aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp1994
1 files changed, 1994 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
new file mode 100644
index 0000000000..e2daa46fe6
--- /dev/null
+++ b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
@@ -0,0 +1,1994 @@
+//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file VarLocBasedImpl.cpp
+///
+/// LiveDebugValues is an optimistic "available expressions" dataflow
+/// algorithm. The set of expressions is the set of machine locations
+/// (registers, spill slots, constants) that a variable fragment might be
+/// located, qualified by a DIExpression and indirect-ness flag, while each
+/// variable is identified by a DebugVariable object. The availability of an
+/// expression begins when a DBG_VALUE instruction specifies the location of a
+/// DebugVariable, and continues until that location is clobbered or
+/// re-specified by a different DBG_VALUE for the same DebugVariable.
+///
+/// The output of LiveDebugValues is additional DBG_VALUE instructions,
+/// placed to extend variable locations as far they're available. This file
+/// and the VarLocBasedLDV class is an implementation that explicitly tracks
+/// locations, using the VarLoc class.
+///
+/// The canonical "available expressions" problem doesn't have expression
+/// clobbering, instead when a variable is re-assigned, any expressions using
+/// that variable get invalidated. LiveDebugValues can map onto "available
+/// expressions" by having every register represented by a variable, which is
+/// used in an expression that becomes available at a DBG_VALUE instruction.
+/// When the register is clobbered, its variable is effectively reassigned, and
+/// expressions computed from it become unavailable. A similar construct is
+/// needed when a DebugVariable has its location re-specified, to invalidate
+/// all other locations for that DebugVariable.
+///
+/// Using the dataflow analysis to compute the available expressions, we create
+/// a DBG_VALUE at the beginning of each block where the expression is
+/// live-in. This propagates variable locations into every basic block where
+/// the location can be determined, rather than only having DBG_VALUEs in blocks
+/// where locations are specified due to an assignment or some optimization.
+/// Movements of values between registers and spill slots are annotated with
+/// DBG_VALUEs too to track variable values bewteen locations. All this allows
+/// DbgEntityHistoryCalculator to focus on only the locations within individual
+/// blocks, facilitating testing and improving modularity.
+///
+/// We follow an optimisic dataflow approach, with this lattice:
+///
+/// \verbatim
+/// ┬ "Unknown"
+/// |
+/// v
+/// True
+/// |
+/// v
+/// ⊥ False
+/// \endverbatim With "True" signifying that the expression is available (and
+/// thus a DebugVariable's location is the corresponding register), while
+/// "False" signifies that the expression is unavailable. "Unknown"s never
+/// survive to the end of the analysis (see below).
+///
+/// Formally, all DebugVariable locations that are live-out of a block are
+/// initialized to \top. A blocks live-in values take the meet of the lattice
+/// value for every predecessors live-outs, except for the entry block, where
+/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
+/// function for a block assigns an expression for a DebugVariable to be "True"
+/// if a DBG_VALUE in the block specifies it; "False" if the location is
+/// clobbered; or the live-in value if it is unaffected by the block. We
+/// visit each block in reverse post order until a fixedpoint is reached. The
+/// solution produced is maximal.
+///
+/// Intuitively, we start by assuming that every expression / variable location
+/// is at least "True", and then propagate "False" from the entry block and any
+/// clobbers until there are no more changes to make. This gives us an accurate
+/// solution because all incorrect locations will have a "False" propagated into
+/// them. It also gives us a solution that copes well with loops by assuming
+/// that variable locations are live-through every loop, and then removing those
+/// that are not through dataflow.
+///
+/// Within LiveDebugValues: each variable location is represented by a
+/// VarLoc object that identifies the source variable, its current
+/// machine-location, and the DBG_VALUE inst that specifies the location. Each
+/// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a
+/// unique index. Rather than operate directly on machine locations, the
+/// dataflow analysis in this pass identifies locations by their index in the
+/// VarLocMap, meaning all the variable locations in a block can be described
+/// by a sparse vector of VarLocMap indicies.
+///
+/// All the storage for the dataflow analysis is local to the ExtendRanges
+/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
+/// in and out lattice values for each block. "OpenRanges" maintains a list of
+/// variable locations and, with the "process" method, evaluates the transfer
+/// function of each block. "flushPendingLocs" installs DBG_VALUEs for each
+/// live-in location at the start of blocks, while "Transfers" records
+/// transfers of values between machine-locations.
+///
+/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
+/// implementation. Instead, unvisited blocks implicitly have all lattice
+/// values set as "Unknown". After being visited, there will be path back to
+/// the entry block where the lattice value is "False", and as the transfer
+/// function cannot make new "Unknown" locations, there are no scenarios where
+/// a block can have an "Unknown" location after being visited. Similarly, we
+/// don't enumerate all possible variable locations before exploring the
+/// function: when a new location is discovered, all blocks previously explored
+/// were implicitly "False" but unrecorded, and become explicitly "False" when
+/// a new VarLoc is created with its bit not set in predecessor InLocs or
+/// OutLocs.
+///
+//===----------------------------------------------------------------------===//
+
+#include "LiveDebugValues.h"
+
+#include "llvm/ADT/CoalescingBitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+
+// Options to prevent pathological compile-time behavior. If InputBBLimit and
+// InputDbgValueLimit are both exceeded, range extension is disabled.
+static cl::opt<unsigned> InputBBLimit(
+ "livedebugvalues-input-bb-limit",
+ cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
+ cl::init(10000), cl::Hidden);
+static cl::opt<unsigned> InputDbgValueLimit(
+ "livedebugvalues-input-dbg-value-limit",
+ cl::desc(
+ "Maximum input DBG_VALUE insts supported by debug range extension"),
+ cl::init(50000), cl::Hidden);
+
+// If @MI is a DBG_VALUE with debug value described by a defined
+// register, returns the number of this register. In the other case, returns 0.
+static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
+ assert(MI.isDebugValue() && "expected a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ // If location of variable is described using a register (directly
+ // or indirectly), this register is always a first operand.
+ return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg()
+ : Register();
+}
+
+/// If \p Op is a stack or frame register return true, otherwise return false.
+/// This is used to avoid basing the debug entry values on the registers, since
+/// we do not support it at the moment.
+static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
+ const MachineInstr &MI,
+ const TargetRegisterInfo *TRI) {
+ if (!Op.isReg())
+ return false;
+
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+ Register FP = TRI->getFrameRegister(*MF);
+ Register Reg = Op.getReg();
+
+ return Reg && Reg != SP && Reg != FP;
+}
+
+namespace {
+
+// Max out the number of statically allocated elements in DefinedRegsSet, as
+// this prevents fallback to std::set::count() operations.
