diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp | |
parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
download | ydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp | 15528 |
1 files changed, 7764 insertions, 7764 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp b/contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp index b2bc75c197..923372b18f 100644 --- a/contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/CodeGenPrepare.cpp @@ -1,477 +1,477 @@ -//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass munges the code in the input function to better prepare it for -// SelectionDAG-based code generation. This works around limitations in it's -// basic-block-at-a-time approach. It should eventually be removed. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PointerIntPair.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/CodeGen/Analysis.h" -#include "llvm/CodeGen/ISDOpcodes.h" -#include "llvm/CodeGen/SelectionDAGNodes.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetPassConfig.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/ValueTypes.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GetElementPtrTypeIterator.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/IntrinsicsAArch64.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Statepoint.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueHandle.h" -#include "llvm/IR/ValueMap.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/BlockFrequency.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MachineValueType.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/BypassSlowDivision.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/SimplifyLibCalls.h" -#include "llvm/Transforms/Utils/SizeOpts.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <limits> -#include <memory> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "codegenprepare" - -STATISTIC(NumBlocksElim, "Number of blocks eliminated"); -STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); -STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); -STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " - "sunken Cmps"); -STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " - "of sunken Casts"); -STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " - "computations were sunk"); -STATISTIC(NumMemoryInstsPhiCreated, - "Number of phis created when address " - "computations were sunk to memory instructions"); -STATISTIC(NumMemoryInstsSelectCreated, - "Number of select created when address " - "computations were sunk to memory instructions"); -STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); -STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); -STATISTIC(NumAndsAdded, - "Number of and mask instructions added to form ext loads"); -STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); -STATISTIC(NumRetsDup, "Number of return instructions duplicated"); -STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); -STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); -STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); - -static cl::opt<bool> DisableBranchOpts( - "disable-cgp-branch-opts", cl::Hidden, cl::init(false), - cl::desc("Disable branch optimizations in CodeGenPrepare")); - -static cl::opt<bool> - DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), - cl::desc("Disable GC optimizations in CodeGenPrepare")); - -static cl::opt<bool> DisableSelectToBranch( - "disable-cgp-select2branch", cl::Hidden, cl::init(false), - cl::desc("Disable select to branch conversion.")); - -static cl::opt<bool> AddrSinkUsingGEPs( - "addr-sink-using-gep", cl::Hidden, cl::init(true), - cl::desc("Address sinking in CGP using GEPs.")); - -static cl::opt<bool> EnableAndCmpSinking( - "enable-andcmp-sinking", cl::Hidden, cl::init(true), - cl::desc("Enable sinkinig and/cmp into branches.")); - -static cl::opt<bool> DisableStoreExtract( - "disable-cgp-store-extract", cl::Hidden, cl::init(false), - cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); - -static cl::opt<bool> StressStoreExtract( - "stress-cgp-store-extract", cl::Hidden, cl::init(false), - cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); - -static cl::opt<bool> DisableExtLdPromotion( - "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), - cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " - "CodeGenPrepare")); - -static cl::opt<bool> StressExtLdPromotion( - "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), - cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " - "optimization in CodeGenPrepare")); - -static cl::opt<bool> DisablePreheaderProtect( - "disable-preheader-prot", cl::Hidden, cl::init(false), - cl::desc("Disable protection against removing loop preheaders")); - -static cl::opt<bool> ProfileGuidedSectionPrefix( - "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, - cl::desc("Use profile info to add section prefix for hot/cold functions")); - -static cl::opt<bool> ProfileUnknownInSpecialSection( - "profile-unknown-in-special-section", cl::Hidden, cl::init(false), - cl::ZeroOrMore, - cl::desc("In profiling mode like sampleFDO, if a function doesn't have " - "profile, we cannot tell the function is cold for sure because " - "it may be a function newly added without ever being sampled. " - "With the flag enabled, compiler can put such profile unknown " - "functions into a special section, so runtime system can choose " - "to handle it in a different way than .text section, to save " - "RAM for example. ")); - -static cl::opt<unsigned> FreqRatioToSkipMerge( - "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), - cl::desc("Skip merging empty blocks if (frequency of empty block) / " - "(frequency of destination block) is greater than this ratio")); - -static cl::opt<bool> ForceSplitStore( - "force-split-store", cl::Hidden, cl::init(false), - cl::desc("Force store splitting no matter what the target query says.")); - -static cl::opt<bool> -EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, - cl::desc("Enable merging of redundant sexts when one is dominating" - " the other."), cl::init(true)); - -static cl::opt<bool> DisableComplexAddrModes( - "disable-complex-addr-modes", cl::Hidden, cl::init(false), - cl::desc("Disables combining addressing modes with different parts " - "in optimizeMemoryInst.")); - -static cl::opt<bool> -AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), - cl::desc("Allow creation of Phis in Address sinking.")); - -static cl::opt<bool> -AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), - cl::desc("Allow creation of selects in Address sinking.")); - -static cl::opt<bool> AddrSinkCombineBaseReg( - "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), - cl::desc("Allow combining of BaseReg field in Address sinking.")); - -static cl::opt<bool> AddrSinkCombineBaseGV( - "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), - cl::desc("Allow combining of BaseGV field in Address sinking.")); - -static cl::opt<bool> AddrSinkCombineBaseOffs( - "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), - cl::desc("Allow combining of BaseOffs field in Address sinking.")); - -static cl::opt<bool> AddrSinkCombineScaledReg( - "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), - cl::desc("Allow combining of ScaledReg field in Address sinking.")); - -static cl::opt<bool> - EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, - cl::init(true), - cl::desc("Enable splitting large offset of GEP.")); - -static cl::opt<bool> EnableICMP_EQToICMP_ST( - "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), - cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); - -static cl::opt<bool> - VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), - cl::desc("Enable BFI update verification for " - "CodeGenPrepare.")); - -static cl::opt<bool> OptimizePhiTypes( - "cgp-optimize-phi-types", cl::Hidden, cl::init(false), - cl::desc("Enable converting phi types in CodeGenPrepare")); - -namespace { - -enum ExtType { - ZeroExtension, // Zero extension has been seen. - SignExtension, // Sign extension has been seen. - BothExtension // This extension type is used if we saw sext after - // ZeroExtension had been set, or if we saw zext after - // SignExtension had been set. It makes the type - // information of a promoted instruction invalid. -}; - -using SetOfInstrs = SmallPtrSet<Instruction *, 16>; -using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; -using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; -using SExts = SmallVector<Instruction *, 16>; -using ValueToSExts = DenseMap<Value *, SExts>; - -class TypePromotionTransaction; - - class CodeGenPrepare : public FunctionPass { - const TargetMachine *TM = nullptr; - const TargetSubtargetInfo *SubtargetInfo; - const TargetLowering *TLI = nullptr; - const TargetRegisterInfo *TRI; - const TargetTransformInfo *TTI = nullptr; - const TargetLibraryInfo *TLInfo; - const LoopInfo *LI; - std::unique_ptr<BlockFrequencyInfo> BFI; - std::unique_ptr<BranchProbabilityInfo> BPI; - ProfileSummaryInfo *PSI; - - /// As we scan instructions optimizing them, this is the next instruction - /// to optimize. Transforms that can invalidate this should update it. - BasicBlock::iterator CurInstIterator; - - /// Keeps track of non-local addresses that have been sunk into a block. - /// This allows us to avoid inserting duplicate code for blocks with - /// multiple load/stores of the same address. The usage of WeakTrackingVH - /// enables SunkAddrs to be treated as a cache whose entries can be - /// invalidated if a sunken address computation has been erased. - ValueMap<Value*, WeakTrackingVH> SunkAddrs; - - /// Keeps track of all instructions inserted for the current function. - SetOfInstrs InsertedInsts; - - /// Keeps track of the type of the related instruction before their - /// promotion for the current function. - InstrToOrigTy PromotedInsts; - - /// Keep track of instructions removed during promotion. - SetOfInstrs RemovedInsts; - - /// Keep track of sext chains based on their initial value. - DenseMap<Value *, Instruction *> SeenChainsForSExt; - - /// Keep track of GEPs accessing the same data structures such as structs or - /// arrays that are candidates to be split later because of their large - /// size. - MapVector< - AssertingVH<Value>, - SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> - LargeOffsetGEPMap; - - /// Keep track of new GEP base after splitting the GEPs having large offset. - SmallSet<AssertingVH<Value>, 2> NewGEPBases; - - /// Map serial numbers to Large offset GEPs. - DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; - - /// Keep track of SExt promoted. - ValueToSExts ValToSExtendedUses; - - /// True if the function has the OptSize attribute. - bool OptSize; - - /// DataLayout for the Function being processed. - const DataLayout *DL = nullptr; - - /// Building the dominator tree can be expensive, so we only build it - /// lazily and update it when required. - std::unique_ptr<DominatorTree> DT; - - public: - static char ID; // Pass identification, replacement for typeid - - CodeGenPrepare() : FunctionPass(ID) { - initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override; - - StringRef getPassName() const override { return "CodeGen Prepare"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - // FIXME: When we can selectively preserve passes, preserve the domtree. - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addRequired<TargetPassConfig>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - } - - private: - template <typename F> - void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { - // Substituting can cause recursive simplifications, which can invalidate - // our iterator. Use a WeakTrackingVH to hold onto it in case this - // happens. - Value *CurValue = &*CurInstIterator; - WeakTrackingVH IterHandle(CurValue); - - f(); - - // If the iterator instruction was recursively deleted, start over at the - // start of the block. - if (IterHandle != CurValue) { - CurInstIterator = BB->begin(); - SunkAddrs.clear(); - } - } - - // Get the DominatorTree, building if necessary. - DominatorTree &getDT(Function &F) { - if (!DT) - DT = std::make_unique<DominatorTree>(F); - return *DT; - } - +//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass munges the code in the input function to better prepare it for +// SelectionDAG-based code generation. This works around limitations in it's +// basic-block-at-a-time approach. It should eventually be removed. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsAArch64.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/BypassSlowDivision.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <memory> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "codegenprepare" + +STATISTIC(NumBlocksElim, "Number of blocks eliminated"); +STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); +STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); +STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " + "sunken Cmps"); +STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " + "of sunken Casts"); +STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " + "computations were sunk"); +STATISTIC(NumMemoryInstsPhiCreated, + "Number of phis created when address " + "computations were sunk to memory instructions"); +STATISTIC(NumMemoryInstsSelectCreated, + "Number of select created when address " + "computations were sunk to memory instructions"); +STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); +STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); +STATISTIC(NumAndsAdded, + "Number of and mask instructions added to form ext loads"); +STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); +STATISTIC(NumRetsDup, "Number of return instructions duplicated"); +STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); +STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); +STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); + +static cl::opt<bool> DisableBranchOpts( + "disable-cgp-branch-opts", cl::Hidden, cl::init(false), + cl::desc("Disable branch optimizations in CodeGenPrepare")); + +static cl::opt<bool> + DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), + cl::desc("Disable GC optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableSelectToBranch( + "disable-cgp-select2branch", cl::Hidden, cl::init(false), + cl::desc("Disable select to branch conversion.")); + +static cl::opt<bool> AddrSinkUsingGEPs( + "addr-sink-using-gep", cl::Hidden, cl::init(true), + cl::desc("Address sinking in CGP using GEPs.")); + +static cl::opt<bool> EnableAndCmpSinking( + "enable-andcmp-sinking", cl::Hidden, cl::init(true), + cl::desc("Enable sinkinig and/cmp into branches.")); + +static cl::opt<bool> DisableStoreExtract( + "disable-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> StressStoreExtract( + "stress-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableExtLdPromotion( + "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " + "CodeGenPrepare")); + +static cl::opt<bool> StressExtLdPromotion( + "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " + "optimization in CodeGenPrepare")); + +static cl::opt<bool> DisablePreheaderProtect( + "disable-preheader-prot", cl::Hidden, cl::init(false), + cl::desc("Disable protection against removing loop preheaders")); + +static cl::opt<bool> ProfileGuidedSectionPrefix( + "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, + cl::desc("Use profile info to add section prefix for hot/cold functions")); + +static cl::opt<bool> ProfileUnknownInSpecialSection( + "profile-unknown-in-special-section", cl::Hidden, cl::init(false), + cl::ZeroOrMore, + cl::desc("In profiling mode like sampleFDO, if a function doesn't have " + "profile, we cannot tell the function is cold for sure because " + "it may be a function newly added without ever being sampled. " + "With the flag enabled, compiler can put such profile unknown " + "functions into a special section, so runtime system can choose " + "to handle it in a different way than .text section, to save " + "RAM for example. ")); + +static cl::opt<unsigned> FreqRatioToSkipMerge( + "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), + cl::desc("Skip merging empty blocks if (frequency of empty block) / " + "(frequency of destination block) is greater than this ratio")); + +static cl::opt<bool> ForceSplitStore( + "force-split-store", cl::Hidden, cl::init(false), + cl::desc("Force store splitting no matter what the target query says.")); + +static cl::opt<bool> +EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, + cl::desc("Enable merging of redundant sexts when one is dominating" + " the other."), cl::init(true)); + +static cl::opt<bool> DisableComplexAddrModes( + "disable-complex-addr-modes", cl::Hidden, cl::init(false), + cl::desc("Disables combining addressing modes with different parts " + "in optimizeMemoryInst.")); + +static cl::opt<bool> +AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), + cl::desc("Allow creation of Phis in Address sinking.")); + +static cl::opt<bool> +AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), + cl::desc("Allow creation of selects in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseReg( + "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseReg field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseGV( + "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseGV field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseOffs( + "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseOffs field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineScaledReg( + "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), + cl::desc("Allow combining of ScaledReg field in Address sinking.")); + +static cl::opt<bool> + EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, + cl::init(true), + cl::desc("Enable splitting large offset of GEP.")); + +static cl::opt<bool> EnableICMP_EQToICMP_ST( + "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false), + cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion.")); + +static cl::opt<bool> + VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false), + cl::desc("Enable BFI update verification for " + "CodeGenPrepare.")); + +static cl::opt<bool> OptimizePhiTypes( + "cgp-optimize-phi-types", cl::Hidden, cl::init(false), + cl::desc("Enable converting phi types in CodeGenPrepare")); + +namespace { + +enum ExtType { + ZeroExtension, // Zero extension has been seen. + SignExtension, // Sign extension has been seen. + BothExtension // This extension type is used if we saw sext after + // ZeroExtension had been set, or if we saw zext after + // SignExtension had been set. It makes the type + // information of a promoted instruction invalid. +}; + +using SetOfInstrs = SmallPtrSet<Instruction *, 16>; +using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; +using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; +using SExts = SmallVector<Instruction *, 16>; +using ValueToSExts = DenseMap<Value *, SExts>; + +class TypePromotionTransaction; + + class CodeGenPrepare : public FunctionPass { + const TargetMachine *TM = nullptr; + const TargetSubtargetInfo *SubtargetInfo; + const TargetLowering *TLI = nullptr; + const TargetRegisterInfo *TRI; + const TargetTransformInfo *TTI = nullptr; + const TargetLibraryInfo *TLInfo; + const LoopInfo *LI; + std::unique_ptr<BlockFrequencyInfo> BFI; + std::unique_ptr<BranchProbabilityInfo> BPI; + ProfileSummaryInfo *PSI; + + /// As we scan instructions optimizing them, this is the next instruction + /// to optimize. Transforms that can invalidate this should update it. + BasicBlock::iterator CurInstIterator; + + /// Keeps track of non-local addresses that have been sunk into a block. + /// This allows us to avoid inserting duplicate code for blocks with + /// multiple load/stores of the same address. The usage of WeakTrackingVH + /// enables SunkAddrs to be treated as a cache whose entries can be + /// invalidated if a sunken address computation has been erased. + ValueMap<Value*, WeakTrackingVH> SunkAddrs; + + /// Keeps track of all instructions inserted for the current function. + SetOfInstrs InsertedInsts; + + /// Keeps track of the type of the related instruction before their + /// promotion for the current function. + InstrToOrigTy PromotedInsts; + + /// Keep track of instructions removed during promotion. + SetOfInstrs RemovedInsts; + + /// Keep track of sext chains based on their initial value. + DenseMap<Value *, Instruction *> SeenChainsForSExt; + + /// Keep track of GEPs accessing the same data structures such as structs or + /// arrays that are candidates to be split later because of their large + /// size. + MapVector< + AssertingVH<Value>, + SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> + LargeOffsetGEPMap; + + /// Keep track of new GEP base after splitting the GEPs having large offset. + SmallSet<AssertingVH<Value>, 2> NewGEPBases; + + /// Map serial numbers to Large offset GEPs. + DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; + + /// Keep track of SExt promoted. + ValueToSExts ValToSExtendedUses; + + /// True if the function has the OptSize attribute. + bool OptSize; + + /// DataLayout for the Function being processed. + const DataLayout *DL = nullptr; + + /// Building the dominator tree can be expensive, so we only build it + /// lazily and update it when required. + std::unique_ptr<DominatorTree> DT; + + public: + static char ID; // Pass identification, replacement for typeid + + CodeGenPrepare() : FunctionPass(ID) { + initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + StringRef getPassName() const override { return "CodeGen Prepare"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + // FIXME: When we can selectively preserve passes, preserve the domtree. + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetPassConfig>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + } + + private: + template <typename F> + void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { + // Substituting can cause recursive simplifications, which can invalidate + // our iterator. Use a WeakTrackingVH to hold onto it in case this + // happens. + Value *CurValue = &*CurInstIterator; + WeakTrackingVH IterHandle(CurValue); + + f(); + + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + if (IterHandle != CurValue) { + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + } + + // Get the DominatorTree, building if necessary. + DominatorTree &getDT(Function &F) { + if (!DT) + DT = std::make_unique<DominatorTree>(F); + return *DT; + } + void removeAllAssertingVHReferences(Value *V); - bool eliminateFallThrough(Function &F); - bool eliminateMostlyEmptyBlocks(Function &F); - BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); - bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; - void eliminateMostlyEmptyBlock(BasicBlock *BB); - bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, - bool isPreheader); + bool eliminateFallThrough(Function &F); + bool eliminateMostlyEmptyBlocks(Function &F); + BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); + bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; + void eliminateMostlyEmptyBlock(BasicBlock *BB); + bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, + bool isPreheader); bool makeBitReverse(Instruction &I); - bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); - bool optimizeInst(Instruction *I, bool &ModifiedDT); - bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, - Type *AccessTy, unsigned AddrSpace); - bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); - bool optimizeInlineAsmInst(CallInst *CS); - bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); - bool optimizeExt(Instruction *&I); - bool optimizeExtUses(Instruction *I); - bool optimizeLoadExt(LoadInst *Load); - bool optimizeShiftInst(BinaryOperator *BO); - bool optimizeFunnelShift(IntrinsicInst *Fsh); - bool optimizeSelectInst(SelectInst *SI); - bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); - bool optimizeSwitchInst(SwitchInst *SI); - bool optimizeExtractElementInst(Instruction *Inst); - bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); - bool fixupDbgValue(Instruction *I); - bool placeDbgValues(Function &F); - bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, - LoadInst *&LI, Instruction *&Inst, bool HasPromoted); - bool tryToPromoteExts(TypePromotionTransaction &TPT, - const SmallVectorImpl<Instruction *> &Exts, - SmallVectorImpl<Instruction *> &ProfitablyMovedExts, - unsigned CreatedInstsCost = 0); - bool mergeSExts(Function &F); - bool splitLargeGEPOffsets(); - bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, - SmallPtrSetImpl<Instruction *> &DeletedInstrs); - bool optimizePhiTypes(Function &F); - bool performAddressTypePromotion( - Instruction *&Inst, - bool AllowPromotionWithoutCommonHeader, - bool HasPromoted, TypePromotionTransaction &TPT, - SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); - bool splitBranchCondition(Function &F, bool &ModifiedDT); - bool simplifyOffsetableRelocate(GCStatepointInst &I); - - bool tryToSinkFreeOperands(Instruction *I); - bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, - Value *Arg1, CmpInst *Cmp, - Intrinsic::ID IID); - bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); - bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); - bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); - void verifyBFIUpdates(Function &F); - }; - -} // end anonymous namespace - -char CodeGenPrepare::ID = 0; - -INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, - "Optimize for code generation", false, false) + bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); + bool optimizeInst(Instruction *I, bool &ModifiedDT); + bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + Type *AccessTy, unsigned AddrSpace); + bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr); + bool optimizeInlineAsmInst(CallInst *CS); + bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); + bool optimizeExt(Instruction *&I); + bool optimizeExtUses(Instruction *I); + bool optimizeLoadExt(LoadInst *Load); + bool optimizeShiftInst(BinaryOperator *BO); + bool optimizeFunnelShift(IntrinsicInst *Fsh); + bool optimizeSelectInst(SelectInst *SI); + bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); + bool optimizeSwitchInst(SwitchInst *SI); + bool optimizeExtractElementInst(Instruction *Inst); + bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); + bool fixupDbgValue(Instruction *I); + bool placeDbgValues(Function &F); + bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, + LoadInst *&LI, Instruction *&Inst, bool HasPromoted); + bool tryToPromoteExts(TypePromotionTransaction &TPT, + const SmallVectorImpl<Instruction *> &Exts, + SmallVectorImpl<Instruction *> &ProfitablyMovedExts, + unsigned CreatedInstsCost = 0); + bool mergeSExts(Function &F); + bool splitLargeGEPOffsets(); + bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited, + SmallPtrSetImpl<Instruction *> &DeletedInstrs); + bool optimizePhiTypes(Function &F); + bool performAddressTypePromotion( + Instruction *&Inst, + bool AllowPromotionWithoutCommonHeader, + bool HasPromoted, TypePromotionTransaction &TPT, + SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); + bool splitBranchCondition(Function &F, bool &ModifiedDT); + bool simplifyOffsetableRelocate(GCStatepointInst &I); + + bool tryToSinkFreeOperands(Instruction *I); + bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0, + Value *Arg1, CmpInst *Cmp, + Intrinsic::ID IID); + bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); + bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); + bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); + void verifyBFIUpdates(Function &F); + }; + +} // end anonymous namespace + +char CodeGenPrepare::ID = 0; + +INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, + "Optimize for code generation", false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) -INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, - "Optimize for code generation", false, false) - -FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } - -bool CodeGenPrepare::runOnFunction(Function &F) { - if (skipFunction(F)) - return false; - - DL = &F.getParent()->getDataLayout(); - - bool EverMadeChange = false; - // Clear per function information. - InsertedInsts.clear(); - PromotedInsts.clear(); - - TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); - SubtargetInfo = TM->getSubtargetImpl(F); - TLI = SubtargetInfo->getTargetLowering(); - TRI = SubtargetInfo->getRegisterInfo(); - TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - BPI.reset(new BranchProbabilityInfo(F, *LI)); - BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); - PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - OptSize = F.hasOptSize(); - if (ProfileGuidedSectionPrefix) { +INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, + "Optimize for code generation", false, false) + +FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } + +bool CodeGenPrepare::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + DL = &F.getParent()->getDataLayout(); + + bool EverMadeChange = false; + // Clear per function information. + InsertedInsts.clear(); + PromotedInsts.clear(); + + TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); + SubtargetInfo = TM->getSubtargetImpl(F); + TLI = SubtargetInfo->getTargetLowering(); + TRI = SubtargetInfo->getRegisterInfo(); + TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + BPI.reset(new BranchProbabilityInfo(F, *LI)); + BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); + PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + OptSize = F.hasOptSize(); + if (ProfileGuidedSectionPrefix) { // The hot attribute overwrites profile count based hotness while profile // counts based hotness overwrite the cold attribute. // This is a conservative behabvior. @@ -484,138 +484,138 @@ bool CodeGenPrepare::runOnFunction(Function &F) { else if (PSI->isFunctionColdInCallGraph(&F, *BFI) || F.hasFnAttribute(Attribute::Cold)) F.setSectionPrefix("unlikely"); - else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && - PSI->isFunctionHotnessUnknown(F)) + else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() && + PSI->isFunctionHotnessUnknown(F)) F.setSectionPrefix("unknown"); - } - - /// This optimization identifies DIV instructions that can be - /// profitably bypassed and carried out with a shorter, faster divide. - if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { - const DenseMap<unsigned int, unsigned int> &BypassWidths = - TLI->getBypassSlowDivWidths(); - BasicBlock* BB = &*F.begin(); - while (BB != nullptr) { - // bypassSlowDivision may create new BBs, but we don't want to reapply the - // optimization to those blocks. - BasicBlock* Next = BB->getNextNode(); - // F.hasOptSize is already checked in the outer if statement. - if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) - EverMadeChange |= bypassSlowDivision(BB, BypassWidths); - BB = Next; - } - } - - // Eliminate blocks that contain only PHI nodes and an - // unconditional branch. - EverMadeChange |= eliminateMostlyEmptyBlocks(F); - - bool ModifiedDT = false; - if (!DisableBranchOpts) - EverMadeChange |= splitBranchCondition(F, ModifiedDT); - - // Split some critical edges where one of the sources is an indirect branch, - // to help generate sane code for PHIs involving such edges. - EverMadeChange |= SplitIndirectBrCriticalEdges(F); - - bool MadeChange = true; - while (MadeChange) { - MadeChange = false; - DT.reset(); - for (Function::iterator I = F.begin(); I != F.end(); ) { - BasicBlock *BB = &*I++; - bool ModifiedDTOnIteration = false; - MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); - - // Restart BB iteration if the dominator tree of the Function was changed - if (ModifiedDTOnIteration) - break; - } - if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) - MadeChange |= mergeSExts(F); - if (!LargeOffsetGEPMap.empty()) - MadeChange |= splitLargeGEPOffsets(); - MadeChange |= optimizePhiTypes(F); - - if (MadeChange) - eliminateFallThrough(F); - - // Really free removed instructions during promotion. - for (Instruction *I : RemovedInsts) - I->deleteValue(); - - EverMadeChange |= MadeChange; - SeenChainsForSExt.clear(); - ValToSExtendedUses.clear(); - RemovedInsts.clear(); - LargeOffsetGEPMap.clear(); - LargeOffsetGEPID.clear(); - } - + } + + /// This optimization identifies DIV instructions that can be + /// profitably bypassed and carried out with a shorter, faster divide. + if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) { + const DenseMap<unsigned int, unsigned int> &BypassWidths = + TLI->getBypassSlowDivWidths(); + BasicBlock* BB = &*F.begin(); + while (BB != nullptr) { + // bypassSlowDivision may create new BBs, but we don't want to reapply the + // optimization to those blocks. + BasicBlock* Next = BB->getNextNode(); + // F.hasOptSize is already checked in the outer if statement. + if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) + EverMadeChange |= bypassSlowDivision(BB, BypassWidths); + BB = Next; + } + } + + // Eliminate blocks that contain only PHI nodes and an + // unconditional branch. + EverMadeChange |= eliminateMostlyEmptyBlocks(F); + + bool ModifiedDT = false; + if (!DisableBranchOpts) + EverMadeChange |= splitBranchCondition(F, ModifiedDT); + + // Split some critical edges where one of the sources is an indirect branch, + // to help generate sane code for PHIs involving such edges. + EverMadeChange |= SplitIndirectBrCriticalEdges(F); + + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + DT.reset(); + for (Function::iterator I = F.begin(); I != F.end(); ) { + BasicBlock *BB = &*I++; + bool ModifiedDTOnIteration = false; + MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); + + // Restart BB iteration if the dominator tree of the Function was changed + if (ModifiedDTOnIteration) + break; + } + if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) + MadeChange |= mergeSExts(F); + if (!LargeOffsetGEPMap.empty()) + MadeChange |= splitLargeGEPOffsets(); + MadeChange |= optimizePhiTypes(F); + + if (MadeChange) + eliminateFallThrough(F); + + // Really free removed instructions during promotion. + for (Instruction *I : RemovedInsts) + I->deleteValue(); + + EverMadeChange |= MadeChange; + SeenChainsForSExt.clear(); + ValToSExtendedUses.clear(); + RemovedInsts.clear(); + LargeOffsetGEPMap.clear(); + LargeOffsetGEPID.clear(); + } + NewGEPBases.clear(); - SunkAddrs.clear(); - - if (!DisableBranchOpts) { - MadeChange = false; - // Use a set vector to get deterministic iteration order. The order the - // blocks are removed may affect whether or not PHI nodes in successors - // are removed. - SmallSetVector<BasicBlock*, 8> WorkList; - for (BasicBlock &BB : F) { + SunkAddrs.clear(); + + if (!DisableBranchOpts) { + MadeChange = false; + // Use a set vector to get deterministic iteration order. The order the + // blocks are removed may affect whether or not PHI nodes in successors + // are removed. + SmallSetVector<BasicBlock*, 8> WorkList; + for (BasicBlock &BB : F) { SmallVector<BasicBlock *, 2> Successors(successors(&BB)); - MadeChange |= ConstantFoldTerminator(&BB, true); - if (!MadeChange) continue; - - for (SmallVectorImpl<BasicBlock*>::iterator - II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + MadeChange |= ConstantFoldTerminator(&BB, true); + if (!MadeChange) continue; + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_empty(*II)) - WorkList.insert(*II); - } - - // Delete the dead blocks and any of their dead successors. - MadeChange |= !WorkList.empty(); - while (!WorkList.empty()) { - BasicBlock *BB = WorkList.pop_back_val(); + WorkList.insert(*II); + } + + // Delete the dead blocks and any of their dead successors. + MadeChange |= !WorkList.empty(); + while (!WorkList.empty()) { + BasicBlock *BB = WorkList.pop_back_val(); SmallVector<BasicBlock*, 2> Successors(successors(BB)); - - DeleteDeadBlock(BB); - - for (SmallVectorImpl<BasicBlock*>::iterator - II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + + DeleteDeadBlock(BB); + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_empty(*II)) - WorkList.insert(*II); - } - - // Merge pairs of basic blocks with unconditional branches, connected by - // a single edge. - if (EverMadeChange || MadeChange) - MadeChange |= eliminateFallThrough(F); - - EverMadeChange |= MadeChange; - } - - if (!DisableGCOpts) { - SmallVector<GCStatepointInst *, 2> Statepoints; - for (BasicBlock &BB : F) - for (Instruction &I : BB) - if (auto *SP = dyn_cast<GCStatepointInst>(&I)) - Statepoints.push_back(SP); - for (auto &I : Statepoints) - EverMadeChange |= simplifyOffsetableRelocate(*I); - } - - // Do this last to clean up use-before-def scenarios introduced by other - // preparatory transforms. - EverMadeChange |= placeDbgValues(F); - -#ifndef NDEBUG - if (VerifyBFIUpdates) - verifyBFIUpdates(F); -#endif - - return EverMadeChange; -} - + WorkList.insert(*II); + } + + // Merge pairs of basic blocks with unconditional branches, connected by + // a single edge. + if (EverMadeChange || MadeChange) + MadeChange |= eliminateFallThrough(F); + + EverMadeChange |= MadeChange; + } + + if (!DisableGCOpts) { + SmallVector<GCStatepointInst *, 2> Statepoints; + for (BasicBlock &BB : F) + for (Instruction &I : BB) + if (auto *SP = dyn_cast<GCStatepointInst>(&I)) + Statepoints.push_back(SP); + for (auto &I : Statepoints) + EverMadeChange |= simplifyOffsetableRelocate(*I); + } + + // Do this last to clean up use-before-def scenarios introduced by other + // preparatory transforms. + EverMadeChange |= placeDbgValues(F); + +#ifndef NDEBUG + if (VerifyBFIUpdates) + verifyBFIUpdates(F); +#endif + + return EverMadeChange; +} + /// An instruction is about to be deleted, so remove all references to it in our /// GEP-tracking data strcutures. void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { @@ -643,49 +643,49 @@ void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) { LargeOffsetGEPMap.erase(VecI); } -// Verify BFI has been updated correctly by recomputing BFI and comparing them. -void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { - DominatorTree NewDT(F); - LoopInfo NewLI(NewDT); - BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); - BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); - NewBFI.verifyMatch(*BFI); -} - -/// Merge basic blocks which are connected by a single edge, where one of the -/// basic blocks has a single successor pointing to the other basic block, -/// which has a single predecessor. -bool CodeGenPrepare::eliminateFallThrough(Function &F) { - bool Changed = false; - // Scan all of the blocks in the function, except for the entry block. - // Use a temporary array to avoid iterator being invalidated when - // deleting blocks. - SmallVector<WeakTrackingVH, 16> Blocks; +// Verify BFI has been updated correctly by recomputing BFI and comparing them. +void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) { + DominatorTree NewDT(F); + LoopInfo NewLI(NewDT); + BranchProbabilityInfo NewBPI(F, NewLI, TLInfo); + BlockFrequencyInfo NewBFI(F, NewBPI, NewLI); + NewBFI.verifyMatch(*BFI); +} + +/// Merge basic blocks which are connected by a single edge, where one of the +/// basic blocks has a single successor pointing to the other basic block, +/// which has a single predecessor. +bool CodeGenPrepare::eliminateFallThrough(Function &F) { + bool Changed = false; + // Scan all of the blocks in the function, except for the entry block. + // Use a temporary array to avoid iterator being invalidated when + // deleting blocks. + SmallVector<WeakTrackingVH, 16> Blocks; for (auto &Block : llvm::drop_begin(F)) - Blocks.push_back(&Block); - + Blocks.push_back(&Block); + SmallSet<WeakTrackingVH, 16> Preds; - for (auto &Block : Blocks) { - auto *BB = cast_or_null<BasicBlock>(Block); - if (!BB) - continue; - // If the destination block has a single pred, then this is a trivial - // edge, just collapse it. - BasicBlock *SinglePred = BB->getSinglePredecessor(); - - // Don't merge if BB's address is taken. - if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; - - BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); - if (Term && !Term->isConditional()) { - Changed = true; - LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); - - // Merge BB into SinglePred and delete it. - MergeBlockIntoPredecessor(BB); + for (auto &Block : Blocks) { + auto *BB = cast_or_null<BasicBlock>(Block); + if (!BB) + continue; + // If the destination block has a single pred, then this is a trivial + // edge, just collapse it. + BasicBlock *SinglePred = BB->getSinglePredecessor(); + + // Don't merge if BB's address is taken. + if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; + + BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); + if (Term && !Term->isConditional()) { + Changed = true; + LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); + + // Merge BB into SinglePred and delete it. + MergeBlockIntoPredecessor(BB); Preds.insert(SinglePred); - } - } + } + } // (Repeatedly) merging blocks into their predecessors can create redundant // debug intrinsics. @@ -693,4649 +693,4649 @@ bool CodeGenPrepare::eliminateFallThrough(Function &F) { if (auto *BB = cast_or_null<BasicBlock>(Pred)) RemoveRedundantDbgInstrs(BB); - return Changed; -} - -/// Find a destination block from BB if BB is mergeable empty block. -BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { - // If this block doesn't end with an uncond branch, ignore it. - BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || !BI->isUnconditional()) - return nullptr; - - // If the instruction before the branch (skipping debug info) isn't a phi - // node, then other stuff is happening here. - BasicBlock::iterator BBI = BI->getIterator(); - if (BBI != BB->begin()) { - --BBI; - while (isa<DbgInfoIntrinsic>(BBI)) { - if (BBI == BB->begin()) - break; - --BBI; - } - if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) - return nullptr; - } - - // Do not break infinite loops. - BasicBlock *DestBB = BI->getSuccessor(0); - if (DestBB == BB) - return nullptr; - - if (!canMergeBlocks(BB, DestBB)) - DestBB = nullptr; - - return DestBB; -} - -/// Eliminate blocks that contain only PHI nodes, debug info directives, and an -/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split -/// edges in ways that are non-optimal for isel. Start by eliminating these -/// blocks so we can split them the way we want them. -bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { - SmallPtrSet<BasicBlock *, 16> Preheaders; - SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); - while (!LoopList.empty()) { - Loop *L = LoopList.pop_back_val(); + return Changed; +} + +/// Find a destination block from BB if BB is mergeable empty block. +BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { + // If this block doesn't end with an uncond branch, ignore it. + BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isUnconditional()) + return nullptr; + + // If the instruction before the branch (skipping debug info) isn't a phi + // node, then other stuff is happening here. + BasicBlock::iterator BBI = BI->getIterator(); + if (BBI != BB->begin()) { + --BBI; + while (isa<DbgInfoIntrinsic>(BBI)) { + if (BBI == BB->begin()) + break; + --BBI; + } + if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) + return nullptr; + } + + // Do not break infinite loops. + BasicBlock *DestBB = BI->getSuccessor(0); + if (DestBB == BB) + return nullptr; + + if (!canMergeBlocks(BB, DestBB)) + DestBB = nullptr; + + return DestBB; +} + +/// Eliminate blocks that contain only PHI nodes, debug info directives, and an +/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split +/// edges in ways that are non-optimal for isel. Start by eliminating these +/// blocks so we can split them the way we want them. +bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { + SmallPtrSet<BasicBlock *, 16> Preheaders; + SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); + while (!LoopList.empty()) { + Loop *L = LoopList.pop_back_val(); llvm::append_range(LoopList, *L); - if (BasicBlock *Preheader = L->getLoopPreheader()) - Preheaders.insert(Preheader); - } - - bool MadeChange = false; - // Copy blocks into a temporary array to avoid iterator invalidation issues - // as we remove them. - // Note that this intentionally skips the entry block. - SmallVector<WeakTrackingVH, 16> Blocks; + if (BasicBlock *Preheader = L->getLoopPreheader()) + Preheaders.insert(Preheader); + } + + bool MadeChange = false; + // Copy blocks into a temporary array to avoid iterator invalidation issues + // as we remove them. + // Note that this intentionally skips the entry block. + SmallVector<WeakTrackingVH, 16> Blocks; for (auto &Block : llvm::drop_begin(F)) - Blocks.push_back(&Block); - - for (auto &Block : Blocks) { - BasicBlock *BB = cast_or_null<BasicBlock>(Block); - if (!BB) - continue; - BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); - if (!DestBB || - !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) - continue; - - eliminateMostlyEmptyBlock(BB); - MadeChange = true; - } - return MadeChange; -} - -bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, - BasicBlock *DestBB, - bool isPreheader) { - // Do not delete loop preheaders if doing so would create a critical edge. - // Loop preheaders can be good locations to spill registers. If the - // preheader is deleted and we create a critical edge, registers may be - // spilled in the loop body instead. - if (!DisablePreheaderProtect && isPreheader && - !(BB->getSinglePredecessor() && - BB->getSinglePredecessor()->getSingleSuccessor())) - return false; - - // Skip merging if the block's successor is also a successor to any callbr - // that leads to this block. - // FIXME: Is this really needed? Is this a correctness issue? - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) - for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) - if (DestBB == CBI->getSuccessor(i)) - return false; - } - - // Try to skip merging if the unique predecessor of BB is terminated by a - // switch or indirect branch instruction, and BB is used as an incoming block - // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to - // add COPY instructions in the predecessor of BB instead of BB (if it is not - // merged). Note that the critical edge created by merging such blocks wont be - // split in MachineSink because the jump table is not analyzable. By keeping - // such empty block (BB), ISel will place COPY instructions in BB, not in the - // predecessor of BB. - BasicBlock *Pred = BB->getUniquePredecessor(); - if (!Pred || - !