diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp | 1994 |
1 files changed, 1994 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp new file mode 100644 index 0000000000..e2daa46fe6 --- /dev/null +++ b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp @@ -0,0 +1,1994 @@ +//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file VarLocBasedImpl.cpp +/// +/// LiveDebugValues is an optimistic "available expressions" dataflow +/// algorithm. The set of expressions is the set of machine locations +/// (registers, spill slots, constants) that a variable fragment might be +/// located, qualified by a DIExpression and indirect-ness flag, while each +/// variable is identified by a DebugVariable object. The availability of an +/// expression begins when a DBG_VALUE instruction specifies the location of a +/// DebugVariable, and continues until that location is clobbered or +/// re-specified by a different DBG_VALUE for the same DebugVariable. +/// +/// The output of LiveDebugValues is additional DBG_VALUE instructions, +/// placed to extend variable locations as far they're available. This file +/// and the VarLocBasedLDV class is an implementation that explicitly tracks +/// locations, using the VarLoc class. +/// +/// The canonical "available expressions" problem doesn't have expression +/// clobbering, instead when a variable is re-assigned, any expressions using +/// that variable get invalidated. LiveDebugValues can map onto "available +/// expressions" by having every register represented by a variable, which is +/// used in an expression that becomes available at a DBG_VALUE instruction. +/// When the register is clobbered, its variable is effectively reassigned, and +/// expressions computed from it become unavailable. A similar construct is +/// needed when a DebugVariable has its location re-specified, to invalidate +/// all other locations for that DebugVariable. +/// +/// Using the dataflow analysis to compute the available expressions, we create +/// a DBG_VALUE at the beginning of each block where the expression is +/// live-in. This propagates variable locations into every basic block where +/// the location can be determined, rather than only having DBG_VALUEs in blocks +/// where locations are specified due to an assignment or some optimization. +/// Movements of values between registers and spill slots are annotated with +/// DBG_VALUEs too to track variable values bewteen locations. All this allows +/// DbgEntityHistoryCalculator to focus on only the locations within individual +/// blocks, facilitating testing and improving modularity. +/// +/// We follow an optimisic dataflow approach, with this lattice: +/// +/// \verbatim +/// ┬ "Unknown" +/// | +/// v +/// True +/// | +/// v +/// ⊥ False +/// \endverbatim With "True" signifying that the expression is available (and +/// thus a DebugVariable's location is the corresponding register), while +/// "False" signifies that the expression is unavailable. "Unknown"s never +/// survive to the end of the analysis (see below). +/// +/// Formally, all DebugVariable locations that are live-out of a block are +/// initialized to \top. A blocks live-in values take the meet of the lattice +/// value for every predecessors live-outs, except for the entry block, where +/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer +/// function for a block assigns an expression for a DebugVariable to be "True" +/// if a DBG_VALUE in the block specifies it; "False" if the location is +/// clobbered; or the live-in value if it is unaffected by the block. We +/// visit each block in reverse post order until a fixedpoint is reached. The +/// solution produced is maximal. +/// +/// Intuitively, we start by assuming that every expression / variable location +/// is at least "True", and then propagate "False" from the entry block and any +/// clobbers until there are no more changes to make. This gives us an accurate +/// solution because all incorrect locations will have a "False" propagated into +/// them. It also gives us a solution that copes well with loops by assuming +/// that variable locations are live-through every loop, and then removing those +/// that are not through dataflow. +/// +/// Within LiveDebugValues: each variable location is represented by a +/// VarLoc object that identifies the source variable, its current +/// machine-location, and the DBG_VALUE inst that specifies the location. Each +/// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a +/// unique index. Rather than operate directly on machine locations, the +/// dataflow analysis in this pass identifies locations by their index in the +/// VarLocMap, meaning all the variable locations in a block can be described +/// by a sparse vector of VarLocMap indicies. +/// +/// All the storage for the dataflow analysis is local to the ExtendRanges +/// method and passed down to helper methods. "OutLocs" and "InLocs" record the +/// in and out lattice values for each block. "OpenRanges" maintains a list of +/// variable locations and, with the "process" method, evaluates the transfer +/// function of each block. "flushPendingLocs" installs DBG_VALUEs for each +/// live-in location at the start of blocks, while "Transfers" records +/// transfers of values between machine-locations. +/// +/// We avoid explicitly representing the "Unknown" (\top) lattice value in the +/// implementation. Instead, unvisited blocks implicitly have all lattice +/// values set as "Unknown". After being visited, there will be path back to +/// the entry block where the lattice value is "False", and as the transfer +/// function cannot make new "Unknown" locations, there are no scenarios where +/// a block can have an "Unknown" location after being visited. Similarly, we +/// don't enumerate all possible variable locations before exploring the +/// function: when a new location is discovered, all blocks previously explored +/// were implicitly "False" but unrecorded, and become explicitly "False" when +/// a new VarLoc is created with its bit not set in predecessor InLocs or +/// OutLocs. +/// +//===----------------------------------------------------------------------===// + +#include "LiveDebugValues.h" + +#include "llvm/ADT/CoalescingBitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/UniqueVector.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/InitializePasses.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/TypeSize.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <functional> +#include <queue> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "livedebugvalues" + +STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); + +// Options to prevent pathological compile-time behavior. If InputBBLimit and +// InputDbgValueLimit are both exceeded, range extension is disabled. +static cl::opt<unsigned> InputBBLimit( + "livedebugvalues-input-bb-limit", + cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"), + cl::init(10000), cl::Hidden); +static cl::opt<unsigned> InputDbgValueLimit( + "livedebugvalues-input-dbg-value-limit", + cl::desc( + "Maximum input DBG_VALUE insts supported by debug range extension"), + cl::init(50000), cl::Hidden); + +// If @MI is a DBG_VALUE with debug value described by a defined +// register, returns the number of this register. In the other case, returns 0. +static Register isDbgValueDescribedByReg(const MachineInstr &MI) { + assert(MI.isDebugValue() && "expected a DBG_VALUE"); + assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); + // If location of variable is described using a register (directly + // or indirectly), this register is always a first operand. + return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg() + : Register(); +} + +/// If \p Op is a stack or frame register return true, otherwise return false. +/// This is used to avoid basing the debug entry values on the registers, since +/// we do not support it at the moment. +static bool isRegOtherThanSPAndFP(const MachineOperand &Op, + const MachineInstr &MI, + const TargetRegisterInfo *TRI) { + if (!Op.isReg()) + return false; + + const MachineFunction *MF = MI.getParent()->getParent(); + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + Register FP = TRI->getFrameRegister(*MF); + Register Reg = Op.getReg(); + + return Reg && Reg != SP && Reg != FP; +} + +namespace { + +// Max out the number of statically allocated elements in DefinedRegsSet, as +// this prevents fallback to std::set::count() operations. +using DefinedRegsSet = SmallSet<Register, 32>; + +using VarLocSet = CoalescingBitVector<uint64_t>; + +/// A type-checked pair of {Register Location (or 0), Index}, used to index +/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int +/// for insertion into a \ref VarLocSet, and efficiently converted back. The +/// type-checker helps ensure that the conversions aren't lossy. +/// +/// Why encode a location /into/ the VarLocMap index? This makes it possible +/// to find the open VarLocs killed by a register def very quickly. This is a +/// performance-critical operation for LiveDebugValues. +struct LocIndex { + using u32_location_t = uint32_t; + using u32_index_t = uint32_t; + + u32_location_t Location; // Physical registers live in the range [1;2^30) (see + // \ref MCRegister), so we have plenty of range left + // here to encode non-register locations. + u32_index_t Index; + + /// The first location greater than 0 that is not reserved for VarLocs of + /// kind RegisterKind. + static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; + + /// A special location reserved for VarLocs of kind SpillLocKind. + static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; + + /// A special location reserved for VarLocs of kind EntryValueBackupKind and + /// EntryValueCopyBackupKind. + static constexpr u32_location_t kEntryValueBackupLocation = + kFirstInvalidRegLocation + 1; + + LocIndex(u32_location_t Location, u32_index_t Index) + : Location(Location), Index(Index) {} + + uint64_t getAsRawInteger() const { + return (static_cast<uint64_t>(Location) << 32) | Index; + } + + template<typename IntT> static LocIndex fromRawInteger(IntT ID) { + static_assert(std::is_unsigned<IntT>::value && + sizeof(ID) == sizeof(uint64_t), + "Cannot convert raw integer to LocIndex"); + return {static_cast<u32_location_t>(ID >> 32), + static_cast<u32_index_t>(ID)}; + } + + /// Get the start of the interval reserved for VarLocs of kind RegisterKind + /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. + static uint64_t rawIndexForReg(uint32_t Reg) { + return LocIndex(Reg, 0).getAsRawInteger(); + } + + /// Return a range covering all set indices in the interval reserved for + /// \p Location in \p Set. + static auto indexRangeForLocation(const VarLocSet &Set, + u32_location_t Location) { + uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); + uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); + return Set.half_open_range(Start, End); + } +}; + +class VarLocBasedLDV : public LDVImpl { +private: + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + const TargetFrameLowering *TFI; + TargetPassConfig *TPC; + BitVector CalleeSavedRegs; + LexicalScopes LS; + VarLocSet::Allocator Alloc; + + enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; + + using FragmentInfo = DIExpression::FragmentInfo; + using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; + + /// A pair of debug variable and value location. + struct VarLoc { + // The location at which a spilled variable resides. It consists of a + // register and an offset. + struct SpillLoc { + unsigned SpillBase; + StackOffset SpillOffset; + bool operator==(const SpillLoc &Other) const { + return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; + } + bool operator!=(const SpillLoc &Other) const { + return !(*this == Other); + } + }; + + /// Identity of the variable at this location. + const DebugVariable Var; + + /// The expression applied to this location. + const DIExpression *Expr; + + /// DBG_VALUE to clone var/expr information from if this location + /// is moved. + const MachineInstr &MI; + + enum VarLocKind { + InvalidKind = 0, + RegisterKind, + SpillLocKind, + ImmediateKind, + EntryValueKind, + EntryValueBackupKind, + EntryValueCopyBackupKind + } Kind = InvalidKind; + + /// The value location. Stored separately to avoid repeatedly + /// extracting it from MI. + union LocUnion { + uint64_t RegNo; + SpillLoc SpillLocation; + uint64_t Hash; + int64_t Immediate; + const ConstantFP *FPImm; + const ConstantInt *CImm; + LocUnion() : Hash(0) {} + } Loc; + + VarLoc(const MachineInstr &MI, LexicalScopes &LS) + : Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()), + Expr(MI.getDebugExpression()), MI(MI) { + assert(MI.isDebugValue() && "not a DBG_VALUE"); + assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE"); + if (int RegNo = isDbgValueDescribedByReg(MI)) { + Kind = RegisterKind; + Loc.RegNo = RegNo; + } else if (MI.getDebugOperand(0).isImm()) { + Kind = ImmediateKind; + Loc.Immediate = MI.getDebugOperand(0).getImm(); + } else if (MI.getDebugOperand(0).isFPImm()) { + Kind = ImmediateKind; + Loc.FPImm = MI.getDebugOperand(0).getFPImm(); + } else if (MI.getDebugOperand(0).isCImm()) { + Kind = ImmediateKind; + Loc.CImm = MI.getDebugOperand(0).getCImm(); + } + + // We create the debug entry values from the factory functions rather than + // from this ctor. + assert(Kind != EntryValueKind && !isEntryBackupLoc()); + } + + /// Take the variable and machine-location in DBG_VALUE MI, and build an + /// entry location using the given expression. + static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS, + const DIExpression *EntryExpr, Register Reg) { + VarLoc VL(MI, LS); + assert(VL.Kind == RegisterKind); + VL.Kind = EntryValueKind; + VL.Expr = EntryExpr; + VL.Loc.RegNo = Reg; + return VL; + } + + /// Take the variable and machine-location from the DBG_VALUE (from the + /// function entry), and build an entry value backup location. The backup + /// location will turn into the normal location if the backup is valid at + /// the time of the primary location clobbering. + static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, + LexicalScopes &LS, + const DIExpression *EntryExpr) { + VarLoc VL(MI, LS); + assert(VL.Kind == RegisterKind); + VL.Kind = EntryValueBackupKind; + VL.Expr = EntryExpr; + return VL; + } + + /// Take the variable and machine-location from the DBG_VALUE (from the + /// function entry), and build a copy of an entry value backup location by + /// setting the register location to NewReg. + static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, + LexicalScopes &LS, + const DIExpression *EntryExpr, + Register NewReg) { + VarLoc VL(MI, LS); + assert(VL.Kind == RegisterKind); + VL.Kind = EntryValueCopyBackupKind; + VL.Expr = EntryExpr; + VL.Loc.RegNo = NewReg; + return VL; + } + + /// Copy the register location in DBG_VALUE MI, updating the register to + /// be NewReg. + static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS, + Register NewReg) { + VarLoc VL(MI, LS); + assert(VL.Kind == RegisterKind); + VL.Loc.RegNo = NewReg; + return VL; + } + + /// Take the variable described by DBG_VALUE MI, and create a VarLoc + /// locating it in the specified spill location. + static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase, + StackOffset SpillOffset, LexicalScopes &LS) { + VarLoc VL(MI, LS); + assert(VL.Kind == RegisterKind); + VL.Kind = SpillLocKind; + VL.Loc.SpillLocation = {SpillBase, SpillOffset}; + return VL; + } + + /// Create a DBG_VALUE representing this VarLoc in the given function. + /// Copies variable-specific information such as DILocalVariable and + /// inlining information from the original DBG_VALUE instruction, which may + /// have been several transfers ago. + MachineInstr *BuildDbgValue(MachineFunction &MF) const { + const DebugLoc &DbgLoc = MI.getDebugLoc(); + bool Indirect = MI.isIndirectDebugValue(); + const auto &IID = MI.getDesc(); + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *DIExpr = MI.getDebugExpression(); + NumInserted++; + + switch (Kind) { + case EntryValueKind: + // An entry value is a register location -- but with an updated + // expression. The register location of such DBG_VALUE is always the one + // from the entry DBG_VALUE, it does not matter if the entry value was + // copied in to another register due to some optimizations. + return BuildMI(MF, DbgLoc, IID, Indirect, + MI.getDebugOperand(0).getReg(), Var, Expr); + case RegisterKind: + // Register locations are like the source DBG_VALUE, but with the + // register number from this VarLoc. + return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr); + case SpillLocKind: { + // Spills are indirect DBG_VALUEs, with a base register and offset. + // Use the original DBG_VALUEs expression to build the spilt location + // on top of. FIXME: spill locations created before this pass runs + // are not recognized, and not handled here. + auto *TRI = MF.getSubtarget().getRegisterInfo(); + auto *SpillExpr = TRI->prependOffsetExpression( + DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset); + unsigned Base = Loc.SpillLocation.SpillBase; + return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr); + } + case ImmediateKind: { + MachineOperand MO = MI.getDebugOperand(0); + return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr); + } + case