+using DefinedRegsSet = SmallSet<Register, 32>;
+
+using VarLocSet = CoalescingBitVector<uint64_t>;
+
+/// A type-checked pair of {Register Location (or 0), Index}, used to index
+/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
+/// for insertion into a \ref VarLocSet, and efficiently converted back. The
+/// type-checker helps ensure that the conversions aren't lossy.
+///
+/// Why encode a location /into/ the VarLocMap index? This makes it possible
+/// to find the open VarLocs killed by a register def very quickly. This is a
+/// performance-critical operation for LiveDebugValues.
+struct LocIndex {
+ using u32_location_t = uint32_t;
+ using u32_index_t = uint32_t;
+
+ u32_location_t Location; // Physical registers live in the range [1;2^30) (see
+ // \ref MCRegister), so we have plenty of range left
+ // here to encode non-register locations.
+ u32_index_t Index;
+
+ /// The first location greater than 0 that is not reserved for VarLocs of
+ /// kind RegisterKind.
+ static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
+
+ /// A special location reserved for VarLocs of kind SpillLocKind.
+ static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
+
+ /// A special location reserved for VarLocs of kind EntryValueBackupKind and
+ /// EntryValueCopyBackupKind.
+ static constexpr u32_location_t kEntryValueBackupLocation =
+ kFirstInvalidRegLocation + 1;
+
+ LocIndex(u32_location_t Location, u32_index_t Index)
+ : Location(Location), Index(Index) {}
+
+ uint64_t getAsRawInteger() const {
+ return (static_cast<uint64_t>(Location) << 32) | Index;
+ }
+
+ template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
+ static_assert(std::is_unsigned<IntT>::value &&
+ sizeof(ID) == sizeof(uint64_t),
+ "Cannot convert raw integer to LocIndex");
+ return {static_cast<u32_location_t>(ID >> 32),
+ static_cast<u32_index_t>(ID)};
+ }
+
+ /// Get the start of the interval reserved for VarLocs of kind RegisterKind
+ /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
+ static uint64_t rawIndexForReg(uint32_t Reg) {
+ return LocIndex(Reg, 0).getAsRawInteger();
+ }
+
+ /// Return a range covering all set indices in the interval reserved for
+ /// \p Location in \p Set.
+ static auto indexRangeForLocation(const VarLocSet &Set,
+ u32_location_t Location) {
+ uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
+ uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
+ return Set.half_open_range(Start, End);
+ }
+};
+
+class VarLocBasedLDV : public LDVImpl {
+private:
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ TargetPassConfig *TPC;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+ VarLocSet::Allocator Alloc;
+
+ enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
+
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
+
+ /// A pair of debug variable and value location.
+ struct VarLoc {
+ // The location at which a spilled variable resides. It consists of a
+ // register and an offset.
+ struct SpillLoc {
+ unsigned SpillBase;
+ StackOffset SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
+ }
+ bool operator!=(const SpillLoc &Other) const {
+ return !(*this == Other);
+ }
+ };
+
+ /// Identity of the variable at this location.
+ const DebugVariable Var;
+
+ /// The expression applied to this location.
+ const DIExpression *Expr;
+
+ /// DBG_VALUE to clone var/expr information from if this location
+ /// is moved.
+ const MachineInstr &MI;
+
+ enum VarLocKind {
+ InvalidKind = 0,
+ RegisterKind,
+ SpillLocKind,
+ ImmediateKind,
+ EntryValueKind,
+ EntryValueBackupKind,
+ EntryValueCopyBackupKind
+ } Kind = InvalidKind;
+
+ /// The value location. Stored separately to avoid repeatedly
+ /// extracting it from MI.
+ union LocUnion {
+ uint64_t RegNo;
+ SpillLoc SpillLocation;
+ uint64_t Hash;
+ int64_t Immediate;
+ const ConstantFP *FPImm;
+ const ConstantInt *CImm;
+ LocUnion() : Hash(0) {}
+ } Loc;
+
+ VarLoc(const MachineInstr &MI, LexicalScopes &LS)
+ : Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt()),
+ Expr(MI.getDebugExpression()), MI(MI) {
+ assert(MI.isDebugValue() && "not a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ if (int RegNo = isDbgValueDescribedByReg(MI)) {
+ Kind = RegisterKind;
+ Loc.RegNo = RegNo;
+ } else if (MI.getDebugOperand(0).isImm()) {
+ Kind = ImmediateKind;
+ Loc.Immediate = MI.getDebugOperand(0).getImm();
+ } else if (MI.getDebugOperand(0).isFPImm()) {
+ Kind = ImmediateKind;
+ Loc.FPImm = MI.getDebugOperand(0).getFPImm();
+ } else if (MI.getDebugOperand(0).isCImm()) {
+ Kind = ImmediateKind;
+ Loc.CImm = MI.getDebugOperand(0).getCImm();
+ }
+
+ // We create the debug entry values from the factory functions rather than
+ // from this ctor.
+ assert(Kind != EntryValueKind && !isEntryBackupLoc());
+ }
+
+ /// Take the variable and machine-location in DBG_VALUE MI, and build an
+ /// entry location using the given expression.
+ static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
+ const DIExpression *EntryExpr, Register Reg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueKind;
+ VL.Expr = EntryExpr;
+ VL.Loc.RegNo = Reg;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build an entry value backup location. The backup
+ /// location will turn into the normal location if the backup is valid at
+ /// the time of the primary location clobbering.
+ static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
+ LexicalScopes &LS,
+ const DIExpression *EntryExpr) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueBackupKind;
+ VL.Expr = EntryExpr;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build a copy of an entry value backup location by
+ /// setting the register location to NewReg.
+ static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
+ LexicalScopes &LS,
+ const DIExpression *EntryExpr,
+ Register NewReg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueCopyBackupKind;
+ VL.Expr = EntryExpr;
+ VL.Loc.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Copy the register location in DBG_VALUE MI, updating the register to
+ /// be NewReg.
+ static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
+ Register NewReg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Loc.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Take the variable described by DBG_VALUE MI, and create a VarLoc
+ /// locating it in the specified spill location.
+ static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
+ StackOffset SpillOffset, LexicalScopes &LS) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = SpillLocKind;
+ VL.Loc.SpillLocation = {SpillBase, SpillOffset};
+ return VL;
+ }
+
+ /// Create a DBG_VALUE representing this VarLoc in the given function.
+ /// Copies variable-specific information such as DILocalVariable and
+ /// inlining information from the original DBG_VALUE instruction, which may
+ /// have been several transfers ago.