(isa<SwitchInst>(Pred->getTerminator()) || - isa<IndirectBrInst>(Pred->getTerminator()))) - return true; - - if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) - return true; - - // We use a simple cost heuristic which determine skipping merging is - // profitable if the cost of skipping merging is less than the cost of - // merging : Cost(skipping merging) < Cost(merging BB), where the - // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and - // the Cost(merging BB) is Freq(Pred) * Cost(Copy). - // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : - // Freq(Pred) / Freq(BB) > 2. - // Note that if there are multiple empty blocks sharing the same incoming - // value for the PHIs in the DestBB, we consider them together. In such - // case, Cost(merging BB) will be the sum of their frequencies. - - if (!isa<PHINode>(DestBB->begin())) - return true; - - SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; - - // Find all other incoming blocks from which incoming values of all PHIs in - // DestBB are the same as the ones from BB. - for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; - ++PI) { - BasicBlock *DestBBPred = *PI; - if (DestBBPred == BB) - continue; - - if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { - return DestPN.getIncomingValueForBlock(BB) == - DestPN.getIncomingValueForBlock(DestBBPred); - })) - SameIncomingValueBBs.insert(DestBBPred); - } - - // See if all BB's incoming values are same as the value from Pred. In this - // case, no reason to skip merging because COPYs are expected to be place in - // Pred already. - if (SameIncomingValueBBs.count(Pred)) - return true; - - BlockFrequency PredFreq = BFI->getBlockFreq(Pred); - BlockFrequency BBFreq = BFI->getBlockFreq(BB); - - for (auto *SameValueBB : SameIncomingValueBBs) - if (SameValueBB->getUniquePredecessor() == Pred && - DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) - BBFreq += BFI->getBlockFreq(SameValueBB); - - return PredFreq.getFrequency() <= - BBFreq.getFrequency() * FreqRatioToSkipMerge; -} - -/// Return true if we can merge BB into DestBB if there is a single -/// unconditional branch between them, and BB contains no other non-phi -/// instructions. -bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, - const BasicBlock *DestBB) const { - // We only want to eliminate blocks whose phi nodes are used by phi nodes in - // the successor. If there are more complex condition (e.g. preheaders), - // don't mess around with them. - for (const PHINode &PN : BB->phis()) { - for (const User *U : PN.users()) { - const Instruction *UI = cast<Instruction>(U); - if (UI->getParent() != DestBB || !isa<PHINode>(UI)) - return false; - // If User is inside DestBB block and it is a PHINode then check - // incoming value. If incoming value is not from BB then this is - // a complex condition (e.g. preheaders) we want to avoid here. - if (UI->getParent() == DestBB) { - if (const PHINode *UPN = dyn_cast<PHINode>(UI)) - for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { - Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); - if (Insn && Insn->getParent() == BB && - Insn->getParent() != UPN->getIncomingBlock(I)) - return false; - } - } - } - } - - // If BB and DestBB contain any common predecessors, then the phi nodes in BB - // and DestBB may have conflicting incoming values for the block. If so, we - // can't merge the block. - const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); - if (!DestBBPN) return true; // no conflict. - - // Collect the preds of BB. - SmallPtrSet<const BasicBlock*, 16> BBPreds; - if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { - // It is faster to get preds from a PHI than with pred_iterator. - for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) - BBPreds.insert(BBPN->getIncomingBlock(i)); - } else { - BBPreds.insert(pred_begin(BB), pred_end(BB)); - } - - // Walk the preds of DestBB. - for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { - BasicBlock *Pred = DestBBPN->getIncomingBlock(i); - if (BBPreds.count(Pred)) { // Common predecessor? - for (const PHINode &PN : DestBB->phis()) { - const Value *V1 = PN.getIncomingValueForBlock(Pred); - const Value *V2 = PN.getIncomingValueForBlock(BB); - - // If V2 is a phi node in BB, look up what the mapped value will be. - if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) - if (V2PN->getParent() == BB) - V2 = V2PN->getIncomingValueForBlock(Pred); - - // If there is a conflict, bail out. - if (V1 != V2) return false; - } - } - } - - return true; -} - -/// Eliminate a basic block that has only phi's and an unconditional branch in -/// it. -void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { - BranchInst *BI = cast<BranchInst>(BB->getTerminator()); - BasicBlock *DestBB = BI->getSuccessor(0); - - LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" - << *BB << *DestBB); - - // If the destination block has a single pred, then this is a trivial edge, - // just collapse it. - if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { - if (SinglePred != DestBB) { - assert(SinglePred == BB && - "Single predecessor not the same as predecessor"); - // Merge DestBB into SinglePred/BB and delete it. - MergeBlockIntoPredecessor(DestBB); - // Note: BB(=SinglePred) will not be deleted on this path. - // DestBB(=its single successor) is the one that was deleted. - LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); - return; - } - } - - // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB - // to handle the new incoming edges it is about to have. - for (PHINode &PN : DestBB->phis()) { - // Remove the incoming value for BB, and remember it. - Value *InVal = PN.removeIncomingValue(BB, false); - - // Two options: either the InVal is a phi node defined in BB or it is some - // value that dominates BB. - PHINode *InValPhi = dyn_cast<PHINode>(InVal); - if (InValPhi && InValPhi->getParent() == BB) { - // Add all of the input values of the input PHI as inputs of this phi. - for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) - PN.addIncoming(InValPhi->getIncomingValue(i), - InValPhi->getIncomingBlock(i)); - } else { - // Otherwise, add one instance of the dominating value for each edge that - // we will be adding. - if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { - for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) - PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); - } else { - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - PN.addIncoming(InVal, *PI); - } - } - } - - // The PHIs are now updated, change everything that refers to BB to use - // DestBB and remove BB. - BB->replaceAllUsesWith(DestBB); - BB->eraseFromParent(); - ++NumBlocksElim; - - LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); -} - -// Computes a map of base pointer relocation instructions to corresponding -// derived pointer relocation instructions given a vector of all relocate calls -static void computeBaseDerivedRelocateMap( - const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, - DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> - &RelocateInstMap) { - // Collect information in two maps: one primarily for locating the base object - // while filling the second map; the second map is the final structure holding - // a mapping between Base and corresponding Derived relocate calls - DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; - for (auto *ThisRelocate : AllRelocateCalls) { - auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), - ThisRelocate->getDerivedPtrIndex()); - RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); - } - for (auto &Item : RelocateIdxMap) { - std::pair<unsigned, unsigned> Key = Item.first; - if (Key.first == Key.second) - // Base relocation: nothing to insert - continue; - - GCRelocateInst *I = Item.second; - auto BaseKey = std::make_pair(Key.first, Key.first); - - // We're iterating over RelocateIdxMap so we cannot modify it. - auto MaybeBase = RelocateIdxMap.find(BaseKey); - if (MaybeBase == RelocateIdxMap.end()) - // TODO: We might want to insert a new base object relocate and gep off - // that, if there are enough derived object relocates. - continue; - - RelocateInstMap[MaybeBase->second].push_back(I); - } -} - -// Accepts a GEP and extracts the operands into a vector provided they're all -// small integer constants -static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, - SmallVectorImpl<Value *> &OffsetV) { - for (unsigned i = 1; i < GEP->getNumOperands(); i++) { - // Only accept small constant integer operands - auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); - if (!Op || Op->getZExtValue() > 20) - return false; - } - - for (unsigned i = 1; i < GEP->getNumOperands(); i++) - OffsetV.push_back(GEP->getOperand(i)); - return true; -} - -// Takes a RelocatedBase (base pointer relocation instruction) and Targets to -// replace, computes a replacement, and affects it. -static bool -simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, - const SmallVectorImpl<GCRelocateInst *> &Targets) { - bool MadeChange = false; - // We must ensure the relocation of derived pointer is defined after - // relocation of base pointer. If we find a relocation corresponding to base - // defined earlier than relocation of base then we move relocation of base - // right before found relocation. We consider only relocation in the same - // basic block as relocation of base. Relocations from other basic block will - // be skipped by optimization and we do not care about them. - for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); - &*R != RelocatedBase; ++R) - if (auto *RI = dyn_cast<GCRelocateInst>(R)) - if (RI->getStatepoint() == RelocatedBase->getStatepoint()) - if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { - RelocatedBase->moveBefore(RI); - break; - } - - for (GCRelocateInst *ToReplace : Targets) { - assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && - "Not relocating a derived object of the original base object"); - if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { - // A duplicate relocate call. TODO: coalesce duplicates. - continue; - } - - if (RelocatedBase->getParent() != ToReplace->getParent()) { - // Base and derived relocates are in different basic blocks. - // In this case transform is only valid when base dominates derived - // relocate. However it would be too expensive to check dominance - // for each such relocate, so we skip the whole transformation. - continue; - } - - Value *Base = ToReplace->getBasePtr(); - auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); - if (!Derived || Derived->getPointerOperand() != Base) - continue; - - SmallVector<Value *, 2> OffsetV; - if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) - continue; - - // Create a Builder and replace the target callsite with a gep - assert(RelocatedBase->getNextNode() && - "Should always have one since it's not a terminator"); - - // Insert after RelocatedBase - IRBuilder<> Builder(RelocatedBase->getNextNode()); - Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); - - // If gc_relocate does not match the actual type, cast it to the right type. - // In theory, there must be a bitcast after gc_relocate if the type does not - // match, and we should reuse it to get the derived pointer. But it could be - // cases like this: - // bb1: - // ... - // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) - // br label %merge - // - // bb2: - // ... - // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) - // br label %merge - // - // merge: - // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] - // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* - // - // In this case, we can not find the bitcast any more. So we insert a new bitcast - // no matter there is already one or not. In this way, we can handle all cases, and - // the extra bitcast should be optimized away in later passes. - Value *ActualRelocatedBase = RelocatedBase; - if (RelocatedBase->getType() != Base->getType()) { - ActualRelocatedBase = - Builder.CreateBitCast(RelocatedBase, Base->getType()); - } - Value *Replacement = Builder.CreateGEP( - Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); - Replacement->takeName(ToReplace); - // If the newly generated derived pointer's type does not match the original derived - // pointer's type, cast the new derived pointer to match it. Same reasoning as above. - Value *ActualReplacement = Replacement; - if (Replacement->getType() != ToReplace->getType()) { - ActualReplacement = - Builder.CreateBitCast(Replacement, ToReplace->getType()); - } - ToReplace->replaceAllUsesWith(ActualReplacement); - ToReplace->eraseFromParent(); - - MadeChange = true; - } - return MadeChange; -} - -// Turns this: -// -// %base = ... -// %ptr = gep %base + 15 -// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) -// %base' = relocate(%tok, i32 4, i32 4) -// %ptr' = relocate(%tok, i32 4, i32 5) -// %val = load %ptr' -// -// into this: -// -// %base = ... -// %ptr = gep %base + 15 -// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) -// %base' = gc.relocate(%tok, i32 4, i32 4) -// %ptr' = gep %base' + 15 -// %val = load %ptr' -bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { - bool MadeChange = false; - SmallVector<GCRelocateInst *, 2> AllRelocateCalls; - for (auto *U : I.users()) - if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) - // Collect all the relocate calls associated with a statepoint - AllRelocateCalls.push_back(Relocate); - - // We need at least one base pointer relocation + one derived pointer - // relocation to mangle - if (AllRelocateCalls.size() < 2) - return false; - - // RelocateInstMap is a mapping from the base relocate instruction to the - // corresponding derived relocate instructions - DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; - computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); - if (RelocateInstMap.empty()) - return false; - - for (auto &Item : RelocateInstMap) - // Item.first is the RelocatedBase to offset against - // Item.second is the vector of Targets to replace - MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); - return MadeChange; -} - -/// Sink the specified cast instruction into its user blocks. -static bool SinkCast(CastInst *CI) { - BasicBlock *DefBB = CI->getParent(); - - /// InsertedCasts - Only insert a cast in each block once. - DenseMap<BasicBlock*, CastInst*> InsertedCasts; - - bool MadeChange = false; - for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); - UI != E; ) { - Use &TheUse = UI.getUse(); - Instruction *User = cast<Instruction>(*UI); - - // Figure out which BB this cast is used in. For PHI's this is the - // appropriate predecessor block. - BasicBlock *UserBB = User->getParent(); - if (PHINode *PN = dyn_cast<PHINode>(User)) { - UserBB = PN->getIncomingBlock(TheUse); - } - - // Preincrement use iterator so we don't invalidate it. - ++UI; - - // The first insertion point of a block containing an EH pad is after the - // pad. If the pad is the user, we cannot sink the cast past the pad. - if (User->isEHPad()) - continue; - - // If the block selected to receive the cast is an EH pad that does not - // allow non-PHI instructions before the terminator, we can't sink the - // cast. - if (UserBB->getTerminator()->isEHPad()) - continue; - - // If this user is in the same block as the cast, don't change the cast. - if (UserBB == DefBB) continue; - - // If we have already inserted a cast into this block, use it. - CastInst *&InsertedCast = InsertedCasts[UserBB]; - - if (!InsertedCast) { - BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - assert(InsertPt != UserBB->end()); - InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), - CI->getType(), "", &*InsertPt); - InsertedCast->setDebugLoc(CI->getDebugLoc()); - } - - // Replace a use of the cast with a use of the new cast. - TheUse = InsertedCast; - MadeChange = true; - ++NumCastUses; - } - - // If we removed all uses, nuke the cast. - if (CI->use_empty()) { - salvageDebugInfo(*CI); - CI->eraseFromParent(); - MadeChange = true; - } - - return MadeChange; -} - -/// If the specified cast instruction is a noop copy (e.g. it's casting from -/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to -/// reduce the number of virtual registers that must be created and coalesced. -/// -/// Return true if any changes are made. -static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, - const DataLayout &DL) { - // Sink only "cheap" (or nop) address-space casts. This is a weaker condition - // than sinking only nop casts, but is helpful on some platforms. - if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { - if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), - ASC->getDestAddressSpace())) - return false; - } - - // If this is a noop copy, - EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); - EVT DstVT = TLI.getValueType(DL, CI->getType()); - - // This is an fp<->int conversion? - if (SrcVT.isInteger() != DstVT.isInteger()) - return false; - - // If this is an extension, it will be a zero or sign extension, which - // isn't a noop. - if (SrcVT.bitsLT(DstVT)) return false; - - // If these values will be promoted, find out what they will be promoted - // to. This helps us consider truncates on PPC as noop copies when they - // are. - if (TLI.getTypeAction(CI->getContext(), SrcVT) == - TargetLowering::TypePromoteInteger) - SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); - if (TLI.getTypeAction(CI->getContext(), DstVT) == - TargetLowering::TypePromoteInteger) - DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); - - // If, after promotion, these are the same types, this is a noop copy. - if (SrcVT != DstVT) - return false; - - return SinkCast(CI); -} - -bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, - Value *Arg0, Value *Arg1, - CmpInst *Cmp, - Intrinsic::ID IID) { - if (BO->getParent() != Cmp->getParent()) { - // We used to use a dominator tree here to allow multi-block optimization. - // But that was problematic because: - // 1. It could cause a perf regression by hoisting the math op into the - // critical path. - // 2. It could cause a perf regression by creating a value that was live - // across multiple blocks and increasing register pressure. - // 3. Use of a dominator tree could cause large compile-time regression. - // This is because we recompute the DT on every change in the main CGP - // run-loop. The recomputing is probably unnecessary in many cases, so if - // that was fixed, using a DT here would be ok. - return false; - } - - // We allow matching the canonical IR (add X, C) back to (usubo X, -C). - if (BO->getOpcode() == Instruction::Add && - IID == Intrinsic::usub_with_overflow) { - assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); - Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); - } - - // Insert at the first instruction of the pair. - Instruction *InsertPt = nullptr; - for (Instruction &Iter : *Cmp->getParent()) { - // If BO is an XOR, it is not guaranteed that it comes after both inputs to - // the overflow intrinsic are defined. - if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { - InsertPt = &Iter; - break; - } - } - assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); - - IRBuilder<> Builder(InsertPt); - Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); - if (BO->getOpcode() != Instruction::Xor) { - Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); - BO->replaceAllUsesWith(Math); - } else - assert(BO->hasOneUse() && - "Patterns with XOr should use the BO only in the compare"); - Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); - Cmp->replaceAllUsesWith(OV); - Cmp->eraseFromParent(); - BO->eraseFromParent(); - return true; -} - -/// Match special-case patterns that check for unsigned add overflow. -static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, - BinaryOperator *&Add) { - // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) - // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) - Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); - - // We are not expecting non-canonical/degenerate code. Just bail out. - if (isa<Constant>(A)) - return false; - - ICmpInst::Predicate Pred = Cmp->getPredicate(); - if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) - B = ConstantInt::get(B->getType(), 1); - else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) - B = ConstantInt::get(B->getType(), -1); - else - return false; - - // Check the users of the variable operand of the compare looking for an add - // with the adjusted constant. - for (User *U : A->users()) { - if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { - Add = cast<BinaryOperator>(U); - return true; - } - } - return false; -} - -/// Try to combine the compare into a call to the llvm.uadd.with.overflow -/// intrinsic. Return true if any changes were made. -bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, - bool &ModifiedDT) { - Value *A, *B; - BinaryOperator *Add; - if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { - if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) - return false; - // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. - A = Add->getOperand(0); - B = Add->getOperand(1); - } - - if (!TLI->shouldFormOverflowOp(ISD::UADDO, - TLI->getValueType(*DL, Add->getType()), - Add->hasNUsesOrMore(2))) - return false; - - // We don't want to move around uses of condition values this late, so we - // check if it is legal to create the call to the intrinsic in the basic - // block containing the icmp. - if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) - return false; - - if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, - Intrinsic::uadd_with_overflow)) - return false; - - // Reset callers - do not crash by iterating over a dead instruction. - ModifiedDT = true; - return true; -} - -bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, - bool &ModifiedDT) { - // We are not expecting non-canonical/degenerate code. Just bail out. - Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); - if (isa<Constant>(A) && isa<Constant>(B)) - return false; - - // Convert (A u> B) to (A u< B) to simplify pattern matching. - ICmpInst::Predicate Pred = Cmp->getPredicate(); - if (Pred == ICmpInst::ICMP_UGT) { - std::swap(A, B); - Pred = ICmpInst::ICMP_ULT; - } - // Convert special-case: (A == 0) is the same as (A u< 1). - if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { - B = ConstantInt::get(B->getType(), 1); - Pred = ICmpInst::ICMP_ULT; - } - // Convert special-case: (A != 0) is the same as (0 u< A). - if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { - std::swap(A, B); - Pred = ICmpInst::ICMP_ULT; - } - if (Pred != ICmpInst::ICMP_ULT) - return false; - - // Walk the users of a variable operand of a compare looking for a subtract or - // add with that same operand. Also match the 2nd operand of the compare to - // the add/sub, but that may be a negated constant operand of an add. - Value *CmpVariableOperand = isa<Constant>(A) ? B : A; - BinaryOperator *Sub = nullptr; - for (User *U : CmpVariableOperand->users()) { - // A - B, A u< B --> usubo(A, B) - if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { - Sub = cast<BinaryOperator>(U); - break; - } - - // A + (-C), A u< C (canonicalized form of (sub A, C)) - const APInt *CmpC, *AddC; - if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && - match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { - Sub = cast<BinaryOperator>(U); - break; - } - } - if (!Sub) - return false; - - if (!TLI->shouldFormOverflowOp(ISD::USUBO, - TLI->getValueType(*DL, Sub->getType()), - Sub->hasNUsesOrMore(2))) - return false; - - if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), - Cmp, Intrinsic::usub_with_overflow)) - return false; - - // Reset callers - do not crash by iterating over a dead instruction. - ModifiedDT = true; - return true; -} - -/// Sink the given CmpInst into user blocks to reduce the number of virtual -/// registers that must be created and coalesced. This is a clear win except on -/// targets with multiple condition code registers (PowerPC), where it might -/// lose; some adjustment may be wanted there. -/// -/// Return true if any changes are made. -static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { - if (TLI.hasMultipleConditionRegisters()) - return false; - - // Avoid sinking soft-FP comparisons, since this can move them into a loop. - if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) - return false; - - // Only insert a cmp in each block once. - DenseMap<BasicBlock*, CmpInst*> InsertedCmps; - - bool MadeChange = false; - for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); - UI != E; ) { - Use &TheUse = UI.getUse(); - Instruction *User = cast<Instruction>(*UI); - - // Preincrement use iterator so we don't invalidate it. - ++UI; - - // Don't bother for PHI nodes. - if (isa<PHINode>(User)) - continue; - - // Figure out which BB this cmp is used in. - BasicBlock *UserBB = User->getParent(); - BasicBlock *DefBB = Cmp->getParent(); - - // If this user is in the same block as the cmp, don't change the cmp. - if (UserBB == DefBB) continue; - - // If we have already inserted a cmp into this block, use it. - CmpInst *&InsertedCmp = InsertedCmps[UserBB]; - - if (!InsertedCmp) { - BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - assert(InsertPt != UserBB->end()); - InsertedCmp = - CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), - Cmp->getOperand(0), Cmp->getOperand(1), "", - &*InsertPt); - // Propagate the debug info. - InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); - } - - // Replace a use of the cmp with a use of the new cmp. - TheUse = InsertedCmp; - MadeChange = true; - ++NumCmpUses; - } - - // If we removed all uses, nuke the cmp. - if (Cmp->use_empty()) { - Cmp->eraseFromParent(); - MadeChange = true; - } - - return MadeChange; -} - -/// For pattern like: -/// -/// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) -/// ... -/// DomBB: -/// ... -/// br DomCond, TrueBB, CmpBB -/// CmpBB: (with DomBB being the single predecessor) -/// ... -/// Cmp = icmp eq CmpOp0, CmpOp1 -/// ... -/// -/// It would use two comparison on targets that lowering of icmp sgt/slt is -/// different from lowering of icmp eq (PowerPC). This function try to convert -/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. -/// After that, DomCond and Cmp can use the same comparison so reduce one -/// comparison. -/// -/// Return true if any changes are made. -static bool foldICmpWithDominatingICmp(CmpInst *Cmp, - const TargetLowering &TLI) { - if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) - return false; - - ICmpInst::Predicate Pred = Cmp->getPredicate(); - if (Pred != ICmpInst::ICMP_EQ) - return false; - - // If icmp eq has users other than BranchInst and SelectInst, converting it to - // icmp slt/sgt would introduce more redundant LLVM IR. - for (User *U : Cmp->users()) { - if (isa<BranchInst>(U)) - continue; - if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) - continue; - return false; - } - - // This is a cheap/incomplete check for dominance - just match a single - // predecessor with a conditional branch. - BasicBlock *CmpBB = Cmp->getParent(); - BasicBlock *DomBB = CmpBB->getSinglePredecessor(); - if (!DomBB) - return false; - - // We want to ensure that the only way control gets to the comparison of - // interest is that a less/greater than comparison on the same operands is - // false. - Value *DomCond; - BasicBlock *TrueBB, *FalseBB; - if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) - return false; - if (CmpBB != FalseBB) - return false; - - Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); - ICmpInst::Predicate DomPred; - if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) - return false; - if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) - return false; - - // Convert the equality comparison to the opposite of the dominating - // comparison and swap the direction for all branch/select users. - // We have conceptually converted: - // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; - // to - // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; - // And similarly for branches. - for (User *U : Cmp->users()) { - if (auto *BI = dyn_cast<BranchInst>(U)) { - assert(BI->isConditional() && "Must be conditional"); - BI->swapSuccessors(); - continue; - } - if (auto *SI = dyn_cast<SelectInst>(U)) { - // Swap operands - SI->swapValues(); - SI->swapProfMetadata(); - continue; - } - llvm_unreachable("Must be a branch or a select"); - } - Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); - return true; -} - -bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { - if (sinkCmpExpression(Cmp, *TLI)) - return true; - - if (combineToUAddWithOverflow(Cmp, ModifiedDT)) - return true; - - if (combineToUSubWithOverflow(Cmp, ModifiedDT)) - return true; - - if (foldICmpWithDominatingICmp(Cmp, *TLI)) - return true; - - return false; -} - -/// Duplicate and sink the given 'and' instruction into user blocks where it is -/// used in a compare to allow isel to generate better code for targets where -/// this operation can be combined. -/// -/// Return true if any changes are made. -static bool sinkAndCmp0Expression(Instruction *AndI, - const TargetLowering &TLI, - SetOfInstrs &InsertedInsts) { - // Double-check that we're not trying to optimize an instruction that was - // already optimized by some other part of this pass. - assert(!InsertedInsts.count(AndI) && - "Attempting to optimize already optimized and instruction"); - (void) InsertedInsts; - - // Nothing to do for single use in same basic block. - if (AndI->hasOneUse() && - AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) - return false; - - // Try to avoid cases where sinking/duplicating is likely to increase register - // pressure. - if (!isa<ConstantInt>(AndI->getOperand(0)) && - !isa<ConstantInt>(AndI->getOperand(1)) && - AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) - return false; - - for (auto *U : AndI->users()) { - Instruction *User = cast<Instruction>(U); - - // Only sink 'and' feeding icmp with 0. - if (!isa<ICmpInst>(User)) - return false; - - auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); - if (!CmpC || !CmpC->isZero()) - return false; - } - - if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) - return false; - - LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); - LLVM_DEBUG(AndI->getParent()->dump()); - - // Push the 'and' into the same block as the icmp 0. There should only be - // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any - // others, so we don't need to keep track of which BBs we insert into. - for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); - UI != E; ) { - Use &TheUse = UI.getUse(); - Instruction *User = cast<Instruction>(*UI); - - // Preincrement use iterator so we don't invalidate it. - ++UI; - - LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); - - // Keep the 'and' in the same place if the use is already in the same block. - Instruction *InsertPt = - User->getParent() == AndI->getParent() ? AndI : User; - Instruction *InsertedAnd = - BinaryOperator::Create(Instruction::And, AndI->getOperand(0), - AndI->getOperand(1), "", InsertPt); - // Propagate the debug info. - InsertedAnd->setDebugLoc(AndI->getDebugLoc()); - - // Replace a use of the 'and' with a use of the new 'and'. - TheUse = InsertedAnd; - ++NumAndUses; - LLVM_DEBUG(User->getParent()->dump()); - } - - // We removed all uses, nuke the and. - AndI->eraseFromParent(); - return true; -} - -/// Check if the candidates could be combined with a shift instruction, which -/// includes: -/// 1. Truncate instruction -/// 2. And instruction and the imm is a mask of the low bits: -/// imm & (imm+1) == 0 -static bool isExtractBitsCandidateUse(Instruction *User) { - if (!isa<TruncInst>(User)) { - if (User->getOpcode() != Instruction::And || - !isa<ConstantInt>(User->getOperand(1))) - return false; - - const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); - - if ((Cimm & (Cimm + 1)).getBoolValue()) - return false; - } - return true; -} - -/// Sink both shift and truncate instruction to the use of truncate's BB. -static bool -SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, - DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, - const TargetLowering &TLI, const DataLayout &DL) { - BasicBlock *UserBB = User->getParent(); - DenseMap<BasicBlock *, CastInst *> InsertedTruncs; - auto *TruncI = cast<TruncInst>(User); - bool MadeChange = false; - - for (Value::user_iterator TruncUI = TruncI->user_begin(), - TruncE = TruncI->user_end(); - TruncUI != TruncE;) { - - Use &TruncTheUse = TruncUI.getUse(); - Instruction *TruncUser = cast<Instruction>(*TruncUI); - // Preincrement use iterator so we don't invalidate it. - - ++TruncUI; - - int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); - if (!ISDOpcode) - continue; - - // If the use is actually a legal node, there will not be an - // implicit truncate. - // FIXME: always querying the result type is just an - // approximation; some nodes' legality is determined by the - // operand or other means. There's no good way to find out though. - if (TLI.isOperationLegalOrCustom( - ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) - continue; - - // Don't bother for PHI nodes. - if (isa<PHINode>(TruncUser)) - continue; - - BasicBlock *TruncUserBB = TruncUser->getParent(); - - if (UserBB == TruncUserBB) - continue; - - BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; - CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; - - if (!InsertedShift && !InsertedTrunc) { - BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); - assert(InsertPt != TruncUserBB->end()); - // Sink the shift - if (ShiftI->getOpcode() == Instruction::AShr) - InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, - "", &*InsertPt); - else - InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, - "", &*InsertPt); - InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); - - // Sink the trunc - BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); - TruncInsertPt++; - assert(TruncInsertPt != TruncUserBB->end()); - - InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, - TruncI->getType(), "", &*TruncInsertPt); - InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); - - MadeChange = true; - - TruncTheUse = InsertedTrunc; - } - } - return MadeChange; -} - -/// Sink the shift *right* instruction into user blocks if the uses could -/// potentially be combined with this shift instruction and generate BitExtract -/// instruction. It will only be applied if the architecture supports BitExtract -/// instruction. Here is an example: -/// BB1: -/// %x.extract.shift = lshr i64 %arg1, 32 -/// BB2: -/// %x.extract.trunc = trunc i64 %x.extract.shift to i16 -/// ==> -/// -/// BB2: -/// %x.extract.shift.1 = lshr i64 %arg1, 32 -/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 -/// -/// CodeGen will recognize the pattern in BB2 and generate BitExtract -/// instruction. -/// Return true if any changes are made. -static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, - const TargetLowering &TLI, - const DataLayout &DL) { - BasicBlock *DefBB = ShiftI->getParent(); - - /// Only insert instructions in each block once. - DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; - - bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); - - bool MadeChange = false; - for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); - UI != E;) { - Use &TheUse = UI.getUse(); - Instruction *User = cast<Instruction>(*UI); - // Preincrement use iterator so we don't invalidate it. - ++UI; - - // Don't bother for PHI nodes. - if (isa<PHINode>(User)) - continue; - - if (!isExtractBitsCandidateUse(User)) - continue; - - BasicBlock *UserBB = User->getParent(); - - if (UserBB == DefBB) { - // If the shift and truncate instruction are in the same BB. The use of - // the truncate(TruncUse) may still introduce another truncate if not - // legal. In this case, we would like to sink both shift and truncate - // instruction to the BB of TruncUse. - // for example: - // BB1: - // i64 shift.result = lshr i64 opnd, imm - // trunc.result = trunc shift.result to i16 - // - // BB2: - // ----> We will have an implicit truncate here if the architecture does - // not have i16 compare. - // cmp i16 trunc.result, opnd2 - // - if (isa<TruncInst>(User) && shiftIsLegal - // If the type of the truncate is legal, no truncate will be - // introduced in other basic blocks. - && - (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) - MadeChange = - SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); - - continue; - } - // If we have already inserted a shift into this block, use it. - BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; - - if (!InsertedShift) { - BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - assert(InsertPt != UserBB->end()); - - if (ShiftI->getOpcode() == Instruction::AShr) - InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, - "", &*InsertPt); - else - InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, - "", &*InsertPt); - InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); - - MadeChange = true; - } - - // Replace a use of the shift with a use of the new shift. - TheUse = InsertedShift; - } - - // If we removed all uses, or there are none, nuke the shift. - if (ShiftI->use_empty()) { - salvageDebugInfo(*ShiftI); - ShiftI->eraseFromParent(); - MadeChange = true; - } - - return MadeChange; -} - -/// If counting leading or trailing zeros is an expensive operation and a zero -/// input is defined, add a check for zero to avoid calling the intrinsic. -/// -/// We want to transform: -/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) -/// -/// into: -/// entry: -/// %cmpz = icmp eq i64 %A, 0 -/// br i1 %cmpz, label %cond.end, label %cond.false -/// cond.false: -/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) -/// br label %cond.end -/// cond.end: -/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] -/// -/// If the transform is performed, return true and set ModifiedDT to true. -static bool despeculateCountZeros(IntrinsicInst *CountZeros, - const TargetLowering *TLI, - const DataLayout *DL, - bool &ModifiedDT) { - // If a zero input is undefined, it doesn't make sense to despeculate that. - if (match(CountZeros->getOperand(1), m_One())) - return false; - - // If it's cheap to speculate, there's nothing to do. - auto IntrinsicID = CountZeros->getIntrinsicID(); - if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || - (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) - return false; - - // Only handle legal scalar cases. Anything else requires too much work. - Type *Ty = CountZeros->getType(); - unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); - if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) - return false; - - // The intrinsic will be sunk behind a compare against zero and branch. - BasicBlock *StartBlock = CountZeros->getParent(); - BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); - - // Create another block after the count zero intrinsic. A PHI will be added - // in this block to select the result of the intrinsic or the bit-width - // constant if the input to the intrinsic is zero. - BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); - BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); - - // Set up a builder to create a compare, conditional branch, and PHI. - IRBuilder<> Builder(CountZeros->getContext()); - Builder.SetInsertPoint(StartBlock->getTerminator()); - Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); - - // Replace the unconditional branch that was created by the first split with - // a compare against zero and a conditional branch. - Value *Zero = Constant::getNullValue(Ty); - Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); - Builder.CreateCondBr(Cmp, EndBlock, CallBlock); - StartBlock->getTerminator()->eraseFromParent(); - - // Create a PHI in the end block to select either the output of the intrinsic - // or the bit width of the operand. - Builder.SetInsertPoint(&EndBlock->front()); - PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); - CountZeros->replaceAllUsesWith(PN); - Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); - PN->addIncoming(BitWidth, StartBlock); - PN->addIncoming(CountZeros, CallBlock); - - // We are explicitly handling the zero case, so we can set the intrinsic's - // undefined zero argument to 'true'. This will also prevent reprocessing the - // intrinsic; we only despeculate when a zero input is defined. - CountZeros->setArgOperand(1, Builder.getTrue()); - ModifiedDT = true; - return true; -} - -bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { - BasicBlock *BB = CI->getParent(); - - // Lower inline assembly if we can. - // If we found an inline asm expession, and if the target knows how to - // lower it to normal LLVM code, do so now. - if (CI->isInlineAsm()) { - if (TLI->ExpandInlineAsm(CI)) { - // Avoid invalidating the iterator. - CurInstIterator = BB->begin(); - // Avoid processing instructions out of order, which could cause - // reuse before a value is defined. - SunkAddrs.clear(); - return true; - } - // Sink address computing for memory operands into the block. - if (optimizeInlineAsmInst(CI)) - return true; - } - - // Align the pointer arguments to this call if the target thinks it's a good - // idea - unsigned MinSize, PrefAlign; - if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { - for (auto &Arg : CI->arg_operands()) { - // We want to align both objects whose address is used directly and - // objects whose address is used in casts and GEPs, though it only makes - // sense for GEPs if the offset is a multiple of the desired alignment and - // if size - offset meets the size threshold. - if (!Arg->getType()->isPointerTy()) - continue; - APInt Offset(DL->getIndexSizeInBits( - cast<PointerType>(Arg->getType())->getAddressSpace()), - 0); - Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); - uint64_t Offset2 = Offset.getLimitedValue(); - if ((Offset2 & (PrefAlign-1)) != 0) - continue; - AllocaInst *AI; - if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && - DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) - AI->setAlignment(Align(PrefAlign)); - // Global variables can only be aligned if they are defined in this - // object (i.e. they are uniquely initialized in this object), and - // over-aligning global variables that have an explicit section is - // forbidden. - GlobalVariable *GV; - if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && - GV->getPointerAlignment(*DL) < PrefAlign && - DL->getTypeAllocSize(GV->getValueType()) >= - MinSize + Offset2) - GV->setAlignment(MaybeAlign(PrefAlign)); - } - // If this is a memcpy (or similar) then we may be able to improve the - // alignment - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { - Align DestAlign = getKnownAlignment(MI->getDest(), *DL); - MaybeAlign MIDestAlign = MI->getDestAlign(); - if (!MIDestAlign || DestAlign > *MIDestAlign) - MI->setDestAlignment(DestAlign); - if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { - MaybeAlign MTISrcAlign = MTI->getSourceAlign(); - Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); - if (!MTISrcAlign || SrcAlign > *MTISrcAlign) - MTI->setSourceAlignment(SrcAlign); - } - } - } - - // If we have a cold call site, try to sink addressing computation into the - // cold block. This interacts with our handling for loads and stores to - // ensure that we can fold all uses of a potential addressing computation - // into their uses. TODO: generalize this to work over profiling data - if (CI->hasFnAttr(Attribute::Cold) && - !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) - for (auto &Arg : CI->arg_operands()) { - if (!Arg->getType()->isPointerTy()) - continue; - unsigned AS = Arg->getType()->getPointerAddressSpace(); - return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); - } - - IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); - if (II) { - switch (II->getIntrinsicID()) { - default: break; - case Intrinsic::assume: { + Blocks.push_back(&Block); + + for (auto &Block : Blocks) { + BasicBlock *BB = cast_or_null<BasicBlock>(Block); + if (!BB) + continue; + BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); + if (!DestBB || + !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) + continue; + + eliminateMostlyEmptyBlock(BB); + MadeChange = true; + } + return MadeChange; +} + +bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, + BasicBlock *DestBB, + bool isPreheader) { + // Do not delete loop preheaders if doing so would create a critical edge. + // Loop preheaders can be good locations to spill registers. If the + // preheader is deleted and we create a critical edge, registers may be + // spilled in the loop body instead. + if (!DisablePreheaderProtect && isPreheader && + !(BB->getSinglePredecessor() && + BB->getSinglePredecessor()->getSingleSuccessor())) + return false; + + // Skip merging if the block's successor is also a successor to any callbr + // that leads to this block. + // FIXME: Is this really needed? Is this a correctness issue? + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) + for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) + if (DestBB == CBI->getSuccessor(i)) + return false; + } + + // Try to skip merging if the unique predecessor of BB is terminated by a + // switch or indirect branch instruction, and BB is used as an incoming block + // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to + // add COPY instructions in the predecessor of BB instead of BB (if it is not + // merged). Note that the critical edge created by merging such blocks wont be + // split in MachineSink because the jump table is not analyzable. By keeping + // such empty block (BB), ISel will place COPY instructions in BB, not in the + // predecessor of BB. + BasicBlock *Pred = BB->getUniquePredecessor(); + if (!Pred || + !