EntryValueBackupKind: + case EntryValueCopyBackupKind: + case InvalidKind: + llvm_unreachable( + "Tried to produce DBG_VALUE for invalid or backup VarLoc"); + } + llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum"); + } + + /// Is the Loc field a constant or constant object? + bool isConstant() const { return Kind == ImmediateKind; } + + /// Check if the Loc field is an entry backup location. + bool isEntryBackupLoc() const { + return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind; + } + + /// If this variable is described by a register holding the entry value, + /// return it, otherwise return 0. + unsigned getEntryValueBackupReg() const { + if (Kind == EntryValueBackupKind) + return Loc.RegNo; + return 0; + } + + /// If this variable is described by a register holding the copy of the + /// entry value, return it, otherwise return 0. + unsigned getEntryValueCopyBackupReg() const { + if (Kind == EntryValueCopyBackupKind) + return Loc.RegNo; + return 0; + } + + /// If this variable is described by a register, return it, + /// otherwise return 0. + unsigned isDescribedByReg() const { + if (Kind == RegisterKind) + return Loc.RegNo; + return 0; + } + + /// Determine whether the lexical scope of this value's debug location + /// dominates MBB. + bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { + return LS.dominates(MI.getDebugLoc().get(), &MBB); + } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + // TRI can be null. + void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const { + Out << "VarLoc("; + switch (Kind) { + case RegisterKind: + case EntryValueKind: + case EntryValueBackupKind: + case EntryValueCopyBackupKind: + Out << printReg(Loc.RegNo, TRI); + break; + case SpillLocKind: + Out << printReg(Loc.SpillLocation.SpillBase, TRI); + Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + " + << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale" + << "]"; + break; + case ImmediateKind: + Out << Loc.Immediate; + break; + case InvalidKind: + llvm_unreachable("Invalid VarLoc in dump method"); + } + + Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; + if (Var.getInlinedAt()) + Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; + else + Out << "(null))"; + + if (isEntryBackupLoc()) + Out << " (backup loc)\n"; + else + Out << "\n"; + } +#endif + + bool operator==(const VarLoc &Other) const { + if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr) + return false; + + switch (Kind) { + case SpillLocKind: + return Loc.SpillLocation == Other.Loc.SpillLocation; + case RegisterKind: + case ImmediateKind: + case EntryValueKind: + case EntryValueBackupKind: + case EntryValueCopyBackupKind: + return Loc.Hash == Other.Loc.Hash; + default: + llvm_unreachable("Invalid kind"); + } + } + + /// This operator guarantees that VarLocs are sorted by Variable first. + bool operator<(const VarLoc &Other) const { + switch (Kind) { + case SpillLocKind: + return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase, + Loc.SpillLocation.SpillOffset.getFixed(), + Loc.SpillLocation.SpillOffset.getScalable(), + Expr) < + std::make_tuple( + Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase, + Other.Loc.SpillLocation.SpillOffset.getFixed(), + Other.Loc.SpillLocation.SpillOffset.getScalable(), + Other.Expr); + case RegisterKind: + case ImmediateKind: + case EntryValueKind: + case EntryValueBackupKind: + case EntryValueCopyBackupKind: + return std::tie(Var, Kind, Loc.Hash, Expr) < + std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr); + default: + llvm_unreachable("Invalid kind"); + } + } + }; + + /// VarLocMap is used for two things: + /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to + /// virtually insert a VarLoc into a VarLocSet. + /// 2) Given a LocIndex, look up the unique associated VarLoc. + class VarLocMap { + /// Map a VarLoc to an index within the vector reserved for its location + /// within Loc2Vars. + std::map<VarLoc, LocIndex::u32_index_t> Var2Index; + + /// Map a location to a vector which holds VarLocs which live in that + /// location. + SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; + + /// Determine the 32-bit location reserved for \p VL, based on its kind. + static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) { + switch (VL.Kind) { + case VarLoc::RegisterKind: + assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) && + "Physreg out of range?"); + return VL.Loc.RegNo; + case VarLoc::SpillLocKind: + return LocIndex::kSpillLocation; + case VarLoc::EntryValueBackupKind: + case VarLoc::EntryValueCopyBackupKind: + return LocIndex::kEntryValueBackupLocation; + default: + return 0; + } + } + + public: + /// Retrieve a unique LocIndex for \p VL. + LocIndex insert(const VarLoc &VL) { + LocIndex::u32_location_t Location = getLocationForVar(VL); + LocIndex::u32_index_t &Index = Var2Index[VL]; + if (!Index) { + auto &Vars = Loc2Vars[Location]; + Vars.push_back(VL); + Index = Vars.size(); + } + return {Location, Index - 1}; + } + + /// Retrieve the unique VarLoc associated with \p ID. + const VarLoc &operator[](LocIndex ID) const { + auto LocIt = Loc2Vars.find(ID.Location); + assert(LocIt != Loc2Vars.end() && "Location not tracked"); + return LocIt->second[ID.Index]; + } + }; + + using VarLocInMBB = + SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; + struct TransferDebugPair { + MachineInstr *TransferInst; ///< Instruction where this transfer occurs. + LocIndex LocationID; ///< Location number for the transfer dest. + }; + using TransferMap = SmallVector<TransferDebugPair, 4>; + + // Types for recording sets of variable fragments that overlap. For a given + // local variable, we record all other fragments of that variable that could + // overlap it, to reduce search time. + using FragmentOfVar = + std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; + using OverlapMap = + DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; + + // Helper while building OverlapMap, a map of all fragments seen for a given + // DILocalVariable. + using VarToFragments = + DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; + + /// This holds the working set of currently open ranges. For fast + /// access, this is done both as a set of VarLocIDs, and a map of + /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all + /// previous open ranges for the same variable. In addition, we keep + /// two different maps (Vars/EntryValuesBackupVars), so erase/insert + /// methods act differently depending on whether a VarLoc is primary + /// location or backup one. In the case the VarLoc is backup location + /// we will erase/insert from the EntryValuesBackupVars map, otherwise + /// we perform the operation on the Vars. + class OpenRangesSet { + VarLocSet VarLocs; + // Map the DebugVariable to recent primary location ID. + SmallDenseMap<DebugVariable, LocIndex, 8> Vars; + // Map the DebugVariable to recent backup location ID. + SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars; + OverlapMap &OverlappingFragments; + + public: + OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) + : VarLocs(Alloc), OverlappingFragments(_OLapMap) {} + + const VarLocSet &getVarLocs() const { return VarLocs; } + + /// Terminate all open ranges for VL.Var by removing it from the set. + void erase(const VarLoc &VL); + + /// Terminate all open ranges listed in \c KillSet by removing + /// them from the set. + void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs); + + /// Insert a new range into the set. + void insert(LocIndex VarLocID, const VarLoc &VL); + + /// Insert a set of ranges. + void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) { + for (uint64_t ID : ToLoad) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VarL = Map[Idx]; + insert(Idx, VarL); + } + } + + llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var); + + /// Empty the set. + void clear() { + VarLocs.clear(); + Vars.clear(); + EntryValuesBackupVars.clear(); + } + + /// Return whether the set is empty or not. + bool empty() const { + assert(Vars.empty() == EntryValuesBackupVars.empty() && + Vars.empty() == VarLocs.empty() && + "open ranges are inconsistent"); + return VarLocs.empty(); + } + + /// Get an empty range of VarLoc IDs. + auto getEmptyVarLocRange() const { + return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), + getVarLocs().end()); + } + + /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg. + auto getRegisterVarLocs(Register Reg) const { + return LocIndex::indexRangeForLocation(getVarLocs(), Reg); + } + + /// Get all set IDs for VarLocs of kind SpillLocKind. + auto getSpillVarLocs() const { + return LocIndex::indexRangeForLocation(getVarLocs(), + LocIndex::kSpillLocation); + } + + /// Get