+ MachineInstr *BuildDbgValue(MachineFunction &MF) const {
+ const DebugLoc &DbgLoc = MI.getDebugLoc();
+ bool Indirect = MI.isIndirectDebugValue();
+ const auto &IID = MI.getDesc();
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *DIExpr = MI.getDebugExpression();
+ NumInserted++;
+
+ switch (Kind) {
+ case EntryValueKind:
+ // An entry value is a register location -- but with an updated
+ // expression. The register location of such DBG_VALUE is always the one
+ // from the entry DBG_VALUE, it does not matter if the entry value was
+ // copied in to another register due to some optimizations.
+ return BuildMI(MF, DbgLoc, IID, Indirect,
+ MI.getDebugOperand(0).getReg(), Var, Expr);
+ case RegisterKind:
+ // Register locations are like the source DBG_VALUE, but with the
+ // register number from this VarLoc.
+ return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
+ case SpillLocKind: {
+ // Spills are indirect DBG_VALUEs, with a base register and offset.
+ // Use the original DBG_VALUEs expression to build the spilt location
+ // on top of. FIXME: spill locations created before this pass runs
+ // are not recognized, and not handled here.
+ auto *TRI = MF.getSubtarget().getRegisterInfo();
+ auto *SpillExpr = TRI->prependOffsetExpression(
+ DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
+ unsigned Base = Loc.SpillLocation.SpillBase;
+ return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
+ }
+ case ImmediateKind: {
+ MachineOperand MO = MI.getDebugOperand(0);
+ return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
+ }
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ case InvalidKind:
+ llvm_unreachable(
+ "Tried to produce DBG_VALUE for invalid or backup VarLoc");
+ }
+ llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum");
+ }
+
+ /// Is the Loc field a constant or constant object?
+ bool isConstant() const { return Kind == ImmediateKind; }
+
+ /// Check if the Loc field is an entry backup location.
+ bool isEntryBackupLoc() const {
+ return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
+ }
+
+ /// If this variable is described by a register holding the entry value,
+ /// return it, otherwise return 0.
+ unsigned getEntryValueBackupReg() const {
+ if (Kind == EntryValueBackupKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// If this variable is described by a register holding the copy of the
+ /// entry value, return it, otherwise return 0.
+ unsigned getEntryValueCopyBackupReg() const {
+ if (Kind == EntryValueCopyBackupKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// If this variable is described by a register, return it,
+ /// otherwise return 0.
+ unsigned isDescribedByReg() const {
+ if (Kind == RegisterKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// Determine whether the lexical scope of this value's debug location
+ /// dominates MBB.
+ bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
+ return LS.dominates(MI.getDebugLoc().get(), &MBB);
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ // TRI can be null.
+ void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
+ Out << "VarLoc(";
+ switch (Kind) {
+ case RegisterKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ Out << printReg(Loc.RegNo, TRI);
+ break;
+ case SpillLocKind:
+ Out << printReg(Loc.SpillLocation.SpillBase, TRI);
+ Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + "
+ << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale"
+ << "]";
+ break;
+ case ImmediateKind:
+ Out << Loc.Immediate;
+ break;
+ case InvalidKind:
+ llvm_unreachable("Invalid VarLoc in dump method");
+ }
+
+ Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
+ if (Var.getInlinedAt())
+ Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
+ else
+ Out << "(null))";
+
+ if (isEntryBackupLoc())
+ Out << " (backup loc)\n";
+ else
+ Out << "\n";
+ }
+#endif
+
+ bool operator==(const VarLoc &Other) const {
+ if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr)
+ return false;
+
+ switch (Kind) {
+ case SpillLocKind:
+ return Loc.SpillLocation == Other.Loc.SpillLocation;
+ case RegisterKind:
+ case ImmediateKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ return Loc.Hash == Other.Loc.Hash;
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+
+ /// This operator guarantees that VarLocs are sorted by Variable first.
+ bool operator<(const VarLoc &Other) const {
+ switch (Kind) {
+ case SpillLocKind:
+ return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase,
+ Loc.SpillLocation.SpillOffset.getFixed(),
+ Loc.SpillLocation.SpillOffset.getScalable(),
+ Expr) <
+ std::make_tuple(
+ Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase,
+ Other.Loc.SpillLocation.SpillOffset.getFixed(),
+ Other.Loc.SpillLocation.SpillOffset.getScalable(),
+ Other.Expr);
+ case RegisterKind:
+ case ImmediateKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ return std::tie(Var, Kind, Loc.Hash, Expr) <
+ std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+ };
+
+ /// VarLocMap is used for two things:
+ /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to
+ /// virtually insert a VarLoc into a VarLocSet.
+ /// 2) Given a LocIndex, look up the unique associated VarLoc.
+ class VarLocMap {
+ /// Map a VarLoc to an index within the vector reserved for its location
+ /// within Loc2Vars.
+ std::map<VarLoc, LocIndex::u32_index_t> Var2Index;
+
+ /// Map a location to a vector which holds VarLocs which live in that
+ /// location.
+ SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
+
+ /// Determine the 32-bit location reserved for \p VL, based on its kind.
+ static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) {
+ switch (VL.Kind) {
+ case VarLoc::RegisterKind:
+ assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) &&
+ "Physreg out of range?");
+ return VL.Loc.RegNo;
+ case VarLoc::SpillLocKind:
+ return LocIndex::kSpillLocation;
+ case VarLoc::EntryValueBackupKind:
+ case VarLoc::EntryValueCopyBackupKind:
+ return LocIndex::kEntryValueBackupLocation;
+ default:
+ return 0;
+ }
+ }
+
+ public:
+ /// Retrieve a unique LocIndex for \p VL.
+ LocIndex insert(const VarLoc &VL) {
+ LocIndex::u32_location_t Location = getLocationForVar(VL);
+ LocIndex::u32_index_t &Index = Var2Index[VL];
+ if (!Index) {
+ auto &Vars = Loc2Vars[Location];
+ Vars.push_back(VL);
+ Index = Vars.size();
+ }
+ return {Location, Index - 1};
+ }
+
+ /// Retrieve the unique VarLoc associated with \p ID.
+ const VarLoc &operator[](LocIndex ID) const {
+ auto LocIt = Loc2Vars.find(ID.Location);
+ assert(LocIt != Loc2Vars.end() && "Location not tracked");
+ return LocIt->second[ID.Index];
+ }
+ };
+
+ using VarLocInMBB =
+ SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
+ struct TransferDebugPair {
+ MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
+ LocIndex LocationID; ///< Location number for the transfer dest.
+ };
+ using TransferMap = SmallVector<TransferDebugPair, 4>;
+
+ // Types for recording sets of variable fragments that overlap. For a given
+ // local variable, we record all other fragments of that variable that could
+ // overlap it, to reduce search time.