(isa<SwitchInst>(Pred->getTerminator()) || + isa<IndirectBrInst>(Pred->getTerminator()))) + return true; + + if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) + return true; + + // We use a simple cost heuristic which determine skipping merging is + // profitable if the cost of skipping merging is less than the cost of + // merging : Cost(skipping merging) < Cost(merging BB), where the + // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and + // the Cost(merging BB) is Freq(Pred) * Cost(Copy). + // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : + // Freq(Pred) / Freq(BB) > 2. + // Note that if there are multiple empty blocks sharing the same incoming + // value for the PHIs in the DestBB, we consider them together. In such + // case, Cost(merging BB) will be the sum of their frequencies. + + if (!isa<PHINode>(DestBB->begin())) + return true; + + SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; + + // Find all other incoming blocks from which incoming values of all PHIs in + // DestBB are the same as the ones from BB. + for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; + ++PI) { + BasicBlock *DestBBPred = *PI; + if (DestBBPred == BB) + continue; + + if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { + return DestPN.getIncomingValueForBlock(BB) == + DestPN.getIncomingValueForBlock(DestBBPred); + })) + SameIncomingValueBBs.insert(DestBBPred); + } + + // See if all BB's incoming values are same as the value from Pred. In this + // case, no reason to skip merging because COPYs are expected to be place in + // Pred already. + if (SameIncomingValueBBs.count(Pred)) + return true; + + BlockFrequency PredFreq = BFI->getBlockFreq(Pred); + BlockFrequency BBFreq = BFI->getBlockFreq(BB); + + for (auto *SameValueBB : SameIncomingValueBBs) + if (SameValueBB->getUniquePredecessor() == Pred && + DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) + BBFreq += BFI->getBlockFreq(SameValueBB); + + return PredFreq.getFrequency() <= + BBFreq.getFrequency() * FreqRatioToSkipMerge; +} + +/// Return true if we can merge BB into DestBB if there is a single +/// unconditional branch between them, and BB contains no other non-phi +/// instructions. +bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, + const BasicBlock *DestBB) const { + // We only want to eliminate blocks whose phi nodes are used by phi nodes in + // the successor. If there are more complex condition (e.g. preheaders), + // don't mess around with them. + for (const PHINode &PN : BB->phis()) { + for (const User *U : PN.users()) { + const Instruction *UI = cast<Instruction>(U); + if (UI->getParent() != DestBB || !isa<PHINode>(UI)) + return false; + // If User is inside DestBB block and it is a PHINode then check + // incoming value. If incoming value is not from BB then this is + // a complex condition (e.g. preheaders) we want to avoid here. + if (UI->getParent() == DestBB) { + if (const PHINode *UPN = dyn_cast<PHINode>(UI)) + for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { + Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); + if (Insn && Insn->getParent() == BB && + Insn->getParent() != UPN->getIncomingBlock(I)) + return false; + } + } + } + } + + // If BB and DestBB contain any common predecessors, then the phi nodes in BB + // and DestBB may have conflicting incoming values for the block. If so, we + // can't merge the block. + const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); + if (!DestBBPN) return true; // no conflict. + + // Collect the preds of BB. + SmallPtrSet<const BasicBlock*, 16> BBPreds; + if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + // It is faster to get preds from a PHI than with pred_iterator. + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + BBPreds.insert(BBPN->getIncomingBlock(i)); + } else { + BBPreds.insert(pred_begin(BB), pred_end(BB)); + } + + // Walk the preds of DestBB. + for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = DestBBPN->getIncomingBlock(i); + if (BBPreds.count(Pred)) { // Common predecessor? + for (const PHINode &PN : DestBB->phis()) { + const Value *V1 = PN.getIncomingValueForBlock(Pred); + const Value *V2 = PN.getIncomingValueForBlock(BB); + + // If V2 is a phi node in BB, look up what the mapped value will be. + if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) + if (V2PN->getParent() == BB) + V2 = V2PN->getIncomingValueForBlock(Pred); + + // If there is a conflict, bail out. + if (V1 != V2) return false; + } + } + } + + return true; +} + +/// Eliminate a basic block that has only phi's and an unconditional branch in +/// it. +void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { + BranchInst *BI = cast<BranchInst>(BB->getTerminator()); + BasicBlock *DestBB = BI->getSuccessor(0); + + LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" + << *BB << *DestBB); + + // If the destination block has a single pred, then this is a trivial edge, + // just collapse it. + if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { + if (SinglePred != DestBB) { + assert(SinglePred == BB && + "Single predecessor not the same as predecessor"); + // Merge DestBB into SinglePred/BB and delete it. + MergeBlockIntoPredecessor(DestBB); + // Note: BB(=SinglePred) will not be deleted on this path. + // DestBB(=its single successor) is the one that was deleted. + LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); + return; + } + } + + // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB + // to handle the new incoming edges it is about to have. + for (PHINode &PN : DestBB->phis()) { + // Remove the incoming value for BB, and remember it. + Value *InVal = PN.removeIncomingValue(BB, false); + + // Two options: either the InVal is a phi node defined in BB or it is some + // value that dominates BB. + PHINode *InValPhi = dyn_cast<PHINode>(InVal); + if (InValPhi && InValPhi->getParent() == BB) { + // Add all of the input values of the input PHI as inputs of this phi. + for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) + PN.addIncoming(InValPhi->getIncomingValue(i), + InValPhi->getIncomingBlock(i)); + } else { + // Otherwise, add one instance of the dominating value for each edge that + // we will be adding. + if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); + } else { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + PN.addIncoming(InVal, *PI); + } + } + } + + // The PHIs are now updated, change everything that refers to BB to use + // DestBB and remove BB. + BB->replaceAllUsesWith(DestBB); + BB->eraseFromParent(); + ++NumBlocksElim; + + LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); +} + +// Computes a map of base pointer relocation instructions to corresponding +// derived pointer relocation instructions given a vector of all relocate calls +static void computeBaseDerivedRelocateMap( + const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, + DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> + &RelocateInstMap) { + // Collect information in two maps: one primarily for locating the base object + // while filling the second map; the second map is the final structure holding + // a mapping between Base and corresponding Derived relocate calls + DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; + for (auto *ThisRelocate : AllRelocateCalls) { + auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), + ThisRelocate->getDerivedPtrIndex()); + RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); + } + for (auto &Item : RelocateIdxMap) { + std::pair<unsigned, unsigned> Key = Item.first; + if (Key.first == Key.second) + // Base relocation: nothing to insert + continue; + + GCRelocateInst *I = Item.second; + auto BaseKey = std::make_pair(Key.first, Key.first); + + // We're iterating over RelocateIdxMap so we cannot modify it. + auto MaybeBase = RelocateIdxMap.find(BaseKey); + if (MaybeBase == RelocateIdxMap.end()) + // TODO: We might want to insert a new base object relocate and gep off + // that, if there are enough derived object relocates. + continue; + + RelocateInstMap[MaybeBase->second].push_back(I); + } +} + +// Accepts a GEP and extracts the operands into a vector provided they're all +// small integer constants +static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, + SmallVectorImpl<Value *> &OffsetV) { + for (unsigned i = 1; i < GEP->getNumOperands(); i++) { + // Only accept small constant integer operands + auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!Op || Op->getZExtValue() > 20) + return false; + } + + for (unsigned i = 1; i < GEP->getNumOperands(); i++) + OffsetV.push_back(GEP->getOperand(i)); + return true; +} + +// Takes a RelocatedBase (base pointer relocation instruction) and Targets to +// replace, computes a replacement, and affects it. +static bool +simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, + const SmallVectorImpl<GCRelocateInst *> &Targets) { + bool MadeChange = false; + // We must ensure the relocation of derived pointer is defined after + // relocation of base pointer. If we find a relocation corresponding to base + // defined earlier than relocation of base then we move relocation of base + // right before found relocation. We consider only relocation in the same + // basic block as relocation of base. Relocations from other basic block will + // be skipped by optimization and we do not care about them. + for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); + &*R != RelocatedBase; ++R) + if (auto *RI = dyn_cast<GCRelocateInst>(R)) + if (RI->getStatepoint() == RelocatedBase->getStatepoint()) + if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { + RelocatedBase->moveBefore(RI); + break; + } + + for (GCRelocateInst *ToReplace : Targets) { + assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && + "Not relocating a derived object of the original base object"); + if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { + // A duplicate relocate call. TODO: coalesce duplicates. + continue; + } + + if (RelocatedBase->getParent() != ToReplace->getParent()) { + // Base and derived relocates are in different basic blocks. + // In this case transform is only valid when base dominates derived + // relocate. However it would be too expensive to check dominance + // for each such relocate, so we skip the whole transformation. + continue; + } + + Value *Base = ToReplace->getBasePtr(); + auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); + if (!Derived || Derived->getPointerOperand() != Base) + continue; + + SmallVector<Value *, 2> OffsetV; + if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) + continue; + + // Create a Builder and replace the target callsite with a gep + assert(RelocatedBase->getNextNode() && + "Should always have one since it's not a terminator"); + + // Insert after RelocatedBase + IRBuilder<> Builder(RelocatedBase->getNextNode()); + Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); + + // If gc_relocate does not match the actual type, cast it to the right type. + // In theory, there must be a bitcast after gc_relocate if the type does not + // match, and we should reuse it to get the derived pointer. But it could be + // cases like this: + // bb1: + // ... + // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // bb2: + // ... + // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // merge: + // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] + // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* + // + // In this case, we can not find the bitcast any more. So we insert a new bitcast + // no matter there is already one or not. In this way, we can handle all cases, and + // the extra bitcast should be optimized away in later passes. + Value *ActualRelocatedBase = RelocatedBase; + if (RelocatedBase->getType() != Base->getType()) { + ActualRelocatedBase = + Builder.CreateBitCast(RelocatedBase, Base->getType()); + } + Value *Replacement = Builder.CreateGEP( + Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); + Replacement->takeName(ToReplace); + // If the newly generated derived pointer's type does not match the original derived + // pointer's type, cast the new derived pointer to match it. Same reasoning as above. + Value *ActualReplacement = Replacement; + if (Replacement->getType() != ToReplace->getType()) { + ActualReplacement = + Builder.CreateBitCast(Replacement, ToReplace->getType()); + } + ToReplace->replaceAllUsesWith(ActualReplacement); + ToReplace->eraseFromParent(); + + MadeChange = true; + } + return MadeChange; +} + +// Turns this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = relocate(%tok, i32 4, i32 4) +// %ptr' = relocate(%tok, i32 4, i32 5) +// %val = load %ptr' +// +// into this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = gc.relocate(%tok, i32 4, i32 4) +// %ptr' = gep %base' + 15 +// %val = load %ptr' +bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) { + bool MadeChange = false; + SmallVector<GCRelocateInst *, 2> AllRelocateCalls; + for (auto *U : I.users()) + if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) + // Collect all the relocate calls associated with a statepoint + AllRelocateCalls.push_back(Relocate); + + // We need at least one base pointer relocation + one derived pointer + // relocation to mangle + if (AllRelocateCalls.size() < 2) + return false; + + // RelocateInstMap is a mapping from the base relocate instruction to the + // corresponding derived relocate instructions + DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; + computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); + if (RelocateInstMap.empty()) + return false; + + for (auto &Item : RelocateInstMap) + // Item.first is the RelocatedBase to offset against + // Item.second is the vector of Targets to replace + MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); + return MadeChange; +} + +/// Sink the specified cast instruction into its user blocks. +static bool SinkCast(CastInst *CI) { + BasicBlock *DefBB = CI->getParent(); + + /// InsertedCasts - Only insert a cast in each block once. + DenseMap<BasicBlock*, CastInst*> InsertedCasts; + + bool MadeChange = false; + for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this cast is used in. For PHI's this is the + // appropriate predecessor block. + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) { + UserBB = PN->getIncomingBlock(TheUse); + } + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // The first insertion point of a block containing an EH pad is after the + // pad. If the pad is the user, we cannot sink the cast past the pad. + if (User->isEHPad()) + continue; + + // If the block selected to receive the cast is an EH pad that does not + // allow non-PHI instructions before the terminator, we can't sink the + // cast. + if (UserBB->getTerminator()->isEHPad()) + continue; + + // If this user is in the same block as the cast, don't change the cast. + if (UserBB == DefBB) continue; + + // If we have already inserted a cast into this block, use it. + CastInst *&InsertedCast = InsertedCasts[UserBB]; + + if (!InsertedCast) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), + CI->getType(), "", &*InsertPt); + InsertedCast->setDebugLoc(CI->getDebugLoc()); + } + + // Replace a use of the cast with a use of the new cast. + TheUse = InsertedCast; + MadeChange = true; + ++NumCastUses; + } + + // If we removed all uses, nuke the cast. + if (CI->use_empty()) { + salvageDebugInfo(*CI); + CI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// If the specified cast instruction is a noop copy (e.g. it's casting from +/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to +/// reduce the number of virtual registers that must be created and coalesced. +/// +/// Return true if any changes are made. +static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, + const DataLayout &DL) { + // Sink only "cheap" (or nop) address-space casts. This is a weaker condition + // than sinking only nop casts, but is helpful on some platforms. + if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { + if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), + ASC->getDestAddressSpace())) + return false; + } + + // If this is a noop copy, + EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(DL, CI->getType()); + + // This is an fp<->int conversion? + if (SrcVT.isInteger() != DstVT.isInteger()) + return false; + + // If this is an extension, it will be a zero or sign extension, which + // isn't a noop. + if (SrcVT.bitsLT(DstVT)) return false; + + // If these values will be promoted, find out what they will be promoted + // to. This helps us consider truncates on PPC as noop copies when they + // are. + if (TLI.getTypeAction(CI->getContext(), SrcVT) == + TargetLowering::TypePromoteInteger) + SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); + if (TLI.getTypeAction(CI->getContext(), DstVT) == + TargetLowering::TypePromoteInteger) + DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); + + // If, after promotion, these are the same types, this is a noop copy. + if (SrcVT != DstVT) + return false; + + return SinkCast(CI); +} + +bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, + Value *Arg0, Value *Arg1, + CmpInst *Cmp, + Intrinsic::ID IID) { + if (BO->getParent() != Cmp->getParent()) { + // We used to use a dominator tree here to allow multi-block optimization. + // But that was problematic because: + // 1. It could cause a perf regression by hoisting the math op into the + // critical path. + // 2. It could cause a perf regression by creating a value that was live + // across multiple blocks and increasing register pressure. + // 3. Use of a dominator tree could cause large compile-time regression. + // This is because we recompute the DT on every change in the main CGP + // run-loop. The recomputing is probably unnecessary in many cases, so if + // that was fixed, using a DT here would be ok. + return false; + } + + // We allow matching the canonical IR (add X, C) back to (usubo X, -C). + if (BO->getOpcode() == Instruction::Add && + IID == Intrinsic::usub_with_overflow) { + assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); + Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); + } + + // Insert at the first instruction of the pair. + Instruction *InsertPt = nullptr; + for (Instruction &Iter : *Cmp->getParent()) { + // If BO is an XOR, it is not guaranteed that it comes after both inputs to + // the overflow intrinsic are defined. + if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) { + InsertPt = &Iter; + break; + } + } + assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); + + IRBuilder<> Builder(InsertPt); + Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); + if (BO->getOpcode() != Instruction::Xor) { + Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); + BO->replaceAllUsesWith(Math); + } else + assert(BO->hasOneUse() && + "Patterns with XOr should use the BO only in the compare"); + Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); + Cmp->replaceAllUsesWith(OV); + Cmp->eraseFromParent(); + BO->eraseFromParent(); + return true; +} + +/// Match special-case patterns that check for unsigned add overflow. +static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, + BinaryOperator *&Add) { + // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) + // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) + Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); + + // We are not expecting non-canonical/degenerate code. Just bail out. + if (isa<Constant>(A)) + return false; + + ICmpInst::Predicate Pred = Cmp->getPredicate(); + if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) + B = ConstantInt::get(B->getType(), 1); + else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) + B = ConstantInt::get(B->getType(), -1); + else + return false; + + // Check the users of the variable operand of the compare looking for an add + // with the adjusted constant. + for (User *U : A->users()) { + if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { + Add = cast<BinaryOperator>(U); + return true; + } + } + return false; +} + +/// Try to combine the compare into a call to the llvm.uadd.with.overflow +/// intrinsic. Return true if any changes were made. +bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, + bool &ModifiedDT) { + Value *A, *B; + BinaryOperator *Add; + if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) { + if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) + return false; + // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases. + A = Add->getOperand(0); + B = Add->getOperand(1); + } + + if (!TLI->shouldFormOverflowOp(ISD::UADDO, + TLI->getValueType(*DL, Add->getType()), + Add->hasNUsesOrMore(2))) + return false; + + // We don't want to move around uses of condition values this late, so we + // check if it is legal to create the call to the intrinsic in the basic + // block containing the icmp. + if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) + return false; + + if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp, + Intrinsic::uadd_with_overflow)) + return false; + + // Reset callers - do not crash by iterating over a dead instruction. + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, + bool &ModifiedDT) { + // We are not expecting non-canonical/degenerate code. Just bail out. + Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); + if (isa<Constant>(A) && isa<Constant>(B)) + return false; + + // Convert (A u> B) to (A u< B) to simplify pattern matching. + ICmpInst::Predicate Pred = Cmp->getPredicate(); + if (Pred == ICmpInst::ICMP_UGT) { + std::swap(A, B); + Pred = ICmpInst::ICMP_ULT; + } + // Convert special-case: (A == 0) is the same as (A u< 1). + if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { + B = ConstantInt::get(B->getType(), 1); + Pred = ICmpInst::ICMP_ULT; + } + // Convert special-case: (A != 0) is the same as (0 u< A). + if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { + std::swap(A, B); + Pred = ICmpInst::ICMP_ULT; + } + if (Pred != ICmpInst::ICMP_ULT) + return false; + + // Walk the users of a variable operand of a compare looking for a subtract or + // add with that same operand. Also match the 2nd operand of the compare to + // the add/sub, but that may be a negated constant operand of an add. + Value *CmpVariableOperand = isa<Constant>(A) ? B : A; + BinaryOperator *Sub = nullptr; + for (User *U : CmpVariableOperand->users()) { + // A - B, A u< B --> usubo(A, B) + if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { + Sub = cast<BinaryOperator>(U); + break; + } + + // A + (-C), A u< C (canonicalized form of (sub A, C)) + const APInt *CmpC, *AddC; + if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && + match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { + Sub = cast<BinaryOperator>(U); + break; + } + } + if (!Sub) + return false; + + if (!TLI->shouldFormOverflowOp(ISD::USUBO, + TLI->getValueType(*DL, Sub->getType()), + Sub->hasNUsesOrMore(2))) + return false; + + if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1), + Cmp, Intrinsic::usub_with_overflow)) + return false; + + // Reset callers - do not crash by iterating over a dead instruction. + ModifiedDT = true; + return true; +} + +/// Sink the given CmpInst into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. This is a clear win except on +/// targets with multiple condition code registers (PowerPC), where it might +/// lose; some adjustment may be wanted there. +/// +/// Return true if any changes are made. +static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { + if (TLI.hasMultipleConditionRegisters()) + return false; + + // Avoid sinking soft-FP comparisons, since this can move them into a loop. + if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) + return false; + + // Only insert a cmp in each block once. + DenseMap<BasicBlock*, CmpInst*> InsertedCmps; + + bool MadeChange = false; + for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + // Figure out which BB this cmp is used in. + BasicBlock *UserBB = User->getParent(); + BasicBlock *DefBB = Cmp->getParent(); + + // If this user is in the same block as the cmp, don't change the cmp. + if (UserBB == DefBB) continue; + + // If we have already inserted a cmp into this block, use it. + CmpInst *&InsertedCmp = InsertedCmps[UserBB]; + + if (!InsertedCmp) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCmp = + CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), + Cmp->getOperand(0), Cmp->getOperand(1), "", + &*InsertPt); + // Propagate the debug info. + InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); + } + + // Replace a use of the cmp with a use of the new cmp. + TheUse = InsertedCmp; + MadeChange = true; + ++NumCmpUses; + } + + // If we removed all uses, nuke the cmp. + if (Cmp->use_empty()) { + Cmp->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// For pattern like: +/// +/// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB) +/// ... +/// DomBB: +/// ... +/// br DomCond, TrueBB, CmpBB +/// CmpBB: (with DomBB being the single predecessor) +/// ... +/// Cmp = icmp eq CmpOp0, CmpOp1 +/// ... +/// +/// It would use two comparison on targets that lowering of icmp sgt/slt is +/// different from lowering of icmp eq (PowerPC). This function try to convert +/// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'. +/// After that, DomCond and Cmp can use the same comparison so reduce one +/// comparison. +/// +/// Return true if any changes are made. +static bool foldICmpWithDominatingICmp(CmpInst *Cmp, + const TargetLowering &TLI) { + if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp()) + return false; + + ICmpInst::Predicate Pred = Cmp->getPredicate(); + if (Pred != ICmpInst::ICMP_EQ) + return false; + + // If icmp eq has users other than BranchInst and SelectInst, converting it to + // icmp slt/sgt would introduce more redundant LLVM IR. + for (User *U : Cmp->users()) { + if (isa<BranchInst>(U)) + continue; + if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp) + continue; + return false; + } + + // This is a cheap/incomplete check for dominance - just match a single + // predecessor with a conditional branch. + BasicBlock *CmpBB = Cmp->getParent(); + BasicBlock *DomBB = CmpBB->getSinglePredecessor(); + if (!DomBB) + return false; + + // We want to ensure that the only way control gets to the comparison of + // interest is that a less/greater than comparison on the same operands is + // false. + Value *DomCond; + BasicBlock *TrueBB, *FalseBB; + if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB))) + return false; + if (CmpBB != FalseBB) + return false; + + Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1); + ICmpInst::Predicate DomPred; + if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1)))) + return false; + if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT) + return false; + + // Convert the equality comparison to the opposite of the dominating + // comparison and swap the direction for all branch/select users. + // We have conceptually converted: + // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>; + // to + // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>; + // And similarly for branches. + for (User *U : Cmp->users()) { + if (auto *BI = dyn_cast<BranchInst>(U)) { + assert(BI->isConditional() && "Must be conditional"); + BI->swapSuccessors(); + continue; + } + if (auto *SI = dyn_cast<SelectInst>(U)) { + // Swap operands + SI->swapValues(); + SI->swapProfMetadata(); + continue; + } + llvm_unreachable("Must be a branch or a select"); + } + Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred)); + return true; +} + +bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { + if (sinkCmpExpression(Cmp, *TLI)) + return true; + + if (combineToUAddWithOverflow(Cmp, ModifiedDT)) + return true; + + if (combineToUSubWithOverflow(Cmp, ModifiedDT)) + return true; + + if (foldICmpWithDominatingICmp(Cmp, *TLI)) + return true; + + return false; +} + +/// Duplicate and sink the given 'and' instruction into user blocks where it is +/// used in a compare to allow isel to generate better code for targets where +/// this operation can be combined. +/// +/// Return true if any changes are made. +static bool sinkAndCmp0Expression(Instruction *AndI, + const TargetLowering &TLI, + SetOfInstrs &InsertedInsts) { + // Double-check that we're not trying to optimize an instruction that was + // already optimized by some other part of this pass. + assert(!InsertedInsts.count(AndI) && + "Attempting to optimize already optimized and instruction"); + (void) InsertedInsts; + + // Nothing to do for single use in same basic block. + if (AndI->hasOneUse() && + AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) + return false; + + // Try to avoid cases where sinking/duplicating is likely to increase register + // pressure. + if (!isa<ConstantInt>(AndI->getOperand(0)) && + !isa<ConstantInt>(AndI->getOperand(1)) && + AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) + return false; + + for (auto *U : AndI->users()) { + Instruction *User = cast<Instruction>(U); + + // Only sink 'and' feeding icmp with 0. + if (!isa<ICmpInst>(User)) + return false; + + auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); + if (!CmpC || !CmpC->isZero()) + return false; + } + + if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) + return false; + + LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); + LLVM_DEBUG(AndI->getParent()->dump()); + + // Push the 'and' into the same block as the icmp 0. There should only be + // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any + // others, so we don't need to keep track of which BBs we insert into. + for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); + + // Keep the 'and' in the same place if the use is already in the same block. + Instruction *InsertPt = + User->getParent() == AndI->getParent() ? AndI : User; + Instruction *InsertedAnd = + BinaryOperator::Create(Instruction::And, AndI->getOperand(0), + AndI->getOperand(1), "", InsertPt); + // Propagate the debug info. + InsertedAnd->setDebugLoc(AndI->getDebugLoc()); + + // Replace a use of the 'and' with a use of the new 'and'. + TheUse = InsertedAnd; + ++NumAndUses; + LLVM_DEBUG(User->getParent()->dump()); + } + + // We removed all uses, nuke the and. + AndI->eraseFromParent(); + return true; +} + +/// Check if the candidates could be combined with a shift instruction, which +/// includes: +/// 1. Truncate instruction +/// 2. And instruction and the imm is a mask of the low bits: +/// imm & (imm+1) == 0 +static bool isExtractBitsCandidateUse(Instruction *User) { + if (!isa<TruncInst>(User)) { + if (User->getOpcode() != Instruction::And || + !isa<ConstantInt>(User->getOperand(1))) + return false; + + const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); + + if ((Cimm & (Cimm + 1)).getBoolValue()) + return false; + } + return true; +} + +/// Sink both shift and truncate instruction to the use of truncate's BB. +static bool +SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, + DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, + const TargetLowering &TLI, const DataLayout &DL) { + BasicBlock *UserBB = User->getParent(); + DenseMap<BasicBlock *, CastInst *> InsertedTruncs; + auto *TruncI = cast<TruncInst>(User); + bool MadeChange = false; + + for (Value::user_iterator TruncUI = TruncI->user_begin(), + TruncE = TruncI->user_end(); + TruncUI != TruncE;) { + + Use &TruncTheUse = TruncUI.getUse(); + Instruction *TruncUser = cast<Instruction>(*TruncUI); + // Preincrement use iterator so we don't invalidate it. + + ++TruncUI; + + int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); + if (!ISDOpcode) + continue; + + // If the use is actually a legal node, there will not be an + // implicit truncate. + // FIXME: always querying the result type is just an + // approximation; some nodes' legality is determined by the + // operand or other means. There's no good way to find out though. + if (TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) + continue; + + // Don't bother for PHI nodes. + if (isa<PHINode>(TruncUser)) + continue; + + BasicBlock *TruncUserBB = TruncUser->getParent(); + + if (UserBB == TruncUserBB) + continue; + + BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; + CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; + + if (!InsertedShift && !InsertedTrunc) { + BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); + assert(InsertPt != TruncUserBB->end()); + // Sink the shift + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); + + // Sink the trunc + BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); + TruncInsertPt++; + assert(TruncInsertPt != TruncUserBB->end()); + + InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, + TruncI->getType(), "", &*TruncInsertPt); + InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); + + MadeChange = true; + + TruncTheUse = InsertedTrunc; + } + } + return MadeChange; +} + +/// Sink the shift *right* instruction into user blocks if the uses could +/// potentially be combined with this shift instruction and generate BitExtract +/// instruction. It will only be applied if the architecture supports BitExtract +/// instruction. Here is an example: +/// BB1: +/// %x.extract.shift = lshr i64 %arg1, 32 +/// BB2: +/// %x.extract.trunc = trunc i64 %x.extract.shift to i16 +/// ==> +/// +/// BB2: +/// %x.extract.shift.1 = lshr i64 %arg1, 32 +/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 +/// +/// CodeGen will recognize the pattern in BB2 and generate BitExtract +/// instruction. +/// Return true if any changes are made. +static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, + const TargetLowering &TLI, + const DataLayout &DL) { + BasicBlock *DefBB = ShiftI->getParent(); + + /// Only insert instructions in each block once. + DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; + + bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); + + bool MadeChange = false; + for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); + UI != E;) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + if (!isExtractBitsCandidateUse(User)) + continue; + + BasicBlock *UserBB = User->getParent(); + + if (UserBB == DefBB) { + // If the shift and truncate instruction are in the same BB. The use of + // the truncate(TruncUse) may still introduce another truncate if not + // legal. In this case, we would like to sink both shift and truncate + // instruction to the BB of TruncUse. + // for example: + // BB1: + // i64 shift.result = lshr i64 opnd, imm + // trunc.result = trunc shift.result to i16 + // + // BB2: + // ----> We will have an implicit truncate here if the architecture does + // not have i16 compare. + // cmp i16 trunc.result, opnd2 + // + if (isa<TruncInst>(User) && shiftIsLegal + // If the type of the truncate is legal, no truncate will be + // introduced in other basic blocks. + && + (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) + MadeChange = + SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); + + continue; + } + // If we have already inserted a shift into this block, use it. + BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; + + if (!InsertedShift) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); + + MadeChange = true; + } + + // Replace a use of the shift with a use of the new shift. + TheUse = InsertedShift; + } + + // If we removed all uses, or there are none, nuke the shift. + if (ShiftI->use_empty()) { + salvageDebugInfo(*ShiftI); + ShiftI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// If counting leading or trailing zeros is an expensive operation and a zero +/// input is defined, add a check for zero to avoid calling the intrinsic. +/// +/// We want to transform: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) +/// +/// into: +/// entry: +/// %cmpz = icmp eq i64 %A, 0 +/// br i1 %cmpz, label %cond.end, label %cond.false +/// cond.false: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) +/// br label %cond.end +/// cond.end: +/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] +/// +/// If the transform is performed, return true and set ModifiedDT to true. +static bool despeculateCountZeros(IntrinsicInst *CountZeros, + const TargetLowering *TLI, + const DataLayout *DL, + bool &ModifiedDT) { + // If a zero input is undefined, it doesn't make sense to despeculate that. + if (match(CountZeros->getOperand(1), m_One())) + return false; + + // If it's cheap to speculate, there's nothing to do. + auto IntrinsicID = CountZeros->getIntrinsicID(); + if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || + (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) + return false; + + // Only handle legal scalar cases. Anything else requires too much work. + Type *Ty = CountZeros->getType(); + unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); + if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) + return false; + + // The intrinsic will be sunk behind a compare against zero and branch. + BasicBlock *StartBlock = CountZeros->getParent(); + BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); + + // Create another block after the count zero intrinsic. A PHI will be added + // in this block to select the result of the intrinsic or the bit-width + // constant if the input to the intrinsic is zero. + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); + BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); + + // Set up a builder to create a compare, conditional branch, and PHI. + IRBuilder<> Builder(CountZeros->getContext()); + Builder.SetInsertPoint(StartBlock->getTerminator()); + Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); + + // Replace the unconditional branch that was created by the first split with + // a compare against zero and a conditional branch. + Value *Zero = Constant::getNullValue(Ty); + Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); + Builder.CreateCondBr(Cmp, EndBlock, CallBlock); + StartBlock->getTerminator()->eraseFromParent(); + + // Create a PHI in the end block to select either the output of the intrinsic + // or the bit width of the operand. + Builder.SetInsertPoint(&EndBlock->front()); + PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); + CountZeros->replaceAllUsesWith(PN); + Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); + PN->addIncoming(BitWidth, StartBlock); + PN->addIncoming(CountZeros, CallBlock); + + // We are explicitly handling the zero case, so we can set the intrinsic's + // undefined zero argument to 'true'. This will also prevent reprocessing the + // intrinsic; we only despeculate when a zero input is defined. + CountZeros->setArgOperand(1, Builder.getTrue()); + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { + BasicBlock *BB = CI->getParent(); + + // Lower inline assembly if we can. + // If we found an inline asm expession, and if the target knows how to + // lower it to normal LLVM code, do so now. + if (CI->isInlineAsm()) { + if (TLI->ExpandInlineAsm(CI)) { + // Avoid invalidating the iterator. + CurInstIterator = BB->begin(); + // Avoid processing instructions out of order, which could cause + // reuse before a value is defined. + SunkAddrs.clear(); + return true; + } + // Sink address computing for memory operands into the block. + if (optimizeInlineAsmInst(CI)) + return true; + } + + // Align the pointer arguments to this call if the target thinks it's a good + // idea + unsigned MinSize, PrefAlign; + if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { + for (auto &Arg : CI->arg_operands()) { + // We want to align both objects whose address is used directly and + // objects whose address is used in casts and GEPs, though it only makes + // sense for GEPs if the offset is a multiple of the desired alignment and + // if size - offset meets the size threshold. + if (!Arg->getType()->isPointerTy()) + continue; + APInt Offset(DL->getIndexSizeInBits( + cast<PointerType>(Arg->getType())->getAddressSpace()), + 0); + Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); + uint64_t Offset2 = Offset.getLimitedValue(); + if ((Offset2 & (PrefAlign-1)) != 0) + continue; + AllocaInst *AI; + if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && + DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) + AI->setAlignment(Align(PrefAlign)); + // Global variables can only be aligned if they are defined in this + // object (i.e. they are uniquely initialized in this object), and + // over-aligning global variables that have an explicit section is + // forbidden. + GlobalVariable *GV; + if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && + GV->getPointerAlignment(*DL) < PrefAlign && + DL->getTypeAllocSize(GV->getValueType()) >= + MinSize + Offset2) + GV->setAlignment(MaybeAlign(PrefAlign)); + } + // If this is a memcpy (or similar) then we may be able to improve the + // alignment + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { + Align DestAlign = getKnownAlignment(MI->getDest(), *DL); + MaybeAlign MIDestAlign = MI->getDestAlign(); + if (!MIDestAlign || DestAlign > *MIDestAlign) + MI->setDestAlignment(DestAlign); + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { + MaybeAlign MTISrcAlign = MTI->getSourceAlign(); + Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL); + if (!MTISrcAlign || SrcAlign > *MTISrcAlign) + MTI->setSourceAlignment(SrcAlign); + } + } + } + + // If we have a cold call site, try to sink addressing computation into the + // cold block. This interacts with our handling for loads and stores to + // ensure that we can fold all uses of a potential addressing computation + // into their uses. TODO: generalize this to work over profiling data + if (CI->hasFnAttr(Attribute::Cold) && + !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get())) + for (auto &Arg : CI->arg_operands()) { + if (!Arg->getType()->isPointerTy()) + continue; + unsigned AS = Arg->getType()->getPointerAddressSpace(); + return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); + } + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + if (II) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::assume: { Value *Operand = II->getOperand(0); - II->eraseFromParent(); + II->eraseFromParent(); // Prune the operand, it's most likely dead. resetIteratorIfInvalidatedWhileCalling(BB, [&]() { RecursivelyDeleteTriviallyDeadInstructions( Operand, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); }); - return true; - } - - case Intrinsic::experimental_widenable_condition: { - // Give up on future widening oppurtunties so that we can fold away dead - // paths and merge blocks before going into block-local instruction - // selection. - if (II->use_empty()) { - II->eraseFromParent(); - return true; - } - Constant *RetVal = ConstantInt::getTrue(II->getContext()); - resetIteratorIfInvalidatedWhileCalling(BB, [&]() { - replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); - }); - return true; - } - case Intrinsic::objectsize: - llvm_unreachable("llvm.objectsize.* should have been lowered already"); - case Intrinsic::is_constant: - llvm_unreachable("llvm.is.constant.* should have been lowered already"); - case Intrinsic::aarch64_stlxr: - case Intrinsic::aarch64_stxr: { - ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); - if (!ExtVal || !ExtVal->hasOneUse() || - ExtVal->getParent() == CI->getParent()) - return false; - // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. - ExtVal->moveBefore(CI); - // Mark this instruction as "inserted by CGP", so that other - // optimizations don't touch it. - InsertedInsts.insert(ExtVal); - return true; - } - - case Intrinsic::launder_invariant_group: - case Intrinsic::strip_invariant_group: { - Value *ArgVal = II->getArgOperand(0); - auto it = LargeOffsetGEPMap.find(II); - if (it != LargeOffsetGEPMap.end()) { - // Merge entries in LargeOffsetGEPMap to reflect the RAUW. - // Make sure not to have to deal with iterator invalidation - // after possibly adding ArgVal to LargeOffsetGEPMap. - auto GEPs = std::move(it->second); - LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); - LargeOffsetGEPMap.erase(II); - } - - II->replaceAllUsesWith(ArgVal); - II->eraseFromParent(); - return true; - } - case Intrinsic::cttz: - case Intrinsic::ctlz: - // If counting zeros is expensive, try to avoid it. - return despeculateCountZeros(II, TLI, DL, ModifiedDT); - case Intrinsic::fshl: - case Intrinsic::fshr: - return optimizeFunnelShift(II); - case Intrinsic::dbg_value: - return fixupDbgValue(II); - case Intrinsic::vscale: { - // If datalayout has no special restrictions on vector data layout, - // replace `llvm.vscale` by an equivalent constant expression - // to benefit from cheap constant propagation. - Type *ScalableVectorTy = - VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); - if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { - auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); - auto *One = ConstantInt::getSigned(II->getType(), 1); - auto *CGep = - ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); - II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); - II->eraseFromParent(); - return true; - } - break; - } - case Intrinsic::masked_gather: - return optimizeGatherScatterInst(II, II->getArgOperand(0)); - case Intrinsic::masked_scatter: - return optimizeGatherScatterInst(II, II->getArgOperand(1)); - } - - SmallVector<Value *, 2> PtrOps; - Type *AccessTy; - if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) - while (!PtrOps.empty()) { - Value *PtrVal = PtrOps.pop_back_val(); - unsigned AS = PtrVal->getType()->getPointerAddressSpace(); - if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) - return true; - } - } - - // From here on out we're working with named functions. - if (!CI->getCalledFunction()) return false; - - // Lower all default uses of _chk calls. This is very similar - // to what InstCombineCalls does, but here we are only lowering calls - // to fortified library functions (e.g. __memcpy_chk) that have the default - // "don't know" as the objectsize. Anything else should be left alone. - FortifiedLibCallSimplifier Simplifier(TLInfo, true); - IRBuilder<> Builder(CI); - if (Value *V = Simplifier.optimizeCall(CI, Builder)) { - CI->replaceAllUsesWith(V); - CI->eraseFromParent(); - return true; - } - - return false; -} - -/// Look for opportunities to duplicate return instructions to the predecessor -/// to enable tail call optimizations. The case it is currently looking for is: -/// @code -/// bb0: -/// %tmp0 = tail call i32 @f0() -/// br label %return -/// bb1: -/// %tmp1 = tail call i32 @f1() -/// br label %return -/// bb2: -/// %tmp2 = tail call i32 @f2() -/// br label %return -/// return: -/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] -/// ret i32 %retval -/// @endcode -/// -/// => -/// -/// @code -/// bb0: -/// %tmp0 = tail call i32 @f0() -/// ret i32 %tmp0 -/// bb1: -/// %tmp1 = tail call i32 @f1() -/// ret i32 %tmp1 -/// bb2: -/// %tmp2 = tail call i32 @f2() -/// ret i32 %tmp2 -/// @endcode -bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { - ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); - if (!RetI) - return false; - - PHINode *PN = nullptr; - ExtractValueInst *EVI = nullptr; - BitCastInst *BCI = nullptr; - Value *V = RetI->getReturnValue(); - if (V) { - BCI = dyn_cast<BitCastInst>(V); - if (BCI) - V = BCI->getOperand(0); - - EVI = dyn_cast<ExtractValueInst>(V); - if (EVI) { - V = EVI->getOperand(0); + return true; + } + + case Intrinsic::experimental_widenable_condition: { + // Give up on future widening oppurtunties so that we can fold away dead + // paths and merge blocks before going into block-local instruction + // selection. + if (II->use_empty()) { + II->eraseFromParent(); + return true; + } + Constant *RetVal = ConstantInt::getTrue(II->getContext()); + resetIteratorIfInvalidatedWhileCalling(BB, [&]() { + replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); + }); + return true; + } + case Intrinsic::objectsize: + llvm_unreachable("llvm.objectsize.* should have been lowered already"); + case Intrinsic::is_constant: + llvm_unreachable("llvm.is.constant.* should have been lowered already"); + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: { + ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); + if (!ExtVal || !ExtVal->hasOneUse() || + ExtVal->getParent() == CI->getParent()) + return false; + // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. + ExtVal->moveBefore(CI); + // Mark this instruction as "inserted by CGP", so that other + // optimizations don't touch it. + InsertedInsts.insert(ExtVal); + return true; + } + + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: { + Value *ArgVal = II->getArgOperand(0); + auto it = LargeOffsetGEPMap.find(II); + if (it != LargeOffsetGEPMap.end()) { + // Merge entries in LargeOffsetGEPMap to reflect the RAUW. + // Make sure not to have to deal with iterator invalidation + // after possibly adding ArgVal to LargeOffsetGEPMap. + auto GEPs = std::move(it->second); + LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); + LargeOffsetGEPMap.erase(II); + } + + II->replaceAllUsesWith(ArgVal); + II->eraseFromParent(); + return true; + } + case Intrinsic::cttz: + case Intrinsic::ctlz: + // If counting zeros is expensive, try to avoid it. + return despeculateCountZeros(II, TLI, DL, ModifiedDT); + case Intrinsic::fshl: + case Intrinsic::fshr: + return optimizeFunnelShift(II); + case Intrinsic::dbg_value: + return fixupDbgValue(II); + case Intrinsic::vscale: { + // If datalayout has no special restrictions on vector data layout, + // replace `llvm.vscale` by an equivalent constant expression + // to benefit from cheap constant propagation. + Type *ScalableVectorTy = + VectorType::get(Type::getInt8Ty(II->getContext()), 1, true); + if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) { + auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo()); + auto *One = ConstantInt::getSigned(II->getType(), 1); + auto *CGep = + ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One); + II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType())); + II->eraseFromParent(); + return true; + } + break; + } + case Intrinsic::masked_gather: + return optimizeGatherScatterInst(II, II->getArgOperand(0)); + case Intrinsic::masked_scatter: + return optimizeGatherScatterInst(II, II->getArgOperand(1)); + } + + SmallVector<Value *, 2> PtrOps; + Type *AccessTy; + if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) + while (!PtrOps.empty()) { + Value *PtrVal = PtrOps.pop_back_val(); + unsigned AS = PtrVal->getType()->getPointerAddressSpace(); + if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) + return true; + } + } + + // From here on out we're working with named functions. + if (!CI->getCalledFunction()) return false; + + // Lower all default uses of _chk calls. This is very similar + // to what InstCombineCalls does, but here we are only lowering calls + // to fortified library functions (e.g. __memcpy_chk) that have the default + // "don't know" as the objectsize. Anything else should be left alone. + FortifiedLibCallSimplifier Simplifier(TLInfo, true); + IRBuilder<> Builder(CI); + if (Value *V = Simplifier.optimizeCall(CI, Builder)) { + CI->replaceAllUsesWith(V); + CI->eraseFromParent(); + return true; + } + + return false; +} + +/// Look for opportunities to duplicate return instructions to the predecessor +/// to enable tail call optimizations. The case it is currently looking for is: +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// br label %return +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// br label %return +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// br label %return +/// return: +/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] +/// ret i32 %retval +/// @endcode +/// +/// => +/// +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// ret i32 %tmp0 +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// ret i32 %tmp1 +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// ret i32 %tmp2 +/// @endcode +bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { + ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); + if (!RetI) + return false; + + PHINode *PN = nullptr; + ExtractValueInst *EVI = nullptr; + BitCastInst *BCI = nullptr; + Value *V = RetI->getReturnValue(); + if (V) { + BCI = dyn_cast<BitCastInst>(V); + if (BCI) + V = BCI->getOperand(0); + + EVI = dyn_cast<ExtractValueInst>(V); + if (EVI) { + V = EVI->getOperand(0); if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; })) - return false; - } - - PN = dyn_cast<PHINode>(V); - if (!PN) - return false; - } - - if (PN && PN->getParent() != BB) - return false; - - // Make sure there are no instructions between the PHI and return, or that the - // return is the first instruction in the block. - if (PN) { - BasicBlock::iterator BI = BB->begin(); - // Skip over debug and the bitcast. - do { - ++BI; + return false; + } + + PN = dyn_cast<PHINode>(V); + if (!PN) + return false; + } + + if (PN && PN->getParent() != BB) + return false; + + // Make sure there are no instructions between the PHI and return, or that the + // return is the first instruction in the block. + if (PN) { + BasicBlock::iterator BI = BB->begin(); + // Skip over debug and the bitcast. + do { + ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI || &*BI == EVI || isa<PseudoProbeInst>(BI)); - if (&*BI != RetI) - return false; - } else { + if (&*BI != RetI) + return false; + } else { if (BB->getFirstNonPHIOrDbg(true) != RetI) - return false; - } - - /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail - /// call. - const Function *F = BB->getParent(); - SmallVector<BasicBlock*, 4> TailCallBBs; - if (PN) { - for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { - // Look through bitcasts. - Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); - CallInst *CI = dyn_cast<CallInst>(IncomingVal); - BasicBlock *PredBB = PN->getIncomingBlock(I); - // Make sure the phi value is indeed produced by the tail call. - if (CI && CI->hasOneUse() && CI->getParent() == PredBB && - TLI->mayBeEmittedAsTailCall(CI) && - attributesPermitTailCall(F, CI, RetI, *TLI)) - TailCallBBs.push_back(PredBB); - } - } else { - SmallPtrSet<BasicBlock*, 4> VisitedBBs; - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { - if (!VisitedBBs.insert(*PI).second) - continue; + return false; + } + + /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail + /// call. + const Function *F = BB->getParent(); + SmallVector<BasicBlock*, 4> TailCallBBs; + if (PN) { + for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { + // Look through bitcasts. + Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); + CallInst *CI = dyn_cast<CallInst>(IncomingVal); + BasicBlock *PredBB = PN->getIncomingBlock(I); + // Make sure the phi value is indeed produced by the tail call. + if (CI && CI->hasOneUse() && CI->getParent() == PredBB && + TLI->mayBeEmittedAsTailCall(CI) && + attributesPermitTailCall(F, CI, RetI, *TLI)) + TailCallBBs.push_back(PredBB); + } + } else { + SmallPtrSet<BasicBlock*, 4> VisitedBBs; + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (!VisitedBBs.insert(*PI).second) + continue; if (Instruction *I = (*PI)->rbegin()->getPrevNonDebugInstruction(true)) { CallInst *CI = dyn_cast<CallInst>(I); if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && attributesPermitTailCall(F, CI, RetI, *TLI)) TailCallBBs.push_back(*PI); } - } - } - - bool Changed = false; - for (auto const &TailCallBB : TailCallBBs) { - // Make sure the call instruction is followed by an unconditional branch to - // the return block. - BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); - if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) - continue; - - // Duplicate the return into TailCallBB. - (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); - assert(!VerifyBFIUpdates || - BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); - BFI->setBlockFreq( - BB, - (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); - ModifiedDT = Changed = true; - ++NumRetsDup; - } - - // If we eliminated all predecessors of the block, delete the block now. + } + } + + bool Changed = false; + for (auto const &TailCallBB : TailCallBBs) { + // Make sure the call instruction is followed by an unconditional branch to + // the return block. + BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator()); + if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) + continue; + + // Duplicate the return into TailCallBB. + (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB); + assert(!VerifyBFIUpdates || + BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB)); + BFI->setBlockFreq( + BB, + (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency()); + ModifiedDT = Changed = true; + ++NumRetsDup; + } + + // If we eliminated all predecessors of the block, delete the block now. if (Changed && !BB->hasAddressTaken() && pred_empty(BB)) - BB->eraseFromParent(); - - return Changed; -} - -//===----------------------------------------------------------------------===// -// Memory Optimization -//===----------------------------------------------------------------------===// - -namespace { - -/// This is an extended version of TargetLowering::AddrMode -/// which holds actual Value*'s for register values. -struct ExtAddrMode : public TargetLowering::AddrMode { - Value *BaseReg = nullptr; - Value *ScaledReg = nullptr; - Value *OriginalValue = nullptr; - bool InBounds = true; - - enum FieldName { - NoField = 0x00, - BaseRegField = 0x01, - BaseGVField = 0x02, - BaseOffsField = 0x04, - ScaledRegField = 0x08, - ScaleField = 0x10, - MultipleFields = 0xff - }; - - - ExtAddrMode() = default; - - void print(raw_ostream &OS) const; - void dump() const; - - FieldName compare(const ExtAddrMode &other) { - // First check that the types are the same on each field, as differing types - // is something we can't cope with later on. - if (BaseReg && other.BaseReg && - BaseReg->getType() != other.BaseReg->getType()) - return MultipleFields; - if (BaseGV && other.BaseGV && - BaseGV->getType() != other.BaseGV->getType()) - return MultipleFields; - if (ScaledReg && other.ScaledReg && - ScaledReg->getType() != other.ScaledReg->getType()) - return MultipleFields; - - // Conservatively reject 'inbounds' mismatches. - if (InBounds != other.InBounds) - return MultipleFields; - - // Check each field to see if it differs. - unsigned Result = NoField; - if (BaseReg != other.BaseReg) - Result |= BaseRegField; - if (BaseGV != other.BaseGV) - Result |= BaseGVField; - if (BaseOffs != other.BaseOffs) - Result |= BaseOffsField; - if (ScaledReg != other.ScaledReg) - Result |= ScaledRegField; - // Don't count 0 as being a different scale, because that actually means - // unscaled (which will already be counted by having no ScaledReg). - if (Scale && other.Scale && Scale != other.Scale) - Result |= ScaleField; - - if (countPopulation(Result) > 1) - return MultipleFields; - else - return static_cast<FieldName>(Result); - } - - // An AddrMode is trivial if it involves no calculation i.e. it is just a base - // with no offset. - bool isTrivial() { - // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is - // trivial if at most one of these terms is nonzero, except that BaseGV and - // BaseReg both being zero actually means a null pointer value, which we - // consider to be 'non-zero' here. - return !BaseOffs && !Scale && !