all set IDs for VarLocs of kind EntryValueBackupKind or + /// EntryValueCopyBackupKind. + auto getEntryValueBackupVarLocs() const { + return LocIndex::indexRangeForLocation( + getVarLocs(), LocIndex::kEntryValueBackupLocation); + } + }; + + /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind + /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs + /// into \p Collected. + void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs, + const VarLocSet &CollectFrom) const; + + /// Get the registers which are used by VarLocs of kind RegisterKind tracked + /// by \p CollectFrom. + void getUsedRegs(const VarLocSet &CollectFrom, + SmallVectorImpl<uint32_t> &UsedRegs) const; + + VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { + std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; + if (!VLS) + VLS = std::make_unique<VarLocSet>(Alloc); + return *VLS.get(); + } + + const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, + const VarLocInMBB &Locs) const { + auto It = Locs.find(MBB); + assert(It != Locs.end() && "MBB not in map"); + return *It->second.get(); + } + + /// Tests whether this instruction is a spill to a stack location. + bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); + + /// Decide if @MI is a spill instruction and return true if it is. We use 2 + /// criteria to make this decision: + /// - Is this instruction a store to a spill slot? + /// - Is there a register operand that is both used and killed? + /// TODO: Store optimization can fold spills into other stores (including + /// other spills). We do not handle this yet (more than one memory operand). + bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, + Register &Reg); + + /// Returns true if the given machine instruction is a debug value which we + /// can emit entry values for. + /// + /// Currently, we generate debug entry values only for parameters that are + /// unmodified throughout the function and located in a register. + bool isEntryValueCandidate(const MachineInstr &MI, + const DefinedRegsSet &Regs) const; + + /// If a given instruction is identified as a spill, return the spill location + /// and set \p Reg to the spilled register. + Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, + Register &Reg); + /// Given a spill instruction, extract the register and offset used to + /// address the spill location in a target independent way. + VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); + void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, + TransferMap &Transfers, VarLocMap &VarLocIDs, + LocIndex OldVarID, TransferKind Kind, + Register NewReg = Register()); + + void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs); + void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, const VarLoc &EntryVL); + void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers, + VarLocSet &KillSet); + void recordEntryValue(const MachineInstr &MI, + const DefinedRegsSet &DefinedRegs, + OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); + void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, + VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); + + void process(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + + void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, + OverlapMap &OLapMap); + + bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, + const VarLocMap &VarLocIDs, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); + + /// Create DBG_VALUE insts for inlocs that have been propagated but + /// had their instruction creation deferred. + void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); + + bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; + +public: + /// Default construct and initialize the pass. + VarLocBasedLDV(); + + ~VarLocBasedLDV(); + + /// Print to ostream with a message. + void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, + const VarLocMap &VarLocIDs, const char *msg, + raw_ostream &Out) const; +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Implementation +//===----------------------------------------------------------------------===// + +VarLocBasedLDV::VarLocBasedLDV() { } + +VarLocBasedLDV::~VarLocBasedLDV() { } + +/// Erase a variable from the set of open ranges, and additionally erase any +/// fragments that may overlap it. If the VarLoc is a backup location, erase +/// the variable from the EntryValuesBackupVars set, indicating we should stop +/// tracking its backup entry location. Otherwise, if the VarLoc is primary +/// location, erase the variable from the Vars set. +void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { + // Erasure helper. + auto DoErase = [VL, this](DebugVariable VarToErase) { + auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + auto It = EraseFrom->find(VarToErase); + if (It != EraseFrom->end()) { + LocIndex ID = It->second; + VarLocs.reset(ID.getAsRawInteger()); + EraseFrom->erase(It); + } + }; + + DebugVariable Var = VL.Var; + + // Erase the variable/fragment that ends here. + DoErase(Var); + + // Extract the fragment. Interpret an empty fragment as one that covers all + // possible bits. + FragmentInfo ThisFragment = Var.getFragmentOrDefault(); + + // There may be fragments that overlap the designated fragment. Look them up + // in the pre-computed overlap map, and erase them too. + auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); + if (MapIt != OverlappingFragments.end()) { + for (auto Fragment : MapIt->second) { + VarLocBasedLDV::OptFragmentInfo FragmentHolder; + if (!DebugVariable::isDefaultFragment(Fragment)) + FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); + DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); + } + } +} + +void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet, + const VarLocMap &VarLocIDs) { + VarLocs.intersectWithComplement(KillSet); + for (uint64_t ID : KillSet) { + const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)]; + auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + EraseFrom->erase(VL->Var); + } +} + +void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID, + const VarLoc &VL) { + auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + VarLocs.set(VarLocID.getAsRawInteger()); + InsertInto->insert({VL.Var, VarLocID}); +} + +/// Return the Loc ID of an entry value backup location, if it exists for the +/// variable. +llvm::Optional<LocIndex> +VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { + auto It = EntryValuesBackupVars.find(Var); + if (It != EntryValuesBackupVars.end()) + return It->second; + + return llvm::None; +} + +void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected, + const DefinedRegsSet &Regs, + const VarLocSet &CollectFrom) const { + assert(!Regs.empty() && "Nothing to collect"); + SmallVector<uint32_t, 32> SortedRegs; + for (Register Reg : Regs) + SortedRegs.push_back(Reg); + array_pod_sort(SortedRegs.begin(), SortedRegs.end()); + auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); + auto End = CollectFrom.end(); + for (uint32_t Reg : SortedRegs) { + // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all + // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg. + uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); + uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); + It.advanceToLowerBound(FirstIndexForReg); + + // Iterate through that half-open interval and collect all the set IDs. + for (; It != End && *It < FirstInvalidIndex; ++It) + Collected.set(*It); + + if (It == End) + return; + } +} + +void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, + SmallVectorImpl<uint32_t> &UsedRegs) const { + // All register-based VarLocs are assigned indices greater than or equal to + // FirstRegIndex. + uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1); + uint64_t FirstInvalidIndex = + LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); + for (auto It = CollectFrom.find(FirstRegIndex), + End = CollectFrom.find(FirstInvalidIndex); + It != End;) { + // We found a VarLoc ID for a VarLoc that lives in a register. Figure out + // which register and add it to UsedRegs. + uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; + assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && + "Duplicate used reg"); + UsedRegs.push_back(FoundReg); + + // Skip to the next /set/ register. Note that this finds a lower bound, so + // even if there aren't any VarLocs living in `FoundReg+1`, we're still + // guaranteed to move on to the next register (or to end()). + uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); + It.advanceToLowerBound(NextRegIndex); + } +} + +//===----------------------------------------------------------------------===// +// Debug