+ using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+ using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// This holds the working set of currently open ranges. For fast
+ /// access, this is done both as a set of VarLocIDs, and a map of
+ /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
+ /// previous open ranges for the same variable. In addition, we keep
+ /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
+ /// methods act differently depending on whether a VarLoc is primary
+ /// location or backup one. In the case the VarLoc is backup location
+ /// we will erase/insert from the EntryValuesBackupVars map, otherwise
+ /// we perform the operation on the Vars.
+ class OpenRangesSet {
+ VarLocSet VarLocs;
+ // Map the DebugVariable to recent primary location ID.
+ SmallDenseMap<DebugVariable, LocIndex, 8> Vars;
+ // Map the DebugVariable to recent backup location ID.
+ SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars;
+ OverlapMap &OverlappingFragments;
+
+ public:
+ OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
+ : VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
+
+ const VarLocSet &getVarLocs() const { return VarLocs; }
+
+ /// Terminate all open ranges for VL.Var by removing it from the set.
+ void erase(const VarLoc &VL);
+
+ /// Terminate all open ranges listed in \c KillSet by removing
+ /// them from the set.
+ void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
+
+ /// Insert a new range into the set.
+ void insert(LocIndex VarLocID, const VarLoc &VL);
+
+ /// Insert a set of ranges.
+ void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
+ for (uint64_t ID : ToLoad) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VarL = Map[Idx];
+ insert(Idx, VarL);
+ }
+ }
+
+ llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var);
+
+ /// Empty the set.
+ void clear() {
+ VarLocs.clear();
+ Vars.clear();
+ EntryValuesBackupVars.clear();
+ }
+
+ /// Return whether the set is empty or not.
+ bool empty() const {
+ assert(Vars.empty() == EntryValuesBackupVars.empty() &&
+ Vars.empty() == VarLocs.empty() &&
+ "open ranges are inconsistent");
+ return VarLocs.empty();
+ }
+
+ /// Get an empty range of VarLoc IDs.
+ auto getEmptyVarLocRange() const {
+ return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
+ getVarLocs().end());
+ }
+
+ /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg.
+ auto getRegisterVarLocs(Register Reg) const {
+ return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
+ }
+
+ /// Get all set IDs for VarLocs of kind SpillLocKind.
+ auto getSpillVarLocs() const {
+ return LocIndex::indexRangeForLocation(getVarLocs(),
+ LocIndex::kSpillLocation);
+ }
+
+ /// Get all set IDs for VarLocs of kind EntryValueBackupKind or
+ /// EntryValueCopyBackupKind.
+ auto getEntryValueBackupVarLocs() const {
+ return LocIndex::indexRangeForLocation(
+ getVarLocs(), LocIndex::kEntryValueBackupLocation);
+ }
+ };
+
+ /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind
+ /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs
+ /// into \p Collected.
+ void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom) const;
+
+ /// Get the registers which are used by VarLocs of kind RegisterKind tracked
+ /// by \p CollectFrom.
+ void getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<uint32_t> &UsedRegs) const;
+
+ VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
+ std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
+ if (!VLS)
+ VLS = std::make_unique<VarLocSet>(Alloc);
+ return *VLS.get();
+ }
+
+ const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
+ const VarLocInMBB &Locs) const {
+ auto It = Locs.find(MBB);
+ assert(It != Locs.end() && "MBB not in map");
+ return *It->second.get();
+ }
+
+ /// Tests whether this instruction is a spill to a stack location.
+ bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ Register &Reg);
+
+ /// Returns true if the given machine instruction is a debug value which we
+ /// can emit entry values for.
+ ///
+ /// Currently, we generate debug entry values only for parameters that are
+ /// unmodified throughout the function and located in a register.
+ bool isEntryValueCandidate(const MachineInstr &MI,
+ const DefinedRegsSet &Regs) const;
+
+ /// If a given instruction is identified as a spill, return the spill location
+ /// and set \p Reg to the spilled register.
+ Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF,
+ Register &Reg);
+ /// Given a spill instruction, extract the register and offset used to
+ /// address the spill location in a target independent way.
+ VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+ void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ TransferMap &Transfers, VarLocMap &VarLocIDs,
+ LocIndex OldVarID, TransferKind Kind,
+ Register NewReg = Register());
+
+ void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs);
+ void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, const VarLoc &EntryVL);
+ void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ VarLocSet &KillSet);
+ void recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
+ void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
+
+ void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+
+ void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
+ OverlapMap &OLapMap);
+
+ bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
+
+ /// Create DBG_VALUE insts for inlocs that have been propagated but
+ /// had their instruction creation deferred.
+ void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
+
+ bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
+
+public:
+ /// Default construct and initialize the pass.
+ VarLocBasedLDV();
+
+ ~VarLocBasedLDV();
+
+ /// Print to ostream with a message.
+ void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs, const char *msg,
+ raw_ostream &Out) const;
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+VarLocBasedLDV::VarLocBasedLDV() { }
+
+VarLocBasedLDV::~VarLocBasedLDV() { }
+
+/// Erase a variable from the set of open ranges, and additionally erase any
+/// fragments that may overlap it. If the VarLoc is a backup location, erase
+/// the variable from the EntryValuesBackupVars set, indicating we should stop
+/// tracking its backup entry location. Otherwise, if the VarLoc is primary
+/// location, erase the variable from the Vars set.
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
+ // Erasure helper.
+ auto DoErase = [VL, this](DebugVariable VarToErase) {
+ auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ auto It = EraseFrom->find(VarToErase);
+ if (It != EraseFrom->end()) {
+ LocIndex ID = It->second;
+ VarLocs.reset(ID.getAsRawInteger());
+ EraseFrom->erase(It);
+ }
+ };
+
+ DebugVariable Var = VL.Var;
+
+ // Erase the variable/fragment that ends here.
+ DoErase(Var);
+
+ // Extract the fragment. Interpret an empty fragment as one that covers all
+ // possible bits.
+ FragmentInfo ThisFragment = Var.getFragmentOrDefault();
+
+ // There may be fragments that overlap the designated fragment. Look them up
+ // in the pre-computed overlap map, and erase them too.
+ auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
+ if (MapIt != OverlappingFragments.end()) {
+ for (auto Fragment : MapIt->second) {
+ VarLocBasedLDV::OptFragmentInfo FragmentHolder;
+ if (!DebugVariable::isDefaultFragment(Fragment))
+ FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
+ DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
+ }
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet,
+ const VarLocMap &VarLocIDs) {
+ VarLocs.intersectWithComplement(KillSet);
+ for (uint64_t ID : KillSet) {
+ const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)];
+ auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ EraseFrom->erase(VL->Var);
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID,
+ const VarLoc &VL) {
+ auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ VarLocs.set(VarLocID.getAsRawInteger());
+ InsertInto->insert({VL.Var, VarLocID});
+}
+
+/// Return the Loc ID of an entry value backup location, if it exists for the
+/// variable.