(BaseGV && BaseReg); - } - - Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { - switch (Field) { - default: - return nullptr; - case BaseRegField: - return BaseReg; - case BaseGVField: - return BaseGV; - case ScaledRegField: - return ScaledReg; - case BaseOffsField: - return ConstantInt::get(IntPtrTy, BaseOffs); - } - } - - void SetCombinedField(FieldName Field, Value *V, - const SmallVectorImpl<ExtAddrMode> &AddrModes) { - switch (Field) { - default: - llvm_unreachable("Unhandled fields are expected to be rejected earlier"); - break; - case ExtAddrMode::BaseRegField: - BaseReg = V; - break; - case ExtAddrMode::BaseGVField: - // A combined BaseGV is an Instruction, not a GlobalValue, so it goes - // in the BaseReg field. - assert(BaseReg == nullptr); - BaseReg = V; - BaseGV = nullptr; - break; - case ExtAddrMode::ScaledRegField: - ScaledReg = V; - // If we have a mix of scaled and unscaled addrmodes then we want scale - // to be the scale and not zero. - if (!Scale) - for (const ExtAddrMode &AM : AddrModes) - if (AM.Scale) { - Scale = AM.Scale; - break; - } - break; - case ExtAddrMode::BaseOffsField: - // The offset is no longer a constant, so it goes in ScaledReg with a - // scale of 1. - assert(ScaledReg == nullptr); - ScaledReg = V; - Scale = 1; - BaseOffs = 0; - break; - } - } -}; - -} // end anonymous namespace - -#ifndef NDEBUG -static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { - AM.print(OS); - return OS; -} -#endif - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -void ExtAddrMode::print(raw_ostream &OS) const { - bool NeedPlus = false; - OS << "["; - if (InBounds) - OS << "inbounds "; - if (BaseGV) { - OS << (NeedPlus ? " + " : "") - << "GV:"; - BaseGV->printAsOperand(OS, /*PrintType=*/false); - NeedPlus = true; - } - - if (BaseOffs) { - OS << (NeedPlus ? " + " : "") - << BaseOffs; - NeedPlus = true; - } - - if (BaseReg) { - OS << (NeedPlus ? " + " : "") - << "Base:"; - BaseReg->printAsOperand(OS, /*PrintType=*/false); - NeedPlus = true; - } - if (Scale) { - OS << (NeedPlus ? " + " : "") - << Scale << "*"; - ScaledReg->printAsOperand(OS, /*PrintType=*/false); - } - - OS << ']'; -} - -LLVM_DUMP_METHOD void ExtAddrMode::dump() const { - print(dbgs()); - dbgs() << '\n'; -} -#endif - -namespace { - -/// This class provides transaction based operation on the IR. -/// Every change made through this class is recorded in the internal state and -/// can be undone (rollback) until commit is called. -/// CGP does not check if instructions could be speculatively executed when -/// moved. Preserving the original location would pessimize the debugging -/// experience, as well as negatively impact the quality of sample PGO. -class TypePromotionTransaction { - /// This represents the common interface of the individual transaction. - /// Each class implements the logic for doing one specific modification on - /// the IR via the TypePromotionTransaction. - class TypePromotionAction { - protected: - /// The Instruction modified. - Instruction *Inst; - - public: - /// Constructor of the action. - /// The constructor performs the related action on the IR. - TypePromotionAction(Instruction *Inst) : Inst(Inst) {} - - virtual ~TypePromotionAction() = default; - - /// Undo the modification done by this action. - /// When this method is called, the IR must be in the same state as it was - /// before this action was applied. - /// \pre Undoing the action works if and only if the IR is in the exact same - /// state as it was directly after this action was applied. - virtual void undo() = 0; - - /// Advocate every change made by this action. - /// When the results on the IR of the action are to be kept, it is important - /// to call this function, otherwise hidden information may be kept forever. - virtual void commit() { - // Nothing to be done, this action is not doing anything. - } - }; - - /// Utility to remember the position of an instruction. - class InsertionHandler { - /// Position of an instruction. - /// Either an instruction: - /// - Is the first in a basic block: BB is used. - /// - Has a previous instruction: PrevInst is used. - union { - Instruction *PrevInst; - BasicBlock *BB; - } Point; - - /// Remember whether or not the instruction had a previous instruction. - bool HasPrevInstruction; - - public: - /// Record the position of \p Inst. - InsertionHandler(Instruction *Inst) { - BasicBlock::iterator It = Inst->getIterator(); - HasPrevInstruction = (It != (Inst->getParent()->begin())); - if (HasPrevInstruction) - Point.PrevInst = &*--It; - else - Point.BB = Inst->getParent(); - } - - /// Insert \p Inst at the recorded position. - void insert(Instruction *Inst) { - if (HasPrevInstruction) { - if (Inst->getParent()) - Inst->removeFromParent(); - Inst->insertAfter(Point.PrevInst); - } else { - Instruction *Position = &*Point.BB->getFirstInsertionPt(); - if (Inst->getParent()) - Inst->moveBefore(Position); - else - Inst->insertBefore(Position); - } - } - }; - - /// Move an instruction before another. - class InstructionMoveBefore : public TypePromotionAction { - /// Original position of the instruction. - InsertionHandler Position; - - public: - /// Move \p Inst before \p Before. - InstructionMoveBefore(Instruction *Inst, Instruction *Before) - : TypePromotionAction(Inst), Position(Inst) { - LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before - << "\n"); - Inst->moveBefore(Before); - } - - /// Move the instruction back to its original position. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); - Position.insert(Inst); - } - }; - - /// Set the operand of an instruction with a new value. - class OperandSetter : public TypePromotionAction { - /// Original operand of the instruction. - Value *Origin; - - /// Index of the modified instruction. - unsigned Idx; - - public: - /// Set \p Idx operand of \p Inst with \p NewVal. - OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) - : TypePromotionAction(Inst), Idx(Idx) { - LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" - << "for:" << *Inst << "\n" - << "with:" << *NewVal << "\n"); - Origin = Inst->getOperand(Idx); - Inst->setOperand(Idx, NewVal); - } - - /// Restore the original value of the instruction. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" - << "for: " << *Inst << "\n" - << "with: " << *Origin << "\n"); - Inst->setOperand(Idx, Origin); - } - }; - - /// Hide the operands of an instruction. - /// Do as if this instruction was not using any of its operands. - class OperandsHider : public TypePromotionAction { - /// The list of original operands. - SmallVector<Value *, 4> OriginalValues; - - public: - /// Remove \p Inst from the uses of the operands of \p Inst. - OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { - LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); - unsigned NumOpnds = Inst->getNumOperands(); - OriginalValues.reserve(NumOpnds); - for (unsigned It = 0; It < NumOpnds; ++It) { - // Save the current operand. - Value *Val = Inst->getOperand(It); - OriginalValues.push_back(Val); - // Set a dummy one. - // We could use OperandSetter here, but that would imply an overhead - // that we are not willing to pay. - Inst->setOperand(It, UndefValue::get(Val->getType())); - } - } - - /// Restore the original list of uses. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); - for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) - Inst->setOperand(It, OriginalValues[It]); - } - }; - - /// Build a truncate instruction. - class TruncBuilder : public TypePromotionAction { - Value *Val; - - public: - /// Build a truncate instruction of \p Opnd producing a \p Ty - /// result. - /// trunc Opnd to Ty. - TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { - IRBuilder<> Builder(Opnd); - Builder.SetCurrentDebugLocation(DebugLoc()); - Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); - LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); - } - - /// Get the built value. - Value *getBuiltValue() { return Val; } - - /// Remove the built instruction. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); - if (Instruction *IVal = dyn_cast<Instruction>(Val)) - IVal->eraseFromParent(); - } - }; - - /// Build a sign extension instruction. - class SExtBuilder : public TypePromotionAction { - Value *Val; - - public: - /// Build a sign extension instruction of \p Opnd producing a \p Ty - /// result. - /// sext Opnd to Ty. - SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) - : TypePromotionAction(InsertPt) { - IRBuilder<> Builder(InsertPt); - Val = Builder.CreateSExt(Opnd, Ty, "promoted"); - LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); - } - - /// Get the built value. - Value *getBuiltValue() { return Val; } - - /// Remove the built instruction. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); - if (Instruction *IVal = dyn_cast<Instruction>(Val)) - IVal->eraseFromParent(); - } - }; - - /// Build a zero extension instruction. - class ZExtBuilder : public TypePromotionAction { - Value *Val; - - public: - /// Build a zero extension instruction of \p Opnd producing a \p Ty - /// result. - /// zext Opnd to Ty. - ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) - : TypePromotionAction(InsertPt) { - IRBuilder<> Builder(InsertPt); - Builder.SetCurrentDebugLocation(DebugLoc()); - Val = Builder.CreateZExt(Opnd, Ty, "promoted"); - LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); - } - - /// Get the built value. - Value *getBuiltValue() { return Val; } - - /// Remove the built instruction. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); - if (Instruction *IVal = dyn_cast<Instruction>(Val)) - IVal->eraseFromParent(); - } - }; - - /// Mutate an instruction to another type. - class TypeMutator : public TypePromotionAction { - /// Record the original type. - Type *OrigTy; - - public: - /// Mutate the type of \p Inst into \p NewTy. - TypeMutator(Instruction *Inst, Type *NewTy) - : TypePromotionAction(Inst), OrigTy(Inst->getType()) { - LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy - << "\n"); - Inst->mutateType(NewTy); - } - - /// Mutate the instruction back to its original type. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy - << "\n"); - Inst->mutateType(OrigTy); - } - }; - - /// Replace the uses of an instruction by another instruction. - class UsesReplacer : public TypePromotionAction { - /// Helper structure to keep track of the replaced uses. - struct InstructionAndIdx { - /// The instruction using the instruction. - Instruction *Inst; - - /// The index where this instruction is used for Inst. - unsigned Idx; - - InstructionAndIdx(Instruction *Inst, unsigned Idx) - : Inst(Inst), Idx(Idx) {} - }; - - /// Keep track of the original uses (pair Instruction, Index). - SmallVector<InstructionAndIdx, 4> OriginalUses; - /// Keep track of the debug users. - SmallVector<DbgValueInst *, 1> DbgValues; - - using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; - - public: - /// Replace all the use of \p Inst by \p New. - UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { - LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New - << "\n"); - // Record the original uses. - for (Use &U : Inst->uses()) { - Instruction *UserI = cast<Instruction>(U.getUser()); - OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); - } - // Record the debug uses separately. They are not in the instruction's - // use list, but they are replaced by RAUW. - findDbgValues(DbgValues, Inst); - - // Now, we can replace the uses. - Inst->replaceAllUsesWith(New); - } - - /// Reassign the original uses of Inst to Inst. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); - for (use_iterator UseIt = OriginalUses.begin(), - EndIt = OriginalUses.end(); - UseIt != EndIt; ++UseIt) { - UseIt->Inst->setOperand(UseIt->Idx, Inst); - } - // RAUW has replaced all original uses with references to the new value, - // including the debug uses. Since we are undoing the replacements, - // the original debug uses must also be reinstated to maintain the - // correctness and utility of debug value instructions. - for (auto *DVI: DbgValues) { - LLVMContext &Ctx = Inst->getType()->getContext(); - auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); - DVI->setOperand(0, MV); - } - } - }; - - /// Remove an instruction from the IR. - class InstructionRemover : public TypePromotionAction { - /// Original position of the instruction. - InsertionHandler Inserter; - - /// Helper structure to hide all the link to the instruction. In other - /// words, this helps to do as if the instruction was removed. - OperandsHider Hider; - - /// Keep track of the uses replaced, if any. - UsesReplacer *Replacer = nullptr; - - /// Keep track of instructions removed. - SetOfInstrs &RemovedInsts; - - public: - /// Remove all reference of \p Inst and optionally replace all its - /// uses with New. - /// \p RemovedInsts Keep track of the instructions removed by this Action. - /// \pre If !Inst->use_empty(), then New != nullptr - InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, - Value *New = nullptr) - : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), - RemovedInsts(RemovedInsts) { - if (New) - Replacer = new UsesReplacer(Inst, New); - LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); - RemovedInsts.insert(Inst); - /// The instructions removed here will be freed after completing - /// optimizeBlock() for all blocks as we need to keep track of the - /// removed instructions during promotion. - Inst->removeFromParent(); - } - - ~InstructionRemover() override { delete Replacer; } - - /// Resurrect the instruction and reassign it to the proper uses if - /// new value was provided when build this action. - void undo() override { - LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); - Inserter.insert(Inst); - if (Replacer) - Replacer->undo(); - Hider.undo(); - RemovedInsts.erase(Inst); - } - }; - -public: - /// Restoration point. - /// The restoration point is a pointer to an action instead of an iterator - /// because the iterator may be invalidated but not the pointer. - using ConstRestorationPt = const TypePromotionAction *; - - TypePromotionTransaction(SetOfInstrs &RemovedInsts) - : RemovedInsts(RemovedInsts) {} - - /// Advocate every changes made in that transaction. Return true if any change - /// happen. - bool commit(); - - /// Undo all the changes made after the given point. - void rollback(ConstRestorationPt Point); - - /// Get the current restoration point. - ConstRestorationPt getRestorationPoint() const; - - /// \name API for IR modification with state keeping to support rollback. - /// @{ - /// Same as Instruction::setOperand. - void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); - - /// Same as Instruction::eraseFromParent. - void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); - - /// Same as Value::replaceAllUsesWith. - void replaceAllUsesWith(Instruction *Inst, Value *New); - - /// Same as Value::mutateType. - void mutateType(Instruction *Inst, Type *NewTy); - - /// Same as IRBuilder::createTrunc. - Value *createTrunc(Instruction *Opnd, Type *Ty); - - /// Same as IRBuilder::createSExt. - Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); - - /// Same as IRBuilder::createZExt. - Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); - - /// Same as Instruction::moveBefore. - void moveBefore(Instruction *Inst, Instruction *Before); - /// @} - -private: - /// The ordered list of actions made so far. - SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; - - using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; - - SetOfInstrs &RemovedInsts; -}; - -} // end anonymous namespace - -void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, - Value *NewVal) { - Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( - Inst, Idx, NewVal)); -} - -void TypePromotionTransaction::eraseInstruction(Instruction *Inst, - Value *NewVal) { - Actions.push_back( - std::make_unique<TypePromotionTransaction::InstructionRemover>( - Inst, RemovedInsts, NewVal)); -} - -void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, - Value *New) { - Actions.push_back( - std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); -} - -void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { - Actions.push_back( - std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); -} - -Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, - Type *Ty) { - std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); - Value *Val = Ptr->getBuiltValue(); - Actions.push_back(std::move(Ptr)); - return Val; -} - -Value *TypePromotionTransaction::createSExt(Instruction *Inst, - Value *Opnd, Type *Ty) { - std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); - Value *Val = Ptr->getBuiltValue(); - Actions.push_back(std::move(Ptr)); - return Val; -} - -Value *TypePromotionTransaction::createZExt(Instruction *Inst, - Value *Opnd, Type *Ty) { - std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); - Value *Val = Ptr->getBuiltValue(); - Actions.push_back(std::move(Ptr)); - return Val; -} - -void TypePromotionTransaction::moveBefore(Instruction *Inst, - Instruction *Before) { - Actions.push_back( - std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( - Inst, Before)); -} - -TypePromotionTransaction::ConstRestorationPt -TypePromotionTransaction::getRestorationPoint() const { - return !Actions.empty() ? Actions.back().get() : nullptr; -} - -bool TypePromotionTransaction::commit() { - for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; - ++It) - (*It)->commit(); - bool Modified = !Actions.empty(); - Actions.clear(); - return Modified; -} - -void TypePromotionTransaction::rollback( - TypePromotionTransaction::ConstRestorationPt Point) { - while (!Actions.empty() && Point != Actions.back().get()) { - std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); - Curr->undo(); - } -} - -namespace { - -/// A helper class for matching addressing modes. -/// -/// This encapsulates the logic for matching the target-legal addressing modes. -class AddressingModeMatcher { - SmallVectorImpl<Instruction*> &AddrModeInsts; - const TargetLowering &TLI; - const TargetRegisterInfo &TRI; - const DataLayout &DL; - - /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and - /// the memory instruction that we're computing this address for. - Type *AccessTy; - unsigned AddrSpace; - Instruction *MemoryInst; - - /// This is the addressing mode that we're building up. This is - /// part of the return value of this addressing mode matching stuff. - ExtAddrMode &AddrMode; - - /// The instructions inserted by other CodeGenPrepare optimizations. - const SetOfInstrs &InsertedInsts; - - /// A map from the instructions to their type before promotion. - InstrToOrigTy &PromotedInsts; - - /// The ongoing transaction where every action should be registered. - TypePromotionTransaction &TPT; - - // A GEP which has too large offset to be folded into the addressing mode. - std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; - - /// This is set to true when we should not do profitability checks. - /// When true, IsProfitableToFoldIntoAddressingMode always returns true. - bool IgnoreProfitability; - - /// True if we are optimizing for size. - bool OptSize; - - ProfileSummaryInfo *PSI; - BlockFrequencyInfo *BFI; - - AddressingModeMatcher( - SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, - const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, - ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, - InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, - std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, - bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) - : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), - DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), - MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), - PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), - OptSize(OptSize), PSI(PSI), BFI(BFI) { - IgnoreProfitability = false; - } - -public: - /// Find the maximal addressing mode that a load/store of V can fold, - /// give an access type of AccessTy. This returns a list of involved - /// instructions in AddrModeInsts. - /// \p InsertedInsts The instructions inserted by other CodeGenPrepare - /// optimizations. - /// \p PromotedInsts maps the instructions to their type before promotion. - /// \p The ongoing transaction where every action should be registered. - static ExtAddrMode - Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, - SmallVectorImpl<Instruction *> &AddrModeInsts, - const TargetLowering &TLI, const TargetRegisterInfo &TRI, - const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, - TypePromotionTransaction &TPT, - std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, - bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { - ExtAddrMode Result; - - bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, - MemoryInst, Result, InsertedInsts, - PromotedInsts, TPT, LargeOffsetGEP, - OptSize, PSI, BFI) - .matchAddr(V, 0); - (void)Success; assert(Success && "Couldn't select *anything*?"); - return Result; - } - -private: - bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); - bool matchAddr(Value *Addr, unsigned Depth); - bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, - bool *MovedAway = nullptr); - bool isProfitableToFoldIntoAddressingMode(Instruction *I, - ExtAddrMode &AMBefore, - ExtAddrMode &AMAfter); - bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); - bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, - Value *PromotedOperand) const; -}; - -class PhiNodeSet; - -/// An iterator for PhiNodeSet. -class PhiNodeSetIterator { - PhiNodeSet * const Set; - size_t CurrentIndex = 0; - -public: - /// The constructor. Start should point to either a valid element, or be equal - /// to the size of the underlying SmallVector of the PhiNodeSet. - PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); - PHINode * operator*() const; - PhiNodeSetIterator& operator++(); - bool operator==(const PhiNodeSetIterator &RHS) const; - bool operator!=(const PhiNodeSetIterator &RHS) const; -}; - -/// Keeps a set of PHINodes. -/// -/// This is a minimal set implementation for a specific use case: -/// It is very fast when there are very few elements, but also provides good -/// performance when there are many. It is similar to SmallPtrSet, but also -/// provides iteration by insertion order, which is deterministic and stable -/// across runs. It is also similar to SmallSetVector, but provides removing -/// elements in O(1) time. This is achieved by not actually removing the element -/// from the underlying vector, so comes at the cost of using more memory, but -/// that is fine, since PhiNodeSets are used as short lived objects. -class PhiNodeSet { - friend class PhiNodeSetIterator; - - using MapType = SmallDenseMap<PHINode *, size_t, 32>; - using iterator = PhiNodeSetIterator; - - /// Keeps the elements in the order of their insertion in the underlying - /// vector. To achieve constant time removal, it never deletes any element. - SmallVector<PHINode *, 32> NodeList; - - /// Keeps the elements in the underlying set implementation. This (and not the - /// NodeList defined above) is the source of truth on whether an element - /// is actually in the collection. - MapType NodeMap; - - /// Points to the first valid (not deleted) element when the set is not empty - /// and the value is not zero. Equals to the size of the underlying vector - /// when the set is empty. When the value is 0, as in the beginning, the - /// first element may or may not be valid. - size_t FirstValidElement = 0; - -public: - /// Inserts a new element to the collection. - /// \returns true if the element is actually added, i.e. was not in the - /// collection before the operation. - bool insert(PHINode *Ptr) { - if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { - NodeList.push_back(Ptr); - return true; - } - return false; - } - - /// Removes the element from the collection. - /// \returns whether the element is actually removed, i.e. was in the - /// collection before the operation. - bool erase(PHINode *Ptr) { + BB->eraseFromParent(); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// Memory Optimization +//===----------------------------------------------------------------------===// + +namespace { + +/// This is an extended version of TargetLowering::AddrMode +/// which holds actual Value*'s for register values. +struct ExtAddrMode : public TargetLowering::AddrMode { + Value *BaseReg = nullptr; + Value *ScaledReg = nullptr; + Value *OriginalValue = nullptr; + bool InBounds = true; + + enum FieldName { + NoField = 0x00, + BaseRegField = 0x01, + BaseGVField = 0x02, + BaseOffsField = 0x04, + ScaledRegField = 0x08, + ScaleField = 0x10, + MultipleFields = 0xff + }; + + + ExtAddrMode() = default; + + void print(raw_ostream &OS) const; + void dump() const; + + FieldName compare(const ExtAddrMode &other) { + // First check that the types are the same on each field, as differing types + // is something we can't cope with later on. + if (BaseReg && other.BaseReg && + BaseReg->getType() != other.BaseReg->getType()) + return MultipleFields; + if (BaseGV && other.BaseGV && + BaseGV->getType() != other.BaseGV->getType()) + return MultipleFields; + if (ScaledReg && other.ScaledReg && + ScaledReg->getType() != other.ScaledReg->getType()) + return MultipleFields; + + // Conservatively reject 'inbounds' mismatches. + if (InBounds != other.InBounds) + return MultipleFields; + + // Check each field to see if it differs. + unsigned Result = NoField; + if (BaseReg != other.BaseReg) + Result |= BaseRegField; + if (BaseGV != other.BaseGV) + Result |= BaseGVField; + if (BaseOffs != other.BaseOffs) + Result |= BaseOffsField; + if (ScaledReg != other.ScaledReg) + Result |= ScaledRegField; + // Don't count 0 as being a different scale, because that actually means + // unscaled (which will already be counted by having no ScaledReg). + if (Scale && other.Scale && Scale != other.Scale) + Result |= ScaleField; + + if (countPopulation(Result) > 1) + return MultipleFields; + else + return static_cast<FieldName>(Result); + } + + // An AddrMode is trivial if it involves no calculation i.e. it is just a base + // with no offset. + bool isTrivial() { + // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is + // trivial if at most one of these terms is nonzero, except that BaseGV and + // BaseReg both being zero actually means a null pointer value, which we + // consider to be 'non-zero' here. + return !BaseOffs && !Scale && !(BaseGV && BaseReg); + } + + Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { + switch (Field) { + default: + return nullptr; + case BaseRegField: + return BaseReg; + case BaseGVField: + return BaseGV; + case ScaledRegField: + return ScaledReg; + case BaseOffsField: + return ConstantInt::get(IntPtrTy, BaseOffs); + } + } + + void SetCombinedField(FieldName Field, Value *V, + const SmallVectorImpl<ExtAddrMode> &AddrModes) { + switch (Field) { + default: + llvm_unreachable("Unhandled fields are expected to be rejected earlier"); + break; + case ExtAddrMode::BaseRegField: + BaseReg = V; + break; + case ExtAddrMode::BaseGVField: + // A combined BaseGV is an Instruction, not a GlobalValue, so it goes + // in the BaseReg field. + assert(BaseReg == nullptr); + BaseReg = V; + BaseGV = nullptr; + break; + case ExtAddrMode::ScaledRegField: + ScaledReg = V; + // If we have a mix of scaled and unscaled addrmodes then we want scale + // to be the scale and not zero. + if (!Scale) + for (const ExtAddrMode &AM : AddrModes) + if (AM.Scale) { + Scale = AM.Scale; + break; + } + break; + case ExtAddrMode::BaseOffsField: + // The offset is no longer a constant, so it goes in ScaledReg with a + // scale of 1. + assert(ScaledReg == nullptr); + ScaledReg = V; + Scale = 1; + BaseOffs = 0; + break; + } + } +}; + +} // end anonymous namespace + +#ifndef NDEBUG +static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { + AM.print(OS); + return OS; +} +#endif + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ExtAddrMode::print(raw_ostream &OS) const { + bool NeedPlus = false; + OS << "["; + if (InBounds) + OS << "inbounds "; + if (BaseGV) { + OS << (NeedPlus ? " + " : "") + << "GV:"; + BaseGV->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + + if (BaseOffs) { + OS << (NeedPlus ? " + " : "") + << BaseOffs; + NeedPlus = true; + } + + if (BaseReg) { + OS << (NeedPlus ? " + " : "") + << "Base:"; + BaseReg->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + if (Scale) { + OS << (NeedPlus ? " + " : "") + << Scale << "*"; + ScaledReg->printAsOperand(OS, /*PrintType=*/false); + } + + OS << ']'; +} + +LLVM_DUMP_METHOD void ExtAddrMode::dump() const { + print(dbgs()); + dbgs() << '\n'; +} +#endif + +namespace { + +/// This class provides transaction based operation on the IR. +/// Every change made through this class is recorded in the internal state and +/// can be undone (rollback) until commit is called. +/// CGP does not check if instructions could be speculatively executed when +/// moved. Preserving the original location would pessimize the debugging +/// experience, as well as negatively impact the quality of sample PGO. +class TypePromotionTransaction { + /// This represents the common interface of the individual transaction. + /// Each class implements the logic for doing one specific modification on + /// the IR via the TypePromotionTransaction. + class TypePromotionAction { + protected: + /// The Instruction modified. + Instruction *Inst; + + public: + /// Constructor of the action. + /// The constructor performs the related action on the IR. + TypePromotionAction(Instruction *Inst) : Inst(Inst) {} + + virtual ~TypePromotionAction() = default; + + /// Undo the modification done by this action. + /// When this method is called, the IR must be in the same state as it was + /// before this action was applied. + /// \pre Undoing the action works if and only if the IR is in the exact same + /// state as it was directly after this action was applied. + virtual void undo() = 0; + + /// Advocate every change made by this action. + /// When the results on the IR of the action are to be kept, it is important + /// to call this function, otherwise hidden information may be kept forever. + virtual void commit() { + // Nothing to be done, this action is not doing anything. + } + }; + + /// Utility to remember the position of an instruction. + class InsertionHandler { + /// Position of an instruction. + /// Either an instruction: + /// - Is the first in a basic block: BB is used. + /// - Has a previous instruction: PrevInst is used. + union { + Instruction *PrevInst; + BasicBlock *BB; + } Point; + + /// Remember whether or not the instruction had a previous instruction. + bool HasPrevInstruction; + + public: + /// Record the position of \p Inst. + InsertionHandler(Instruction *Inst) { + BasicBlock::iterator It = Inst->getIterator(); + HasPrevInstruction = (It != (Inst->getParent()->begin())); + if (HasPrevInstruction) + Point.PrevInst = &*--It; + else + Point.BB = Inst->getParent(); + } + + /// Insert \p Inst at the recorded position. + void insert(Instruction *Inst) { + if (HasPrevInstruction) { + if (Inst->getParent()) + Inst->removeFromParent(); + Inst->insertAfter(Point.PrevInst); + } else { + Instruction *Position = &*Point.BB->getFirstInsertionPt(); + if (Inst->getParent()) + Inst->moveBefore(Position); + else + Inst->insertBefore(Position); + } + } + }; + + /// Move an instruction before another. + class InstructionMoveBefore : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Position; + + public: + /// Move \p Inst before \p Before. + InstructionMoveBefore(Instruction *Inst, Instruction *Before) + : TypePromotionAction(Inst), Position(Inst) { + LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before + << "\n"); + Inst->moveBefore(Before); + } + + /// Move the instruction back to its original position. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); + Position.insert(Inst); + } + }; + + /// Set the operand of an instruction with a new value. + class OperandSetter : public TypePromotionAction { + /// Original operand of the instruction. + Value *Origin; + + /// Index of the modified instruction. + unsigned Idx; + + public: + /// Set \p Idx operand of \p Inst with \p NewVal. + OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) + : TypePromotionAction(Inst), Idx(Idx) { + LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" + << "for:" << *Inst << "\n" + << "with:" << *NewVal << "\n"); + Origin = Inst->getOperand(Idx); + Inst->setOperand(Idx, NewVal); + } + + /// Restore the original value of the instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" + << "for: " << *Inst << "\n" + << "with: " << *Origin << "\n"); + Inst->setOperand(Idx, Origin); + } + }; + + /// Hide the operands of an instruction. + /// Do as if this instruction was not using any of its operands. + class OperandsHider : public TypePromotionAction { + /// The list of original operands. + SmallVector<Value *, 4> OriginalValues; + + public: + /// Remove \p Inst from the uses of the operands of \p Inst. + OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { + LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); + unsigned NumOpnds = Inst->getNumOperands(); + OriginalValues.reserve(NumOpnds); + for (unsigned It = 0; It < NumOpnds; ++It) { + // Save the current operand. + Value *Val = Inst->getOperand(It); + OriginalValues.push_back(Val); + // Set a dummy one. + // We could use OperandSetter here, but that would imply an overhead + // that we are not willing to pay. + Inst->setOperand(It, UndefValue::get(Val->getType())); + } + } + + /// Restore the original list of uses. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); + for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) + Inst->setOperand(It, OriginalValues[It]); + } + }; + + /// Build a truncate instruction. + class TruncBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a truncate instruction of \p Opnd producing a \p Ty + /// result. + /// trunc Opnd to Ty. + TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { + IRBuilder<> Builder(Opnd); + Builder.SetCurrentDebugLocation(DebugLoc()); + Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Build a sign extension instruction. + class SExtBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a sign extension instruction of \p Opnd producing a \p Ty + /// result. + /// sext Opnd to Ty. + SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Val = Builder.CreateSExt(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Build a zero extension instruction. + class ZExtBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a zero extension instruction of \p Opnd producing a \p Ty + /// result. + /// zext Opnd to Ty. + ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Builder.SetCurrentDebugLocation(DebugLoc()); + Val = Builder.CreateZExt(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Mutate an instruction to another type. + class TypeMutator : public TypePromotionAction { + /// Record the original type. + Type *OrigTy; + + public: + /// Mutate the type of \p Inst into \p NewTy. + TypeMutator(Instruction *Inst, Type *NewTy) + : TypePromotionAction(Inst), OrigTy(Inst->getType()) { + LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy + << "\n"); + Inst->mutateType(NewTy); + } + + /// Mutate the instruction back to its original type. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy + << "\n"); + Inst->mutateType(OrigTy); + } + }; + + /// Replace the uses of an instruction by another instruction. + class UsesReplacer : public TypePromotionAction { + /// Helper structure to keep track of the replaced uses. + struct InstructionAndIdx { + /// The instruction using the instruction. + Instruction *Inst; + + /// The index where this instruction is used for Inst. + unsigned Idx; + + InstructionAndIdx(Instruction *Inst, unsigned Idx) + : Inst(Inst), Idx(Idx) {} + }; + + /// Keep track of the original uses (pair Instruction, Index). + SmallVector<InstructionAndIdx, 4> OriginalUses; + /// Keep track of the debug users. + SmallVector<DbgValueInst *, 1> DbgValues; + + using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; + + public: + /// Replace all the use of \p Inst by \p New. + UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { + LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New + << "\n"); + // Record the original uses. + for (Use &U : Inst->uses()) { + Instruction *UserI = cast<Instruction>(U.getUser()); + OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); + } + // Record the debug uses separately. They are not in the instruction's + // use list, but they are replaced by RAUW. + findDbgValues(DbgValues, Inst); + + // Now, we can replace the uses. + Inst->replaceAllUsesWith(New); + } + + /// Reassign the original uses of Inst to Inst. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); + for (use_iterator UseIt = OriginalUses.begin(), + EndIt = OriginalUses.end(); + UseIt != EndIt; ++UseIt) { + UseIt->Inst->setOperand(UseIt->Idx, Inst); + } + // RAUW has replaced all original uses with references to the new value, + // including the debug uses. Since we are undoing the replacements, + // the original debug uses must also be reinstated to maintain the + // correctness and utility of debug value instructions. + for (auto *DVI: DbgValues) { + LLVMContext &Ctx = Inst->getType()->getContext(); + auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); + DVI->setOperand(0, MV); + } + } + }; + + /// Remove an instruction from the IR. + class InstructionRemover : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Inserter; + + /// Helper structure to hide all the link to the instruction. In other + /// words, this helps to do as if the instruction was removed. + OperandsHider Hider; + + /// Keep track of the uses replaced, if any. + UsesReplacer *Replacer = nullptr; + + /// Keep track of instructions removed. + SetOfInstrs &RemovedInsts; + + public: + /// Remove all reference of \p Inst and optionally replace all its + /// uses with New. + /// \p RemovedInsts Keep track of the instructions removed by this Action. + /// \pre If !Inst->use_empty(), then New != nullptr + InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, + Value *New = nullptr) + : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), + RemovedInsts(RemovedInsts) { + if (New) + Replacer = new UsesReplacer(Inst, New); + LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); + RemovedInsts.insert(Inst); + /// The instructions removed here will be freed after completing + /// optimizeBlock() for all blocks as we need to keep track of the + /// removed instructions during promotion. + Inst->removeFromParent(); + } + + ~InstructionRemover() override { delete Replacer; } + + /// Resurrect the instruction and reassign it to the proper uses if + /// new value was provided when build this action. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); + Inserter.insert(Inst); + if (Replacer) + Replacer->undo(); + Hider.undo(); + RemovedInsts.erase(Inst); + } + }; + +public: + /// Restoration point. + /// The restoration point is a pointer to an action instead of an iterator + /// because the iterator may be invalidated but not the pointer. + using ConstRestorationPt = const TypePromotionAction *; + + TypePromotionTransaction(SetOfInstrs &RemovedInsts) + : RemovedInsts(RemovedInsts) {} + + /// Advocate every changes made in that transaction. Return true if any change + /// happen. + bool commit(); + + /// Undo all the changes made after the given point. + void rollback(ConstRestorationPt Point); + + /// Get the current restoration point. + ConstRestorationPt getRestorationPoint() const; + + /// \name API for IR modification with state keeping to support rollback. + /// @{ + /// Same as Instruction::setOperand. + void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); + + /// Same as Instruction::eraseFromParent. + void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); + + /// Same as Value::replaceAllUsesWith. + void replaceAllUsesWith(Instruction *Inst, Value *New); + + /// Same as Value::mutateType. + void mutateType(Instruction *Inst, Type *NewTy); + + /// Same as IRBuilder::createTrunc. + Value *createTrunc(Instruction *Opnd, Type *Ty); + + /// Same as IRBuilder::createSExt. + Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); + + /// Same as IRBuilder::createZExt. + Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); + + /// Same as Instruction::moveBefore. + void moveBefore(Instruction *Inst, Instruction *Before); + /// @} + +private: + /// The ordered list of actions made so far. + SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; + + using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; + + SetOfInstrs &RemovedInsts; +}; + +} // end anonymous namespace + +void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, + Value *NewVal) { + Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>( + Inst, Idx, NewVal)); +} + +void TypePromotionTransaction::eraseInstruction(Instruction *Inst, + Value *NewVal) { + Actions.push_back( + std::make_unique<TypePromotionTransaction::InstructionRemover>( + Inst, RemovedInsts, NewVal)); +} + +void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, + Value *New) { + Actions.push_back( + std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); +} + +void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { + Actions.push_back( + std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); +} + +Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, + Type *Ty) { + std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createSExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createZExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +void TypePromotionTransaction::moveBefore(Instruction *Inst, + Instruction *Before) { + Actions.push_back( + std::make_unique<TypePromotionTransaction::InstructionMoveBefore>( + Inst, Before)); +} + +TypePromotionTransaction::ConstRestorationPt +TypePromotionTransaction::getRestorationPoint() const { + return !Actions.empty() ? Actions.back().get() : nullptr; +} + +bool TypePromotionTransaction::commit() { + for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; + ++It) + (*It)->commit(); + bool Modified = !Actions.empty(); + Actions.clear(); + return Modified; +} + +void TypePromotionTransaction::rollback( + TypePromotionTransaction::ConstRestorationPt Point) { + while (!Actions.empty() && Point != Actions.back().get()) { + std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); + Curr->undo(); + } +} + +namespace { + +/// A helper class for matching addressing modes. +/// +/// This encapsulates the logic for matching the target-legal addressing modes. +class AddressingModeMatcher { + SmallVectorImpl<Instruction*> &AddrModeInsts; + const TargetLowering &TLI; + const TargetRegisterInfo &TRI; + const DataLayout &DL; + + /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and + /// the memory instruction that we're computing this address for. + Type *AccessTy; + unsigned AddrSpace; + Instruction *MemoryInst; + + /// This is the addressing mode that we're building up. This is + /// part of the return value of this addressing mode matching stuff. + ExtAddrMode &AddrMode; + + /// The instructions inserted by other CodeGenPrepare optimizations. + const SetOfInstrs &InsertedInsts; + + /// A map from the instructions to their type before promotion. + InstrToOrigTy &PromotedInsts; + + /// The ongoing transaction where every action should be registered. + TypePromotionTransaction &TPT; + + // A GEP which has too large offset to be folded into the addressing mode. + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; + + /// This is set to true when we should not do profitability checks. + /// When true, IsProfitableToFoldIntoAddressingMode always returns true. + bool IgnoreProfitability; + + /// True if we are optimizing for size. + bool OptSize; + + ProfileSummaryInfo *PSI; + BlockFrequencyInfo *BFI; + + AddressingModeMatcher( + SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, + const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, + ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, + InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, + bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) + : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), + DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), + MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), + PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP), + OptSize(OptSize), PSI(PSI), BFI(BFI) { + IgnoreProfitability = false; + } + +public: + /// Find the maximal addressing mode that a load/store of V can fold, + /// give an access type of AccessTy. This returns a list of involved + /// instructions in AddrModeInsts. + /// \p InsertedInsts The instructions inserted by other CodeGenPrepare + /// optimizations. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p The ongoing transaction where every action should be registered. + static ExtAddrMode + Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, + SmallVectorImpl<Instruction *> &AddrModeInsts, + const TargetLowering &TLI, const TargetRegisterInfo &TRI, + const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, + TypePromotionTransaction &TPT, + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP, + bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { + ExtAddrMode Result; + + bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, + MemoryInst, Result, InsertedInsts, + PromotedInsts, TPT, LargeOffsetGEP, + OptSize, PSI, BFI) + .matchAddr(V, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + return Result; + } + +private: + bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); + bool matchAddr(Value *Addr, unsigned Depth); + bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, + bool *MovedAway = nullptr); + bool isProfitableToFoldIntoAddressingMode(Instruction *I, + ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter); + bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); + bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, + Value *PromotedOperand) const; +}; + +class PhiNodeSet; + +/// An iterator for PhiNodeSet. +class PhiNodeSetIterator { + PhiNodeSet * const Set; + size_t CurrentIndex = 0; + +public: + /// The constructor. Start should point to either a valid element, or be equal + /// to the size of the underlying SmallVector of the PhiNodeSet. + PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); + PHINode * operator*() const; + PhiNodeSetIterator& operator++(); + bool operator==(const PhiNodeSetIterator &RHS) const; + bool operator!