Range Extension Implementation +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, + const VarLocInMBB &V, + const VarLocMap &VarLocIDs, + const char *msg, + raw_ostream &Out) const { + Out << '\n' << msg << '\n'; + for (const MachineBasicBlock &BB : MF) { + if (!V.count(&BB)) + continue; + const VarLocSet &L = getVarLocsInMBB(&BB, V); + if (L.empty()) + continue; + Out << "MBB: " << BB.getNumber() << ":\n"; + for (uint64_t VLL : L) { + const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)]; + Out << " Var: " << VL.Var.getVariable()->getName(); + Out << " MI: "; + VL.dump(TRI, Out); + } + } + Out << "\n"; +} +#endif + +VarLocBasedLDV::VarLoc::SpillLoc +VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { + assert(MI.hasOneMemOperand() && + "Spill instruction does not have exactly one memory operand?"); + auto MMOI = MI.memoperands_begin(); + const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); + assert(PVal->kind() == PseudoSourceValue::FixedStack && + "Inconsistent memory operand in spill instruction"); + int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); + const MachineBasicBlock *MBB = MI.getParent(); + Register Reg; + StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); + return {Reg, Offset}; +} + +/// Try to salvage the debug entry value if we encounter a new debug value +/// describing the same parameter, otherwise stop tracking the value. Return +/// true if we should stop tracking the entry value, otherwise return false. +bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + const VarLoc &EntryVL) { + // Skip the DBG_VALUE which is the debug entry value itself. + if (MI.isIdenticalTo(EntryVL.MI)) + return false; + + // If the parameter's location is not register location, we can not track + // the entry value any more. In addition, if the debug expression from the + // DBG_VALUE is not empty, we can assume the parameter's value has changed + // indicating that we should stop tracking its entry value as well. + if (!MI.getDebugOperand(0).isReg() || + MI.getDebugExpression()->getNumElements() != 0) + return true; + + // If the DBG_VALUE comes from a copy instruction that copies the entry value, + // it means the parameter's value has not changed and we should be able to use + // its entry value. + bool TrySalvageEntryValue = false; + Register Reg = MI.getDebugOperand(0).getReg(); + auto I = std::next(MI.getReverseIterator()); + const MachineOperand *SrcRegOp, *DestRegOp; + if (I != MI.getParent()->rend()) { + // TODO: Try to keep tracking of an entry value if we encounter a propagated + // DBG_VALUE describing the copy of the entry value. (Propagated entry value + // does not indicate the parameter modification.) + auto DestSrc = TII->isCopyInstr(*I); + if (!DestSrc) + return true; + + SrcRegOp = DestSrc->Source; + DestRegOp = DestSrc->Destination; + if (Reg != DestRegOp->getReg()) + return true; + TrySalvageEntryValue = true; + } + + if (TrySalvageEntryValue) { + for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { + const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; + if (VL.getEntryValueCopyBackupReg() == Reg && + VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) + return false; + } + } + + return true; +} + +/// End all previous ranges related to @MI and start a new range from @MI +/// if it is a DBG_VALUE instr. +void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs) { + if (!MI.isDebugValue()) + return; + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + const DILocation *DebugLoc = MI.getDebugLoc(); + const DILocation *InlinedAt = DebugLoc->getInlinedAt(); + assert(Var->isValidLocationForIntrinsic(DebugLoc) && + "Expected inlined-at fields to agree"); + + DebugVariable V(Var, Expr, InlinedAt); + + // Check if this DBG_VALUE indicates a parameter's value changing. + // If that is the case, we should stop tracking its entry value. + auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); + if (Var->isParameter() && EntryValBackupID) { + const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; + if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) { + LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; + MI.print(dbgs(), /*IsStandalone*/ false, + /*SkipOpers*/ false, /*SkipDebugLoc*/ false, + /*AddNewLine*/ true, TII)); + OpenRanges.erase(EntryVL); + } + } + + if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() || + MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) { + // Use normal VarLoc constructor for registers and immediates. + VarLoc VL(MI, LS); + // End all previous ranges of VL.Var. + OpenRanges.erase(VL); + + LocIndex ID = VarLocIDs.insert(VL); + // Add the VarLoc to OpenRanges from this DBG_VALUE. + OpenRanges.insert(ID, VL); + } else if (MI.hasOneMemOperand()) { + llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); + } else { + // This must be an undefined location. If it has an open range, erase it. + assert(MI.getDebugOperand(0).isReg() && + MI.getDebugOperand(0).getReg() == 0 && + "Unexpected non-undef DBG_VALUE encountered"); + VarLoc VL(MI, LS); + OpenRanges.erase(VL); + } +} + +/// Turn the entry value backup locations into primary locations. +void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + TransferMap &Transfers, + VarLocSet &KillSet) { + // Do not insert entry value locations after a terminator. + if (MI.isTerminator()) + return; + + for (uint64_t ID : KillSet) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + if (!VL.Var.getVariable()->isParameter()) + continue; + + auto DebugVar = VL.Var; + Optional<LocIndex> EntryValBackupID = + OpenRanges.getEntryValueBackup(DebugVar); + + // If the parameter has the entry value backup, it means we should + // be able to use its entry value. + if (!EntryValBackupID) + continue; + + const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID]; + VarLoc EntryLoc = + VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo); + LocIndex EntryValueID = VarLocIDs.insert(EntryLoc); + Transfers.push_back({&MI, EntryValueID}); + OpenRanges.insert(EntryValueID, EntryLoc); + } +} + +/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc +/// with \p OldVarID should be deleted form \p OpenRanges and replaced with +/// new VarLoc. If \p NewReg is different than default zero value then the +/// new location will be register location created by the copy like instruction, +/// otherwise it is variable's location on the stack. +void VarLocBasedLDV::insertTransferDebugPair( + MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, + VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, + Register NewReg) { + const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI; + + auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { + LocIndex LocId = VarLocIDs.insert(VL); + + // Close this variable's previous location range. + OpenRanges.erase(VL); + + // Record the new location as an open range, and a postponed transfer + // inserting a DBG_VALUE for this location. + OpenRanges.insert(LocId, VL); + assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); + TransferDebugPair MIP = {&MI, LocId}; + Transfers.push_back(MIP); + }; + + // End all previous ranges of VL.Var. + OpenRanges.erase(VarLocIDs[OldVarID]); + switch (Kind) { + case TransferKind::TransferCopy: { + assert(NewReg && + "No register supplied when handling a copy of a debug value"); + // Create a DBG_VALUE instruction to describe the Var in its new + // register location. + VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for register copy:"; + VL.dump(TRI); + }); + return; + } + case TransferKind::TransferSpill: { + // Create a DBG_VALUE instruction to describe the Var in its spilled + // location. + VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); + VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase, + SpillLocation.SpillOffset, LS); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for spill:"; + VL.dump(TRI); + }); + return; + } + case TransferKind::TransferRestore: { + assert(NewReg && + "No register supplied when handling a restore of a debug value"); + // DebugInstr refers to the pre-spill location, therefore we can reuse + // its expression. + VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for restore:"; + VL.dump(TRI); + }); + return; + } + } + llvm_unreachable("Invalid transfer kind"); +} + +/// A definition of a register may mark the end of a range. +void VarLocBasedLDV::transferRegisterDef( + MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, + TransferMap &Transfers) { + + // Meta Instructions do not affect the debug liveness of any register they + // define. + if (MI.isMetaInstruction()) + return; + + MachineFunction *MF = MI.getMF(); + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + + // Find the regs killed by MI, and find regmasks of preserved regs. + DefinedRegsSet DeadRegs; + SmallVector<const uint32_t *, 4> RegMasks; + for (const MachineOperand &MO : MI.operands()) { + // Determine whether the operand is a register def. + if (MO.isReg() && MO.isDef() && MO.getReg() && + Register::isPhysicalRegister(MO.getReg()) && + !