+llvm::Optional<LocIndex>
+VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
+ auto It = EntryValuesBackupVars.find(Var);
+ if (It != EntryValuesBackupVars.end())
+ return It->second;
+
+ return llvm::None;
+}
+
+void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected,
+ const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom) const {
+ assert(!Regs.empty() && "Nothing to collect");
+ SmallVector<uint32_t, 32> SortedRegs;
+ for (Register Reg : Regs)
+ SortedRegs.push_back(Reg);
+ array_pod_sort(SortedRegs.begin(), SortedRegs.end());
+ auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
+ auto End = CollectFrom.end();
+ for (uint32_t Reg : SortedRegs) {
+ // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
+ // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg.
+ uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
+ uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
+ It.advanceToLowerBound(FirstIndexForReg);
+
+ // Iterate through that half-open interval and collect all the set IDs.
+ for (; It != End && *It < FirstInvalidIndex; ++It)
+ Collected.set(*It);
+
+ if (It == End)
+ return;
+ }
+}
+
+void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<uint32_t> &UsedRegs) const {
+ // All register-based VarLocs are assigned indices greater than or equal to
+ // FirstRegIndex.
+ uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1);
+ uint64_t FirstInvalidIndex =
+ LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
+ for (auto It = CollectFrom.find(FirstRegIndex),
+ End = CollectFrom.find(FirstInvalidIndex);
+ It != End;) {
+ // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
+ // which register and add it to UsedRegs.
+ uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
+ assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
+ "Duplicate used reg");
+ UsedRegs.push_back(FoundReg);
+
+ // Skip to the next /set/ register. Note that this finds a lower bound, so
+ // even if there aren't any VarLocs living in `FoundReg+1`, we're still
+ // guaranteed to move on to the next register (or to end()).
+ uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
+ It.advanceToLowerBound(NextRegIndex);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
+ const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs,
+ const char *msg,
+ raw_ostream &Out) const {
+ Out << '\n' << msg << '\n';
+ for (const MachineBasicBlock &BB : MF) {
+ if (!V.count(&BB))
+ continue;
+ const VarLocSet &L = getVarLocsInMBB(&BB, V);
+ if (L.empty())
+ continue;
+ Out << "MBB: " << BB.getNumber() << ":\n";
+ for (uint64_t VLL : L) {
+ const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)];
+ Out << " Var: " << VL.Var.getVariable()->getName();
+ Out << " MI: ";
+ VL.dump(TRI, Out);
+ }
+ }
+ Out << "\n";
+}
+#endif
+
+VarLocBasedLDV::VarLoc::SpillLoc
+VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ Register Reg;
+ StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return {Reg, Offset};
+}
+
+/// Try to salvage the debug entry value if we encounter a new debug value
+/// describing the same parameter, otherwise stop tracking the value. Return
+/// true if we should stop tracking the entry value, otherwise return false.
+bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ const VarLoc &EntryVL) {
+ // Skip the DBG_VALUE which is the debug entry value itself.
+ if (MI.isIdenticalTo(EntryVL.MI))
+ return false;
+
+ // If the parameter's location is not register location, we can not track
+ // the entry value any more. In addition, if the debug expression from the
+ // DBG_VALUE is not empty, we can assume the parameter's value has changed
+ // indicating that we should stop tracking its entry value as well.
+ if (!MI.getDebugOperand(0).isReg() ||
+ MI.getDebugExpression()->getNumElements() != 0)
+ return true;
+
+ // If the DBG_VALUE comes from a copy instruction that copies the entry value,
+ // it means the parameter's value has not changed and we should be able to use
+ // its entry value.
+ bool TrySalvageEntryValue = false;
+ Register Reg = MI.getDebugOperand(0).getReg();
+ auto I = std::next(MI.getReverseIterator());
+ const MachineOperand *SrcRegOp, *DestRegOp;
+ if (I != MI.getParent()->rend()) {
+ // TODO: Try to keep tracking of an entry value if we encounter a propagated
+ // DBG_VALUE describing the copy of the entry value. (Propagated entry value
+ // does not indicate the parameter modification.)
+ auto DestSrc = TII->isCopyInstr(*I);
+ if (!DestSrc)
+ return true;
+
+ SrcRegOp = DestSrc->Source;
+ DestRegOp = DestSrc->Destination;
+ if (Reg != DestRegOp->getReg())
+ return true;
+ TrySalvageEntryValue = true;
+ }
+
+ if (TrySalvageEntryValue) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
+ if (VL.getEntryValueCopyBackupReg() == Reg &&
+ VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (!MI.isDebugValue())
+ return;
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+
+ // Check if this DBG_VALUE indicates a parameter's value changing.
+ // If that is the case, we should stop tracking its entry value.
+ auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
+ if (Var->isParameter() && EntryValBackupID) {
+ const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
+ if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
+ LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
+ MI.print(dbgs(), /*IsStandalone*/ false,
+ /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
+ /*AddNewLine*/ true, TII));
+ OpenRanges.erase(EntryVL);
+ }
+ }
+
+ if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() ||
+ MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) {
+ // Use normal VarLoc constructor for registers and immediates.
+ VarLoc VL(MI, LS);
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VL);
+
+ LocIndex ID = VarLocIDs.insert(VL);
+ // Add the VarLoc to OpenRanges from this DBG_VALUE.
+ OpenRanges.insert(ID, VL);
+ } else if (MI.hasOneMemOperand()) {
+ llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
+ } else {
+ // This must be an undefined location. If it has an open range, erase it.
+ assert(MI.getDebugOperand(0).isReg() &&
+ MI.getDebugOperand(0).getReg() == 0 &&
+ "Unexpected non-undef DBG_VALUE encountered");
+ VarLoc VL(MI, LS);
+ OpenRanges.erase(VL);
+ }
+}
+
+/// Turn the entry value backup locations into primary locations.
+void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers,
+ VarLocSet &KillSet) {
+ // Do not insert entry value locations after a terminator.
+ if (MI.isTerminator())
+ return;
+
+ for (uint64_t ID : KillSet) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (!VL.Var.getVariable()->isParameter())
+ continue;
+
+ auto DebugVar = VL.Var;
+ Optional<LocIndex> EntryValBackupID =
+ OpenRanges.getEntryValueBackup(DebugVar);
+
+ // If the parameter has the entry value backup, it means we should
+ // be able to use its entry value.
