *DBI : DbgValues) - DBI->getDebugOperandForReg(DefReg)->setReg(Reg); -} - -using MMOList = SmallVector<const MachineMemOperand *, 2>; - -static unsigned getSpillSlotSize(const MMOList &Accesses, - const MachineFrameInfo &MFI) { - unsigned Size = 0; - for (auto A : Accesses) - if (MFI.isSpillSlotObjectIndex( - cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) - ->getFrameIndex())) - Size += A->getSize(); - return Size; -} - -Optional<unsigned> -MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { - int FI; - if (TII->isStoreToStackSlotPostFE(*this, FI)) { - const MachineFrameInfo &MFI = getMF()->getFrameInfo(); - if (MFI.isSpillSlotObjectIndex(FI)) - return (*memoperands_begin())->getSize(); - } - return None; -} - -Optional<unsigned> -MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { - MMOList Accesses; - if (TII->hasStoreToStackSlot(*this, Accesses)) - return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); - return None; -} - -Optional<unsigned> -MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { - int FI; - if (TII->isLoadFromStackSlotPostFE(*this, FI)) { - const MachineFrameInfo &MFI = getMF()->getFrameInfo(); - if (MFI.isSpillSlotObjectIndex(FI)) - return (*memoperands_begin())->getSize(); - } - return None; -} - -Optional<unsigned> -MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { - MMOList Accesses; - if (TII->hasLoadFromStackSlot(*this, Accesses)) - return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); - return None; -} + if (!SkipDebugLoc) { + if (const DebugLoc &DL = getDebugLoc()) { + if (!FirstOp) + OS << ','; + OS << " debug-location "; + DL->printAsOperand(OS, MST); + } + } + + if (!memoperands_empty()) { + SmallVector<StringRef, 0> SSNs; + const LLVMContext *Context = nullptr; + std::unique_ptr<LLVMContext> CtxPtr; + const MachineFrameInfo *MFI = nullptr; + if (const MachineFunction *MF = getMFIfAvailable(*this)) { + MFI = &MF->getFrameInfo(); + Context = &MF->getFunction().getContext(); + } else { + CtxPtr = std::make_unique<LLVMContext>(); + Context = CtxPtr.get(); + } + + OS << " :: "; + bool NeedComma = false; + for (const MachineMemOperand *Op : memoperands()) { + if (NeedComma) + OS << ", "; + Op->print(OS, MST, SSNs, *Context, MFI, TII); + NeedComma = true; + } + } + + if (SkipDebugLoc) + return; + + bool HaveSemi = false; + + // Print debug location information. + if (const DebugLoc &DL = getDebugLoc()) { + if (!HaveSemi) { + OS << ';'; + HaveSemi = true; + } + OS << ' '; + DL.print(OS); + } + + // Print extra comments for DEBUG_VALUE. + if (isDebugValue() && getDebugVariableOp().isMetadata()) { + if (!HaveSemi) { + OS << ";"; + HaveSemi = true; + } + auto *DV = getDebugVariable(); + OS << " line no:" << DV->getLine(); + if (isIndirectDebugValue()) + OS << " indirect"; + } + // TODO: DBG_LABEL + + if (AddNewLine) + OS << '\n'; +} + +bool MachineInstr::addRegisterKilled(Register IncomingReg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = Register::isPhysicalRegister(IncomingReg); + bool hasAliases = isPhysReg && + MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isUse() || MO.isUndef()) + continue; + + // DEBUG_VALUE nodes do not contribute to code generation and should + // always be ignored. Failure to do so may result in trying to modify + // KILL flags on DEBUG_VALUE nodes. + if (MO.isDebug()) + continue; + + Register Reg = MO.getReg(); + if (!Reg) + continue; + + if (Reg == IncomingReg) { + if (!Found) { + if (MO.isKill()) + // The register is already marked kill. + return true; + if (isPhysReg && isRegTiedToDefOperand(i)) + // Two-address uses of physregs must not be marked kill. + return true; + MO.setIsKill(); + Found = true; + } + } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { + // A super-register kill already exists. + if (RegInfo->isSuperRegister(IncomingReg, Reg)) + return true; + if (RegInfo->isSubRegister(IncomingReg, Reg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded kill operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit() && + (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsKill(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is killed. Add a + // new implicit operand if required. + if (!Found && AddIfNotFound) { + addOperand(MachineOperand::CreateReg(IncomingReg, + false /*IsDef*/, + true /*IsImp*/, + true /*IsKill*/)); + return true; + } + return Found; +} + +void MachineInstr::clearRegisterKills(Register Reg, + const TargetRegisterInfo *RegInfo) { + if (!Register::isPhysicalRegister(Reg)) + RegInfo = nullptr; + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isUse() || !MO.isKill()) + continue; + Register OpReg = MO.getReg(); + if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) + MO.setIsKill(false); + } +} + +bool MachineInstr::addRegisterDead(Register Reg, + const TargetRegisterInfo *RegInfo, + bool AddIfNotFound) { + bool isPhysReg = Register::isPhysicalRegister(Reg); + bool hasAliases = isPhysReg && + MCRegAliasIterator(Reg, RegInfo, false).isValid(); + bool Found = false; + SmallVector<unsigned,4> DeadOps; + for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { + MachineOperand &MO = getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + Register MOReg = MO.getReg(); + if (!MOReg) + continue; + + if (MOReg == Reg) { + MO.setIsDead(); + Found = true; + } else if (hasAliases && MO.isDead() && + Register::isPhysicalRegister(MOReg)) { + // There exists a super-register that's marked dead. + if (RegInfo->isSuperRegister(Reg, MOReg)) + return true; + if (RegInfo->isSubRegister(Reg, MOReg)) + DeadOps.push_back(i); + } + } + + // Trim unneeded dead operands. + while (!DeadOps.empty()) { + unsigned OpIdx = DeadOps.back(); + if (getOperand(OpIdx).isImplicit() && + (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) + RemoveOperand(OpIdx); + else + getOperand(OpIdx).setIsDead(false); + DeadOps.pop_back(); + } + + // If not found, this means an alias of one of the operands is dead. Add a + // new implicit operand if required. + if (Found || !AddIfNotFound) + return Found; + + addOperand(MachineOperand::CreateReg(Reg, + true /*IsDef*/, + true /*IsImp*/, + false /*IsKill*/, + true /*IsDead*/)); + return true; +} + +void MachineInstr::clearRegisterDeads(Register Reg) { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) + continue; + MO.setIsDead(false); + } +} + +void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { + for (MachineOperand &MO : operands()) { + if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) + continue; + MO.setIsUndef(IsUndef); + } +} + +void MachineInstr::addRegisterDefined(Register Reg, + const TargetRegisterInfo *RegInfo) { + if (Register::isPhysicalRegister(Reg)) { + MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); + if (MO) + return; + } else { + for (const MachineOperand &MO : operands()) { + if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && + MO.getSubReg() == 0) + return; + } + } + addOperand(MachineOperand::CreateReg(Reg, + true /*IsDef*/, + true /*IsImp*/)); +} + +void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, + const TargetRegisterInfo &TRI) { + bool HasRegMask = false; + for (MachineOperand &MO : operands()) { + if (MO.isRegMask()) { + HasRegMask = true; + continue; + } + if (!MO.isReg() || !MO.isDef()) continue; + Register Reg = MO.getReg(); + if (!Reg.isPhysical()) + continue; + // If there are no uses, including partial uses, the def is dead. + if (llvm::none_of(UsedRegs, + [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) + MO.setIsDead(); + } + + // This is a call with a register mask operand. + // Mask clobbers are always dead, so add defs for the non-dead defines. + if (HasRegMask) + for (ArrayRef<Register>::iterator I = UsedRegs.begin(), E = UsedRegs.end(); + I != E; ++I) + addRegisterDefined(*I, &TRI); +} + +unsigned +MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { + // Build up a buffer of hash code components. + SmallVector<size_t, 16> HashComponents; + HashComponents.reserve(MI->getNumOperands() + 1); + HashComponents.push_back(MI->getOpcode()); + for (const MachineOperand &MO : MI->operands()) { + if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) + continue; // Skip virtual register defs. + + HashComponents.push_back(hash_value(MO)); + } + return hash_combine_range(HashComponents.begin(), HashComponents.end()); +} + +void MachineInstr::emitError(StringRef Msg) const { + // Find the source location cookie. + unsigned LocCookie = 0; + const MDNode *LocMD = nullptr; + for (unsigned i = getNumOperands(); i != 0; --i) { + if (getOperand(i-1).isMetadata() && + (LocMD = getOperand(i-1).getMetadata()) && + LocMD->getNumOperands() != 0) { + if (const ConstantInt *CI = + mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { + LocCookie = CI->getZExtValue(); + break; + } + } + } + + if (const MachineBasicBlock *MBB = getParent()) + if (const MachineFunction *MF = MBB->getParent()) + return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); + report_fatal_error(Msg); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, + const MCInstrDesc &MCID, bool IsIndirect, + Register Reg, const MDNode *Variable, + const MDNode *Expr) { + assert(isa<DILocalVariable>(Variable) && "not a variable"); + assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); + assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + auto MIB = BuildMI(MF, DL, MCID).addReg(Reg, RegState::Debug); + if (IsIndirect) + MIB.addImm(0U); + else + MIB.addReg(0U, RegState::Debug); + return MIB.addMetadata(Variable).addMetadata(Expr); +} + +MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, + const MCInstrDesc &MCID, bool IsIndirect, + MachineOperand &MO, const MDNode *Variable, + const MDNode *Expr) { + assert(isa<DILocalVariable>(Variable) && "not