(MI.isCall() && MO.getReg() == SP)) { + // Remove ranges of all aliased registers. + for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) + // FIXME: Can we break out of this loop early if no insertion occurs? + DeadRegs.insert(*RAI); + } else if (MO.isRegMask()) { + RegMasks.push_back(MO.getRegMask()); + } + } + + // Erase VarLocs which reside in one of the dead registers. For performance + // reasons, it's critical to not iterate over the full set of open VarLocs. + // Iterate over the set of dying/used regs instead. + if (!RegMasks.empty()) { + SmallVector<uint32_t, 32> UsedRegs; + getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); + for (uint32_t Reg : UsedRegs) { + // Remove ranges of all clobbered registers. Register masks don't usually + // list SP as preserved. Assume that call instructions never clobber SP, + // because some backends (e.g., AArch64) never list SP in the regmask. + // While the debug info may be off for an instruction or two around + // callee-cleanup calls, transferring the DEBUG_VALUE across the call is + // still a better user experience. + if (Reg == SP) + continue; + bool AnyRegMaskKillsReg = + any_of(RegMasks, [Reg](const uint32_t *RegMask) { + return MachineOperand::clobbersPhysReg(RegMask, Reg); + }); + if (AnyRegMaskKillsReg) + DeadRegs.insert(Reg); + } + } + + if (DeadRegs.empty()) + return; + + VarLocSet KillSet(Alloc); + collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs()); + OpenRanges.erase(KillSet, VarLocIDs); + + if (TPC) { + auto &TM = TPC->getTM<TargetMachine>(); + if (TM.Options.ShouldEmitDebugEntryValues()) + emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet); + } +} + +bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, + MachineFunction *MF) { + // TODO: Handle multiple stores folded into one. + if (!MI.hasOneMemOperand()) + return false; + + if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) + return false; // This is not a spill instruction, since no valid size was + // returned from either function. + + return true; +} + +bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, + MachineFunction *MF, Register &Reg) { + if (!isSpillInstruction(MI, MF)) + return false; + + auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { + if (!MO.isReg() || !MO.isUse()) { + Reg = 0; + return false; + } + Reg = MO.getReg(); + return MO.isKill(); + }; + + for (const MachineOperand &MO : MI.operands()) { + // In a spill instruction generated by the InlineSpiller the spilled + // register has its kill flag set. + if (isKilledReg(MO, Reg)) + return true; + if (Reg != 0) { + // Check whether next instruction kills the spilled register. + // FIXME: Current solution does not cover search for killed register in + // bundles and instructions further down the chain. + auto NextI = std::next(MI.getIterator()); + // Skip next instruction that points to basic block end iterator. + if (MI.getParent()->end() == NextI) + continue; + Register RegNext; + for (const MachineOperand &MONext : NextI->operands()) { + // Return true if we came across the register from the + // previous spill instruction that is killed in NextI. + if (isKilledReg(MONext, RegNext) && RegNext == Reg) + return true; + } + } + } + // Return false if we didn't find spilled register. + return false; +} + +Optional<VarLocBasedLDV::VarLoc::SpillLoc> +VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, Register &Reg) { + if (!MI.hasOneMemOperand()) + return None; + + // FIXME: Handle folded restore instructions with more than one memory + // operand. + if (MI.getRestoreSize(TII)) { + Reg = MI.getOperand(0).getReg(); + return extractSpillBaseRegAndOffset(MI); + } + return None; +} + +/// A spilled register may indicate that we have to end the current range of +/// a variable and create a new one for the spill location. +/// A restored register may indicate the reverse situation. +/// We don't want to insert any instructions in process(), so we just create +/// the DBG_VALUE without inserting it and keep track of it in \p Transfers. +/// It will be inserted into the BB when we're done iterating over the +/// instructions. +void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + TransferMap &Transfers) { + MachineFunction *MF = MI.getMF(); + TransferKind TKind; + Register Reg; + Optional<VarLoc::SpillLoc> Loc; + + LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); + + // First, if there are any DBG_VALUEs pointing at a spill slot that is + // written to, then close the variable location. The value in memory + // will have changed. + VarLocSet KillSet(Alloc); + if (isSpillInstruction(MI, MF)) { + Loc = extractSpillBaseRegAndOffset(MI); + for (uint64_t ID : OpenRanges.getSpillVarLocs()) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); + if (VL.Loc.SpillLocation == *Loc) { + // This location is overwritten by the current instruction -- terminate + // the open range, and insert an explicit DBG_VALUE $noreg. + // + // Doing this at a later stage would require re-interpreting all + // DBG_VALUes and DIExpressions to identify whether they point at + // memory, and then analysing all memory writes to see if they + // overwrite that memory, which is expensive. + // + // At this stage, we already know which DBG_VALUEs are for spills and + // where they are located; it's best to fix handle overwrites now. + KillSet.set(ID); + VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0); + LocIndex UndefLocID = VarLocIDs.insert(UndefVL); + Transfers.push_back({&MI, UndefLocID}); + } + } + OpenRanges.erase(KillSet, VarLocIDs); + } + + // Try to recognise spill and restore instructions that may create a new + // variable location. + if (isLocationSpill(MI, MF, Reg)) { + TKind = TransferKind::TransferSpill; + LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); + LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) + << "\n"); + } else { + if (!(Loc = isRestoreInstruction(MI, MF, Reg))) + return; + TKind = TransferKind::TransferRestore; + LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); + LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) + << "\n"); + } + // Check if the register or spill location is the location of a debug value. + auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); + if (TKind == TransferKind::TransferSpill) + TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); + else if (TKind == TransferKind::TransferRestore) + TransferCandidates = OpenRanges.getSpillVarLocs(); + for (uint64_t ID : TransferCandidates) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + if (TKind == TransferKind::TransferSpill) { + assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?"); + LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' + << VL.Var.getVariable()->getName() << ")\n"); + } else { + assert(TKind == TransferKind::TransferRestore && + VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?"); + if (VL.Loc.SpillLocation != *Loc) + // The spill location is not the location of a debug value. + continue; + LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' + << VL.Var.getVariable()->getName() << ")\n"); + } + insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, + Reg); + // FIXME: A comment should explain why it's correct to return early here, + // if that is in fact correct. + return; + } +} + +/// If \p MI is a register copy instruction, that copies a previously tracked +/// value from one register to another register that is callee saved, we +/// create new DBG_VALUE instruction described with copy destination register. +void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + TransferMap &Transfers) { + auto DestSrc = TII->isCopyInstr(MI); + if (!DestSrc) + return; + + const MachineOperand *DestRegOp = DestSrc->Destination; + const MachineOperand *SrcRegOp = DestSrc->Source; + + if (!DestRegOp->isDef()) + return; + + auto isCalleeSavedReg = [&](Register Reg) { + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + }; + + Register SrcReg = SrcRegOp->getReg(); + Register DestReg = DestRegOp->getReg(); + + // We want to recognize instructions where destination register is callee + // saved register. If register that could be clobbered by the call is + // included, there would be a great chance that it is going to be clobbered + // soon. It is more likely that