+ if (!EntryValBackupID)
+ continue;
+
+ const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
+ VarLoc EntryLoc =
+ VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
+ LocIndex EntryValueID = VarLocIDs.insert(EntryLoc);
+ Transfers.push_back({&MI, EntryValueID});
+ OpenRanges.insert(EntryValueID, EntryLoc);
+ }
+}
+
+/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
+/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
+/// new VarLoc. If \p NewReg is different than default zero value then the
+/// new location will be register location created by the copy like instruction,
+/// otherwise it is variable's location on the stack.
+void VarLocBasedLDV::insertTransferDebugPair(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
+ VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
+ Register NewReg) {
+ const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
+
+ auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
+ LocIndex LocId = VarLocIDs.insert(VL);
+
+ // Close this variable's previous location range.
+ OpenRanges.erase(VL);
+
+ // Record the new location as an open range, and a postponed transfer
+ // inserting a DBG_VALUE for this location.
+ OpenRanges.insert(LocId, VL);
+ assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
+ TransferDebugPair MIP = {&MI, LocId};
+ Transfers.push_back(MIP);
+ };
+
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VarLocIDs[OldVarID]);
+ switch (Kind) {
+ case TransferKind::TransferCopy: {
+ assert(NewReg &&
+ "No register supplied when handling a copy of a debug value");
+ // Create a DBG_VALUE instruction to describe the Var in its new
+ // register location.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for register copy:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferSpill: {
+ // Create a DBG_VALUE instruction to describe the Var in its spilled
+ // location.
+ VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
+ VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
+ SpillLocation.SpillOffset, LS);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for spill:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferRestore: {
+ assert(NewReg &&
+ "No register supplied when handling a restore of a debug value");
+ // DebugInstr refers to the pre-spill location, therefore we can reuse
+ // its expression.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for restore:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ }
+ llvm_unreachable("Invalid transfer kind");
+}
+
+/// A definition of a register may mark the end of a range.
+void VarLocBasedLDV::transferRegisterDef(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+
+ // Meta Instructions do not affect the debug liveness of any register they
+ // define.
+ if (MI.isMetaInstruction())
+ return;
+
+ MachineFunction *MF = MI.getMF();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+
+ // Find the regs killed by MI, and find regmasks of preserved regs.
+ DefinedRegsSet DeadRegs;
+ SmallVector<const uint32_t *, 4> RegMasks;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def.
+ if (MO.isReg() && MO.isDef() && MO.getReg() &&
+ Register::isPhysicalRegister(MO.getReg()) &&
+ !(MI.isCall() && MO.getReg() == SP)) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ // FIXME: Can we break out of this loop early if no insertion occurs?
+ DeadRegs.insert(*RAI);
+ } else if (MO.isRegMask()) {
+ RegMasks.push_back(MO.getRegMask());
+ }
+ }
+
+ // Erase VarLocs which reside in one of the dead registers. For performance
+ // reasons, it's critical to not iterate over the full set of open VarLocs.
+ // Iterate over the set of dying/used regs instead.
+ if (!RegMasks.empty()) {
+ SmallVector<uint32_t, 32> UsedRegs;
+ getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
+ for (uint32_t Reg : UsedRegs) {
+ // Remove ranges of all clobbered registers. Register masks don't usually
+ // list SP as preserved. Assume that call instructions never clobber SP,
+ // because some backends (e.g., AArch64) never list SP in the regmask.
+ // While the debug info may be off for an instruction or two around
+ // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
+ // still a better user experience.
+ if (Reg == SP)
+ continue;
+ bool AnyRegMaskKillsReg =
+ any_of(RegMasks, [Reg](const uint32_t *RegMask) {
+ return MachineOperand::clobbersPhysReg(RegMask, Reg);
+ });
+ if (AnyRegMaskKillsReg)
+ DeadRegs.insert(Reg);
+ }
+ }
+
+ if (DeadRegs.empty())
+ return;
+
+ VarLocSet KillSet(Alloc);
+ collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs());
+ OpenRanges.erase(KillSet, VarLocIDs);
+
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (TM.Options.ShouldEmitDebugEntryValues())
+ emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
+ }
+}
+
+bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return false;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return false; // This is not a spill instruction, since no valid size was
+ // returned from either function.
+
+ return true;
+}
+
+bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
+ if (!MO.isReg() || !MO.isUse()) {
+ Reg = 0;
+ return false;
+ }
+ Reg = MO.getReg();
+ return MO.isKill();
+ };
+
+ for (const MachineOperand &MO : MI.operands()) {
+ // In a spill instruction generated by the InlineSpiller the spilled
+ // register has its kill flag set.
+ if (isKilledReg(MO, Reg))
+ return true;
+ if (Reg != 0) {
+ // Check whether next instruction kills the spilled register.
+ // FIXME: Current solution does not cover search for killed register in
+ // bundles and instructions further down the chain.
+ auto NextI = std::next(MI.getIterator());
+ // Skip next instruction that points to basic block end iterator.
+ if (MI.getParent()->end() == NextI)
+ continue;
+ Register RegNext;
+ for (const MachineOperand &MONext : NextI->operands()) {
+ // Return true if we came across the register from the
+ // previous spill instruction that is killed in NextI.
+ if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+ return true;
+ }
+ }
+ }
+ // Return false if we didn't find spilled register.
+ return false;
+}
+
+Optional<VarLocBasedLDV::VarLoc::SpillLoc>
+VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!MI.hasOneMemOperand())
+ return None;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return None;
+}
+
+/// A spilled register may indicate that we have to end the current range of
+/// a variable and create a new one for the spill location.
+/// A restored register may indicate the reverse situation.
+/// We don't want to insert any instructions in process(), so we just create
+/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
+/// It will be inserted into the BB when we're done iterating over the
+/// instructions.
+void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ MachineFunction *MF = MI.getMF();
+ TransferKind TKind;
+ Register Reg;
+ Optional<VarLoc::SpillLoc> Loc;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, then close the variable location. The value in memory
+ // will have changed.
+ VarLocSet KillSet(Alloc);
+ if (isSpillInstruction(MI, MF)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+ for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
+ if (VL.Loc.SpillLocation == *Loc) {
+ // This location is overwritten by the current instruction -- terminate
+ // the open range, and insert an explicit DBG_VALUE $noreg.
+ //
+ // Doing this at a later stage would require re-interpreting all
+ // DBG_VALUes and DIExpressions to identify whether they point at
+ // memory, and then analysing all memory writes to see if they
+ // overwrite that memory, which is expensive.
+ //
+ // At this stage, we already know which DBG_VALUEs are for spills and
+ // where they are located; it's best to fix handle overwrites now.