=(const PhiNodeSetIterator &RHS) const; +}; + +/// Keeps a set of PHINodes. +/// +/// This is a minimal set implementation for a specific use case: +/// It is very fast when there are very few elements, but also provides good +/// performance when there are many. It is similar to SmallPtrSet, but also +/// provides iteration by insertion order, which is deterministic and stable +/// across runs. It is also similar to SmallSetVector, but provides removing +/// elements in O(1) time. This is achieved by not actually removing the element +/// from the underlying vector, so comes at the cost of using more memory, but +/// that is fine, since PhiNodeSets are used as short lived objects. +class PhiNodeSet { + friend class PhiNodeSetIterator; + + using MapType = SmallDenseMap<PHINode *, size_t, 32>; + using iterator = PhiNodeSetIterator; + + /// Keeps the elements in the order of their insertion in the underlying + /// vector. To achieve constant time removal, it never deletes any element. + SmallVector<PHINode *, 32> NodeList; + + /// Keeps the elements in the underlying set implementation. This (and not the + /// NodeList defined above) is the source of truth on whether an element + /// is actually in the collection. + MapType NodeMap; + + /// Points to the first valid (not deleted) element when the set is not empty + /// and the value is not zero. Equals to the size of the underlying vector + /// when the set is empty. When the value is 0, as in the beginning, the + /// first element may or may not be valid. + size_t FirstValidElement = 0; + +public: + /// Inserts a new element to the collection. + /// \returns true if the element is actually added, i.e. was not in the + /// collection before the operation. + bool insert(PHINode *Ptr) { + if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { + NodeList.push_back(Ptr); + return true; + } + return false; + } + + /// Removes the element from the collection. + /// \returns whether the element is actually removed, i.e. was in the + /// collection before the operation. + bool erase(PHINode *Ptr) { if (NodeMap.erase(Ptr)) { - SkipRemovedElements(FirstValidElement); - return true; - } - return false; - } - - /// Removes all elements and clears the collection. - void clear() { - NodeMap.clear(); - NodeList.clear(); - FirstValidElement = 0; - } - - /// \returns an iterator that will iterate the elements in the order of - /// insertion. - iterator begin() { - if (FirstValidElement == 0) - SkipRemovedElements(FirstValidElement); - return PhiNodeSetIterator(this, FirstValidElement); - } - - /// \returns an iterator that points to the end of the collection. - iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } - - /// Returns the number of elements in the collection. - size_t size() const { - return NodeMap.size(); - } - - /// \returns 1 if the given element is in the collection, and 0 if otherwise. - size_t count(PHINode *Ptr) const { - return NodeMap.count(Ptr); - } - -private: - /// Updates the CurrentIndex so that it will point to a valid element. - /// - /// If the element of NodeList at CurrentIndex is valid, it does not - /// change it. If there are no more valid elements, it updates CurrentIndex - /// to point to the end of the NodeList. - void SkipRemovedElements(size_t &CurrentIndex) { - while (CurrentIndex < NodeList.size()) { - auto it = NodeMap.find(NodeList[CurrentIndex]); - // If the element has been deleted and added again later, NodeMap will - // point to a different index, so CurrentIndex will still be invalid. - if (it != NodeMap.end() && it->second == CurrentIndex) - break; - ++CurrentIndex; - } - } -}; - -PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) - : Set(Set), CurrentIndex(Start) {} - -PHINode * PhiNodeSetIterator::operator*() const { - assert(CurrentIndex < Set->NodeList.size() && - "PhiNodeSet access out of range"); - return Set->NodeList[CurrentIndex]; -} - -PhiNodeSetIterator& PhiNodeSetIterator::operator++() { - assert(CurrentIndex < Set->NodeList.size() && - "PhiNodeSet access out of range"); - ++CurrentIndex; - Set->SkipRemovedElements(CurrentIndex); - return *this; -} - -bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { - return CurrentIndex == RHS.CurrentIndex; -} - -bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { - return !((*this) == RHS); -} - -/// Keep track of simplification of Phi nodes. -/// Accept the set of all phi nodes and erase phi node from this set -/// if it is simplified. -class SimplificationTracker { - DenseMap<Value *, Value *> Storage; - const SimplifyQuery &SQ; - // Tracks newly created Phi nodes. The elements are iterated by insertion - // order. - PhiNodeSet AllPhiNodes; - // Tracks newly created Select nodes. - SmallPtrSet<SelectInst *, 32> AllSelectNodes; - -public: - SimplificationTracker(const SimplifyQuery &sq) - : SQ(sq) {} - - Value *Get(Value *V) { - do { - auto SV = Storage.find(V); - if (SV == Storage.end()) - return V; - V = SV->second; - } while (true); - } - - Value *Simplify(Value *Val) { - SmallVector<Value *, 32> WorkList; - SmallPtrSet<Value *, 32> Visited; - WorkList.push_back(Val); - while (!WorkList.empty()) { - auto *P = WorkList.pop_back_val(); - if (!Visited.insert(P).second) - continue; - if (auto *PI = dyn_cast<Instruction>(P)) - if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { - for (auto *U : PI->users()) - WorkList.push_back(cast<Value>(U)); - Put(PI, V); - PI->replaceAllUsesWith(V); - if (auto *PHI = dyn_cast<PHINode>(PI)) - AllPhiNodes.erase(PHI); - if (auto *Select = dyn_cast<SelectInst>(PI)) - AllSelectNodes.erase(Select); - PI->eraseFromParent(); - } - } - return Get(Val); - } - - void Put(Value *From, Value *To) { - Storage.insert({ From, To }); - } - - void ReplacePhi(PHINode *From, PHINode *To) { - Value* OldReplacement = Get(From); - while (OldReplacement != From) { - From = To; - To = dyn_cast<PHINode>(OldReplacement); - OldReplacement = Get(From); - } - assert(To && Get(To) == To && "Replacement PHI node is already replaced."); - Put(From, To); - From->replaceAllUsesWith(To); - AllPhiNodes.erase(From); - From->eraseFromParent(); - } - - PhiNodeSet& newPhiNodes() { return AllPhiNodes; } - - void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } - - void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } - - unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } - - unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } - - void destroyNewNodes(Type *CommonType) { - // For safe erasing, replace the uses with dummy value first. - auto *Dummy = UndefValue::get(CommonType); - for (auto *I : AllPhiNodes) { - I->replaceAllUsesWith(Dummy); - I->eraseFromParent(); - } - AllPhiNodes.clear(); - for (auto *I : AllSelectNodes) { - I->replaceAllUsesWith(Dummy); - I->eraseFromParent(); - } - AllSelectNodes.clear(); - } -}; - -/// A helper class for combining addressing modes. -class AddressingModeCombiner { - typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; - typedef std::pair<PHINode *, PHINode *> PHIPair; - -private: - /// The addressing modes we've collected. - SmallVector<ExtAddrMode, 16> AddrModes; - - /// The field in which the AddrModes differ, when we have more than one. - ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; - - /// Are the AddrModes that we have all just equal to their original values? - bool AllAddrModesTrivial = true; - - /// Common Type for all different fields in addressing modes. - Type *CommonType; - - /// SimplifyQuery for simplifyInstruction utility. - const SimplifyQuery &SQ; - - /// Original Address. - Value *Original; - -public: - AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) - : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} - - /// Get the combined AddrMode - const ExtAddrMode &getAddrMode() const { - return AddrModes[0]; - } - - /// Add a new AddrMode if it's compatible with the AddrModes we already - /// have. - /// \return True iff we succeeded in doing so. - bool addNewAddrMode(ExtAddrMode &NewAddrMode) { - // Take note of if we have any non-trivial AddrModes, as we need to detect - // when all AddrModes are trivial as then we would introduce a phi or select - // which just duplicates what's already there. - AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); - - // If this is the first addrmode then everything is fine. - if (AddrModes.empty()) { - AddrModes.emplace_back(NewAddrMode); - return true; - } - - // Figure out how different this is from the other address modes, which we - // can do just by comparing against the first one given that we only care - // about the cumulative difference. - ExtAddrMode::FieldName ThisDifferentField = - AddrModes[0].compare(NewAddrMode); - if (DifferentField == ExtAddrMode::NoField) - DifferentField = ThisDifferentField; - else if (DifferentField != ThisDifferentField) - DifferentField = ExtAddrMode::MultipleFields; - - // If NewAddrMode differs in more than one dimension we cannot handle it. - bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; - - // If Scale Field is different then we reject. - CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; - - // We also must reject the case when base offset is different and - // scale reg is not null, we cannot handle this case due to merge of - // different offsets will be used as ScaleReg. - CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || - !NewAddrMode.ScaledReg); - - // We also must reject the case when GV is different and BaseReg installed - // due to we want to use base reg as a merge of GV values. - CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || - !NewAddrMode.HasBaseReg); - - // Even if NewAddMode is the same we still need to collect it due to - // original value is different. And later we will need all original values - // as anchors during finding the common Phi node. - if (CanHandle) - AddrModes.emplace_back(NewAddrMode); - else - AddrModes.clear(); - - return CanHandle; - } - - /// Combine the addressing modes we've collected into a single - /// addressing mode. - /// \return True iff we successfully combined them or we only had one so - /// didn't need to combine them anyway. - bool combineAddrModes() { - // If we have no AddrModes then they can't be combined. - if (AddrModes.size() == 0) - return false; - - // A single AddrMode can trivially be combined. - if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) - return true; - - // If the AddrModes we collected are all just equal to the value they are - // derived from then combining them wouldn't do anything useful. - if (AllAddrModesTrivial) - return false; - - if (!addrModeCombiningAllowed()) - return false; - - // Build a map between <original value, basic block where we saw it> to - // value of base register. - // Bail out if there is no common type. - FoldAddrToValueMapping Map; - if (!initializeMap(Map)) - return false; - - Value *CommonValue = findCommon(Map); - if (CommonValue) - AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); - return CommonValue != nullptr; - } - -private: - /// Initialize Map with anchor values. For address seen - /// we set the value of different field saw in this address. - /// At the same time we find a common type for different field we will - /// use to create new Phi/Select nodes. Keep it in CommonType field. - /// Return false if there is no common type found. - bool initializeMap(FoldAddrToValueMapping &Map) { - // Keep track of keys where the value is null. We will need to replace it - // with constant null when we know the common type. - SmallVector<Value *, 2> NullValue; - Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); - for (auto &AM : AddrModes) { - Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); - if (DV) { - auto *Type = DV->getType(); - if (CommonType && CommonType != Type) - return false; - CommonType = Type; - Map[AM.OriginalValue] = DV; - } else { - NullValue.push_back(AM.OriginalValue); - } - } - assert(CommonType && "At least one non-null value must be!"); - for (auto *V : NullValue) - Map[V] = Constant::getNullValue(CommonType); - return true; - } - - /// We have mapping between value A and other value B where B was a field in - /// addressing mode represented by A. Also we have an original value C - /// representing an address we start with. Traversing from C through phi and - /// selects we ended up with A's in a map. This utility function tries to find - /// a value V which is a field in addressing mode C and traversing through phi - /// nodes and selects we will end up in corresponded values B in a map. - /// The utility will create a new Phi/Selects if needed. - // The simple example looks as follows: - // BB1: - // p1 = b1 + 40 - // br cond BB2, BB3 - // BB2: - // p2 = b2 + 40 - // br BB3 - // BB3: - // p = phi [p1, BB1], [p2, BB2] - // v = load p - // Map is - // p1 -> b1 - // p2 -> b2 - // Request is - // p -> ? - // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. - Value *findCommon(FoldAddrToValueMapping &Map) { - // Tracks the simplification of newly created phi nodes. The reason we use - // this mapping is because we will add new created Phi nodes in AddrToBase. - // Simplification of Phi nodes is recursive, so some Phi node may - // be simplified after we added it to AddrToBase. In reality this - // simplification is possible only if original phi/selects were not - // simplified yet. - // Using this mapping we can find the current value in AddrToBase. - SimplificationTracker ST(SQ); - - // First step, DFS to create PHI nodes for all intermediate blocks. - // Also fill traverse order for the second step. - SmallVector<Value *, 32> TraverseOrder; - InsertPlaceholders(Map, TraverseOrder, ST); - - // Second Step, fill new nodes by merged values and simplify if possible. - FillPlaceholders(Map, TraverseOrder, ST); - - if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { - ST.destroyNewNodes(CommonType); - return nullptr; - } - - // Now we'd like to match New Phi nodes to existed ones. - unsigned PhiNotMatchedCount = 0; - if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { - ST.destroyNewNodes(CommonType); - return nullptr; - } - - auto *Result = ST.Get(Map.find(Original)->second); - if (Result) { - NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; - NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); - } - return Result; - } - - /// Try to match PHI node to Candidate. - /// Matcher tracks the matched Phi nodes. - bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, - SmallSetVector<PHIPair, 8> &Matcher, - PhiNodeSet &PhiNodesToMatch) { - SmallVector<PHIPair, 8> WorkList; - Matcher.insert({ PHI, Candidate }); - SmallSet<PHINode *, 8> MatchedPHIs; - MatchedPHIs.insert(PHI); - WorkList.push_back({ PHI, Candidate }); - SmallSet<PHIPair, 8> Visited; - while (!WorkList.empty()) { - auto Item = WorkList.pop_back_val(); - if (!Visited.insert(Item).second) - continue; - // We iterate over all incoming values to Phi to compare them. - // If values are different and both of them Phi and the first one is a - // Phi we added (subject to match) and both of them is in the same basic - // block then we can match our pair if values match. So we state that - // these values match and add it to work list to verify that. - for (auto B : Item.first->blocks()) { - Value *FirstValue = Item.first->getIncomingValueForBlock(B); - Value *SecondValue = Item.second->getIncomingValueForBlock(B); - if (FirstValue == SecondValue) - continue; - - PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); - PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); - - // One of them is not Phi or - // The first one is not Phi node from the set we'd like to match or - // Phi nodes from different basic blocks then - // we will not be able to match. - if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || - FirstPhi->getParent() != SecondPhi->getParent()) - return false; - - // If we already matched them then continue. - if (Matcher.count({ FirstPhi, SecondPhi })) - continue; - // So the values are different and does not match. So we need them to - // match. (But we register no more than one match per PHI node, so that - // we won't later try to replace them twice.) - if (MatchedPHIs.insert(FirstPhi).second) - Matcher.insert({ FirstPhi, SecondPhi }); - // But me must check it. - WorkList.push_back({ FirstPhi, SecondPhi }); - } - } - return true; - } - - /// For the given set of PHI nodes (in the SimplificationTracker) try - /// to find their equivalents. - /// Returns false if this matching fails and creation of new Phi is disabled. - bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, - unsigned &PhiNotMatchedCount) { - // Matched and PhiNodesToMatch iterate their elements in a deterministic - // order, so the replacements (ReplacePhi) are also done in a deterministic - // order. - SmallSetVector<PHIPair, 8> Matched; - SmallPtrSet<PHINode *, 8> WillNotMatch; - PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); - while (PhiNodesToMatch.size()) { - PHINode *PHI = *PhiNodesToMatch.begin(); - - // Add us, if no Phi nodes in the basic block we do not match. - WillNotMatch.clear(); - WillNotMatch.insert(PHI); - - // Traverse all Phis until we found equivalent or fail to do that. - bool IsMatched = false; - for (auto &P : PHI->getParent()->phis()) { - if (&P == PHI) - continue; - if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) - break; - // If it does not match, collect all Phi nodes from matcher. - // if we end up with no match, them all these Phi nodes will not match - // later. - for (auto M : Matched) - WillNotMatch.insert(M.first); - Matched.clear(); - } - if (IsMatched) { - // Replace all matched values and erase them. - for (auto MV : Matched) - ST.ReplacePhi(MV.first, MV.second); - Matched.clear(); - continue; - } - // If we are not allowed to create new nodes then bail out. - if (!AllowNewPhiNodes) - return false; - // Just remove all seen values in matcher. They will not match anything. - PhiNotMatchedCount += WillNotMatch.size(); - for (auto *P : WillNotMatch) - PhiNodesToMatch.erase(P); - } - return true; - } - /// Fill the placeholders with values from predecessors and simplify them. - void FillPlaceholders(FoldAddrToValueMapping &Map, - SmallVectorImpl<Value *> &TraverseOrder, - SimplificationTracker &ST) { - while (!TraverseOrder.empty()) { - Value *Current = TraverseOrder.pop_back_val(); - assert(Map.find(Current) != Map.end() && "No node to fill!!!"); - Value *V = Map[Current]; - - if (SelectInst *Select = dyn_cast<SelectInst>(V)) { - // CurrentValue also must be Select. - auto *CurrentSelect = cast<SelectInst>(Current); - auto *TrueValue = CurrentSelect->getTrueValue(); - assert(Map.find(TrueValue) != Map.end() && "No True Value!"); - Select->setTrueValue(ST.Get(Map[TrueValue])); - auto *FalseValue = CurrentSelect->getFalseValue(); - assert(Map.find(FalseValue) != Map.end() && "No False Value!"); - Select->setFalseValue(ST.Get(Map[FalseValue])); - } else { - // Must be a Phi node then. - auto *PHI = cast<PHINode>(V); - // Fill the Phi node with values from predecessors. - for (auto *B : predecessors(PHI->getParent())) { - Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); - assert(Map.find(PV) != Map.end() && "No predecessor Value!"); - PHI->addIncoming(ST.Get(Map[PV]), B); - } - } - Map[Current] = ST.Simplify(V); - } - } - - /// Starting from original value recursively iterates over def-use chain up to - /// known ending values represented in a map. For each traversed phi/select - /// inserts a placeholder Phi or Select. - /// Reports all new created Phi/Select nodes by adding them to set. - /// Also reports and order in what values have been traversed. - void InsertPlaceholders(FoldAddrToValueMapping &Map, - SmallVectorImpl<Value *> &TraverseOrder, - SimplificationTracker &ST) { - SmallVector<Value *, 32> Worklist; - assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && - "Address must be a Phi or Select node"); - auto *Dummy = UndefValue::get(CommonType); - Worklist.push_back(Original); - while (!Worklist.empty()) { - Value *Current = Worklist.pop_back_val(); - // if it is already visited or it is an ending value then skip it. - if (Map.find(Current) != Map.end()) - continue; - TraverseOrder.push_back(Current); - - // CurrentValue must be a Phi node or select. All others must be covered - // by anchors. - if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { - // Is it OK to get metadata from OrigSelect?! - // Create a Select placeholder with dummy value. - SelectInst *Select = SelectInst::Create( - CurrentSelect->getCondition(), Dummy, Dummy, - CurrentSelect->getName(), CurrentSelect, CurrentSelect); - Map[Current] = Select; - ST.insertNewSelect(Select); - // We are interested in True and False values. - Worklist.push_back(CurrentSelect->getTrueValue()); - Worklist.push_back(CurrentSelect->getFalseValue()); - } else { - // It must be a Phi node then. - PHINode *CurrentPhi = cast<PHINode>(Current); - unsigned PredCount = CurrentPhi->getNumIncomingValues(); - PHINode *PHI = - PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); - Map[Current] = PHI; - ST.insertNewPhi(PHI); + SkipRemovedElements(FirstValidElement); + return true; + } + return false; + } + + /// Removes all elements and clears the collection. + void clear() { + NodeMap.clear(); + NodeList.clear(); + FirstValidElement = 0; + } + + /// \returns an iterator that will iterate the elements in the order of + /// insertion. + iterator begin() { + if (FirstValidElement == 0) + SkipRemovedElements(FirstValidElement); + return PhiNodeSetIterator(this, FirstValidElement); + } + + /// \returns an iterator that points to the end of the collection. + iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } + + /// Returns the number of elements in the collection. + size_t size() const { + return NodeMap.size(); + } + + /// \returns 1 if the given element is in the collection, and 0 if otherwise. + size_t count(PHINode *Ptr) const { + return NodeMap.count(Ptr); + } + +private: + /// Updates the CurrentIndex so that it will point to a valid element. + /// + /// If the element of NodeList at CurrentIndex is valid, it does not + /// change it. If there are no more valid elements, it updates CurrentIndex + /// to point to the end of the NodeList. + void SkipRemovedElements(size_t &CurrentIndex) { + while (CurrentIndex < NodeList.size()) { + auto it = NodeMap.find(NodeList[CurrentIndex]); + // If the element has been deleted and added again later, NodeMap will + // point to a different index, so CurrentIndex will still be invalid. + if (it != NodeMap.end() && it->second == CurrentIndex) + break; + ++CurrentIndex; + } + } +}; + +PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) + : Set(Set), CurrentIndex(Start) {} + +PHINode * PhiNodeSetIterator::operator*() const { + assert(CurrentIndex < Set->NodeList.size() && + "PhiNodeSet access out of range"); + return Set->NodeList[CurrentIndex]; +} + +PhiNodeSetIterator& PhiNodeSetIterator::operator++() { + assert(CurrentIndex < Set->NodeList.size() && + "PhiNodeSet access out of range"); + ++CurrentIndex; + Set->SkipRemovedElements(CurrentIndex); + return *this; +} + +bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { + return CurrentIndex == RHS.CurrentIndex; +} + +bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { + return !((*this) == RHS); +} + +/// Keep track of simplification of Phi nodes. +/// Accept the set of all phi nodes and erase phi node from this set +/// if it is simplified. +class SimplificationTracker { + DenseMap<Value *, Value *> Storage; + const SimplifyQuery &SQ; + // Tracks newly created Phi nodes. The elements are iterated by insertion + // order. + PhiNodeSet AllPhiNodes; + // Tracks newly created Select nodes. + SmallPtrSet<SelectInst *, 32> AllSelectNodes; + +public: + SimplificationTracker(const SimplifyQuery &sq) + : SQ(sq) {} + + Value *Get(Value *V) { + do { + auto SV = Storage.find(V); + if (SV == Storage.end()) + return V; + V = SV->second; + } while (true); + } + + Value *Simplify(Value *Val) { + SmallVector<Value *, 32> WorkList; + SmallPtrSet<Value *, 32> Visited; + WorkList.push_back(Val); + while (!WorkList.empty()) { + auto *P = WorkList.pop_back_val(); + if (!Visited.insert(P).second) + continue; + if (auto *PI = dyn_cast<Instruction>(P)) + if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { + for (auto *U : PI->users()) + WorkList.push_back(cast<Value>(U)); + Put(PI, V); + PI->replaceAllUsesWith(V); + if (auto *PHI = dyn_cast<PHINode>(PI)) + AllPhiNodes.erase(PHI); + if (auto *Select = dyn_cast<SelectInst>(PI)) + AllSelectNodes.erase(Select); + PI->eraseFromParent(); + } + } + return Get(Val); + } + + void Put(Value *From, Value *To) { + Storage.insert({ From, To }); + } + + void ReplacePhi(PHINode *From, PHINode *To) { + Value* OldReplacement = Get(From); + while (OldReplacement != From) { + From = To; + To = dyn_cast<PHINode>(OldReplacement); + OldReplacement = Get(From); + } + assert(To && Get(To) == To && "Replacement PHI node is already replaced."); + Put(From, To); + From->replaceAllUsesWith(To); + AllPhiNodes.erase(From); + From->eraseFromParent(); + } + + PhiNodeSet& newPhiNodes() { return AllPhiNodes; } + + void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } + + void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } + + unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } + + unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } + + void destroyNewNodes(Type *CommonType) { + // For safe erasing, replace the uses with dummy value first. + auto *Dummy = UndefValue::get(CommonType); + for (auto *I : AllPhiNodes) { + I->replaceAllUsesWith(Dummy); + I->eraseFromParent(); + } + AllPhiNodes.clear(); + for (auto *I : AllSelectNodes) { + I->replaceAllUsesWith(Dummy); + I->eraseFromParent(); + } + AllSelectNodes.clear(); + } +}; + +/// A helper class for combining addressing modes. +class AddressingModeCombiner { + typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; + typedef std::pair<PHINode *, PHINode *> PHIPair; + +private: + /// The addressing modes we've collected. + SmallVector<ExtAddrMode, 16> AddrModes; + + /// The field in which the AddrModes differ, when we have more than one. + ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; + + /// Are the AddrModes that we have all just equal to their original values? + bool AllAddrModesTrivial = true; + + /// Common Type for all different fields in addressing modes. + Type *CommonType; + + /// SimplifyQuery for simplifyInstruction utility. + const SimplifyQuery &SQ; + + /// Original Address. + Value *Original; + +public: + AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) + : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} + + /// Get the combined AddrMode + const ExtAddrMode &getAddrMode() const { + return AddrModes[0]; + } + + /// Add a new AddrMode if it's compatible with the AddrModes we already + /// have. + /// \return True iff we succeeded in doing so. + bool addNewAddrMode(ExtAddrMode &NewAddrMode) { + // Take note of if we have any non-trivial AddrModes, as we need to detect + // when all AddrModes are trivial as then we would introduce a phi or select + // which just duplicates what's already there. + AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); + + // If this is the first addrmode then everything is fine. + if (AddrModes.empty()) { + AddrModes.emplace_back(NewAddrMode); + return true; + } + + // Figure out how different this is from the other address modes, which we + // can do just by comparing against the first one given that we only care + // about the cumulative difference. + ExtAddrMode::FieldName ThisDifferentField = + AddrModes[0].compare(NewAddrMode); + if (DifferentField == ExtAddrMode::NoField) + DifferentField = ThisDifferentField; + else if (DifferentField != ThisDifferentField) + DifferentField = ExtAddrMode::MultipleFields; + + // If NewAddrMode differs in more than one dimension we cannot handle it. + bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; + + // If Scale Field is different then we reject. + CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; + + // We also must reject the case when base offset is different and + // scale reg is not null, we cannot handle this case due to merge of + // different offsets will be used as ScaleReg. + CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || + !NewAddrMode.ScaledReg); + + // We also must reject the case when GV is different and BaseReg installed + // due to we want to use base reg as a merge of GV values. + CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || + !NewAddrMode.HasBaseReg); + + // Even if NewAddMode is the same we still need to collect it due to + // original value is different. And later we will need all original values + // as anchors during finding the common Phi node. + if (CanHandle) + AddrModes.emplace_back(NewAddrMode); + else + AddrModes.clear(); + + return CanHandle; + } + + /// Combine the addressing modes we've collected into a single + /// addressing mode. + /// \return True iff we successfully combined them or we only had one so + /// didn't need to combine them anyway. + bool combineAddrModes() { + // If we have no AddrModes then they can't be combined. + if (AddrModes.size() == 0) + return false; + + // A single AddrMode can trivially be combined. + if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) + return true; + + // If the AddrModes we collected are all just equal to the value they are + // derived from then combining them wouldn't do anything useful. + if (AllAddrModesTrivial) + return false; + + if (!addrModeCombiningAllowed()) + return false; + + // Build a map between <original value, basic block where we saw it> to + // value of base register. + // Bail out if there is no common type. + FoldAddrToValueMapping Map; + if (!initializeMap(Map)) + return false; + + Value *CommonValue = findCommon(Map); + if (CommonValue) + AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); + return CommonValue != nullptr; + } + +private: + /// Initialize Map with anchor values. For address seen + /// we set the value of different field saw in this address. + /// At the same time we find a common type for different field we will + /// use to create new Phi/Select nodes. Keep it in CommonType field. + /// Return false if there is no common type found. + bool initializeMap(FoldAddrToValueMapping &Map) { + // Keep track of keys where the value is null. We will need to replace it + // with constant null when we know the common type. + SmallVector<Value *, 2> NullValue; + Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); + for (auto &AM : AddrModes) { + Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); + if (DV) { + auto *Type = DV->getType(); + if (CommonType && CommonType != Type) + return false; + CommonType = Type; + Map[AM.OriginalValue] = DV; + } else { + NullValue.push_back(AM.OriginalValue); + } + } + assert(CommonType && "At least one non-null value must be!"); + for (auto *V : NullValue) + Map[V] = Constant::getNullValue(CommonType); + return true; + } + + /// We have mapping between value A and other value B where B was a field in + /// addressing mode represented by A. Also we have an original value C + /// representing an address we start with. Traversing from C through phi and + /// selects we ended up with A's in a map. This utility function tries to find + /// a value V which is a field in addressing mode C and traversing through phi + /// nodes and selects we will end up in corresponded values B in a map. + /// The utility will create a new Phi/Selects if needed. + // The simple example looks as follows: + // BB1: + // p1 = b1 + 40 + // br cond BB2, BB3 + // BB2: + // p2 = b2 + 40 + // br BB3 + // BB3: + // p = phi [p1, BB1], [p2, BB2] + // v = load p + // Map is + // p1 -> b1 + // p2 -> b2 + // Request is + // p -> ? + // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. + Value *findCommon(FoldAddrToValueMapping &Map) { + // Tracks the simplification of newly created phi nodes. The reason we use + // this mapping is because we will add new created Phi nodes in AddrToBase. + // Simplification of Phi nodes is recursive, so some Phi node may + // be simplified after we added it to AddrToBase. In reality this + // simplification is possible only if original phi/selects were not + // simplified yet. + // Using this mapping we can find the current value in AddrToBase. + SimplificationTracker ST(SQ); + + // First step, DFS to create PHI nodes for all intermediate blocks. + // Also fill traverse order for the second step. + SmallVector<Value *, 32> TraverseOrder; + InsertPlaceholders(Map, TraverseOrder, ST); + + // Second Step, fill new nodes by merged values and simplify if possible. + FillPlaceholders(Map, TraverseOrder, ST); + + if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { + ST.destroyNewNodes(CommonType); + return nullptr; + } + + // Now we'd like to match New Phi nodes to existed ones. + unsigned PhiNotMatchedCount = 0; + if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { + ST.destroyNewNodes(CommonType); + return nullptr; + } + + auto *Result = ST.Get(Map.find(Original)->second); + if (Result) { + NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; + NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); + } + return Result; + } + + /// Try to match PHI node to Candidate. + /// Matcher tracks the matched Phi nodes. + bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, + SmallSetVector<PHIPair, 8> &Matcher, + PhiNodeSet &PhiNodesToMatch) { + SmallVector<PHIPair, 8> WorkList; + Matcher.insert({ PHI, Candidate }); + SmallSet<PHINode *, 8> MatchedPHIs; + MatchedPHIs.insert(PHI); + WorkList.push_back({ PHI, Candidate }); + SmallSet<PHIPair, 8> Visited; + while (!WorkList.empty()) { + auto Item = WorkList.pop_back_val(); + if (!Visited.insert(Item).second) + continue; + // We iterate over all incoming values to Phi to compare them. + // If values are different and both of them Phi and the first one is a + // Phi we added (subject to match) and both of them is in the same basic + // block then we can match our pair if values match. So we state that + // these values match and add it to work list to verify that. + for (auto B : Item.first->blocks()) { + Value *FirstValue = Item.first->getIncomingValueForBlock(B); + Value *SecondValue = Item.second->getIncomingValueForBlock(B); + if (FirstValue == SecondValue) + continue; + + PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); + PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); + + // One of them is not Phi or + // The first one is not Phi node from the set we'd like to match or + // Phi nodes from different basic blocks then + // we will not be able to match. + if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || + FirstPhi->getParent() != SecondPhi->getParent()) + return false; + + // If we already matched them then continue. + if (Matcher.count({ FirstPhi, SecondPhi })) + continue; + // So the values are different and does not match. So we need them to + // match. (But we register no more than one match per PHI node, so that + // we won't later try to replace them twice.) + if (MatchedPHIs.insert(FirstPhi).second) + Matcher.insert({ FirstPhi, SecondPhi }); + // But me must check it. + WorkList.push_back({ FirstPhi, SecondPhi }); + } + } + return true; + } + + /// For the given set of PHI nodes (in the SimplificationTracker) try + /// to find their equivalents. + /// Returns false if this matching fails and creation of new Phi is disabled. + bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, + unsigned &PhiNotMatchedCount) { + // Matched and PhiNodesToMatch iterate their elements in a deterministic + // order, so the replacements (ReplacePhi) are also done in a deterministic + // order. + SmallSetVector<PHIPair, 8> Matched; + SmallPtrSet<PHINode *, 8> WillNotMatch; + PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); + while (PhiNodesToMatch.size()) { + PHINode *PHI = *PhiNodesToMatch.begin(); + + // Add us, if no Phi nodes in the basic block we do not match. + WillNotMatch.clear(); + WillNotMatch.insert(PHI); + + // Traverse all Phis until we found equivalent or fail to do that. + bool IsMatched = false; + for (auto &P : PHI->getParent()->phis()) { + if (&P == PHI) + continue; + if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) + break; + // If it does not match, collect all Phi nodes from matcher. + // if we end up with no match, them all these Phi nodes will not match + // later. + for (auto M : Matched) + WillNotMatch.insert(M.first); + Matched.clear(); + } + if (IsMatched) { + // Replace all matched values and erase them. + for (auto MV : Matched) + ST.ReplacePhi(MV.first, MV.second); + Matched.clear(); + continue; + } + // If we are not allowed to create new nodes then bail out. + if (!AllowNewPhiNodes) + return false; + // Just remove all seen values in matcher. They will not match anything. + PhiNotMatchedCount += WillNotMatch.size(); + for (auto *P : WillNotMatch) + PhiNodesToMatch.erase(P); + } + return true; + } + /// Fill the placeholders with values from predecessors and simplify them. + void FillPlaceholders(FoldAddrToValueMapping &Map, + SmallVectorImpl<Value *> &TraverseOrder, + SimplificationTracker &ST) { + while (!TraverseOrder.empty()) { + Value *Current = TraverseOrder.pop_back_val(); + assert(Map.find(Current) != Map.end() && "No node to fill!!!"); + Value *V = Map[Current]; + + if (SelectInst *Select = dyn_cast<SelectInst>(V)) { + // CurrentValue also must be Select. + auto *CurrentSelect = cast<SelectInst>(Current); + auto *TrueValue = CurrentSelect->getTrueValue(); + assert(Map.find(TrueValue) != Map.end() && "No True Value!"); + Select->setTrueValue(ST.Get(Map[TrueValue])); + auto *FalseValue = CurrentSelect->getFalseValue(); + assert(Map.find(FalseValue) != Map.end() && "No False Value!"); + Select->setFalseValue(ST.Get(Map[FalseValue])); + } else { + // Must be a Phi node then. + auto *PHI = cast<PHINode>(V); + // Fill the Phi node with values from predecessors. + for (auto *B : predecessors(PHI->getParent())) { + Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B); + assert(Map.find(PV) != Map.end() && "No predecessor Value!"); + PHI->addIncoming(ST.Get(Map[PV]), B); + } + } + Map[Current] = ST.Simplify(V); + } + } + + /// Starting from original value recursively iterates over def-use chain up to + /// known ending values represented in a map. For each traversed phi/select + /// inserts a placeholder Phi or Select. + /// Reports all new created Phi/Select nodes by adding them to set. + /// Also reports and order in what values have been traversed. + void InsertPlaceholders(FoldAddrToValueMapping &Map, + SmallVectorImpl<Value *> &TraverseOrder, + SimplificationTracker &ST) { + SmallVector<Value *, 32> Worklist; + assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && + "Address must be a Phi or Select node"); + auto *Dummy = UndefValue::get(CommonType); + Worklist.push_back(Original); + while (!Worklist.empty()) { + Value *Current = Worklist.pop_back_val(); + // if it is already visited or it is an ending value then skip it. + if (Map.find(Current) != Map.end()) + continue; + TraverseOrder.push_back(Current); + + // CurrentValue must be a Phi node or select. All others must be covered + // by anchors. + if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { + // Is it OK to get metadata from OrigSelect?! + // Create a Select placeholder with dummy value. + SelectInst *Select = SelectInst::Create( + CurrentSelect->getCondition(), Dummy, Dummy, + CurrentSelect->getName(), CurrentSelect, CurrentSelect); + Map[Current] = Select; + ST.insertNewSelect(Select); + // We are interested in True and False values. + Worklist.push_back(CurrentSelect->getTrueValue()); + Worklist.push_back(CurrentSelect->getFalseValue()); + } else { + // It must be a Phi node then. + PHINode *CurrentPhi = cast<PHINode>(Current); + unsigned PredCount = CurrentPhi->getNumIncomingValues(); + PHINode *PHI = + PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); + Map[Current] = PHI; + ST.insertNewPhi(PHI); append_range(Worklist, CurrentPhi->incoming_values()); - } - } - } - - bool addrModeCombiningAllowed() { - if (DisableComplexAddrModes) - return false; - switch (DifferentField) { - default: - return false; - case ExtAddrMode::BaseRegField: - return AddrSinkCombineBaseReg; - case ExtAddrMode::BaseGVField: - return AddrSinkCombineBaseGV; - case ExtAddrMode::BaseOffsField: - return AddrSinkCombineBaseOffs; - case ExtAddrMode::ScaledRegField: - return AddrSinkCombineScaledReg; - } - } -}; -} // end anonymous namespace - -/// Try adding ScaleReg*Scale to the current addressing mode. -/// Return true and update AddrMode if this addr mode is legal for the target, -/// false if not. -bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, - unsigned Depth) { - // If Scale is 1, then this is the same as adding ScaleReg to the addressing - // mode. Just process that directly. - if (Scale == 1) - return matchAddr(ScaleReg, Depth); - - // If the scale is 0, it takes nothing to add this. - if (Scale == 0) - return true; - - // If we already have a scale of this value, we can add to it, otherwise, we - // need an available scale field. - if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) - return false; - - ExtAddrMode TestAddrMode = AddrMode; - - // Add scale to turn X*4+X*3 -> X*7. This could also do things like - // [A+B + A*7] -> [B+A*8]. - TestAddrMode.Scale += Scale; - TestAddrMode.ScaledReg = ScaleReg; - - // If the new address isn't legal, bail out. - if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) - return false; - - // It was legal, so commit it. - AddrMode = TestAddrMode; - - // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now - // to see if ScaleReg is actually X+C. If so, we can turn this into adding - // X*Scale + C*Scale to addr mode. - ConstantInt *CI = nullptr; Value *AddLHS = nullptr; - if (isa<Instruction>(ScaleReg) && // not a constant expr. - match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && - CI->getValue().isSignedIntN(64)) { - TestAddrMode.InBounds = false; - TestAddrMode.ScaledReg = AddLHS; - TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; - - // If this addressing mode is legal, commit it and remember that we folded - // this instruction. - if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { - AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); - AddrMode = TestAddrMode; - return true; - } - } - - // Otherwise, not (x+c)*scale, just return what we have. - return true; -} - -/// This is a little filter, which returns true if an addressing computation -/// involving I might be folded into a load/store accessing it. -/// This doesn't need to be perfect, but needs to accept at least -/// the set of instructions that MatchOperationAddr can. -static bool MightBeFoldableInst(Instruction *I) { - switch (I->getOpcode()) { - case Instruction::BitCast: - case Instruction::AddrSpaceCast: - // Don't touch identity bitcasts. - if (I->getType() == I->getOperand(0)->getType()) - return false; - return I->getType()->isIntOrPtrTy(); - case Instruction::PtrToInt: - // PtrToInt is always a noop, as we know that the int type is pointer sized. - return true; - case Instruction::IntToPtr: - // We know the input is intptr_t, so this is foldable. - return true; - case Instruction::Add: - return true; - case Instruction::Mul: - case Instruction::Shl: - // Can only handle X*C and X << C. - return isa<ConstantInt>(I->getOperand(1)); - case Instruction::GetElementPtr: - return true; - default: - return false; - } -} - -/// Check whether or not \p Val is a legal instruction for \p TLI. -/// \note \p Val is assumed to be the product of some type promotion. -/// Therefore if \p Val has an undefined state in \p TLI, this is assumed -/// to be legal, as the non-promoted value would have had the same state. -static bool isPromotedInstructionLegal(const TargetLowering &TLI, - const DataLayout &DL, Value *Val) { - Instruction *PromotedInst = dyn_cast<Instruction>(Val); - if (!PromotedInst) - return false; - int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); - // If the ISDOpcode is undefined, it was undefined before the promotion. - if (!ISDOpcode) - return true; - // Otherwise, check if the promoted instruction is legal or not. - return TLI.isOperationLegalOrCustom( - ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); -} - -namespace { - -/// Hepler class to perform type promotion. -class TypePromotionHelper { - /// Utility function to add a promoted instruction \p ExtOpnd to - /// \p PromotedInsts and record the type of extension we have seen. - static void addPromotedInst(InstrToOrigTy &PromotedInsts, - Instruction *ExtOpnd, - bool IsSExt) { - ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; - InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); - if (It != PromotedInsts.end()) { - // If the new extension is same as original, the information in - // PromotedInsts[ExtOpnd] is still correct. - if (It->second.getInt() == ExtTy) - return; - - // Now the new extension is different from old extension, we make - // the type information invalid by setting extension type to - // BothExtension. - ExtTy = BothExtension; - } - PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); - } - - /// Utility function to query the original type of instruction \p Opnd - /// with a matched extension type. If the extension doesn't match, we - /// cannot use the information we had on the original type. - /// BothExtension doesn't match any extension type. - static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, - Instruction *Opnd, - bool IsSExt) { - ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; - InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); - if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) - return It->second.getPointer(); - return nullptr; - } - - /// Utility function to check whether or not a sign or zero extension - /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by - /// either using the operands of \p Inst or promoting \p Inst. - /// The type of the extension is defined by \p IsSExt. - /// In other words, check if: - /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. - /// #1 Promotion applies: - /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). - /// #2 Operand reuses: - /// ext opnd1 to ConsideredExtType. - /// \p PromotedInsts maps the instructions to their type before promotion. - static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, - const InstrToOrigTy &PromotedInsts, bool IsSExt); - - /// Utility function to determine if \p OpIdx should be promoted when - /// promoting \p Inst. - static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { - return !