previous register location, which is callee + // saved, is going to stay unclobbered longer, even if it is killed. + if (!isCalleeSavedReg(DestReg)) + return; + + // Remember an entry value movement. If we encounter a new debug value of + // a parameter describing only a moving of the value around, rather then + // modifying it, we are still able to use the entry value if needed. + if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { + for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + if (VL.getEntryValueBackupReg() == SrcReg) { + LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); + VarLoc EntryValLocCopyBackup = + VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg); + + // Stop tracking the original entry value. + OpenRanges.erase(VL); + + // Start tracking the entry value copy. + LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup); + OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup); + break; + } + } + } + + if (!SrcRegOp->isKill()) + return; + + for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?"); + insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, + TransferKind::TransferCopy, DestReg); + // FIXME: A comment should explain why it's correct to return early here, + // if that is in fact correct. + return; + } +} + +/// Terminate all open ranges at the end of the current basic block. +bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, + OpenRangesSet &OpenRanges, + VarLocInMBB &OutLocs, + const VarLocMap &VarLocIDs) { + bool Changed = false; + + LLVM_DEBUG(for (uint64_t ID + : OpenRanges.getVarLocs()) { + // Copy OpenRanges to OutLocs, if not already present. + dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; + VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI); + }); + VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); + Changed = VLS != OpenRanges.getVarLocs(); + // New OutLocs set may be different due to spill, restore or register + // copy instruction processing. + if (Changed) + VLS = OpenRanges.getVarLocs(); + OpenRanges.clear(); + return Changed; +} + +/// Accumulate a mapping between each DILocalVariable fragment and other +/// fragments of that DILocalVariable which overlap. This reduces work during +/// the data-flow stage from "Find any overlapping fragments" to "Check if the +/// known-to-overlap fragments are present". +/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for +/// fragment usage. +/// \param SeenFragments Map from DILocalVariable to all fragments of that +/// Variable which are known to exist. +/// \param OverlappingFragments The overlap map being constructed, from one +/// Var/Fragment pair to a vector of fragments known to overlap. +void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, + VarToFragments &SeenFragments, + OverlapMap &OverlappingFragments) { + DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); + + // If this is the first sighting of this variable, then we are guaranteed + // there are currently no overlapping fragments either. Initialize the set + // of seen fragments, record no overlaps for the current one, and return. + auto SeenIt = SeenFragments.find(MIVar.getVariable()); + if (SeenIt == SeenFragments.end()) { + SmallSet<FragmentInfo, 4> OneFragment; + OneFragment.insert(ThisFragment); + SeenFragments.insert({MIVar.getVariable(), OneFragment}); + + OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + return; + } + + // If this particular Variable/Fragment pair already exists in the overlap + // map, it has already been accounted for. + auto IsInOLapMap = + OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + if (!IsInOLapMap.second) + return; + + auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; + auto &AllSeenFragments = SeenIt->second; + + // Otherwise, examine all other seen fragments for this variable, with "this" + // fragment being a previously unseen fragment. Record any pair of + // overlapping fragments. + for (auto &ASeenFragment : AllSeenFragments) { + // Does this previously seen fragment overlap? + if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { + // Yes: Mark the current fragment as being overlapped. + ThisFragmentsOverlaps.push_back(ASeenFragment); + // Mark the previously seen fragment as being overlapped by the current + // one. + auto ASeenFragmentsOverlaps = + OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); + assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && + "Previously seen var fragment has no vector of overlaps"); + ASeenFragmentsOverlaps->second.push_back(ThisFragment); + } + } + + AllSeenFragments.insert(ThisFragment); +} + +/// This routine creates OpenRanges. +void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers) { + transferDebugValue(MI, OpenRanges, VarLocIDs); + transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers); + transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); + transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); +} + +/// This routine joins the analysis results of all incoming edges in @MBB by +/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same +/// source variable in all the predecessors of @MBB reside in the same location. +bool VarLocBasedLDV::join( + MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, + const VarLocMap &VarLocIDs, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + + VarLocSet InLocsT(Alloc); // Temporary incoming locations. + + // For all predecessors of this MBB, find the set of VarLocs that + // can be joined. + int NumVisited = 0; + for (auto p : MBB.predecessors()) { + // Ignore backedges if we have not visited the predecessor yet. As the + // predecessor hasn't yet had locations propagated into it, most locations + // will not yet be valid, so treat them as all being uninitialized and + // potentially valid. If a location guessed to be correct here is + // invalidated later, we will remove it when we revisit this block. + if (!Visited.count(p)) { + LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() + << "\n"); + continue; + } + auto OL = OutLocs.find(p); + // Join is null in case of empty OutLocs from any of the pred. + if (OL == OutLocs.end()) + return false; + + // Just copy over the Out locs to incoming locs for the first visited + // predecessor, and for all other predecessors join the Out locs. + VarLocSet &OutLocVLS = *OL->second.get(); + if (!NumVisited) + InLocsT = OutLocVLS; + else + InLocsT &= OutLocVLS; + + LLVM_DEBUG({ + if (!InLocsT.empty()) { + for (uint64_t ID : InLocsT) + dbgs() << " gathered candidate incoming var: " + << VarLocIDs[LocIndex::fromRawInteger(ID)] + .Var.getVariable() + ->getName() + << "\n"; + } + }); + + NumVisited++; + } + + // Filter out DBG_VALUES that are out of scope. + VarLocSet KillSet(Alloc); + bool IsArtificial = ArtificialBlocks.count(&MBB); + if (!IsArtificial) { + for (uint64_t ID : InLocsT) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + if (!VarLocIDs[Idx].dominates(LS, MBB)) { + KillSet.set(ID); + LLVM_DEBUG({ + auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); + dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; + }); + } + } + } + InLocsT.intersectWithComplement(KillSet); + + // As we are processing blocks in reverse post-order we + // should have processed at least one predecessor, unless it + // is the entry block which has no predecessor. + assert((NumVisited || MBB.pred_empty()) && + "Should have processed at least one predecessor"); + + VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); + bool Changed = false; + if (ILS != InLocsT) { + ILS = InLocsT; + Changed = true; + } + + return Changed; +} + +void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, + VarLocMap &VarLocIDs) { + // PendingInLocs records all locations propagated into blocks, which have + // not had DBG_VALUE insts created. Go through and create those insts now. + for (auto &Iter : PendingInLocs) { + // Map is keyed on a constant pointer, unwrap it so we can insert insts. + auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); + VarLocSet &Pending = *Iter.second.get(); + + for (uint64_t ID : Pending) { + // The ID location is live-in to MBB -- work out what kind of machine + // location it is and create a DBG_VALUE. + const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)]; + if (DiffIt.isEntryBackupLoc()) + continue; + MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); + MBB.insert(MBB.instr_begin(), MI); + + (void)MI; + LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); + } + } +} + +bool VarLocBasedLDV::isEntryValueCandidate( + const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { + assert(MI.isDebugValue() && "This must be DBG_VALUE."); + + // TODO: Add