+ KillSet.set(ID);
+ VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
+ LocIndex UndefLocID = VarLocIDs.insert(UndefVL);
+ Transfers.push_back({&MI, UndefLocID});
+ }
+ }
+ OpenRanges.erase(KillSet, VarLocIDs);
+ }
+
+ // Try to recognise spill and restore instructions that may create a new
+ // variable location.
+ if (isLocationSpill(MI, MF, Reg)) {
+ TKind = TransferKind::TransferSpill;
+ LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ } else {
+ if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+ return;
+ TKind = TransferKind::TransferRestore;
+ LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ }
+ // Check if the register or spill location is the location of a debug value.
+ auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
+ if (TKind == TransferKind::TransferSpill)
+ TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
+ else if (TKind == TransferKind::TransferRestore)
+ TransferCandidates = OpenRanges.getSpillVarLocs();
+ for (uint64_t ID : TransferCandidates) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (TKind == TransferKind::TransferSpill) {
+ assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?");
+ LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ } else {
+ assert(TKind == TransferKind::TransferRestore &&
+ VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
+ if (VL.Loc.SpillLocation != *Loc)
+ // The spill location is not the location of a debug value.
+ continue;
+ LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ }
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
+ Reg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// If \p MI is a register copy instruction, that copies a previously tracked
+/// value from one register to another register that is callee saved, we
+/// create new DBG_VALUE instruction described with copy destination register.
+void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ auto DestSrc = TII->isCopyInstr(MI);
+ if (!DestSrc)
+ return;
+
+ const MachineOperand *DestRegOp = DestSrc->Destination;
+ const MachineOperand *SrcRegOp = DestSrc->Source;
+
+ if (!DestRegOp->isDef())
+ return;
+
+ auto isCalleeSavedReg = [&](Register Reg) {
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register location, which is callee
+ // saved, is going to stay unclobbered longer, even if it is killed.
+ if (!isCalleeSavedReg(DestReg))
+ return;
+
+ // Remember an entry value movement. If we encounter a new debug value of
+ // a parameter describing only a moving of the value around, rather then
+ // modifying it, we are still able to use the entry value if needed.
+ if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (VL.getEntryValueBackupReg() == SrcReg) {
+ LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
+ VarLoc EntryValLocCopyBackup =
+ VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
+
+ // Stop tracking the original entry value.
+ OpenRanges.erase(VL);
+
+ // Start tracking the entry value copy.
+ LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
+ OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
+ break;
+ }
+ }
+ }
+
+ if (!SrcRegOp->isKill())
+ return;
+
+ for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?");
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
+ TransferKind::TransferCopy, DestReg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// Terminate all open ranges at the end of the current basic block.
+bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
+ OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs,
+ const VarLocMap &VarLocIDs) {
+ bool Changed = false;
+
+ LLVM_DEBUG(for (uint64_t ID
+ : OpenRanges.getVarLocs()) {
+ // Copy OpenRanges to OutLocs, if not already present.
+ dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
+ VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI);
+ });
+ VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
+ Changed = VLS != OpenRanges.getVarLocs();
+ // New OutLocs set may be different due to spill, restore or register
+ // copy instruction processing.
+ if (Changed)
+ VLS = OpenRanges.getVarLocs();
+ OpenRanges.clear();
+ return Changed;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+/// fragment usage.
+/// \param SeenFragments Map from DILocalVariable to all fragments of that
+/// Variable which are known to exist.
+/// \param OverlappingFragments The overlap map being constructed, from one
+/// Var/Fragment pair to a vector of fragments known to overlap.
+void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
+ VarToFragments &SeenFragments,
+ OverlapMap &OverlappingFragments) {
+ DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVariable());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+/// This routine creates OpenRanges.
+void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers) {
+ transferDebugValue(MI, OpenRanges, VarLocIDs);
+ transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
+ transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
+ transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
+}
+
+/// This routine joins the analysis results of all incoming edges in @MBB by
+/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
+/// source variable in all the predecessors of @MBB reside in the same location.
+bool VarLocBasedLDV::join(
+ MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+
+ VarLocSet InLocsT(Alloc); // Temporary incoming locations.
+
+ // For all predecessors of this MBB, find the set of VarLocs that
+ // can be joined.
+ int NumVisited = 0;
+ for (auto p : MBB.predecessors()) {
+ // Ignore backedges if we have not visited the predecessor yet. As the
+ // predecessor hasn't yet had locations propagated into it, most locations
+ // will not yet be valid, so treat them as all being uninitialized and
+ // potentially valid. If a location guessed to be correct here is
+ // invalidated later, we will remove it when we revisit this block.
+ if (!Visited.count(p)) {
+ LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
+ << "\n");
+ continue;
+ }
+ auto OL = OutLocs.find(p);
+ // Join is null in case of empty OutLocs from any of the pred.
+ if (OL == OutLocs.end())
+ return false;
+
+ // Just copy over the Out locs to incoming locs for the first visited
+ // predecessor, and for all other predecessors join the Out locs.
+ VarLocSet &OutLocVLS = *OL->second.get();
+ if (!NumVisited)
+ InLocsT = OutLocVLS;
+ else
+ InLocsT &= OutLocVLS;
+
+ LLVM_DEBUG({
+ if (!InLocsT.empty()) {
+ for (uint64_t ID : InLocsT)
+ dbgs() << " gathered candidate incoming var: "
+ << VarLocIDs[LocIndex::fromRawInteger(ID)]
+ .Var.getVariable()
+ ->getName()
+ << "\n";
+ }
+ });
+
+ NumVisited++;
+ }
+
+ // Filter out DBG_VALUES that are out of scope.
+ VarLocSet KillSet(Alloc);
+ bool IsArtificial = ArtificialBlocks.count(&MBB);
+ if (!IsArtificial) {
+ for (uint64_t ID : InLocsT) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ if (!VarLocIDs[Idx].dominates(LS, MBB)) {
+ KillSet.set(ID);
+ LLVM_DEBUG({
+ auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
+ dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
+ });
+ }
+ }
+ }
+ InLocsT.intersectWithComplement(KillSet);
+
+ // As we are processing blocks in reverse post-order we
+ // should have processed at least one predecessor, unless it
+ // is the entry block which has no predecessor.
+ assert((NumVisited || MBB.pred_empty()) &&
+ "Should have processed at least one predecessor");
+
+ VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
+ bool Changed = false;
+ if (ILS != InLocsT) {
+ ILS = InLocsT;
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
+ VarLocMap &VarLocIDs) {
+ // PendingInLocs records all locations propagated into blocks, which have
+ // not had DBG_VALUE insts created. Go through and create those insts now.