a variable"); + assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); + assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && + "Expected inlined-at fields to agree"); + if (MO.isReg()) + return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); + + auto MIB = BuildMI(MF, DL, MCID).add(MO); + if (IsIndirect) + MIB.addImm(0U); + else + MIB.addReg(0U, RegState::Debug); + return MIB.addMetadata(Variable).addMetadata(Expr); + } + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, const MCInstrDesc &MCID, + bool IsIndirect, Register Reg, + const MDNode *Variable, const MDNode *Expr) { + MachineFunction &MF = *BB.getParent(); + MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); + BB.insert(I, MI); + return MachineInstrBuilder(MF, MI); +} + +MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, const MCInstrDesc &MCID, + bool IsIndirect, MachineOperand &MO, + const MDNode *Variable, const MDNode *Expr) { + MachineFunction &MF = *BB.getParent(); + MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); + BB.insert(I, MI); + return MachineInstrBuilder(MF, *MI); +} + +/// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. +/// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. +static const DIExpression *computeExprForSpill(const MachineInstr &MI) { + assert(MI.getOperand(0).isReg() && "can't spill non-register"); + assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && + "Expected inlined-at fields to agree"); + + const DIExpression *Expr = MI.getDebugExpression(); + if (MI.isIndirectDebugValue()) { + assert(MI.getDebugOffset().getImm() == 0 && + "DBG_VALUE with nonzero offset"); + Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); + } + return Expr; +} + +MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, + MachineBasicBlock::iterator I, + const MachineInstr &Orig, + int FrameIndex) { + const DIExpression *Expr = computeExprForSpill(Orig); + return BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()) + .addFrameIndex(FrameIndex) + .addImm(0U) + .addMetadata(Orig.getDebugVariable()) + .addMetadata(Expr); +} + +void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex) { + const DIExpression *Expr = computeExprForSpill(Orig); + Orig.getDebugOperand(0).ChangeToFrameIndex(FrameIndex); + Orig.getDebugOffset().ChangeToImmediate(0U); + Orig.getDebugExpressionOp().setMetadata(Expr); +} + +void MachineInstr::collectDebugValues( + SmallVectorImpl<MachineInstr *> &DbgValues) { + MachineInstr &MI = *this; + if (!MI.getOperand(0).isReg()) + return; + + MachineBasicBlock::iterator DI = MI; ++DI; + for (MachineBasicBlock::iterator DE = MI.getParent()->end(); + DI != DE; ++DI) { + if (!DI->isDebugValue()) + return; + if (DI->getDebugOperandForReg(MI.getOperand(0).getReg())) + DbgValues.push_back(&*DI); + } +} + +void MachineInstr::changeDebugValuesDefReg(Register Reg) { + // Collect matching debug values. + SmallVector<MachineInstr *, 2> DbgValues; + + if (!getOperand(0).isReg()) + return; + + Register DefReg = getOperand(0).getReg(); + auto *MRI = getRegInfo(); + for (auto &MO : MRI->use_operands(DefReg)) { + auto *DI = MO.getParent(); + if (!DI->isDebugValue()) + continue; + if (DI->getDebugOperandForReg(DefReg)) { + DbgValues.push_back(DI); + } + } + + // Propagate Reg to debug value instructions. + for (auto *DBI : DbgValues) + DBI->getDebugOperandForReg(DefReg)->setReg(Reg); +} + +using MMOList = SmallVector<const MachineMemOperand *, 2>; + +static unsigned getSpillSlotSize(const MMOList &Accesses, + const MachineFrameInfo &MFI) { + unsigned Size = 0; + for (auto A : Accesses) + if (MFI.isSpillSlotObjectIndex( + cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) + ->getFrameIndex())) + Size += A->getSize(); + return Size; +} + +Optional<unsigned> +MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { + int FI; + if (TII->isStoreToStackSlotPostFE(*this, FI)) { + const MachineFrameInfo &MFI = getMF()->getFrameInfo(); + if (MFI.isSpillSlotObjectIndex(FI)) + return (*memoperands_begin())->getSize(); + } + return None; +} + +Optional<unsigned> +MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { + MMOList Accesses; + if (TII->hasStoreToStackSlot(*this, Accesses)) + return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); + return None; +} + +Optional<unsigned> +MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { + int FI; + if (TII->isLoadFromStackSlotPostFE(*this, FI)) { + const MachineFrameInfo &MFI = getMF()->getFrameInfo(); + if (MFI.isSpillSlotObjectIndex(FI)) + return (*memoperands_begin())->getSize(); + } + return None; +} + +Optional<unsigned> +MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { + MMOList Accesses; + if (TII->hasLoadFromStackSlot(*this, Accesses)) + return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); + return None; +} unsigned MachineInstr::getDebugInstrNum() { if (DebugInstrNum == 0) |