support for local variables that are expressed in terms of + // parameters entry values. + // TODO: Add support for modified arguments that can be expressed + // by using its entry value. + auto *DIVar = MI.getDebugVariable(); + if (!DIVar->isParameter()) + return false; + + // Do not consider parameters that belong to an inlined function. + if (MI.getDebugLoc()->getInlinedAt()) + return false; + + // Only consider parameters that are described using registers. Parameters + // that are passed on the stack are not yet supported, so ignore debug + // values that are described by the frame or stack pointer. + if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) + return false; + + // If a parameter's value has been propagated from the caller, then the + // parameter's DBG_VALUE may be described using a register defined by some + // instruction in the entry block, in which case we shouldn't create an + // entry value. + if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) + return false; + + // TODO: Add support for parameters that have a pre-existing debug expressions + // (e.g. fragments). + if (MI.getDebugExpression()->getNumElements() > 0) + return false; + + return true; +} + +/// Collect all register defines (including aliases) for the given instruction. +static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, + const TargetRegisterInfo *TRI) { + for (const MachineOperand &MO : MI.operands()) + if (MO.isReg() && MO.isDef() && MO.getReg()) + for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) + Regs.insert(*AI); +} + +/// This routine records the entry values of function parameters. The values +/// could be used as backup values. If we loose the track of some unmodified +/// parameters, the backup values will be used as a primary locations. +void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, + const DefinedRegsSet &DefinedRegs, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs) { + if (TPC) { + auto &TM = TPC->getTM<TargetMachine>(); + if (!TM.Options.ShouldEmitDebugEntryValues()) + return; + } + + DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + + if (!isEntryValueCandidate(MI, DefinedRegs) || + OpenRanges.getEntryValueBackup(V)) + return; + + LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); + + // Create the entry value and use it as a backup location until it is + // valid. It is valid until a parameter is not changed. + DIExpression *NewExpr = + DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); + VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr); + LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup); + OpenRanges.insert(EntryValLocID, EntryValLocAsBackup); +} + +/// Calculate the liveness information for the given machine function and +/// extend ranges across basic blocks. +bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) { + LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); + + if (!MF.getFunction().getSubprogram()) + // VarLocBaseLDV will already have removed all DBG_VALUEs. + return false; + + // Skip functions from NoDebug compilation units. + if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == + DICompileUnit::NoDebug) + return false; + + TRI = MF.getSubtarget().getRegisterInfo(); + TII = MF.getSubtarget().getInstrInfo(); + TFI = MF.getSubtarget().getFrameLowering(); + TFI->getCalleeSaves(MF, CalleeSavedRegs); + this->TPC = TPC; + LS.initialize(MF); + + bool Changed = false; + bool OLChanged = false; + bool MBBJoined = false; + + VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. + OverlapMap OverlapFragments; // Map of overlapping variable fragments. + OpenRangesSet OpenRanges(Alloc, OverlapFragments); + // Ranges that are open until end of bb. + VarLocInMBB OutLocs; // Ranges that exist beyond bb. + VarLocInMBB InLocs; // Ranges that are incoming after joining. + TransferMap Transfers; // DBG_VALUEs associated with transfers (such as + // spills, copies and restores). + + VarToFragments SeenFragments; + + // Blocks which are artificial, i.e. blocks which exclusively contain + // instructions without locations, or with line 0 locations. + SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; + + DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; + DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist; + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Pending; + + // Set of register defines that are seen when traversing the entry block + // looking for debug entry value candidates. + DefinedRegsSet DefinedRegs; + + // Only in the case of entry MBB collect DBG_VALUEs representing + // function parameters in order to generate debug entry values for them. + MachineBasicBlock &First_MBB = *(MF.begin()); + for (auto &MI : First_MBB) { + collectRegDefs(MI, DefinedRegs, TRI); + if (MI.isDebugValue()) + recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); + } + + // Initialize per-block structures and scan for fragment overlaps. + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.isDebugValue()) + accumulateFragmentMap(MI, SeenFragments, OverlapFragments); + + auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { + if (const DebugLoc &DL = MI.getDebugLoc()) + return DL.getLine() != 0; + return false; + }; + for (auto &MBB : MF) + if (none_of(MBB.instrs(), hasNonArtificialLocation)) + ArtificialBlocks.insert(&MBB); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, + "OutLocs after initialization", dbgs())); + + ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); + unsigned int RPONumber = 0; + for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { + OrderToBB[RPONumber] = *RI; + BBToOrder[*RI] = RPONumber; + Worklist.push(RPONumber); + ++RPONumber; + } + + if (RPONumber > InputBBLimit) { + unsigned NumInputDbgValues = 0; + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.isDebugValue()) + ++NumInputDbgValues; + if (NumInputDbgValues > InputDbgValueLimit) { + LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() + << " has " << RPONumber << " basic blocks and " + << NumInputDbgValues + << " input DBG_VALUEs, exceeding limits.\n"); + return false; + } + } + + // This is a standard "union of predecessor outs" dataflow problem. + // To solve it, we perform join() and process() using the two worklist method + // until the ranges converge. + // Ranges have converged when both worklists are empty. + SmallPtrSet<const MachineBasicBlock *, 16> Visited; + while (!Worklist.empty() || !Pending.empty()) { + // We track what is on the pending worklist to avoid inserting the same + // thing twice. We could avoid this with a custom priority queue, but this + // is probably not worth it. + SmallPtrSet<MachineBasicBlock *, 16> OnPending; + LLVM_DEBUG(dbgs() << "Processing Worklist\n"); + while (!Worklist.empty()) { + MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; + Worklist.pop(); + MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, + ArtificialBlocks); + MBBJoined |= Visited.insert(MBB).second; + if (MBBJoined) { + MBBJoined = false; + Changed = true; + // Now that we have started to extend ranges across BBs we need to + // examine spill, copy and restore instructions to see whether they + // operate with registers that correspond to user variables. + // First load any pending inlocs. + OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); + for (auto &MI : *MBB) + process(MI, OpenRanges, VarLocIDs, Transfers); + OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, + "OutLocs after propagating", dbgs())); + LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, + "InLocs after propagating", dbgs())); + + if (OLChanged) { + OLChanged = false; + for (auto s : MBB->successors()) + if (OnPending.insert(s).second) { + Pending.push(BBToOrder[s]); + } + } + } + } + Worklist.swap(Pending); + // At this point, pending must be empty, since it was just the empty + // worklist + assert(Pending.empty() && "Pending should be empty"); + } + + // Add any DBG_VALUE instructions created by location transfers. + for (auto &TR : Transfers) { + assert(!TR.TransferInst->isTerminator() && + "Cannot insert DBG_VALUE after terminator"); + MachineBasicBlock *MBB = TR.TransferInst->getParent(); + const VarLoc &VL = VarLocIDs[TR.LocationID]; + MachineInstr *MI = VL.BuildDbgValue(MF); + MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); + } + Transfers.clear(); + + // Deferred inlocs will not have had any DBG_VALUE insts created; do + // that now. + flushPendingLocs(InLocs, VarLocIDs); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); + LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); + return Changed; +} + +LDVImpl * +llvm::makeVarLocBasedLiveDebugValues() +{ + return new VarLocBasedLDV(); +} |