+ for (auto &Iter : PendingInLocs) {
+ // Map is keyed on a constant pointer, unwrap it so we can insert insts.
+ auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
+ VarLocSet &Pending = *Iter.second.get();
+
+ for (uint64_t ID : Pending) {
+ // The ID location is live-in to MBB -- work out what kind of machine
+ // location it is and create a DBG_VALUE.
+ const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)];
+ if (DiffIt.isEntryBackupLoc())
+ continue;
+ MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
+ MBB.insert(MBB.instr_begin(), MI);
+
+ (void)MI;
+ LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
+ }
+ }
+}
+
+bool VarLocBasedLDV::isEntryValueCandidate(
+ const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
+ assert(MI.isDebugValue() && "This must be DBG_VALUE.");
+
+ // TODO: Add support for local variables that are expressed in terms of
+ // parameters entry values.
+ // TODO: Add support for modified arguments that can be expressed
+ // by using its entry value.
+ auto *DIVar = MI.getDebugVariable();
+ if (!DIVar->isParameter())
+ return false;
+
+ // Do not consider parameters that belong to an inlined function.
+ if (MI.getDebugLoc()->getInlinedAt())
+ return false;
+
+ // Only consider parameters that are described using registers. Parameters
+ // that are passed on the stack are not yet supported, so ignore debug
+ // values that are described by the frame or stack pointer.
+ if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
+ return false;
+
+ // If a parameter's value has been propagated from the caller, then the
+ // parameter's DBG_VALUE may be described using a register defined by some
+ // instruction in the entry block, in which case we shouldn't create an
+ // entry value.
+ if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
+ return false;
+
+ // TODO: Add support for parameters that have a pre-existing debug expressions
+ // (e.g. fragments).
+ if (MI.getDebugExpression()->getNumElements() > 0)
+ return false;
+
+ return true;
+}
+
+/// Collect all register defines (including aliases) for the given instruction.
+static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
+ const TargetRegisterInfo *TRI) {
+ for (const MachineOperand &MO : MI.operands())
+ if (MO.isReg() && MO.isDef() && MO.getReg())
+ for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
+ Regs.insert(*AI);
+}
+
+/// This routine records the entry values of function parameters. The values
+/// could be used as backup values. If we loose the track of some unmodified
+/// parameters, the backup values will be used as a primary locations.
+void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (!TM.Options.ShouldEmitDebugEntryValues())
+ return;
+ }
+
+ DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+
+ if (!isEntryValueCandidate(MI, DefinedRegs) ||
+ OpenRanges.getEntryValueBackup(V))
+ return;
+
+ LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
+
+ // Create the entry value and use it as a backup location until it is
+ // valid. It is valid until a parameter is not changed.
+ DIExpression *NewExpr =
+ DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
+ VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
+ LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
+ OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+
+ if (!MF.getFunction().getSubprogram())
+ // VarLocBaseLDV will already have removed all DBG_VALUEs.
+ return false;
+
+ // Skip functions from NoDebug compilation units.
+ if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
+ DICompileUnit::NoDebug)
+ return false;
+
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->getCalleeSaves(MF, CalleeSavedRegs);
+ this->TPC = TPC;
+ LS.initialize(MF);
+
+ bool Changed = false;
+ bool OLChanged = false;
+ bool MBBJoined = false;
+
+ VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
+ OverlapMap OverlapFragments; // Map of overlapping variable fragments.
+ OpenRangesSet OpenRanges(Alloc, OverlapFragments);
+ // Ranges that are open until end of bb.
+ VarLocInMBB OutLocs; // Ranges that exist beyond bb.
+ VarLocInMBB InLocs; // Ranges that are incoming after joining.
+ TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
+ // spills, copies and restores).
+
+ VarToFragments SeenFragments;
+
+ // Blocks which are artificial, i.e. blocks which exclusively contain
+ // instructions without locations, or with line 0 locations.
+ SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+
+ // Set of register defines that are seen when traversing the entry block
+ // looking for debug entry value candidates.
+ DefinedRegsSet DefinedRegs;
+
+ // Only in the case of entry MBB collect DBG_VALUEs representing
+ // function parameters in order to generate debug entry values for them.
+ MachineBasicBlock &First_MBB = *(MF.begin());
+ for (auto &MI : First_MBB) {
+ collectRegDefs(MI, DefinedRegs, TRI);
+ if (MI.isDebugValue())
+ recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
+ }
+
+ // Initialize per-block structures and scan for fragment overlaps.
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
+
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after initialization", dbgs()));
+
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+
+ if (RPONumber > InputBBLimit) {
+ unsigned NumInputDbgValues = 0;
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ ++NumInputDbgValues;
+ if (NumInputDbgValues > InputDbgValueLimit) {
+ LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
+ << " has " << RPONumber << " basic blocks and "
+ << NumInputDbgValues
+ << " input DBG_VALUEs, exceeding limits.\n");
+ return false;
+ }
+ }
+
+ // This is a standard "union of predecessor outs" dataflow problem.
+ // To solve it, we perform join() and process() using the two worklist method
+ // until the ranges converge.
+ // Ranges have converged when both worklists are empty.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice. We could avoid this with a custom priority queue, but this
+ // is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ Worklist.pop();
+ MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
+ ArtificialBlocks);
+ MBBJoined |= Visited.insert(MBB).second;
+ if (MBBJoined) {
+ MBBJoined = false;
+ Changed = true;
+ // Now that we have started to extend ranges across BBs we need to
+ // examine spill, copy and restore instructions to see whether they
+ // operate with registers that correspond to user variables.
+ // First load any pending inlocs.
+ OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
+ for (auto &MI : *MBB)
+ process(MI, OpenRanges, VarLocIDs, Transfers);
+ OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after propagating", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
+ "InLocs after propagating", dbgs()));
+
+ if (OLChanged) {
+ OLChanged = false;
+ for (auto s : MBB->successors())
+ if (OnPending.insert(s).second) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Add any DBG_VALUE instructions created by location transfers.
+ for (auto &TR : Transfers) {
+ assert(!TR.TransferInst->isTerminator() &&
+ "Cannot insert DBG_VALUE after terminator");
+ MachineBasicBlock *MBB = TR.TransferInst->getParent();
+ const VarLoc &VL = VarLocIDs[TR.LocationID];
+ MachineInstr *MI = VL.BuildDbgValue(MF);
+ MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
+ }
+ Transfers.clear();
+
+ // Deferred inlocs will not have had any DBG_VALUE insts created; do
+ // that now.
+ flushPendingLocs(InLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
+ return Changed;
+}
+
+LDVImpl *
+llvm::makeVarLocBasedLiveDebugValues()
+{
+ return new VarLocBasedLDV();
+}