(isa<SelectInst>(Inst) && OpIdx == 0); - } - - /// Utility function to promote the operand of \p Ext when this - /// operand is a promotable trunc or sext or zext. - /// \p PromotedInsts maps the instructions to their type before promotion. - /// \p CreatedInstsCost[out] contains the cost of all instructions - /// created to promote the operand of Ext. - /// Newly added extensions are inserted in \p Exts. - /// Newly added truncates are inserted in \p Truncs. - /// Should never be called directly. - /// \return The promoted value which is used instead of Ext. - static Value *promoteOperandForTruncAndAnyExt( - Instruction *Ext, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); - - /// Utility function to promote the operand of \p Ext when this - /// operand is promotable and is not a supported trunc or sext. - /// \p PromotedInsts maps the instructions to their type before promotion. - /// \p CreatedInstsCost[out] contains the cost of all the instructions - /// created to promote the operand of Ext. - /// Newly added extensions are inserted in \p Exts. - /// Newly added truncates are inserted in \p Truncs. - /// Should never be called directly. - /// \return The promoted value which is used instead of Ext. - static Value *promoteOperandForOther(Instruction *Ext, - TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, - unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, - const TargetLowering &TLI, bool IsSExt); - - /// \see promoteOperandForOther. - static Value *signExtendOperandForOther( - Instruction *Ext, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { - return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, - Exts, Truncs, TLI, true); - } - - /// \see promoteOperandForOther. - static Value *zeroExtendOperandForOther( - Instruction *Ext, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { - return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, - Exts, Truncs, TLI, false); - } - -public: - /// Type for the utility function that promotes the operand of Ext. - using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, - unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, - const TargetLowering &TLI); - - /// Given a sign/zero extend instruction \p Ext, return the appropriate - /// action to promote the operand of \p Ext instead of using Ext. - /// \return NULL if no promotable action is possible with the current - /// sign extension. - /// \p InsertedInsts keeps track of all the instructions inserted by the - /// other CodeGenPrepare optimizations. This information is important - /// because we do not want to promote these instructions as CodeGenPrepare - /// will reinsert them later. Thus creating an infinite loop: create/remove. - /// \p PromotedInsts maps the instructions to their type before promotion. - static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, - const TargetLowering &TLI, - const InstrToOrigTy &PromotedInsts); -}; - -} // end anonymous namespace - -bool TypePromotionHelper::canGetThrough(const Instruction *Inst, - Type *ConsideredExtType, - const InstrToOrigTy &PromotedInsts, - bool IsSExt) { - // The promotion helper does not know how to deal with vector types yet. - // To be able to fix that, we would need to fix the places where we - // statically extend, e.g., constants and such. - if (Inst->getType()->isVectorTy()) - return false; - - // We can always get through zext. - if (isa<ZExtInst>(Inst)) - return true; - - // sext(sext) is ok too. - if (IsSExt && isa<SExtInst>(Inst)) - return true; - - // We can get through binary operator, if it is legal. In other words, the - // binary operator must have a nuw or nsw flag. - const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); - if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && - ((!IsSExt && BinOp->hasNoUnsignedWrap()) || - (IsSExt && BinOp->hasNoSignedWrap()))) - return true; - - // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) - if ((Inst->getOpcode() == Instruction::And || - Inst->getOpcode() == Instruction::Or)) - return true; - - // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) - if (Inst->getOpcode() == Instruction::Xor) { - const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); - // Make sure it is not a NOT. - if (Cst && !Cst->getValue().isAllOnesValue()) - return true; - } - - // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) - // It may change a poisoned value into a regular value, like - // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 - // poisoned value regular value - // It should be OK since undef covers valid value. - if (Inst->getOpcode() == Instruction::LShr && !IsSExt) - return true; - - // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) - // It may change a poisoned value into a regular value, like - // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 - // poisoned value regular value - // It should be OK since undef covers valid value. - if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { - const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); - if (ExtInst->hasOneUse()) { - const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); - if (AndInst && AndInst->getOpcode() == Instruction::And) { - const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); - if (Cst && - Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) - return true; - } - } - } - - // Check if we can do the following simplification. - // ext(trunc(opnd)) --> ext(opnd) - if (!isa<TruncInst>(Inst)) - return false; - - Value *OpndVal = Inst->getOperand(0); - // Check if we can use this operand in the extension. - // If the type is larger than the result type of the extension, we cannot. - if (!OpndVal->getType()->isIntegerTy() || - OpndVal->getType()->getIntegerBitWidth() > - ConsideredExtType->getIntegerBitWidth()) - return false; - - // If the operand of the truncate is not an instruction, we will not have - // any information on the dropped bits. - // (Actually we could for constant but it is not worth the extra logic). - Instruction *Opnd = dyn_cast<Instruction>(OpndVal); - if (!Opnd) - return false; - - // Check if the source of the type is narrow enough. - // I.e., check that trunc just drops extended bits of the same kind of - // the extension. - // #1 get the type of the operand and check the kind of the extended bits. - const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); - if (OpndType) - ; - else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) - OpndType = Opnd->getOperand(0)->getType(); - else - return false; - - // #2 check that the truncate just drops extended bits. - return Inst->getType()->getIntegerBitWidth() >= - OpndType->getIntegerBitWidth(); -} - -TypePromotionHelper::Action TypePromotionHelper::getAction( - Instruction *Ext, const SetOfInstrs &InsertedInsts, - const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { - assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && - "Unexpected instruction type"); - Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); - Type *ExtTy = Ext->getType(); - bool IsSExt = isa<SExtInst>(Ext); - // If the operand of the extension is not an instruction, we cannot - // get through. - // If it, check we can get through. - if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) - return nullptr; - - // Do not promote if the operand has been added by codegenprepare. - // Otherwise, it means we are undoing an optimization that is likely to be - // redone, thus causing potential infinite loop. - if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) - return nullptr; - - // SExt or Trunc instructions. - // Return the related handler. - if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || - isa<ZExtInst>(ExtOpnd)) - return promoteOperandForTruncAndAnyExt; - - // Regular instruction. - // Abort early if we will have to insert non-free instructions. - if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) - return nullptr; - return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; -} - -Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( - Instruction *SExt, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { - // By construction, the operand of SExt is an instruction. Otherwise we cannot - // get through it and this method should not be called. - Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); - Value *ExtVal = SExt; - bool HasMergedNonFreeExt = false; - if (isa<ZExtInst>(SExtOpnd)) { - // Replace s|zext(zext(opnd)) - // => zext(opnd). - HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); - Value *ZExt = - TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); - TPT.replaceAllUsesWith(SExt, ZExt); - TPT.eraseInstruction(SExt); - ExtVal = ZExt; - } else { - // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) - // => z|sext(opnd). - TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); - } - CreatedInstsCost = 0; - - // Remove dead code. - if (SExtOpnd->use_empty()) - TPT.eraseInstruction(SExtOpnd); - - // Check if the extension is still needed. - Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); - if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { - if (ExtInst) { - if (Exts) - Exts->push_back(ExtInst); - CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; - } - return ExtVal; - } - - // At this point we have: ext ty opnd to ty. - // Reassign the uses of ExtInst to the opnd and remove ExtInst. - Value *NextVal = ExtInst->getOperand(0); - TPT.eraseInstruction(ExtInst, NextVal); - return NextVal; -} - -Value *TypePromotionHelper::promoteOperandForOther( - Instruction *Ext, TypePromotionTransaction &TPT, - InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, - SmallVectorImpl<Instruction *> *Exts, - SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, - bool IsSExt) { - // By construction, the operand of Ext is an instruction. Otherwise we cannot - // get through it and this method should not be called. - Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); - CreatedInstsCost = 0; - if (!ExtOpnd->hasOneUse()) { - // ExtOpnd will be promoted. - // All its uses, but Ext, will need to use a truncated value of the - // promoted version. - // Create the truncate now. - Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); - if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { - // Insert it just after the definition. - ITrunc->moveAfter(ExtOpnd); - if (Truncs) - Truncs->push_back(ITrunc); - } - - TPT.replaceAllUsesWith(ExtOpnd, Trunc); - // Restore the operand of Ext (which has been replaced by the previous call - // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. - TPT.setOperand(Ext, 0, ExtOpnd); - } - - // Get through the Instruction: - // 1. Update its type. - // 2. Replace the uses of Ext by Inst. - // 3. Extend each operand that needs to be extended. - - // Remember the original type of the instruction before promotion. - // This is useful to know that the high bits are sign extended bits. - addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); - // Step #1. - TPT.mutateType(ExtOpnd, Ext->getType()); - // Step #2. - TPT.replaceAllUsesWith(Ext, ExtOpnd); - // Step #3. - Instruction *ExtForOpnd = Ext; - - LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); - for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; - ++OpIdx) { - LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); - if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || - !shouldExtOperand(ExtOpnd, OpIdx)) { - LLVM_DEBUG(dbgs() << "No need to propagate\n"); - continue; - } - // Check if we can statically extend the operand. - Value *Opnd = ExtOpnd->getOperand(OpIdx); - if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { - LLVM_DEBUG(dbgs() << "Statically extend\n"); - unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); - APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) - : Cst->getValue().zext(BitWidth); - TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); - continue; - } - // UndefValue are typed, so we have to statically sign extend them. - if (isa<UndefValue>(Opnd)) { - LLVM_DEBUG(dbgs() << "Statically extend\n"); - TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); - continue; - } - - // Otherwise we have to explicitly sign extend the operand. - // Check if Ext was reused to extend an operand. - if (!ExtForOpnd) { - // If yes, create a new one. - LLVM_DEBUG(dbgs() << "More operands to ext\n"); - Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) - : TPT.createZExt(Ext, Opnd, Ext->getType()); - if (!isa<Instruction>(ValForExtOpnd)) { - TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); - continue; - } - ExtForOpnd = cast<Instruction>(ValForExtOpnd); - } - if (Exts) - Exts->push_back(ExtForOpnd); - TPT.setOperand(ExtForOpnd, 0, Opnd); - - // Move the sign extension before the insertion point. - TPT.moveBefore(ExtForOpnd, ExtOpnd); - TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); - CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); - // If more sext are required, new instructions will have to be created. - ExtForOpnd = nullptr; - } - if (ExtForOpnd == Ext) { - LLVM_DEBUG(dbgs() << "Extension is useless now\n"); - TPT.eraseInstruction(Ext); - } - return ExtOpnd; -} - -/// Check whether or not promoting an instruction to a wider type is profitable. -/// \p NewCost gives the cost of extension instructions created by the -/// promotion. -/// \p OldCost gives the cost of extension instructions before the promotion -/// plus the number of instructions that have been -/// matched in the addressing mode the promotion. -/// \p PromotedOperand is the value that has been promoted. -/// \return True if the promotion is profitable, false otherwise. -bool AddressingModeMatcher::isPromotionProfitable( - unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { - LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost - << '\n'); - // The cost of the new extensions is greater than the cost of the - // old extension plus what we folded. - // This is not profitable. - if (NewCost > OldCost) - return false; - if (NewCost < OldCost) - return true; - // The promotion is neutral but it may help folding the sign extension in - // loads for instance. - // Check that we did not create an illegal instruction. - return isPromotedInstructionLegal(TLI, DL, PromotedOperand); -} - -/// Given an instruction or constant expr, see if we can fold the operation -/// into the addressing mode. If so, update the addressing mode and return -/// true, otherwise return false without modifying AddrMode. -/// If \p MovedAway is not NULL, it contains the information of whether or -/// not AddrInst has to be folded into the addressing mode on success. -/// If \p MovedAway == true, \p AddrInst will not be part of the addressing -/// because it has been moved away. -/// Thus AddrInst must not be added in the matched instructions. -/// This state can happen when AddrInst is a sext, since it may be moved away. -/// Therefore, AddrInst may not be valid when MovedAway is true and it must -/// not be referenced anymore. -bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, - unsigned Depth, - bool *MovedAway) { - // Avoid exponential behavior on extremely deep expression trees. - if (Depth >= 5) return false; - - // By default, all matched instructions stay in place. - if (MovedAway) - *MovedAway = false; - - switch (Opcode) { - case Instruction::PtrToInt: - // PtrToInt is always a noop, as we know that the int type is pointer sized. - return matchAddr(AddrInst->getOperand(0), Depth); - case Instruction::IntToPtr: { - auto AS = AddrInst->getType()->getPointerAddressSpace(); - auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); - // This inttoptr is a no-op if the integer type is pointer sized. - if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) - return matchAddr(AddrInst->getOperand(0), Depth); - return false; - } - case Instruction::BitCast: - // BitCast is always a noop, and we can handle it as long as it is - // int->int or pointer->pointer (we don't want int<->fp or something). - if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && - // Don't touch identity bitcasts. These were probably put here by LSR, - // and we don't want to mess around with them. Assume it knows what it - // is doing. - AddrInst->getOperand(0)->getType() != AddrInst->getType()) - return matchAddr(AddrInst->getOperand(0), Depth); - return false; - case Instruction::AddrSpaceCast: { - unsigned SrcAS - = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); - unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); + } + } + } + + bool addrModeCombiningAllowed() { + if (DisableComplexAddrModes) + return false; + switch (DifferentField) { + default: + return false; + case ExtAddrMode::BaseRegField: + return AddrSinkCombineBaseReg; + case ExtAddrMode::BaseGVField: + return AddrSinkCombineBaseGV; + case ExtAddrMode::BaseOffsField: + return AddrSinkCombineBaseOffs; + case ExtAddrMode::ScaledRegField: + return AddrSinkCombineScaledReg; + } + } +}; +} // end anonymous namespace + +/// Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, + unsigned Depth) { + // If Scale is 1, then this is the same as adding ScaleReg to the addressing + // mode. Just process that directly. + if (Scale == 1) + return matchAddr(ScaleReg, Depth); + + // If the scale is 0, it takes nothing to add this. + if (Scale == 0) + return true; + + // If we already have a scale of this value, we can add to it, otherwise, we + // need an available scale field. + if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) + return false; + + ExtAddrMode TestAddrMode = AddrMode; + + // Add scale to turn X*4+X*3 -> X*7. This could also do things like + // [A+B + A*7] -> [B+A*8]. + TestAddrMode.Scale += Scale; + TestAddrMode.ScaledReg = ScaleReg; + + // If the new address isn't legal, bail out. + if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) + return false; + + // It was legal, so commit it. + AddrMode = TestAddrMode; + + // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now + // to see if ScaleReg is actually X+C. If so, we can turn this into adding + // X*Scale + C*Scale to addr mode. + ConstantInt *CI = nullptr; Value *AddLHS = nullptr; + if (isa<Instruction>(ScaleReg) && // not a constant expr. + match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) && + CI->getValue().isSignedIntN(64)) { + TestAddrMode.InBounds = false; + TestAddrMode.ScaledReg = AddLHS; + TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale; + + // If this addressing mode is legal, commit it and remember that we folded + // this instruction. + if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { + AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); + AddrMode = TestAddrMode; + return true; + } + } + + // Otherwise, not (x+c)*scale, just return what we have. + return true; +} + +/// This is a little filter, which returns true if an addressing computation +/// involving I might be folded into a load/store accessing it. +/// This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + // Don't touch identity bitcasts. + if (I->getType() == I->getOperand(0)->getType()) + return false; + return I->getType()->isIntOrPtrTy(); + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return true; + case Instruction::IntToPtr: + // We know the input is intptr_t, so this is foldable. + return true; + case Instruction::Add: + return true; + case Instruction::Mul: + case Instruction::Shl: + // Can only handle X*C and X << C. + return isa<ConstantInt>(I->getOperand(1)); + case Instruction::GetElementPtr: + return true; + default: + return false; + } +} + +/// Check whether or not \p Val is a legal instruction for \p TLI. +/// \note \p Val is assumed to be the product of some type promotion. +/// Therefore if \p Val has an undefined state in \p TLI, this is assumed +/// to be legal, as the non-promoted value would have had the same state. +static bool isPromotedInstructionLegal(const TargetLowering &TLI, + const DataLayout &DL, Value *Val) { + Instruction *PromotedInst = dyn_cast<Instruction>(Val); + if (!PromotedInst) + return false; + int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); + // If the ISDOpcode is undefined, it was undefined before the promotion. + if (!ISDOpcode) + return true; + // Otherwise, check if the promoted instruction is legal or not. + return TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); +} + +namespace { + +/// Hepler class to perform type promotion. +class TypePromotionHelper { + /// Utility function to add a promoted instruction \p ExtOpnd to + /// \p PromotedInsts and record the type of extension we have seen. + static void addPromotedInst(InstrToOrigTy &PromotedInsts, + Instruction *ExtOpnd, + bool IsSExt) { + ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; + InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); + if (It != PromotedInsts.end()) { + // If the new extension is same as original, the information in + // PromotedInsts[ExtOpnd] is still correct. + if (It->second.getInt() == ExtTy) + return; + + // Now the new extension is different from old extension, we make + // the type information invalid by setting extension type to + // BothExtension. + ExtTy = BothExtension; + } + PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); + } + + /// Utility function to query the original type of instruction \p Opnd + /// with a matched extension type. If the extension doesn't match, we + /// cannot use the information we had on the original type. + /// BothExtension doesn't match any extension type. + static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, + Instruction *Opnd, + bool IsSExt) { + ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; + InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); + if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) + return It->second.getPointer(); + return nullptr; + } + + /// Utility function to check whether or not a sign or zero extension + /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by + /// either using the operands of \p Inst or promoting \p Inst. + /// The type of the extension is defined by \p IsSExt. + /// In other words, check if: + /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. + /// #1 Promotion applies: + /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). + /// #2 Operand reuses: + /// ext opnd1 to ConsideredExtType. + /// \p PromotedInsts maps the instructions to their type before promotion. + static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, bool IsSExt); + + /// Utility function to determine if \p OpIdx should be promoted when + /// promoting \p Inst. + static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { + return !(isa<SelectInst>(Inst) && OpIdx == 0); + } + + /// Utility function to promote the operand of \p Ext when this + /// operand is a promotable trunc or sext or zext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForTruncAndAnyExt( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); + + /// Utility function to promote the operand of \p Ext when this + /// operand is promotable and is not a supported trunc or sext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all the instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForOther(Instruction *Ext, + TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI, bool IsSExt); + + /// \see promoteOperandForOther. + static Value *signExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, true); + } + + /// \see promoteOperandForOther. + static Value *zeroExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, false); + } + +public: + /// Type for the utility function that promotes the operand of Ext. + using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI); + + /// Given a sign/zero extend instruction \p Ext, return the appropriate + /// action to promote the operand of \p Ext instead of using Ext. + /// \return NULL if no promotable action is possible with the current + /// sign extension. + /// \p InsertedInsts keeps track of all the instructions inserted by the + /// other CodeGenPrepare optimizations. This information is important + /// because we do not want to promote these instructions as CodeGenPrepare + /// will reinsert them later. Thus creating an infinite loop: create/remove. + /// \p PromotedInsts maps the instructions to their type before promotion. + static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, + const InstrToOrigTy &PromotedInsts); +}; + +} // end anonymous namespace + +bool TypePromotionHelper::canGetThrough(const Instruction *Inst, + Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, + bool IsSExt) { + // The promotion helper does not know how to deal with vector types yet. + // To be able to fix that, we would need to fix the places where we + // statically extend, e.g., constants and such. + if (Inst->getType()->isVectorTy()) + return false; + + // We can always get through zext. + if (isa<ZExtInst>(Inst)) + return true; + + // sext(sext) is ok too. + if (IsSExt && isa<SExtInst>(Inst)) + return true; + + // We can get through binary operator, if it is legal. In other words, the + // binary operator must have a nuw or nsw flag. + const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); + if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) && + ((!IsSExt && BinOp->hasNoUnsignedWrap()) || + (IsSExt && BinOp->hasNoSignedWrap()))) + return true; + + // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) + if ((Inst->getOpcode() == Instruction::And || + Inst->getOpcode() == Instruction::Or)) + return true; + + // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) + if (Inst->getOpcode() == Instruction::Xor) { + const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); + // Make sure it is not a NOT. + if (Cst && !Cst->getValue().isAllOnesValue()) + return true; + } + + // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) + // It may change a poisoned value into a regular value, like + // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 + // poisoned value regular value + // It should be OK since undef covers valid value. + if (Inst->getOpcode() == Instruction::LShr && !IsSExt) + return true; + + // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) + // It may change a poisoned value into a regular value, like + // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 + // poisoned value regular value + // It should be OK since undef covers valid value. + if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { + const auto *ExtInst = cast<const Instruction>(*Inst->user_begin()); + if (ExtInst->hasOneUse()) { + const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin()); + if (AndInst && AndInst->getOpcode() == Instruction::And) { + const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); + if (Cst && + Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) + return true; + } + } + } + + // Check if we can do the following simplification. + // ext(trunc(opnd)) --> ext(opnd) + if (!isa<TruncInst>(Inst)) + return false; + + Value *OpndVal = Inst->getOperand(0); + // Check if we can use this operand in the extension. + // If the type is larger than the result type of the extension, we cannot. + if (!OpndVal->getType()->isIntegerTy() || + OpndVal->getType()->getIntegerBitWidth() > + ConsideredExtType->getIntegerBitWidth()) + return false; + + // If the operand of the truncate is not an instruction, we will not have + // any information on the dropped bits. + // (Actually we could for constant but it is not worth the extra logic). + Instruction *Opnd = dyn_cast<Instruction>(OpndVal); + if (!Opnd) + return false; + + // Check if the source of the type is narrow enough. + // I.e., check that trunc just drops extended bits of the same kind of + // the extension. + // #1 get the type of the operand and check the kind of the extended bits. + const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); + if (OpndType) + ; + else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) + OpndType = Opnd->getOperand(0)->getType(); + else + return false; + + // #2 check that the truncate just drops extended bits. + return Inst->getType()->getIntegerBitWidth() >= + OpndType->getIntegerBitWidth(); +} + +TypePromotionHelper::Action TypePromotionHelper::getAction( + Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { + assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && + "Unexpected instruction type"); + Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); + Type *ExtTy = Ext->getType(); + bool IsSExt = isa<SExtInst>(Ext); + // If the operand of the extension is not an instruction, we cannot + // get through. + // If it, check we can get through. + if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) + return nullptr; + + // Do not promote if the operand has been added by codegenprepare. + // Otherwise, it means we are undoing an optimization that is likely to be + // redone, thus causing potential infinite loop. + if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) + return nullptr; + + // SExt or Trunc instructions. + // Return the related handler. + if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || + isa<ZExtInst>(ExtOpnd)) + return promoteOperandForTruncAndAnyExt; + + // Regular instruction. + // Abort early if we will have to insert non-free instructions. + if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) + return nullptr; + return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; +} + +Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( + Instruction *SExt, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + // By construction, the operand of SExt is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); + Value *ExtVal = SExt; + bool HasMergedNonFreeExt = false; + if (isa<ZExtInst>(SExtOpnd)) { + // Replace s|zext(zext(opnd)) + // => zext(opnd). + HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); + Value *ZExt = + TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); + TPT.replaceAllUsesWith(SExt, ZExt); + TPT.eraseInstruction(SExt); + ExtVal = ZExt; + } else { + // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) + // => z|sext(opnd). + TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); + } + CreatedInstsCost = 0; + + // Remove dead code. + if (SExtOpnd->use_empty()) + TPT.eraseInstruction(SExtOpnd); + + // Check if the extension is still needed. + Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); + if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { + if (ExtInst) { + if (Exts) + Exts->push_back(ExtInst); + CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; + } + return ExtVal; + } + + // At this point we have: ext ty opnd to ty. + // Reassign the uses of ExtInst to the opnd and remove ExtInst. + Value *NextVal = ExtInst->getOperand(0); + TPT.eraseInstruction(ExtInst, NextVal); + return NextVal; +} + +Value *TypePromotionHelper::promoteOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, + bool IsSExt) { + // By construction, the operand of Ext is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); + CreatedInstsCost = 0; + if (!ExtOpnd->hasOneUse()) { + // ExtOpnd will be promoted. + // All its uses, but Ext, will need to use a truncated value of the + // promoted version. + // Create the truncate now. + Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); + if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { + // Insert it just after the definition. + ITrunc->moveAfter(ExtOpnd); + if (Truncs) + Truncs->push_back(ITrunc); + } + + TPT.replaceAllUsesWith(ExtOpnd, Trunc); + // Restore the operand of Ext (which has been replaced by the previous call + // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. + TPT.setOperand(Ext, 0, ExtOpnd); + } + + // Get through the Instruction: + // 1. Update its type. + // 2. Replace the uses of Ext by Inst. + // 3. Extend each operand that needs to be extended. + + // Remember the original type of the instruction before promotion. + // This is useful to know that the high bits are sign extended bits. + addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); + // Step #1. + TPT.mutateType(ExtOpnd, Ext->getType()); + // Step #2. + TPT.replaceAllUsesWith(Ext, ExtOpnd); + // Step #3. + Instruction *ExtForOpnd = Ext; + + LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); + for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; + ++OpIdx) { + LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); + if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || + !shouldExtOperand(ExtOpnd, OpIdx)) { + LLVM_DEBUG(dbgs() << "No need to propagate\n"); + continue; + } + // Check if we can statically extend the operand. + Value *Opnd = ExtOpnd->getOperand(OpIdx); + if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { + LLVM_DEBUG(dbgs() << "Statically extend\n"); + unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); + APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) + : Cst->getValue().zext(BitWidth); + TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); + continue; + } + // UndefValue are typed, so we have to statically sign extend them. + if (isa<UndefValue>(Opnd)) { + LLVM_DEBUG(dbgs() << "Statically extend\n"); + TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); + continue; + } + + // Otherwise we have to explicitly sign extend the operand. + // Check if Ext was reused to extend an operand. + if (!ExtForOpnd) { + // If yes, create a new one. + LLVM_DEBUG(dbgs() << "More operands to ext\n"); + Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) + : TPT.createZExt(Ext, Opnd, Ext->getType()); + if (!isa<Instruction>(ValForExtOpnd)) { + TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); + continue; + } + ExtForOpnd = cast<Instruction>(ValForExtOpnd); + } + if (Exts) + Exts->push_back(ExtForOpnd); + TPT.setOperand(ExtForOpnd, 0, Opnd); + + // Move the sign extension before the insertion point. + TPT.moveBefore(ExtForOpnd, ExtOpnd); + TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); + CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); + // If more sext are required, new instructions will have to be created. + ExtForOpnd = nullptr; + } + if (ExtForOpnd == Ext) { + LLVM_DEBUG(dbgs() << "Extension is useless now\n"); + TPT.eraseInstruction(Ext); + } + return ExtOpnd; +} + +/// Check whether or not promoting an instruction to a wider type is profitable. +/// \p NewCost gives the cost of extension instructions created by the +/// promotion. +/// \p OldCost gives the cost of extension instructions before the promotion +/// plus the number of instructions that have been +/// matched in the addressing mode the promotion. +/// \p PromotedOperand is the value that has been promoted. +/// \return True if the promotion is profitable, false otherwise. +bool AddressingModeMatcher::isPromotionProfitable( + unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { + LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost + << '\n'); + // The cost of the new extensions is greater than the cost of the + // old extension plus what we folded. + // This is not profitable. + if (NewCost > OldCost) + return false; + if (NewCost < OldCost) + return true; + // The promotion is neutral but it may help folding the sign extension in + // loads for instance. + // Check that we did not create an illegal instruction. + return isPromotedInstructionLegal(TLI, DL, PromotedOperand); +} + +/// Given an instruction or constant expr, see if we can fold the operation +/// into the addressing mode. If so, update the addressing mode and return +/// true, otherwise return false without modifying AddrMode. +/// If \p MovedAway is not NULL, it contains the information of whether or +/// not AddrInst has to be folded into the addressing mode on success. +/// If \p MovedAway == true, \p AddrInst will not be part of the addressing +/// because it has been moved away. +/// Thus AddrInst must not be added in the matched instructions. +/// This state can happen when AddrInst is a sext, since it may be moved away. +/// Therefore, AddrInst may not be valid when MovedAway is true and it must +/// not be referenced anymore. +bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, + unsigned Depth, + bool *MovedAway) { + // Avoid exponential behavior on extremely deep expression trees. + if (Depth >= 5) return false; + + // By default, all matched instructions stay in place. + if (MovedAway) + *MovedAway = false; + + switch (Opcode) { + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return matchAddr(AddrInst->getOperand(0), Depth); + case Instruction::IntToPtr: { + auto AS = AddrInst->getType()->getPointerAddressSpace(); + auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); + // This inttoptr is a no-op if the integer type is pointer sized. + if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::BitCast: + // BitCast is always a noop, and we can handle it as long as it is + // int->int or pointer->pointer (we don't want int<->fp or something). + if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && + // Don't touch identity bitcasts. These were probably put here by LSR, + // and we don't want to mess around with them. Assume it knows what it + // is doing. + AddrInst->getOperand(0)->getType() != AddrInst->getType()) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + case Instruction::AddrSpaceCast: { + unsigned SrcAS + = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); + unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS)) - return matchAddr(AddrInst->getOperand(0), Depth); - return false; - } - case Instruction::Add: { - // Check to see if we can merge in the RHS then the LHS. If so, we win. - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - // Start a transaction at this point. - // The LHS may match but not the RHS. - // Therefore, we need a higher level restoration point to undo partially - // matched operation. - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - - AddrMode.InBounds = false; - if (matchAddr(AddrInst->getOperand(1), Depth+1) && - matchAddr(AddrInst->getOperand(0), Depth+1)) - return true; - - // Restore the old addr mode info. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - TPT.rollback(LastKnownGood); - - // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. - if (matchAddr(AddrInst->getOperand(0), Depth+1) && - matchAddr(AddrInst->getOperand(1), Depth+1)) - return true; - - // Otherwise we definitely can't merge the ADD in. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - TPT.rollback(LastKnownGood); - break; - } - //case Instruction::Or: - // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. - //break; - case Instruction::Mul: - case Instruction::Shl: { - // Can only handle X*C and X << C. - AddrMode.InBounds = false; - ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); - if (!RHS || RHS->getBitWidth() > 64) - return false; - int64_t Scale = RHS->getSExtValue(); - if (Opcode == Instruction::Shl) - Scale = 1LL << Scale; - - return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); - } - case Instruction::GetElementPtr: { - // Scan the GEP. We check it if it contains constant offsets and at most - // one variable offset. - int VariableOperand = -1; - unsigned VariableScale = 0; - - int64_t ConstantOffset = 0; - gep_type_iterator GTI = gep_type_begin(AddrInst); - for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { - if (StructType *STy = GTI.getStructTypeOrNull()) { - const StructLayout *SL = DL.getStructLayout(STy); - unsigned Idx = - cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); - ConstantOffset += SL->getElementOffset(Idx); - } else { - TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); - if (TS.isNonZero()) { - // The optimisations below currently only work for fixed offsets. - if (TS.isScalable()) - return false; - int64_t TypeSize = TS.getFixedSize(); - if (ConstantInt *CI = - dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { - const APInt &CVal = CI->getValue(); - if (CVal.getMinSignedBits() <= 64) { - ConstantOffset += CVal.getSExtValue() * TypeSize; - continue; - } - } - // We only allow one variable index at the moment. - if (VariableOperand != -1) - return false; - - // Remember the variable index. - VariableOperand = i; - VariableScale = TypeSize; - } - } - } - - // A common case is for the GEP to only do a constant offset. In this case, - // just add it to the disp field and check validity. - if (VariableOperand == -1) { - AddrMode.BaseOffs += ConstantOffset; - if (ConstantOffset == 0 || - TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { - // Check to see if we can fold the base pointer in too. - if (matchAddr(AddrInst->getOperand(0), Depth+1)) { - if (!cast<GEPOperator>(AddrInst)->isInBounds()) - AddrMode.InBounds = false; - return true; - } - } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && - TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && - ConstantOffset > 0) { - // Record GEPs with non-zero offsets as candidates for splitting in the - // event that the offset cannot fit into the r+i addressing mode. - // Simple and common case that only one GEP is used in calculating the - // address for the memory access. - Value *Base = AddrInst->getOperand(0); - auto *BaseI = dyn_cast<Instruction>(Base); - auto *GEP = cast<GetElementPtrInst>(AddrInst); - if (isa<Argument>(Base) || isa<GlobalValue>(Base) || - (BaseI && !isa<CastInst>(BaseI) && - !isa<GetElementPtrInst>(BaseI))) { - // Make sure the parent block allows inserting non-PHI instructions - // before the terminator. - BasicBlock *Parent = - BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); - if (!Parent->getTerminator()->isEHPad()) - LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); - } - } - AddrMode.BaseOffs -= ConstantOffset; - return false; - } - - // Save the valid addressing mode in case we can't match. - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - - // See if the scale and offset amount is valid for this target. - AddrMode.BaseOffs += ConstantOffset; - if (!cast<GEPOperator>(AddrInst)->isInBounds()) - AddrMode.InBounds = false; - - // Match the base operand of the GEP. - if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { - // If it couldn't be matched, just stuff the value in a register. - if (AddrMode.HasBaseReg) { - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - return false; - } - AddrMode.HasBaseReg = true; - AddrMode.BaseReg = AddrInst->getOperand(0); - } - - // Match the remaining variable portion of the GEP. - if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, - Depth)) { - // If it couldn't be matched, try stuffing the base into a register - // instead of matching it, and retrying the match of the scale. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - if (AddrMode.HasBaseReg) - return false; - AddrMode.HasBaseReg = true; - AddrMode.BaseReg = AddrInst->getOperand(0); - AddrMode.BaseOffs += ConstantOffset; - if (!matchScaledValue(AddrInst->getOperand(VariableOperand), - VariableScale, Depth)) { - // If even that didn't work, bail. - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - return false; - } - } - - return true; - } - case Instruction::SExt: - case Instruction::ZExt: { - Instruction *Ext = dyn_cast<Instruction>(AddrInst); - if (!Ext) - return false; - - // Try to move this ext out of the way of the addressing mode. - // Ask for a method for doing so. - TypePromotionHelper::Action TPH = - TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); - if (!TPH) - return false; - - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - unsigned CreatedInstsCost = 0; - unsigned ExtCost = !TLI.isExtFree(Ext); - Value *PromotedOperand = - TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); - // SExt has been moved away. - // Thus either it will be rematched later in the recursive calls or it is - // gone. Anyway, we must not fold it into the addressing mode at this point. - // E.g., - // op = add opnd, 1 - // idx = ext op - // addr = gep base, idx - // is now: - // promotedOpnd = ext opnd <- no match here - // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) - // addr = gep base, op <- match - if (MovedAway) - *MovedAway = true; - - assert(PromotedOperand && - "TypePromotionHelper should have filtered out those cases"); - - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - - if (!matchAddr(PromotedOperand, Depth) || - // The total of the new cost is equal to the cost of the created - // instructions. - // The total of the old cost is equal to the cost of the extension plus - // what we have saved in the addressing mode. - !isPromotionProfitable(CreatedInstsCost, - ExtCost + (AddrModeInsts.size() - OldSize), - PromotedOperand)) { - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); - TPT.rollback(LastKnownGood); - return false; - } - return true; - } - } - return false; -} - -/// If we can, try to add the value of 'Addr' into the current addressing mode. -/// If Addr can't be added to AddrMode this returns false and leaves AddrMode -/// unmodified. This assumes that Addr is either a pointer type or intptr_t -/// for the target. -/// -bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { - // Start a transaction at this point that we will rollback if the matching - // fails. - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { - if (CI->getValue().isSignedIntN(64)) { - // Fold in immediates if legal for the target. - AddrMode.BaseOffs += CI->getSExtValue(); - if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) - return true; - AddrMode.BaseOffs -= CI->getSExtValue(); - } - } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { - // If this is a global variable, try to fold it into the addressing mode. - if (!AddrMode.BaseGV) { - AddrMode.BaseGV = GV; - if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) - return true; - AddrMode.BaseGV = nullptr; - } - } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { - ExtAddrMode BackupAddrMode = AddrMode; - unsigned OldSize = AddrModeInsts.size(); - - // Check to see if it is possible to fold this operation. - bool MovedAway = false; - if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { - // This instruction may have been moved away. If so, there is nothing - // to check here. - if (MovedAway) - return true; - // Okay, it's possible to fold this. Check to see if it is actually - // *profitable* to do so. We use a simple cost model to avoid increasing - // register pressure too much. - if (I->hasOneUse() || - isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { - AddrModeInsts.push_back(I); - return true; - } - - // It isn't profitable to do this, roll back. - //cerr << "NOT FOLDING: " << *I; - AddrMode = BackupAddrMode; - AddrModeInsts.resize(OldSize); - TPT.rollback(LastKnownGood); - } - } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { - if (matchOperationAddr(CE, CE->getOpcode(), Depth)) - return true; - TPT.rollback(LastKnownGood); - } else if (isa<ConstantPointerNull>(Addr)) { - // Null pointer gets folded without affecting the addressing mode. - return true; - } - - // Worse case, the target should support [reg] addressing modes. :) - if (!AddrMode.HasBaseReg) { - AddrMode.HasBaseReg = true; - AddrMode.BaseReg = Addr; - // Still check for legality in case the target supports [imm] but not [i+r]. - if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) - return true; - AddrMode.HasBaseReg = false; - AddrMode.BaseReg = nullptr; - } - - // If the base register is already taken, see if we can do [r+r]. - if (AddrMode.Scale == 0) { - AddrMode.Scale = 1; - AddrMode.ScaledReg = Addr; - if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) - return true; - AddrMode.Scale = 0; - AddrMode.ScaledReg = nullptr; - } - // Couldn't match. - TPT.rollback(LastKnownGood); - return false; -} - -/// Check to see if all uses of OpVal by the specified inline asm call are due -/// to memory operands. If so, return true, otherwise return false. -static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, - const TargetLowering &TLI, - const TargetRegisterInfo &TRI) { - const Function *F = CI->getFunction(); - TargetLowering::AsmOperandInfoVector TargetConstraints = - TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); - - for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { - TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; - - // Compute the constraint code and ConstraintType to use. - TLI.ComputeConstraintToUse(OpInfo, SDValue()); - - // If this asm operand is our Value*, and if it isn't an indirect memory - // operand, we can't fold it! - if (OpInfo.CallOperandVal == OpVal && - (OpInfo.ConstraintType != TargetLowering::C_Memory || - !OpInfo.isIndirect)) - return false; - } - - return true; -} - -// Max number of memory uses to look at before aborting the search to conserve -// compile time. -static constexpr int MaxMemoryUsesToScan = 20; - -/// Recursively walk all the uses of I until we find a memory use. -/// If we find an obviously non-foldable instruction, return true. -/// Add the ultimately found memory instructions to MemoryUses. -static bool FindAllMemoryUses( - Instruction *I, - SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, - SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, - const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, - BlockFrequencyInfo *BFI, int SeenInsts = 0) { - // If we already considered this instruction, we're done. - if (!ConsideredInsts.insert(I).second) - return false; - - // If this is an obviously unfoldable instruction, bail out. - if (!MightBeFoldableInst(I)) - return true; - - // Loop over all the uses, recursively processing them. - for (Use &U : I->uses()) { - // Conservatively return true if we're seeing a large number or a deep chain - // of users. This avoids excessive compilation times in pathological cases. - if (SeenInsts++ >= MaxMemoryUsesToScan) - return true; - - Instruction *UserI = cast<Instruction>(U.getUser()); - if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { - MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); - continue; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { - unsigned opNo = U.getOperandNo(); - if (opNo != StoreInst::getPointerOperandIndex()) - return true; // Storing addr, not into addr. - MemoryUses.push_back(std::make_pair(SI, opNo)); - continue; - } - - if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { - unsigned opNo = U.getOperandNo(); - if (opNo != AtomicRMWInst::getPointerOperandIndex()) - return true; // Storing addr, not into addr. - MemoryUses.push_back(std::make_pair(RMW, opNo)); - continue; - } - - if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { - unsigned opNo = U.getOperandNo(); - if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) - return true; // Storing addr, not into addr. - MemoryUses.push_back(std::make_pair(CmpX, opNo)); - continue; - } - - if (CallInst *CI = dyn_cast<CallInst>(UserI)) { - if (CI->hasFnAttr(Attribute::Cold)) { - // If this is a cold call, we can sink the addressing calculation into - // the cold path. See optimizeCallInst - bool OptForSize = OptSize || - llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); - if (!OptForSize) - continue; - } - - InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); - if (!IA) return true; - - // If this is a memory operand, we're cool, otherwise bail out. - if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) - return true; - continue; - } - - if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, - PSI, BFI, SeenInsts)) - return true; - } - - return false; -} - -/// Return true if Val is already known to be live at the use site that we're -/// folding it into. If so, there is no cost to include it in the addressing -/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the -/// instruction already. -bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, - Value *KnownLive2) { - // If Val is either of the known-live values, we know it is live! - if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) - return true; - - // All values other than instructions and arguments (e.g. constants) are live. - if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; - - // If Val is a constant sized alloca in the entry block, it is live, this is - // true because it is just a reference to the stack/frame pointer, which is - // live for the whole function. - if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) - if (AI->isStaticAlloca()) - return true; - - // Check to see if this value is already used in the memory instruction's - // block. If so, it's already live into the block at the very least, so we - // can reasonably fold it. - return Val->isUsedInBasicBlock(MemoryInst->getParent()); -} - -/// It is possible for the addressing mode of the machine to fold the specified -/// instruction into a load or store that ultimately uses it. -/// However, the specified instruction has multiple uses. -/// Given this, it may actually increase register pressure to fold it -/// into the load. For example, consider this code: -/// -/// X = ... -/// Y = X+1 -/// use(Y) -> nonload/store -/// Z = Y+1 -/// load Z -/// -/// In this case, Y has multiple uses, and can be folded into the load of Z -/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to -/// be live at the use(Y) line. If we don't fold Y into load Z, we use one -/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the -/// number of computations either. -/// -/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If -/// X was live across 'load Z' for other reasons, we actually *would* want to -/// fold the addressing mode in the Z case. This would make Y die earlier. -bool AddressingModeMatcher:: -isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, - ExtAddrMode &AMAfter) { - if (IgnoreProfitability) return true; - - // AMBefore is the addressing mode before this instruction was folded into it, - // and AMAfter is the addressing mode after the instruction was folded. Get - // the set of registers referenced by AMAfter and subtract out those - // referenced by AMBefore: this is the set of values which folding in this - // address extends the lifetime of. - // - // Note that there are only two potential values being referenced here, - // BaseReg and ScaleReg (global addresses are always available, as are any - // folded immediates). - Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; - - // If the BaseReg or ScaledReg was referenced by the previous addrmode, their - // lifetime wasn't extended by adding this instruction. - if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) - BaseReg = nullptr; - if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) - ScaledReg = nullptr; - - // If folding this instruction (and it's subexprs) didn't extend any live - // ranges, we're ok with it. - if (!BaseReg && !ScaledReg) - return true; - - // If all uses of this instruction can have the address mode sunk into them, - // we can remove the addressing mode and effectively trade one live register - // for another (at worst.) In this context, folding an addressing mode into - // the use is just a particularly nice way of sinking it. - SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; - SmallPtrSet<Instruction*, 16> ConsideredInsts; - if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, - PSI, BFI)) - return false; // Has a non-memory, non-foldable use! - - // Now that we know that all uses of this instruction are part of a chain of - // computation involving only operations that could theoretically be folded - // into a memory use, loop over each of these memory operation uses and see - // if they could *actually* fold the instruction. The assumption is that - // addressing modes are cheap and that duplicating the computation involved - // many times is worthwhile, even on a fastpath. For sinking candidates - // (i.e. cold call sites), this serves as a way to prevent excessive code - // growth since most architectures have some reasonable small and fast way to - // compute an effective address. (i.e LEA on x86) - SmallVector<Instruction*, 32> MatchedAddrModeInsts; - for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { - Instruction *User = MemoryUses[i].first; - unsigned OpNo = MemoryUses[i].second; - - // Get the access type of this use. If the use isn't a pointer, we don't - // know what it accesses. - Value *Address = User->getOperand(OpNo); - PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); - if (!AddrTy) - return false; - Type *AddressAccessTy = AddrTy->getElementType(); - unsigned AS = AddrTy->getAddressSpace(); - - // Do a match against the root of this address, ignoring profitability. This - // will tell us if the addressing mode for the memory operation will - // *actually* cover the shared instruction. - ExtAddrMode Result; - std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, - 0); - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - AddressingModeMatcher Matcher( - MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, - InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); - Matcher.IgnoreProfitability = true; - bool Success = Matcher.matchAddr(Address, 0); - (void)Success; assert(Success && "Couldn't select *anything*?"); - - // The match was to check the profitability, the changes made are not - // part of the original matcher. Therefore, they should be dropped - // otherwise the original matcher will not present the right state. - TPT.rollback(LastKnownGood); - - // If the match didn't cover I, then it won't be shared by it. - if (!is_contained(MatchedAddrModeInsts, I)) - return false; - - MatchedAddrModeInsts.clear(); - } - - return true; -} - -/// Return true if the specified values are defined in a -/// different basic block than BB. -static bool IsNonLocalValue(Value *V, BasicBlock *BB) { - if (Instruction *I = dyn_cast<Instruction>(V)) - return I->getParent() != BB; - return false; -} - -/// Sink addressing mode computation immediate before MemoryInst if doing so -/// can be done without increasing register pressure. The need for the -/// register pressure constraint means this can end up being an all or nothing -/// decision for all uses of the same addressing computation. -/// -/// Load and Store Instructions often have addressing modes that can do -/// significant amounts of computation. As such, instruction selection will try -/// to get the load or store to do as much computation as possible for the -/// program. The problem is that isel can only see within a single block. As -/// such, we sink as much legal addressing mode work into the block as possible. -/// -/// This method is used to optimize both load/store and inline asms with memory -/// operands. It's also used to sink addressing computations feeding into cold -/// call sites into their (cold) basic block. -/// -/// The motivation for handling sinking into cold blocks is that doing so can -/// both enable other address mode sinking (by satisfying the register pressure -/// constraint above), and reduce register pressure globally (by removing the -/// addressing mode computation from the fast path entirely.). -bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, - Type *AccessTy, unsigned AddrSpace) { - Value *Repl = Addr; - - // Try to collapse single-value PHI nodes. This is necessary to undo - // unprofitable PRE transformations. - SmallVector<Value*, 8> worklist; - SmallPtrSet<Value*, 16> Visited; - worklist.push_back(Addr); - - // Use a worklist to iteratively look through PHI and select nodes, and - // ensure that the addressing mode obtained from the non-PHI/select roots of - // the graph are compatible. - bool PhiOrSelectSeen = false; - SmallVector<Instruction*, 16> AddrModeInsts; - const SimplifyQuery SQ(*DL, TLInfo); - AddressingModeCombiner AddrModes(SQ, Addr); - TypePromotionTransaction TPT(RemovedInsts); - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - while (!worklist.empty()) { - Value *V = worklist.back(); - worklist.pop_back(); - - // We allow traversing cyclic Phi nodes. - // In case of success after this loop we ensure that traversing through - // Phi nodes ends up with all cases to compute address of the form - // BaseGV + Base + Scale * Index + Offset - // where Scale and Offset are constans and BaseGV, Base and Index - // are exactly the same Values in all cases. - // It means that BaseGV, Scale and Offset dominate our memory instruction - // and have the same value as they had in address computation represented - // as Phi. So we can safely sink address computation to memory instruction. - if (!Visited.insert(V).second) - continue; - - // For a PHI node, push all of its incoming values. - if (PHINode *P = dyn_cast<PHINode>(V)) { + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::Add: { + // Check to see if we can merge in the RHS then the LHS. If so, we win. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + // Start a transaction at this point. + // The LHS may match but not the RHS. + // Therefore, we need a higher level restoration point to undo partially + // matched operation. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + + AddrMode.InBounds = false; + if (matchAddr(AddrInst->getOperand(1), Depth+1) && + matchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + + // Restore the old addr mode info. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + + // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. + if (matchAddr(AddrInst->getOperand(0), Depth+1) && + matchAddr(AddrInst->getOperand(1), Depth+1)) + return true; + + // Otherwise we definitely can't merge the ADD in. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + break; + } + //case Instruction::Or: + // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. + //break; + case Instruction::Mul: + case Instruction::Shl: { + // Can only handle X*C and X << C. + AddrMode.InBounds = false; + ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); + if (!RHS || RHS->getBitWidth() > 64) + return false; + int64_t Scale = RHS->getSExtValue(); + if (Opcode == Instruction::Shl) + Scale = 1LL << Scale; + + return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); + } + case Instruction::GetElementPtr: { + // Scan the GEP. We check it if it contains constant offsets and at most + // one variable offset. + int VariableOperand = -1; + unsigned VariableScale = 0; + + int64_t ConstantOffset = 0; + gep_type_iterator GTI = gep_type_begin(AddrInst); + for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { + if (StructType *STy = GTI.getStructTypeOrNull()) { + const StructLayout *SL = DL.getStructLayout(STy); + unsigned Idx = + cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); + ConstantOffset += SL->getElementOffset(Idx); + } else { + TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType()); + if (TS.isNonZero()) { + // The optimisations below currently only work for fixed offsets. + if (TS.isScalable()) + return false; + int64_t TypeSize = TS.getFixedSize(); + if (ConstantInt *CI = + dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { + const APInt &CVal = CI->getValue(); + if (CVal.getMinSignedBits() <= 64) { + ConstantOffset += CVal.getSExtValue() * TypeSize; + continue; + } + } + // We only allow one variable index at the moment. + if (VariableOperand != -1) + return false; + + // Remember the variable index. + VariableOperand = i; + VariableScale = TypeSize; + } + } + } + + // A common case is for the GEP to only do a constant offset. In this case, + // just add it to the disp field and check validity. + if (VariableOperand == -1) { + AddrMode.BaseOffs += ConstantOffset; + if (ConstantOffset == 0 || + TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { + // Check to see if we can fold the base pointer in too. + if (matchAddr(AddrInst->getOperand(0), Depth+1)) { + if (!cast<GEPOperator>(AddrInst)->isInBounds()) + AddrMode.InBounds = false; + return true; + } + } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && + TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && + ConstantOffset > 0) { + // Record GEPs with non-zero offsets as candidates for splitting in the + // event that the offset cannot fit into the r+i addressing mode. + // Simple and common case that only one GEP is used in calculating the + // address for the memory access. + Value *Base = AddrInst->getOperand(0); + auto *BaseI = dyn_cast<Instruction>(Base); + auto *GEP = cast<GetElementPtrInst>(AddrInst); + if (isa<Argument>(Base) || isa<GlobalValue>(Base) || + (BaseI && !isa<CastInst>(BaseI) && + !isa<GetElementPtrInst>(BaseI))) { + // Make sure the parent block allows inserting non-PHI instructions + // before the terminator. + BasicBlock *Parent = + BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); + if (!Parent->getTerminator()->isEHPad()) + LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); + } + } + AddrMode.BaseOffs -= ConstantOffset; + return false; + } + + // Save the valid addressing mode in case we can't match. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // See if the scale and offset amount is valid for this target. + AddrMode.BaseOffs += ConstantOffset; + if (!cast<GEPOperator>(AddrInst)->isInBounds()) + AddrMode.InBounds = false; + + // Match the base operand of the GEP. + if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { + // If it couldn't be matched, just stuff the value in a register. + if (AddrMode.HasBaseReg) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + } + + // Match the remaining variable portion of the GEP. + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, + Depth)) { + // If it couldn't be matched, try stuffing the base into a register + // instead of matching it, and retrying the match of the scale. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + if (AddrMode.HasBaseReg) + return false; + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + AddrMode.BaseOffs += ConstantOffset; + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), + VariableScale, Depth)) { + // If even that didn't work, bail. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + } + + return true; + } + case Instruction::SExt: + case Instruction::ZExt: { + Instruction *Ext = dyn_cast<Instruction>(AddrInst); + if (!Ext) + return false; + + // Try to move this ext out of the way of the addressing mode. + // Ask for a method for doing so. + TypePromotionHelper::Action TPH = + TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); + if (!TPH) + return false; + + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + unsigned CreatedInstsCost = 0; + unsigned ExtCost = !TLI.isExtFree(Ext); + Value *PromotedOperand = + TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); + // SExt has been moved away. + // Thus either it will be rematched later in the recursive calls or it is + // gone. Anyway, we must not fold it into the addressing mode at this point. + // E.g., + // op = add opnd, 1 + // idx = ext op + // addr = gep base, idx + // is now: + // promotedOpnd = ext opnd <- no match here + // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) + // addr = gep base, op <- match + if (MovedAway) + *MovedAway = true; + + assert(PromotedOperand && + "TypePromotionHelper should have filtered out those cases"); + + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + if (!matchAddr(PromotedOperand, Depth) || + // The total of the new cost is equal to the cost of the created + // instructions. + // The total of the old cost is equal to the cost of the extension plus + // what we have saved in the addressing mode. + !isPromotionProfitable(CreatedInstsCost, + ExtCost + (AddrModeInsts.size() - OldSize), + PromotedOperand)) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); + TPT.rollback(LastKnownGood); + return false; + } + return true; + } + } + return false; +} + +/// If we can, try to add the value of 'Addr' into the current addressing mode. +/// If Addr can't be added to AddrMode this returns false and leaves AddrMode +/// unmodified. This assumes that Addr is either a pointer type or intptr_t +/// for the target. +/// +bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { + // Start a transaction at this point that we will rollback if the matching + // fails. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { + if (CI->getValue().isSignedIntN(64)) { + // Fold in immediates if legal for the target. + AddrMode.BaseOffs += CI->getSExtValue(); + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseOffs -= CI->getSExtValue(); + } + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { + // If this is a global variable, try to fold it into the addressing mode. + if (!AddrMode.BaseGV) { + AddrMode.BaseGV = GV; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseGV = nullptr; + } + } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // Check to see if it is possible to fold this operation. + bool MovedAway = false; + if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { + // This instruction may have been moved away. If so, there is nothing + // to check here. + if (MovedAway) + return true; + // Okay, it's possible to fold this. Check to see if it is actually + // *profitable* to do so. We use a simple cost model to avoid increasing + // register pressure too much. + if (I->hasOneUse() || + isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { + AddrModeInsts.push_back(I); + return true; + } + + // It isn't profitable to do this, roll back. + //cerr << "NOT FOLDING: " << *I; + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + } + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { + if (matchOperationAddr(CE, CE->getOpcode(), Depth)) + return true; + TPT.rollback(LastKnownGood); + } else if (isa<ConstantPointerNull>(Addr)) { + // Null pointer gets folded without affecting the addressing mode. + return true; + } + + // Worse case, the target should support [reg] addressing modes. :) + if (!AddrMode.HasBaseReg) { + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = Addr; + // Still check for legality in case the target supports [imm] but not [i+r]. + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.HasBaseReg = false; + AddrMode.BaseReg = nullptr; + } + + // If the base register is already taken, see if we can do [r+r]. + if (AddrMode.Scale == 0) { + AddrMode.Scale = 1; + AddrMode.ScaledReg = Addr; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.Scale = 0; + AddrMode.ScaledReg = nullptr; + } + // Couldn't match. + TPT.rollback(LastKnownGood); + return false; +} + +/// Check to see if all uses of OpVal by the specified inline asm call are due +/// to memory operands. If so, return true, otherwise return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, + const TargetLowering &TLI, + const TargetRegisterInfo &TRI) { + const Function *F = CI->getFunction(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI); + + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, SDValue()); + + // If this asm operand is our Value*, and if it isn't an indirect memory + // operand, we can't fold it! + if (OpInfo.CallOperandVal == OpVal && + (OpInfo.ConstraintType != TargetLowering::C_Memory || + !OpInfo.isIndirect)) + return false; + } + + return true; +} + +// Max number of memory uses to look at before aborting the search to conserve +// compile time. +static constexpr int MaxMemoryUsesToScan = 20; + +/// Recursively walk all the uses of I until we find a memory use. +/// If we find an obviously non-foldable instruction, return true. +/// Add the ultimately found memory instructions to MemoryUses. +static bool FindAllMemoryUses( + Instruction *I, + SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, + SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, + const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI, + BlockFrequencyInfo *BFI, int SeenInsts = 0) { + // If we already considered this instruction, we're done. + if (!ConsideredInsts.insert(I).second) + return false; + + // If this is an obviously unfoldable instruction, bail out. + if (!MightBeFoldableInst(I)) + return true; + + // Loop over all the uses, recursively processing them. + for (Use &U : I->uses()) { + // Conservatively return true if we're seeing a large number or a deep chain + // of users. This avoids excessive compilation times in pathological cases. + if (SeenInsts++ >= MaxMemoryUsesToScan) + return true; + + Instruction *UserI = cast<Instruction>(U.getUser()); + if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { + MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != StoreInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(SI, opNo)); + continue; + } + + if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != AtomicRMWInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(RMW, opNo)); + continue; + } + + if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(CmpX, opNo)); + continue; + } + + if (CallInst *CI = dyn_cast<CallInst>(UserI)) { + if (CI->hasFnAttr(Attribute::Cold)) { + // If this is a cold call, we can sink the addressing calculation into + // the cold path. See optimizeCallInst + bool OptForSize = OptSize || + llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); + if (!OptForSize) + continue; + } + + InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand()); + if (!IA) return true; + + // If this is a memory operand, we're cool, otherwise bail out. + if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) + return true; + continue; + } + + if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, + PSI, BFI, SeenInsts)) + return true; + } + + return false; +} + +/// Return true if Val is already known to be live at the use site that we're +/// folding it into. If so, there is no cost to include it in the addressing +/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the +/// instruction already. +bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, + Value *KnownLive2) { + // If Val is either of the known-live values, we know it is live! + if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) + return true; + + // All values other than instructions and arguments (e.g. constants) are live. + if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; + + // If Val is a constant sized alloca in the entry block, it is live, this is + // true because it is just a reference to the stack/frame pointer, which is + // live for the whole function. + if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) + if (AI->isStaticAlloca()) + return true; + + // Check to see if this value is already used in the memory instruction's + // block. If so, it's already live into the block at the very least, so we + // can reasonably fold it. + return Val->isUsedInBasicBlock(MemoryInst->getParent()); +} + +/// It is possible for the addressing mode of the machine to fold the specified +/// instruction into a load or store that ultimately uses it. +/// However, the specified instruction has multiple uses. +/// Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: +/// +/// X = ... +/// Y = X+1 +/// use(Y) -> nonload/store +/// Z = Y+1 +/// load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line. If we don't fold Y into load Z, we use one +/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case. This would make Y die earlier. +bool AddressingModeMatcher:: +isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter) { + if (IgnoreProfitability) return true; + + // AMBefore is the addressing mode before this instruction was folded into it, + // and AMAfter is the addressing mode after the instruction was folded. Get + // the set of registers referenced by AMAfter and subtract out those + // referenced by AMBefore: this is the set of values which folding in this + // address extends the lifetime of. + // + // Note that there are only two potential values being referenced here, + // BaseReg and ScaleReg (global addresses are always available, as are any + // folded immediates). + Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; + + // If the BaseReg or ScaledReg was referenced by the previous addrmode, their + // lifetime wasn't extended by adding this instruction. + if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + BaseReg = nullptr; + if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + ScaledReg = nullptr; + + // If folding this instruction (and it's subexprs) didn't extend any live + // ranges, we're ok with it. + if (!BaseReg && !ScaledReg) + return true; + + // If all uses of this instruction can have the address mode sunk into them, + // we can remove the addressing mode and effectively trade one live register + // for another (at worst.) In this context, folding an addressing mode into + // the use is just a particularly nice way of sinking it. + SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; + SmallPtrSet<Instruction*, 16> ConsideredInsts; + if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize, + PSI, BFI)) + return false; // Has a non-memory, non-foldable use! + + // Now that we know that all uses of this instruction are part of a chain of + // computation involving only operations that could theoretically be folded + // into a memory use, loop over each of these memory operation uses and see + // if they could *actually* fold the instruction. The assumption is that + // addressing modes are cheap and that duplicating the computation involved + // many times is worthwhile, even on a fastpath. For sinking candidates + // (i.e. cold call sites), this serves as a way to prevent excessive code + // growth since most architectures have some reasonable small and fast way to + // compute an effective address. (i.e LEA on x86) + SmallVector<Instruction*, 32> MatchedAddrModeInsts; + for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { + Instruction *User = MemoryUses[i].first; + unsigned OpNo = MemoryUses[i].second; + + // Get the access type of this use. If the use isn't a pointer, we don't + // know what it accesses. + Value *Address = User->getOperand(OpNo); + PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); + if (!AddrTy) + return false; + Type *AddressAccessTy = AddrTy->getElementType(); + unsigned AS = AddrTy->getAddressSpace(); + + // Do a match against the root of this address, ignoring profitability. This + // will tell us if the addressing mode for the memory operation will + // *actually* cover the shared instruction. + ExtAddrMode Result; + std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, + 0); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + AddressingModeMatcher Matcher( + MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, + InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, BFI); + Matcher.IgnoreProfitability = true; + bool Success = Matcher.matchAddr(Address, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + + // The match was to check the profitability, the changes made are not + // part of the original matcher. Therefore, they should be dropped + // otherwise the original matcher will not present the right state. + TPT.rollback(LastKnownGood); + + // If the match didn't cover I, then it won't be shared by it. + if (!is_contained(MatchedAddrModeInsts, I)) + return false; + + MatchedAddrModeInsts.clear(); + } + + return true; +} + +/// Return true if the specified values are defined in a +/// different basic block than BB. +static bool IsNonLocalValue(Value *V, BasicBlock *BB) { + if (Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() != BB; + return false; +} + +/// Sink addressing mode computation immediate before MemoryInst if doing so +/// can be done without increasing register pressure. The need for the +/// register pressure constraint means this can end up being an all or nothing +/// decision for all uses of the same addressing computation. +/// +/// Load and Store Instructions often have addressing modes that can do +/// significant amounts of computation. As such, instruction selection will try +/// to get the load or store to do as much computation as possible for the +/// program. The problem is that isel can only see within a single block. As +/// such, we sink as much legal addressing mode work into the block as possible. +/// +/// This method is used to optimize both load/store and inline asms with memory +/// operands. It's also used to sink addressing computations feeding into cold +/// call sites into their (cold) basic block. +/// +/// The motivation for handling sinking into cold blocks is that doing so can +/// both enable other address mode sinking (by satisfying the register pressure +/// constraint above), and reduce register pressure globally (by removing the +/// addressing mode computation from the fast path entirely.). +bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + Type *AccessTy, unsigned AddrSpace) { + Value *Repl = Addr; + + // Try to collapse single-value PHI nodes. This is necessary to undo + // unprofitable PRE transformations. + SmallVector<Value*, 8> worklist; + SmallPtrSet<Value*, 16> Visited; + worklist.push_back(Addr); + + // Use a worklist to iteratively look through PHI and select nodes, and + // ensure that the addressing mode obtained from the non-PHI/select roots of + // the graph are compatible. + bool PhiOrSelectSeen = false; + SmallVector<Instruction*, 16> AddrModeInsts; + const SimplifyQuery SQ(*DL, TLInfo); + AddressingModeCombiner AddrModes(SQ, Addr); + TypePromotionTransaction TPT(RemovedInsts); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + while (!worklist.empty()) { + Value *V = worklist.back(); + worklist.pop_back(); + + // We allow traversing cyclic Phi nodes. + // In case of success after this loop we ensure that traversing through + // Phi nodes ends up with all cases to compute address of the form + // BaseGV + Base + Scale * Index + Offset + // where Scale and Offset are constans and BaseGV, Base and Index + // are exactly the same Values in all cases. + // It means that BaseGV, Scale and Offset dominate our memory instruction + // and have the same value as they had in address computation represented + // as Phi. So we can safely sink address computation to memory instruction. + if (!Visited.insert(V).second) + continue; + + // For a PHI node, push all of its incoming values. + if (PHINode *P = dyn_cast<PHINode>(V)) { append_range(worklist, P->incoming_values()); - PhiOrSelectSeen = true; - continue; - } - // Similar for select. - if (SelectInst *SI = dyn_cast<SelectInst>(V)) { - worklist.push_back(SI->getFalseValue()); - worklist.push_back(SI->getTrueValue()); - PhiOrSelectSeen = true; - continue; - } - - // For non-PHIs, determine the addressing mode being computed. Note that - // the result may differ depending on what other uses our candidate - // addressing instructions might have. - AddrModeInsts.clear(); - std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, - 0); - ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( - V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, - InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, - BFI.get()); - - GetElementPtrInst *GEP = LargeOffsetGEP.first; - if (GEP && !NewGEPBases.count(GEP)) { - // If splitting the underlying data structure can reduce the offset of a - // GEP, collect the GEP. Skip the GEPs that are the new bases of - // previously split data structures. - LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); - if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) - LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); - } - - NewAddrMode.OriginalValue = V; - if (!AddrModes.addNewAddrMode(NewAddrMode)) - break; - } - - // Try to combine the AddrModes we've collected. If we couldn't collect any, - // or we have multiple but either couldn't combine them or combining them - // wouldn't do anything useful, bail out now. - if (!AddrModes.combineAddrModes()) { - TPT.rollback(LastKnownGood); - return false; - } - bool Modified = TPT.commit(); - - // Get the combined AddrMode (or the only AddrMode, if we only had one). - ExtAddrMode AddrMode = AddrModes.getAddrMode(); - - // If all the instructions matched are already in this BB, don't do anything. - // If we saw a Phi node then it is not local definitely, and if we saw a select - // then we want to push the address calculation past it even if it's already - // in this BB. - if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { - return IsNonLocalValue(V, MemoryInst->getParent()); - })) { - LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode - << "\n"); - return Modified; - } - - // Insert this computation right after this user. Since our caller is - // scanning from the top of the BB to the bottom, reuse of the expr are - // guaranteed to happen later. - IRBuilder<> Builder(MemoryInst); - - // Now that we determined the addressing expression we want to use and know - // that we have to sink it into this block. Check to see if we have already - // done this for some other load/store instr in this block. If so, reuse - // the computation. Before attempting reuse, check if the address is valid - // as it may have been erased. - - WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; - - Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; - if (SunkAddr) { - LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode - << " for " << *MemoryInst << "\n"); - if (SunkAddr->getType() != Addr->getType()) - SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); - } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && - SubtargetInfo->addrSinkUsingGEPs())) { - // By default, we use the GEP-based method when AA is used later. This - // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. - LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode - << " for " << *MemoryInst << "\n"); - Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); - Value *ResultPtr = nullptr, *ResultIndex = nullptr; - - // First, find the pointer. - if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { - ResultPtr = AddrMode.BaseReg; - AddrMode.BaseReg = nullptr; - } - - if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { - // We can't add more than one pointer together, nor can we scale a - // pointer (both of which seem meaningless). - if (ResultPtr || AddrMode.Scale != 1) - return Modified; - - ResultPtr = AddrMode.ScaledReg; - AddrMode.Scale = 0; - } - - // It is only safe to sign extend the BaseReg if we know that the math - // required to create it did not overflow before we extend it. Since - // the original IR value was tossed in favor of a constant back when - // the AddrMode was created we need to bail out gracefully if widths - // do not match instead of extending it. - // - // (See below for code to add the scale.) - if (AddrMode.Scale) { - Type *ScaledRegTy = AddrMode.ScaledReg->getType(); - if (cast<IntegerType>(IntPtrTy)->getBitWidth() > - cast<IntegerType>(ScaledRegTy)->getBitWidth()) - return Modified; - } - - if (AddrMode.BaseGV) { - if (ResultPtr) - return Modified; - - ResultPtr = AddrMode.BaseGV; - } - - // If the real base value actually came from an inttoptr, then the matcher - // will look through it and provide only the integer value. In that case, - // use it here. - if (!DL->isNonIntegralPointerType(Addr->getType())) { - if (!ResultPtr && AddrMode.BaseReg) { - ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), - "sunkaddr"); - AddrMode.BaseReg = nullptr; - } else if (!ResultPtr && AddrMode.Scale == 1) { - ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), - "sunkaddr"); - AddrMode.Scale = 0; - } - } - - if (!ResultPtr && - !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { - SunkAddr = Constant::getNullValue(Addr->getType()); - } else if (!ResultPtr) { - return Modified; - } else { - Type *I8PtrTy = - Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); - Type *I8Ty = Builder.getInt8Ty(); - - // Start with the base register. Do this first so that subsequent address - // matching finds it last, which will prevent it from trying to match it - // as the scaled value in case it happens to be a mul. That would be - // problematic if we've sunk a different mul for the scale, because then - // we'd end up sinking both muls. - if (AddrMode.BaseReg) { - Value *V = AddrMode.BaseReg; - if (V->getType() != IntPtrTy) - V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); - - ResultIndex = V; - } - - // Add the scale value. - if (AddrMode.Scale) { - Value *V = AddrMode.ScaledReg; - if (V->getType() == IntPtrTy) { - // done. - } else { - assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < - cast<IntegerType>(V->getType())->getBitWidth() && - "We can't transform if ScaledReg is too narrow"); - V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); - } - - if (AddrMode.Scale != 1) - V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), - "sunkaddr"); - if (ResultIndex) - ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); - else - ResultIndex = V; - } - - // Add in the Base Offset if present. - if (AddrMode.BaseOffs) { - Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); - if (ResultIndex) { - // We need to add this separately from the scale above to help with - // SDAG consecutive load/store merging. - if (ResultPtr->getType() != I8PtrTy) - ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); - ResultPtr = - AddrMode.InBounds - ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, - "sunkaddr") - : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); - } - - ResultIndex = V; - } - - if (!ResultIndex) { - SunkAddr = ResultPtr; - } else { - if (ResultPtr->getType() != I8PtrTy) - ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); - SunkAddr = - AddrMode.InBounds - ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, - "sunkaddr") - : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); - } - - if (SunkAddr->getType() != Addr->getType()) - SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); - } - } else { - // We'd require a ptrtoint/inttoptr down the line, which we can't do for - // non-integral pointers, so in that case bail out now. - Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; - Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; - PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); - PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); - if (DL->isNonIntegralPointerType(Addr->getType()) || - (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || - (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || - (AddrMode.BaseGV && - DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) - return Modified; - - LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode - << " for " << *MemoryInst << "\n"); - Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); - Value *Result = nullptr; - - // Start with the base register. Do this first so that subsequent address - // matching finds it last, which will prevent it from trying to match it - // as the scaled value in case it happens to be a mul. That would be - // problematic if we've sunk a different mul for the scale, because then - // we'd end up sinking both muls. - if (AddrMode.BaseReg) { - Value *V = AddrMode.BaseReg; - if (V->getType()->isPointerTy()) - V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); - if (V->getType() != IntPtrTy) - V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); - Result = V; - } - - // Add the scale value. - if (AddrMode.Scale) { - Value *V = AddrMode.ScaledReg; - if (V->getType() == IntPtrTy) { - // done. - } else if (V->getType()->isPointerTy()) { - V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); - } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < - cast<IntegerType>(V->getType())->getBitWidth()) { - V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); - } else { - // It is only safe to sign extend the BaseReg if we know that the math - // required to create it did not overflow before we extend it. Since - // the original IR value was tossed in favor of a constant back when - // the AddrMode was created we need to bail out gracefully if widths - // do not match instead of extending it. - Instruction *I = dyn_cast_or_null<Instruction>(Result); - if (I && (Result != AddrMode.BaseReg)) - I->eraseFromParent(); - return Modified; - } - if (AddrMode.Scale != 1) - V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), - "sunkaddr"); - if (Result) - Result = Builder.CreateAdd(Result, V, "sunkaddr"); - else - Result = V; - } - - // Add in the BaseGV if present. - if (AddrMode.BaseGV) { - Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); - if (Result) - Result = Builder.CreateAdd(Result, V, "sunkaddr"); - else - Result = V; - } - - // Add in the Base Offset if present. - if (AddrMode.BaseOffs) { - Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); - if (Result) - Result = Builder.CreateAdd(Result, V, "sunkaddr"); - else - Result = V; - } - - if (!Result) - SunkAddr = Constant::getNullValue(Addr->getType()); - else - SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); - } - - MemoryInst->replaceUsesOfWith(Repl, SunkAddr); - // Store the newly computed address into the cache. In the case we reused a - // value, this should be idempotent. - SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); - - // If we have no uses, recursively delete the value and all dead instructions - // using it. - if (Repl->use_empty()) { + PhiOrSelectSeen = true; + continue; + } + // Similar for select. + if (SelectInst *SI = dyn_cast<SelectInst>(V)) { + worklist.push_back(SI->getFalseValue()); + worklist.push_back(SI->getTrueValue()); + PhiOrSelectSeen = true; + continue; + } + + // For non-PHIs, determine the addressing mode being computed. Note that + // the result may differ depending on what other uses our candidate + // addressing instructions might have. + AddrModeInsts.clear(); + std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, + 0); + ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( + V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, + InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI, + BFI.get()); + + GetElementPtrInst *GEP = LargeOffsetGEP.first; + if (GEP && !NewGEPBases.count(GEP)) { + // If splitting the underlying data structure can reduce the offset of a + // GEP, collect the GEP. Skip the GEPs that are the new bases of + // previously split data structures. + LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); + if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) + LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); + } + + NewAddrMode.OriginalValue = V; + if (!AddrModes.addNewAddrMode(NewAddrMode)) + break; + } + + // Try to combine the AddrModes we've collected. If we couldn't collect any, + // or we have multiple but either couldn't combine them or combining them + // wouldn't do anything useful, bail out now. + if (!AddrModes.combineAddrModes()) { + TPT.rollback(LastKnownGood); + return false; + } + bool Modified = TPT.commit(); + + // Get the combined AddrMode (or the only AddrMode, if we only had one). + ExtAddrMode AddrMode = AddrModes.getAddrMode(); + + // If all the instructions matched are already in this BB, don't do anything. + // If we saw a Phi node then it is not local definitely, and if we saw a select + // then we want to push the address calculation past it even if it's already + // in this BB. + if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { + return IsNonLocalValue(V, MemoryInst->getParent()); + })) { + LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode + << "\n"); + return Modified; + } + + // Insert this computation right after this user. Since our caller is + // scanning from the top of the BB to the bottom, reuse of the expr are + // guaranteed to happen later. + IRBuilder<> Builder(MemoryInst); + + // Now that we determined the addressing expression we want to use and know + // that we have to sink it into this block. Check to see if we have already + // done this for some other load/store instr in this block. If so, reuse + // the computation. Before attempting reuse, check if the address is valid + // as it may have been erased. + + WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; + + Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; + if (SunkAddr) { + LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); + } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() && + SubtargetInfo->addrSinkUsingGEPs())) { + // By default, we use the GEP-based method when AA is used later. This + // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. + LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *ResultPtr = nullptr, *ResultIndex = nullptr; + + // First, find the pointer. + if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { + ResultPtr = AddrMode.BaseReg; + AddrMode.BaseReg = nullptr; + } + + if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { + // We can't add more than one pointer together, nor can we scale a + // pointer (both of which seem meaningless). + if (ResultPtr || AddrMode.Scale != 1) + return Modified; + + ResultPtr = AddrMode.ScaledReg; + AddrMode.Scale = 0; + } + + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + // + // (See below for code to add the scale.) + if (AddrMode.Scale) { + Type *ScaledRegTy = AddrMode.ScaledReg->getType(); + if (cast<IntegerType>(IntPtrTy)->getBitWidth() > + cast<IntegerType>(ScaledRegTy)->getBitWidth()) + return Modified; + } + + if (AddrMode.BaseGV) { + if (ResultPtr) + return Modified; + + ResultPtr = AddrMode.BaseGV; + } + + // If the real base value actually came from an inttoptr, then the matcher + // will look through it and provide only the integer value. In that case, + // use it here. + if (!DL->isNonIntegralPointerType(Addr->getType())) { + if (!ResultPtr && AddrMode.BaseReg) { + ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), + "sunkaddr"); + AddrMode.BaseReg = nullptr; + } else if (!ResultPtr && AddrMode.Scale == 1) { + ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), + "sunkaddr"); + AddrMode.Scale = 0; + } + } + + if (!ResultPtr && + !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { + SunkAddr = Constant::getNullValue(Addr->getType()); + } else if (!ResultPtr) { + return Modified; + } else { + Type *I8PtrTy = + Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); + Type *I8Ty = Builder.getInt8Ty(); + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + + ResultIndex = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else { + assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth() && + "We can't transform if ScaledReg is too narrow"); + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } + + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (ResultIndex) + ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); + else + ResultIndex = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (ResultIndex) { + // We need to add this separately from the scale above to help with + // SDAG consecutive load/store merging. + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); + ResultPtr = + AddrMode.InBounds + ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, + "sunkaddr") + : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + ResultIndex = V; + } + + if (!ResultIndex) { + SunkAddr = ResultPtr; + } else { + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); + SunkAddr = + AddrMode.InBounds + ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, + "sunkaddr") + : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); + } + } else { + // We'd require a ptrtoint/inttoptr down the line, which we can't do for + // non-integral pointers, so in that case bail out now. + Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; + Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; + PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); + PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); + if (DL->isNonIntegralPointerType(Addr->getType()) || + (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || + (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || + (AddrMode.BaseGV && + DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) + return Modified; + + LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *Result = nullptr; + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType()->isPointerTy()) + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + Result = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else if (V->getType()->isPointerTy()) { + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth()) { + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } else { + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + Instruction *I = dyn_cast_or_null<Instruction>(Result); + if (I && (Result != AddrMode.BaseReg)) + I->eraseFromParent(); + return Modified; + } + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the BaseGV if present. + if (AddrMode.BaseGV) { + Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + if (!Result) + SunkAddr = Constant::getNullValue(Addr->getType()); + else + SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); + } + + MemoryInst->replaceUsesOfWith(Repl, SunkAddr); + // Store the newly computed address into the cache. In the case we reused a + // value, this should be idempotent. + SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); + + // If we have no uses, recursively delete the value and all dead instructions + // using it. + if (Repl->use_empty()) { resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() { RecursivelyDeleteTriviallyDeadInstructions( Repl, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); }); - } - ++NumMemoryInsts; - return true; -} - -/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find -/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can -/// only handle a 2 operand GEP in the same basic block or a splat constant -/// vector. The 2 operands to the GEP must have a scalar pointer and a vector -/// index. -/// -/// If the existing GEP has a vector base pointer that is splat, we can look -/// through the splat to find the scalar pointer. If we can't find a scalar -/// pointer there's nothing we can do. -/// -/// If we have a GEP with more than 2 indices where the middle indices are all -/// zeroes, we can replace it with 2 GEPs where the second has 2 operands. -/// -/// If the final index isn't a vector or is a splat, we can emit a scalar GEP -/// followed by a GEP with an all zeroes vector index. This will enable + } + ++NumMemoryInsts; + return true; +} + +/// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find +/// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can +/// only handle a 2 operand GEP in the same basic block or a splat constant +/// vector. The 2 operands to the GEP must have a scalar pointer and a vector +/// index. +/// +/// If the existing GEP has a vector base pointer that is splat, we can look +/// through the splat to find the scalar pointer. If we can't find a scalar +/// pointer there's nothing we can do. +/// +/// If we have a GEP with more than 2 indices where the middle indices are all +/// zeroes, we can replace it with 2 GEPs where the second has 2 operands. +/// +/// If the final index isn't a vector or is a splat, we can emit a scalar GEP +/// followed by a GEP with an all zeroes vector index. This will enable /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a -/// zero index. -bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, - Value *Ptr) { +/// zero index. +bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, + Value *Ptr) { Value *NewAddr; - + if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { // Don't optimize GEPs that don't have indices. if (!GEP->hasIndices()) return false; - + // If the GEP and the gather/scatter aren't in the same BB, don't optimize. // FIXME: We should support this by sinking the GEP. if (MemoryInst->getParent() != GEP->getParent()) return false; - + SmallVector<Value *, 2> Ops(GEP->operands()); - + bool RewriteGEP = false; - + if (Ops[0]->getType()->isVectorTy()) { Ops[0] = getSplatValue(Ops[0]); if (!Ops[0]) return false; RewriteGEP = true; } - + unsigned FinalIndex = Ops.size() - 1; - + // Ensure all but the last index is 0. // FIXME: This isn't strictly required. All that's required is that they are // all scalars or splats. @@ -5361,20 +5361,20 @@ bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, Ops[FinalIndex] = V; RewriteGEP = true; } - } - } - + } + } + // If we made any changes or the we have extra operands, we need to generate // new instructions. if (!RewriteGEP && Ops.size() == 2) return false; - + auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); - + IRBuilder<> Builder(MemoryInst); - + Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType()); - + // If the final index isn't a vector, emit a scalar GEP containing all ops // and a vector GEP with all zeroes final index. if (!Ops[FinalIndex]->getType()->isVectorTy()) { @@ -5384,24 +5384,24 @@ bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, } else { Value *Base = Ops[0]; Value *Index = Ops[FinalIndex]; - + // Create a scalar GEP if there are more than 2 operands. if (Ops.size() != 2) { // Replace the last index with 0. Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy); Base = Builder.CreateGEP(Base, makeArrayRef(Ops).drop_front()); } - + // Now create the GEP with scalar pointer and vector index. NewAddr = Builder.CreateGEP(Base, Index); - } + } } else if (!isa<Constant>(Ptr)) { // Not a GEP, maybe its a splat and we can create a GEP to enable // SelectionDAGBuilder to use it as a uniform base. Value *V = getSplatValue(Ptr); if (!V) return false; - + auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); IRBuilder<> Builder(MemoryInst); @@ -5413,2450 +5413,2450 @@ bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst, } else { // Constant, SelectionDAGBuilder knows to check if its a splat. return false; - } - - MemoryInst->replaceUsesOfWith(Ptr, NewAddr); - - // If we have no uses, recursively delete the value and all dead instructions - // using it. - if (Ptr->use_empty()) + } + + MemoryInst->replaceUsesOfWith(Ptr, NewAddr); + + // If we have no uses, recursively delete the value and all dead instructions + // using it. + if (Ptr->use_empty()) RecursivelyDeleteTriviallyDeadInstructions( Ptr, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); - - return true; -} - -/// If there are any memory operands, use OptimizeMemoryInst to sink their -/// address computing into the block when possible / profitable. -bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { - bool MadeChange = false; - - const TargetRegisterInfo *TRI = - TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); - TargetLowering::AsmOperandInfoVector TargetConstraints = - TLI->ParseConstraints(*DL, TRI, *CS); - unsigned ArgNo = 0; - for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { - TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; - - // Compute the constraint code and ConstraintType to use. - TLI->ComputeConstraintToUse(OpInfo, SDValue()); - - if (OpInfo.ConstraintType == TargetLowering::C_Memory && - OpInfo.isIndirect) { - Value *OpVal = CS->getArgOperand(ArgNo++); - MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); - } else if (OpInfo.Type == InlineAsm::isInput) - ArgNo++; - } - - return MadeChange; -} - -/// Check if all the uses of \p Val are equivalent (or free) zero or -/// sign extensions. -static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { - assert(!Val->use_empty() && "Input must have at least one use"); - const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); - bool IsSExt = isa<SExtInst>(FirstUser); - Type *ExtTy = FirstUser->getType(); - for (const User *U : Val->users()) { - const Instruction *UI = cast<Instruction>(U); - if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) - return false; - Type *CurTy = UI->getType(); - // Same input and output types: Same instruction after CSE. - if (CurTy == ExtTy) - continue; - - // If IsSExt is true, we are in this situation: - // a = Val - // b = sext ty1 a to ty2 - // c = sext ty1 a to ty3 - // Assuming ty2 is shorter than ty3, this could be turned into: - // a = Val - // b = sext ty1 a to ty2 - // c = sext ty2 b to ty3 - // However, the last sext is not free. - if (IsSExt) - return false; - - // This is a ZExt, maybe this is free to extend from one type to another. - // In that case, we would not account for a different use. - Type *NarrowTy; - Type *LargeTy; - if (ExtTy->getScalarType()->getIntegerBitWidth() > - CurTy->getScalarType()->getIntegerBitWidth()) { - NarrowTy = CurTy; - LargeTy = ExtTy; - } else { - NarrowTy = ExtTy; - LargeTy = CurTy; - } - - if (!TLI.isZExtFree(NarrowTy, LargeTy)) - return false; - } - // All uses are the same or can be derived from one another for free. - return true; -} - -/// Try to speculatively promote extensions in \p Exts and continue -/// promoting through newly promoted operands recursively as far as doing so is -/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. -/// When some promotion happened, \p TPT contains the proper state to revert -/// them. -/// -/// \return true if some promotion happened, false otherwise. -bool CodeGenPrepare::tryToPromoteExts( - TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, - SmallVectorImpl<Instruction *> &ProfitablyMovedExts, - unsigned CreatedInstsCost) { - bool Promoted = false; - - // Iterate over all the extensions to try to promote them. - for (auto *I : Exts) { - // Early check if we directly have ext(load). - if (isa<LoadInst>(I->getOperand(0))) { - ProfitablyMovedExts.push_back(I); - continue; - } - - // Check whether or not we want to do any promotion. The reason we have - // this check inside the for loop is to catch the case where an extension - // is directly fed by a load because in such case the extension can be moved - // up without any promotion on its operands. - if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) - return false; - - // Get the action to perform the promotion. - TypePromotionHelper::Action TPH = - TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); - // Check if we can promote. - if (!TPH) { - // Save the current extension as we cannot move up through its operand. - ProfitablyMovedExts.push_back(I); - continue; - } - - // Save the current state. - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - SmallVector<Instruction *, 4> NewExts; - unsigned NewCreatedInstsCost = 0; - unsigned ExtCost = !TLI->isExtFree(I); - // Promote. - Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, - &NewExts, nullptr, *TLI); - assert(PromotedVal && - "TypePromotionHelper should have filtered out those cases"); - - // We would be able to merge only one extension in a load. - // Therefore, if we have more than 1 new extension we heuristically - // cut this search path, because it means we degrade the code quality. - // With exactly 2, the transformation is neutral, because we will merge - // one extension but leave one. However, we optimistically keep going, - // because the new extension may be removed too. - long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; - // FIXME: It would be possible to propagate a negative value instead of - // conservatively ceiling it to 0. - TotalCreatedInstsCost = - std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); - if (!StressExtLdPromotion && - (TotalCreatedInstsCost > 1 || - !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { - // This promotion is not profitable, rollback to the previous state, and - // save the current extension in ProfitablyMovedExts as the latest - // speculative promotion turned out to be unprofitable. - TPT.rollback(LastKnownGood); - ProfitablyMovedExts.push_back(I); - continue; - } - // Continue promoting NewExts as far as doing so is profitable. - SmallVector<Instruction *, 2> NewlyMovedExts; - (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); - bool NewPromoted = false; - for (auto *ExtInst : NewlyMovedExts) { - Instruction *MovedExt = cast<Instruction>(ExtInst); - Value *ExtOperand = MovedExt->getOperand(0); - // If we have reached to a load, we need this extra profitability check - // as it could potentially be merged into an ext(load). - if (isa<LoadInst>(ExtOperand) && - !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || - (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) - continue; - - ProfitablyMovedExts.push_back(MovedExt); - NewPromoted = true; - } - - // If none of speculative promotions for NewExts is profitable, rollback - // and save the current extension (I) as the last profitable extension. - if (!NewPromoted) { - TPT.rollback(LastKnownGood); - ProfitablyMovedExts.push_back(I); - continue; - } - // The promotion is profitable. - Promoted = true; - } - return Promoted; -} - -/// Merging redundant sexts when one is dominating the other. -bool CodeGenPrepare::mergeSExts(Function &F) { - bool Changed = false; - for (auto &Entry : ValToSExtendedUses) { - SExts &Insts = Entry.second; - SExts CurPts; - for (Instruction *Inst : Insts) { - if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || - Inst->getOperand(0) != Entry.first) - continue; - bool inserted = false; - for (auto &Pt : CurPts) { - if (getDT(F).dominates(Inst, Pt)) { - Pt->replaceAllUsesWith(Inst); - RemovedInsts.insert(Pt); - Pt->removeFromParent(); - Pt = Inst; - inserted = true; - Changed = true; - break; - } - if (!getDT(F).dominates(Pt, Inst)) - // Give up if we need to merge in a common dominator as the - // experiments show it is not profitable. - continue; - Inst->replaceAllUsesWith(Pt); - RemovedInsts.insert(Inst); - Inst->removeFromParent(); - inserted = true; - Changed = true; - break; - } - if (!inserted) - CurPts.push_back(Inst); - } - } - return Changed; -} - -// Splitting large data structures so that the GEPs accessing them can have -// smaller offsets so that they can be sunk to the same blocks as their users. -// For example, a large struct starting from %base is split into two parts -// where the second part starts from %new_base. -// -// Before: -// BB0: -// %base = -// -// BB1: -// %gep0 = gep %base, off0 -// %gep1 = gep %base, off1 -// %gep2 = gep %base, off2 -// -// BB2: -// %load1 = load %gep0 -// %load2 = load %gep1 -// %load3 = load %gep2 -// -// After: -// BB0: -// %base = -// %new_base = gep %base, off0 -// -// BB1: -// %new_gep0 = %new_base -// %new_gep1 = gep %new_base, off1 - off0 -// %new_gep2 = gep %new_base, off2 - off0 -// -// BB2: -// %load1 = load i32, i32* %new_gep0 -// %load2 = load i32, i32* %new_gep1 -// %load3 = load i32, i32* %new_gep2 -// -// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because -// their offsets are smaller enough to fit into the addressing mode. -bool CodeGenPrepare::splitLargeGEPOffsets() { - bool Changed = false; - for (auto &Entry : LargeOffsetGEPMap) { - Value *OldBase = Entry.first; - SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> - &LargeOffsetGEPs = Entry.second; - auto compareGEPOffset = - [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, - const std::pair<GetElementPtrInst *, int64_t> &RHS) { - if (LHS.first == RHS.first) - return false; - if (LHS.second != RHS.second) - return LHS.second < RHS.second; - return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; - }; - // Sorting all the GEPs of the same data structures based on the offsets. - llvm::sort(LargeOffsetGEPs, compareGEPOffset); - LargeOffsetGEPs.erase( - std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), - LargeOffsetGEPs.end()); - // Skip if all the GEPs have the same offsets. - if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) - continue; - GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; - int64_t BaseOffset = LargeOffsetGEPs.begin()->second; - Value *NewBaseGEP = nullptr; - - auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); - while (LargeOffsetGEP != LargeOffsetGEPs.end()) { - GetElementPtrInst *GEP = LargeOffsetGEP->first; - int64_t Offset = LargeOffsetGEP->second; - if (Offset != BaseOffset) { - TargetLowering::AddrMode AddrMode; - AddrMode.BaseOffs = Offset - BaseOffset; - // The result type of the GEP might not be the type of the memory - // access. - if (!TLI->isLegalAddressingMode(*DL, AddrMode, - GEP->getResultElementType(), - GEP->getAddressSpace())) { - // We need to create a new base if the offset to the current base is - // too large to fit into the addressing mode. So, a very large struct - // may be split into several parts. - BaseGEP = GEP; - BaseOffset = Offset; - NewBaseGEP = nullptr; - } - } - - // Generate a new GEP to replace the current one. - LLVMContext &Ctx = GEP->getContext(); - Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); - Type *I8PtrTy = - Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); - Type *I8Ty = Type::getInt8Ty(Ctx); - - if (!NewBaseGEP) { - // Create a new base if we don't have one yet. Find the insertion - // pointer for the new base first. - BasicBlock::iterator NewBaseInsertPt; - BasicBlock *NewBaseInsertBB; - if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { - // If the base of the struct is an instruction, the new base will be - // inserted close to it. - NewBaseInsertBB = BaseI->getParent(); - if (isa<PHINode>(BaseI)) - NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); - else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { - NewBaseInsertBB = - SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); - NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); - } else - NewBaseInsertPt = std::next(BaseI->getIterator()); - } else { - // If the current base is an argument or global value, the new base - // will be inserted to the entry block. - NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); - NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); - } - IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); - // Create a new base. - Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); - NewBaseGEP = OldBase; - if (NewBaseGEP->getType() != I8PtrTy) - NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); - NewBaseGEP = - NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); - NewGEPBases.insert(NewBaseGEP); - } - - IRBuilder<> Builder(GEP); - Value *NewGEP = NewBaseGEP; - if (Offset == BaseOffset) { - if (GEP->getType() != I8PtrTy) - NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); - } else { - // Calculate the new offset for the new GEP. - Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); - NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); - - if (GEP->getType() != I8PtrTy) - NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); - } - GEP->replaceAllUsesWith(NewGEP); - LargeOffsetGEPID.erase(GEP); - LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); - GEP->eraseFromParent(); - Changed = true; - } - } - return Changed; -} - -bool CodeGenPrepare::optimizePhiType( - PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, - SmallPtrSetImpl<Instruction *> &DeletedInstrs) { - // We are looking for a collection on interconnected phi nodes that together - // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts - // are of the same type. Convert the whole set of nodes to the type of the - // bitcast. - Type *PhiTy = I->getType(); - Type *ConvertTy = nullptr; - if (Visited.count(I) || - (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) - return false; - - SmallVector<Instruction *, 4> Worklist; - Worklist.push_back(cast<Instruction>(I)); - SmallPtrSet<PHINode *, 4> PhiNodes; - PhiNodes.insert(I); - Visited.insert(I); - SmallPtrSet<Instruction *, 4> Defs; - SmallPtrSet<Instruction *, 4> Uses; + + return true; +} + +/// If there are any memory operands, use OptimizeMemoryInst to sink their +/// address computing into the block when possible / profitable. +bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { + bool MadeChange = false; + + const TargetRegisterInfo *TRI = + TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI->ParseConstraints(*DL, TRI, *CS); + unsigned ArgNo = 0; + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + OpInfo.isIndirect) { + Value *OpVal = CS->getArgOperand(ArgNo++); + MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); + } else if (OpInfo.Type == InlineAsm::isInput) + ArgNo++; + } + + return MadeChange; +} + +/// Check if all the uses of \p Val are equivalent (or free) zero or +/// sign extensions. +static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { + assert(!Val->use_empty() && "Input must have at least one use"); + const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); + bool IsSExt = isa<SExtInst>(FirstUser); + Type *ExtTy = FirstUser->getType(); + for (const User *U : Val->users()) { + const Instruction *UI = cast<Instruction>(U); + if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) + return false; + Type *CurTy = UI->getType(); + // Same input and output types: Same instruction after CSE. + if (CurTy == ExtTy) + continue; + + // If IsSExt is true, we are in this situation: + // a = Val + // b = sext ty1 a to ty2 + // c = sext ty1 a to ty3 + // Assuming ty2 is shorter than ty3, this could be turned into: + // a = Val + // b = sext ty1 a to ty2 + // c = sext ty2 b to ty3 + // However, the last sext is not free. + if (IsSExt) + return false; + + // This is a ZExt, maybe this is free to extend from one type to another. + // In that case, we would not account for a different use. + Type *NarrowTy; + Type *LargeTy; + if (ExtTy->getScalarType()->getIntegerBitWidth() > + CurTy->getScalarType()->getIntegerBitWidth()) { + NarrowTy = CurTy; + LargeTy = ExtTy; + } else { + NarrowTy = ExtTy; + LargeTy = CurTy; + } + + if (!TLI.isZExtFree(NarrowTy, LargeTy)) + return false; + } + // All uses are the same or can be derived from one another for free. + return true; +} + +/// Try to speculatively promote extensions in \p Exts and continue +/// promoting through newly promoted operands recursively as far as doing so is +/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. +/// When some promotion happened, \p TPT contains the proper state to revert +/// them. +/// +/// \return true if some promotion happened, false otherwise. +bool CodeGenPrepare::tryToPromoteExts( + TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, + SmallVectorImpl<Instruction *> &ProfitablyMovedExts, + unsigned CreatedInstsCost) { + bool Promoted = false; + + // Iterate over all the extensions to try to promote them. + for (auto *I : Exts) { + // Early check if we directly have ext(load). + if (isa<LoadInst>(I->getOperand(0))) { + ProfitablyMovedExts.push_back(I); + continue; + } + + // Check whether or not we want to do any promotion. The reason we have + // this check inside the for loop is to catch the case where an extension + // is directly fed by a load because in such case the extension can be moved + // up without any promotion on its operands. + if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion) + return false; + + // Get the action to perform the promotion. + TypePromotionHelper::Action TPH = + TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); + // Check if we can promote. + if (!TPH) { + // Save the current extension as we cannot move up through its operand. + ProfitablyMovedExts.push_back(I); + continue; + } + + // Save the current state. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 4> NewExts; + unsigned NewCreatedInstsCost = 0; + unsigned ExtCost = !TLI->isExtFree(I); + // Promote. + Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, + &NewExts, nullptr, *TLI); + assert(PromotedVal && + "TypePromotionHelper should have filtered out those cases"); + + // We would be able to merge only one extension in a load. + // Therefore, if we have more than 1 new extension we heuristically + // cut this search path, because it means we degrade the code quality. + // With exactly 2, the transformation is neutral, because we will merge + // one extension but leave one. However, we optimistically keep going, + // because the new extension may be removed too. + long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; + // FIXME: It would be possible to propagate a negative value instead of + // conservatively ceiling it to 0. + TotalCreatedInstsCost = + std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); + if (!StressExtLdPromotion && + (TotalCreatedInstsCost > 1 || + !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { + // This promotion is not profitable, rollback to the previous state, and + // save the current extension in ProfitablyMovedExts as the latest + // speculative promotion turned out to be unprofitable. + TPT.rollback(LastKnownGood); + ProfitablyMovedExts.push_back(I); + continue; + } + // Continue promoting NewExts as far as doing so is profitable. + SmallVector<Instruction *, 2> NewlyMovedExts; + (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); + bool NewPromoted = false; + for (auto *ExtInst : NewlyMovedExts) { + Instruction *MovedExt = cast<Instruction>(ExtInst); + Value *ExtOperand = MovedExt->getOperand(0); + // If we have reached to a load, we need this extra profitability check + // as it could potentially be merged into an ext(load). + if (isa<LoadInst>(ExtOperand) && + !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || + (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) + continue; + + ProfitablyMovedExts.push_back(MovedExt); + NewPromoted = true; + } + + // If none of speculative promotions for NewExts is profitable, rollback + // and save the current extension (I) as the last profitable extension. + if (!NewPromoted) { + TPT.rollback(LastKnownGood); + ProfitablyMovedExts.push_back(I); + continue; + } + // The promotion is profitable. + Promoted = true; + } + return Promoted; +} + +/// Merging redundant sexts when one is dominating the other. +bool CodeGenPrepare::mergeSExts(Function &F) { + bool Changed = false; + for (auto &Entry : ValToSExtendedUses) { + SExts &Insts = Entry.second; + SExts CurPts; + for (Instruction *Inst : Insts) { + if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || + Inst->getOperand(0) != Entry.first) + continue; + bool inserted = false; + for (auto &Pt : CurPts) { + if (getDT(F).dominates(Inst, Pt)) { + Pt->replaceAllUsesWith(Inst); + RemovedInsts.insert(Pt); + Pt->removeFromParent(); + Pt = Inst; + inserted = true; + Changed = true; + break; + } + if (!getDT(F).dominates(Pt, Inst)) + // Give up if we need to merge in a common dominator as the + // experiments show it is not profitable. + continue; + Inst->replaceAllUsesWith(Pt); + RemovedInsts.insert(Inst); + Inst->removeFromParent(); + inserted = true; + Changed = true; + break; + } + if (!inserted) + CurPts.push_back(Inst); + } + } + return Changed; +} + +// Splitting large data structures so that the GEPs accessing them can have +// smaller offsets so that they can be sunk to the same blocks as their users. +// For example, a large struct starting from %base is split into two parts +// where the second part starts from %new_base. +// +// Before: +// BB0: +// %base = +// +// BB1: +// %gep0 = gep %base, off0 +// %gep1 = gep %base, off1 +// %gep2 = gep %base, off2 +// +// BB2: +// %load1 = load %gep0 +// %load2 = load %gep1 +// %load3 = load %gep2 +// +// After: +// BB0: +// %base = +// %new_base = gep %base, off0 +// +// BB1: +// %new_gep0 = %new_base +// %new_gep1 = gep %new_base, off1 - off0 +// %new_gep2 = gep %new_base, off2 - off0 +// +// BB2: +// %load1 = load i32, i32* %new_gep0 +// %load2 = load i32, i32* %new_gep1 +// %load3 = load i32, i32* %new_gep2 +// +// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because +// their offsets are smaller enough to fit into the addressing mode. +bool CodeGenPrepare::splitLargeGEPOffsets() { + bool Changed = false; + for (auto &Entry : LargeOffsetGEPMap) { + Value *OldBase = Entry.first; + SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> + &LargeOffsetGEPs = Entry.second; + auto compareGEPOffset = + [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, + const std::pair<GetElementPtrInst *, int64_t> &RHS) { + if (LHS.first == RHS.first) + return false; + if (LHS.second != RHS.second) + return LHS.second < RHS.second; + return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; + }; + // Sorting all the GEPs of the same data structures based on the offsets. + llvm::sort(LargeOffsetGEPs, compareGEPOffset); + LargeOffsetGEPs.erase( + std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), + LargeOffsetGEPs.end()); + // Skip if all the GEPs have the same offsets. + if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) + continue; + GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; + int64_t BaseOffset = LargeOffsetGEPs.begin()->second; + Value *NewBaseGEP = nullptr; + + auto *LargeOffsetGEP = LargeOffsetGEPs.begin(); + while (LargeOffsetGEP != LargeOffsetGEPs.end()) { + GetElementPtrInst *GEP = LargeOffsetGEP->first; + int64_t Offset = LargeOffsetGEP->second; + if (Offset != BaseOffset) { + TargetLowering::AddrMode AddrMode; + AddrMode.BaseOffs = Offset - BaseOffset; + // The result type of the GEP might not be the type of the memory + // access. + if (!TLI->isLegalAddressingMode(*DL, AddrMode, + GEP->getResultElementType(), + GEP->getAddressSpace())) { + // We need to create a new base if the offset to the current base is + // too large to fit into the addressing mode. So, a very large struct + // may be split into several parts. + BaseGEP = GEP; + BaseOffset = Offset; + NewBaseGEP = nullptr; + } + } + + // Generate a new GEP to replace the current one. + LLVMContext &Ctx = GEP->getContext(); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + Type *I8PtrTy = + Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); + Type *I8Ty = Type::getInt8Ty(Ctx); + + if (!NewBaseGEP) { + // Create a new base if we don't have one yet. Find the insertion + // pointer for the new base first. + BasicBlock::iterator NewBaseInsertPt; + BasicBlock *NewBaseInsertBB; + if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { + // If the base of the struct is an instruction, the new base will be + // inserted close to it. + NewBaseInsertBB = BaseI->getParent(); + if (isa<PHINode>(BaseI)) + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { + NewBaseInsertBB = + SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + } else + NewBaseInsertPt = std::next(BaseI->getIterator()); + } else { + // If the current base is an argument or global value, the new base + // will be inserted to the entry block. + NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + } + IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); + // Create a new base. + Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); + NewBaseGEP = OldBase; + if (NewBaseGEP->getType() != I8PtrTy) + NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); + NewBaseGEP = + NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); + NewGEPBases.insert(NewBaseGEP); + } + + IRBuilder<> Builder(GEP); + Value *NewGEP = NewBaseGEP; + if (Offset == BaseOffset) { + if (GEP->getType() != I8PtrTy) + NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); + } else { + // Calculate the new offset for the new GEP. + Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); + NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); + + if (GEP->getType() != I8PtrTy) + NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); + } + GEP->replaceAllUsesWith(NewGEP); + LargeOffsetGEPID.erase(GEP); + LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); + GEP->eraseFromParent(); + Changed = true; + } + } + return Changed; +} + +bool CodeGenPrepare::optimizePhiType( + PHINode *I, SmallPtrSetImpl<PHINode *> &Visited, + SmallPtrSetImpl<Instruction *> &DeletedInstrs) { + // We are looking for a collection on interconnected phi nodes that together + // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts + // are of the same type. Convert the whole set of nodes to the type of the + // bitcast. + Type *PhiTy = I->getType(); + Type *ConvertTy = nullptr; + if (Visited.count(I) || + (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy())) + return false; + + SmallVector<Instruction *, 4> Worklist; + Worklist.push_back(cast<Instruction>(I)); + SmallPtrSet<PHINode *, 4> PhiNodes; + PhiNodes.insert(I); + Visited.insert(I); + SmallPtrSet<Instruction *, 4> Defs; + SmallPtrSet<Instruction *, 4> Uses; // This works by adding extra bitcasts between load/stores and removing // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi)) // we can get in the situation where we remove a bitcast in one iteration // just to add it again in the next. We need to ensure that at least one // bitcast we remove are anchored to something that will not change back. bool AnyAnchored = false; - - while (!Worklist.empty()) { - Instruction *II = Worklist.pop_back_val(); - - if (auto *Phi = dyn_cast<PHINode>(II)) { - // Handle Defs, which might also be PHI's - for (Value *V : Phi->incoming_values()) { - if (auto *OpPhi = dyn_cast<PHINode>(V)) { - if (!PhiNodes.count(OpPhi)) { - if (Visited.count(OpPhi)) - return false; - PhiNodes.insert(OpPhi); - Visited.insert(OpPhi); - Worklist.push_back(OpPhi); - } - } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { + + while (!Worklist.empty()) { + Instruction *II = Worklist.pop_back_val(); + + if (auto *Phi = dyn_cast<PHINode>(II)) { + // Handle Defs, which might also be PHI's + for (Value *V : Phi->incoming_values()) { + if (auto *OpPhi = dyn_cast<PHINode>(V)) { + if (!PhiNodes.count(OpPhi)) { + if (Visited.count(OpPhi)) + return false; + PhiNodes.insert(OpPhi); + Visited.insert(OpPhi); + Worklist.push_back(OpPhi); + } + } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) { if (!OpLoad->isSimple()) return false; - if (!Defs.count(OpLoad)) { - Defs.insert(OpLoad); - Worklist.push_back(OpLoad); - } - } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { - if (!Defs.count(OpEx)) { - Defs.insert(OpEx); - Worklist.push_back(OpEx); - } - } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { - if (!ConvertTy) - ConvertTy = OpBC->getOperand(0)->getType(); - if (OpBC->getOperand(0)->getType() != ConvertTy) - return false; - if (!Defs.count(OpBC)) { - Defs.insert(OpBC); - Worklist.push_back(OpBC); + if (!Defs.count(OpLoad)) { + Defs.insert(OpLoad); + Worklist.push_back(OpLoad); + } + } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) { + if (!Defs.count(OpEx)) { + Defs.insert(OpEx); + Worklist.push_back(OpEx); + } + } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { + if (!ConvertTy) + ConvertTy = OpBC->getOperand(0)->getType(); + if (OpBC->getOperand(0)->getType() != ConvertTy) + return false; + if (!Defs.count(OpBC)) { + Defs.insert(OpBC); + Worklist.push_back(OpBC); AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) && !isa<ExtractElementInst>(OpBC->getOperand(0)); - } + } } else if (!isa<UndefValue>(V)) { - return false; - } - } - } - - // Handle uses which might also be phi's - for (User *V : II->users()) { - if (auto *OpPhi = dyn_cast<PHINode>(V)) { - if (!PhiNodes.count(OpPhi)) { - if (Visited.count(OpPhi)) - return false; - PhiNodes.insert(OpPhi); - Visited.insert(OpPhi); - Worklist.push_back(OpPhi); + return false; } - } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { + } + } + + // Handle uses which might also be phi's + for (User *V : II->users()) { + if (auto *OpPhi = dyn_cast<PHINode>(V)) { + if (!PhiNodes.count(OpPhi)) { + if (Visited.count(OpPhi)) + return false; + PhiNodes.insert(OpPhi); + Visited.insert(OpPhi); + Worklist.push_back(OpPhi); + } + } else if (auto *OpStore = dyn_cast<StoreInst>(V)) { if (!OpStore->isSimple() || OpStore->getOperand(0) != II) - return false; - Uses.insert(OpStore); - } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { - if (!ConvertTy) - ConvertTy = OpBC->getType(); - if (OpBC->getType() != ConvertTy) - return false; - Uses.insert(OpBC); + return false; + Uses.insert(OpStore); + } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) { + if (!ConvertTy) + ConvertTy = OpBC->getType(); + if (OpBC->getType() != ConvertTy) + return false; + Uses.insert(OpBC); AnyAnchored |= any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); }); } else { - return false; + return false; } - } - } - + } + } + if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy)) - return false; - - LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " - << *ConvertTy << "\n"); - - // Create all the new phi nodes of the new type, and bitcast any loads to the - // correct type. - ValueToValueMap ValMap; - ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); - for (Instruction *D : Defs) { + return false; + + LLVM_DEBUG(dbgs() << "Converting " << *I << "\n and connected nodes to " + << *ConvertTy << "\n"); + + // Create all the new phi nodes of the new type, and bitcast any loads to the + // correct type. + ValueToValueMap ValMap; + ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy); + for (Instruction *D : Defs) { if (isa<BitCastInst>(D)) { - ValMap[D] = D->getOperand(0); + ValMap[D] = D->getOperand(0); DeletedInstrs.insert(D); } else { - ValMap[D] = - new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); - } - } - for (PHINode *Phi : PhiNodes) - ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), - Phi->getName() + ".tc", Phi); - // Pipe together all the PhiNodes. - for (PHINode *Phi : PhiNodes) { - PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); - for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) - NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], - Phi->getIncomingBlock(i)); + ValMap[D] = + new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode()); + } + } + for (PHINode *Phi : PhiNodes) + ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(), + Phi->getName() + ".tc", Phi); + // Pipe together all the PhiNodes. + for (PHINode *Phi : PhiNodes) { + PHINode *NewPhi = cast<PHINode>(ValMap[Phi]); + for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++) + NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)], + Phi->getIncomingBlock(i)); Visited.insert(NewPhi); - } - // And finally pipe up the stores and bitcasts - for (Instruction *U : Uses) { - if (isa<BitCastInst>(U)) { - DeletedInstrs.insert(U); - U->replaceAllUsesWith(ValMap[U->getOperand(0)]); + } + // And finally pipe up the stores and bitcasts + for (Instruction *U : Uses) { + if (isa<BitCastInst>(U)) { + DeletedInstrs.insert(U); + U->replaceAllUsesWith(ValMap[U->getOperand(0)]); } else { - U->setOperand(0, - new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); - } - } - - // Save the removed phis to be deleted later. - for (PHINode *Phi : PhiNodes) - DeletedInstrs.insert(Phi); - return true; -} - -bool CodeGenPrepare::optimizePhiTypes(Function &F) { - if (!OptimizePhiTypes) - return false; - - bool Changed = false; - SmallPtrSet<PHINode *, 4> Visited; - SmallPtrSet<Instruction *, 4> DeletedInstrs; - - // Attempt to optimize all the phis in the functions to the correct type. - for (auto &BB : F) - for (auto &Phi : BB.phis()) - Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); - - // Remove any old phi's that have been converted. - for (auto *I : DeletedInstrs) { - I->replaceAllUsesWith(UndefValue::get(I->getType())); - I->eraseFromParent(); - } - - return Changed; -} - -/// Return true, if an ext(load) can be formed from an extension in -/// \p MovedExts. -bool CodeGenPrepare::canFormExtLd( - const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, - Instruction *&Inst, bool HasPromoted) { - for (auto *MovedExtInst : MovedExts) { - if (isa<LoadInst>(MovedExtInst->getOperand(0))) { - LI = cast<LoadInst>(MovedExtInst->getOperand(0)); - Inst = MovedExtInst; - break; - } - } - if (!LI) - return false; - - // If they're already in the same block, there's nothing to do. - // Make the cheap checks first if we did not promote. - // If we promoted, we need to check if it is indeed profitable. - if (!HasPromoted && LI->getParent() == Inst->getParent()) - return false; - - return TLI->isExtLoad(LI, Inst, *DL); -} - -/// Move a zext or sext fed by a load into the same basic block as the load, -/// unless conditions are unfavorable. This allows SelectionDAG to fold the -/// extend into the load. -/// -/// E.g., -/// \code -/// %ld = load i32* %addr -/// %add = add nuw i32 %ld, 4 -/// %zext = zext i32 %add to i64 -// \endcode -/// => -/// \code -/// %ld = load i32* %addr -/// %zext = zext i32 %ld to i64 -/// %add = add nuw i64 %zext, 4 -/// \encode -/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which -/// allow us to match zext(load i32*) to i64. -/// -/// Also, try to promote the computations used to obtain a sign extended -/// value used into memory accesses. -/// E.g., -/// \code -/// a = add nsw i32 b, 3 -/// d = sext i32 a to i64 -/// e = getelementptr ..., i64 d -/// \endcode -/// => -/// \code -/// f = sext i32 b to i64 -/// a = add nsw i64 f, 3 -/// e = getelementptr ..., i64 a -/// \endcode -/// -/// \p Inst[in/out] the extension may be modified during the process if some -/// promotions apply. -bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { - bool AllowPromotionWithoutCommonHeader = false; - /// See if it is an interesting sext operations for the address type - /// promotion before trying to promote it, e.g., the ones with the right - /// type and used in memory accesses. - bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( - *Inst, AllowPromotionWithoutCommonHeader); - TypePromotionTransaction TPT(RemovedInsts); - TypePromotionTransaction::ConstRestorationPt LastKnownGood = - TPT.getRestorationPoint(); - SmallVector<Instruction *, 1> Exts; - SmallVector<Instruction *, 2> SpeculativelyMovedExts; - Exts.push_back(Inst); - - bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); - - // Look for a load being extended. - LoadInst *LI = nullptr; - Instruction *ExtFedByLoad; - - // Try to promote a chain of computation if it allows to form an extended - // load. - if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { - assert(LI && ExtFedByLoad && "Expect a valid load and extension"); - TPT.commit(); - // Move the extend into the same block as the load. - ExtFedByLoad->moveAfter(LI); - ++NumExtsMoved; - Inst = ExtFedByLoad; - return true; - } - - // Continue promoting SExts if known as considerable depending on targets. - if (ATPConsiderable && - performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, - HasPromoted, TPT, SpeculativelyMovedExts)) - return true; - - TPT.rollback(LastKnownGood); - return false; -} - -// Perform address type promotion if doing so is profitable. -// If AllowPromotionWithoutCommonHeader == false, we should find other sext -// instructions that sign extended the same initial value. However, if -// AllowPromotionWithoutCommonHeader == true, we expect promoting the -// extension is just profitable. -bool CodeGenPrepare::performAddressTypePromotion( - Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, - bool HasPromoted, TypePromotionTransaction &TPT, - SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { - bool Promoted = false; - SmallPtrSet<Instruction *, 1> UnhandledExts; - bool AllSeenFirst = true; - for (auto *I : SpeculativelyMovedExts) { - Value *HeadOfChain = I->getOperand(0); - DenseMap<Value *, Instruction *>::iterator AlreadySeen = - SeenChainsForSExt.find(HeadOfChain); - // If there is an unhandled SExt which has the same header, try to promote - // it as well. - if (AlreadySeen != SeenChainsForSExt.end()) { - if (AlreadySeen->second != nullptr) - UnhandledExts.insert(AlreadySeen->second); - AllSeenFirst = false; - } - } - - if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && - SpeculativelyMovedExts.size() == 1)) { - TPT.commit(); - if (HasPromoted) - Promoted = true; - for (auto *I : SpeculativelyMovedExts) { - Value *HeadOfChain = I->getOperand(0); - SeenChainsForSExt[HeadOfChain] = nullptr; - ValToSExtendedUses[HeadOfChain].push_back(I); - } - // Update Inst as promotion happen. - Inst = SpeculativelyMovedExts.pop_back_val(); - } else { - // This is the first chain visited from the header, keep the current chain - // as unhandled. Defer to promote this until we encounter another SExt - // chain derived from the same header. - for (auto *I : SpeculativelyMovedExts) { - Value *HeadOfChain = I->getOperand(0); - SeenChainsForSExt[HeadOfChain] = Inst; - } - return false; - } - - if (!AllSeenFirst && !UnhandledExts.empty()) - for (auto *VisitedSExt : UnhandledExts) { - if (RemovedInsts.count(VisitedSExt)) - continue; - TypePromotionTransaction TPT(RemovedInsts); - SmallVector<Instruction *, 1> Exts; - SmallVector<Instruction *, 2> Chains; - Exts.push_back(VisitedSExt); - bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); - TPT.commit(); - if (HasPromoted) - Promoted = true; - for (auto *I : Chains) { - Value *HeadOfChain = I->getOperand(0); - // Mark this as handled. - SeenChainsForSExt[HeadOfChain] = nullptr; - ValToSExtendedUses[HeadOfChain].push_back(I); - } - } - return Promoted; -} - -bool CodeGenPrepare::optimizeExtUses(Instruction *I) { - BasicBlock *DefBB = I->getParent(); - - // If the result of a {s|z}ext and its source are both live out, rewrite all - // other uses of the source with result of extension. - Value *Src = I->getOperand(0); - if (Src->hasOneUse()) - return false; - - // Only do this xform if truncating is free. - if (!TLI->isTruncateFree(I->getType(), Src->getType())) - return false; - - // Only safe to perform the optimization if the source is also defined in - // this block. - if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) - return false; - - bool DefIsLiveOut = false; - for (User *U : I->users()) { - Instruction *UI = cast<Instruction>(U); - - // Figure out which BB this ext is used in. - BasicBlock *UserBB = UI->getParent(); - if (UserBB == DefBB) continue; - DefIsLiveOut = true; - break; - } - if (!DefIsLiveOut) - return false; - - // Make sure none of the uses are PHI nodes. - for (User *U : Src->users()) { - Instruction *UI = cast<Instruction>(U); - BasicBlock *UserBB = UI->getParent(); - if (UserBB == DefBB) continue; - // Be conservative. We don't want this xform to end up introducing - // reloads just before load / store instructions. - if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) - return false; - } - - // InsertedTruncs - Only insert one trunc in each block once. - DenseMap<BasicBlock*, Instruction*> InsertedTruncs; - - bool MadeChange = false; - for (Use &U : Src->uses()) { - Instruction *User = cast<Instruction>(U.getUser()); - - // Figure out which BB this ext is used in. - BasicBlock *UserBB = User->getParent(); - if (UserBB == DefBB) continue; - - // Both src and def are live in this block. Rewrite the use. - Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; - - if (!InsertedTrunc) { - BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); - assert(InsertPt != UserBB->end()); - InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); - InsertedInsts.insert(InsertedTrunc); - } - - // Replace a use of the {s|z}ext source with a use of the result. - U = InsertedTrunc; - ++NumExtUses; - MadeChange = true; - } - - return MadeChange; -} - -// Find loads whose uses only use some of the loaded value's bits. Add an "and" -// just after the load if the target can fold this into one extload instruction, -// with the hope of eliminating some of the other later "and" instructions using -// the loaded value. "and"s that are made trivially redundant by the insertion -// of the new "and" are removed by this function, while others (e.g. those whose -// path from the load goes through a phi) are left for isel to potentially -// remove. -// -// For example: -// -// b0: -// x = load i32 -// ... -// b1: -// y = and x, 0xff -// z = use y -// -// becomes: -// -// b0: -// x = load i32 -// x' = and x, 0xff -// ... -// b1: -// z = use x' -// -// whereas: -// -// b0: -// x1 = load i32 -// ... -// b1: -// x2 = load i32 -// ... -// b2: -// x = phi x1, x2 -// y = and x, 0xff -// -// becomes (after a call to optimizeLoadExt for each load): -// -// b0: -// x1 = load i32 -// x1' = and x1, 0xff -// ... -// b1: -// x2 = load i32 -// x2' = and x2, 0xff -// ... -// b2: -// x = phi x1', x2' -// y = and x, 0xff -bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { - if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) - return false; - - // Skip loads we've already transformed. - if (Load->hasOneUse() && - InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) - return false; - - // Look at all uses of Load, looking through phis, to determine how many bits - // of the loaded value are needed. - SmallVector<Instruction *, 8> WorkList; - SmallPtrSet<Instruction *, 16> Visited; - SmallVector<Instruction *, 8> AndsToMaybeRemove; - for (auto *U : Load->users()) - WorkList.push_back(cast<Instruction>(U)); - - EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); - unsigned BitWidth = LoadResultVT.getSizeInBits(); - APInt DemandBits(BitWidth, 0); - APInt WidestAndBits(BitWidth, 0); - - while (!WorkList.empty()) { - Instruction *I = WorkList.back(); - WorkList.pop_back(); - - // Break use-def graph loops. - if (!Visited.insert(I).second) - continue; - - // For a PHI node, push all of its users. - if (auto *Phi = dyn_cast<PHINode>(I)) { - for (auto *U : Phi->users()) - WorkList.push_back(cast<Instruction>(U)); - continue; - } - - switch (I->getOpcode()) { - case Instruction::And: { - auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); - if (!AndC) - return false; - APInt AndBits = AndC->getValue(); - DemandBits |= AndBits; - // Keep track of the widest and mask we see. - if (AndBits.ugt(WidestAndBits)) - WidestAndBits = AndBits; - if (AndBits == WidestAndBits && I->getOperand(0) == Load) - AndsToMaybeRemove.push_back(I); - break; - } - - case Instruction::Shl: { - auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); - if (!ShlC) - return false; - uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); - DemandBits.setLowBits(BitWidth - ShiftAmt); - break; - } - - case Instruction::Trunc: { - EVT TruncVT = TLI->getValueType(*DL, I->getType()); - unsigned TruncBitWidth = TruncVT.getSizeInBits(); - DemandBits.setLowBits(TruncBitWidth); - break; - } - - default: - return false; - } - } - - uint32_t ActiveBits = DemandBits.getActiveBits(); - // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the - // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, - // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but - // (and (load x) 1) is not matched as a single instruction, rather as a LDR - // followed by an AND. - // TODO: Look into removing this restriction by fixing backends to either - // return false for isLoadExtLegal for i1 or have them select this pattern to - // a single instruction. - // - // Also avoid hoisting if we didn't see any ands with the exact DemandBits - // mask, since these are the only ands that will be removed by isel. - if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || - WidestAndBits != DemandBits) - return false; - - LLVMContext &Ctx = Load->getType()->getContext(); - Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); - EVT TruncVT = TLI->getValueType(*DL, TruncTy); - - // Reject cases that won't be matched as extloads. - if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || - !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) - return false; - - IRBuilder<> Builder(Load->getNextNode()); - auto *NewAnd = cast<Instruction>( - Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); - // Mark this instruction as "inserted by CGP", so that other - // optimizations don't touch it. - InsertedInsts.insert(NewAnd); - - // Replace all uses of load with new and (except for the use of load in the - // new and itself). - Load->replaceAllUsesWith(NewAnd); - NewAnd->setOperand(0, Load); - - // Remove any and instructions that are now redundant. - for (auto *And : AndsToMaybeRemove) - // Check that the and mask is the same as the one we decided to put on the - // new and. - if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { - And->replaceAllUsesWith(NewAnd); - if (&*CurInstIterator == And) - CurInstIterator = std::next(And->getIterator()); - And->eraseFromParent(); - ++NumAndUses; - } - - ++NumAndsAdded; - return true; -} - -/// Check if V (an operand of a select instruction) is an expensive instruction -/// that is only used once. -static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { - auto *I = dyn_cast<Instruction>(V); - // If it's safe to speculatively execute, then it should not have side - // effects; therefore, it's safe to sink and possibly *not* execute. - return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && - TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= - TargetTransformInfo::TCC_Expensive; -} - -/// Returns true if a SelectInst should be turned into an explicit branch. -static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, - const TargetLowering *TLI, - SelectInst *SI) { - // If even a predictable select is cheap, then a branch can't be cheaper. - if (!TLI->isPredictableSelectExpensive()) - return false; - - // FIXME: This should use the same heuristics as IfConversion to determine - // whether a select is better represented as a branch. - - // If metadata tells us that the select condition is obviously predictable, - // then we want to replace the select with a branch. - uint64_t TrueWeight, FalseWeight; - if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { - uint64_t Max = std::max(TrueWeight, FalseWeight); - uint64_t Sum = TrueWeight + FalseWeight; - if (Sum != 0) { - auto Probability = BranchProbability::getBranchProbability(Max, Sum); - if (Probability > TLI->getPredictableBranchThreshold()) - return true; - } - } - - CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); - - // If a branch is predictable, an out-of-order CPU can avoid blocking on its - // comparison condition. If the compare has more than one use, there's - // probably another cmov or setcc around, so it's not worth emitting a branch. - if (!Cmp || !Cmp->hasOneUse()) - return false; - - // If either operand of the select is expensive and only needed on one side - // of the select, we should form a branch. - if (sinkSelectOperand(TTI, SI->getTrueValue()) || - sinkSelectOperand(TTI, SI->getFalseValue())) - return true; - - return false; -} - -/// If \p isTrue is true, return the true value of \p SI, otherwise return -/// false value of \p SI. If the true/false value of \p SI is defined by any -/// select instructions in \p Selects, look through the defining select -/// instruction until the true/false value is not defined in \p Selects. -static Value *getTrueOrFalseValue( - SelectInst *SI, bool isTrue, - const SmallPtrSet<const Instruction *, 2> &Selects) { - Value *V = nullptr; - - for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); - DefSI = dyn_cast<SelectInst>(V)) { - assert(DefSI->getCondition() == SI->getCondition() && - "The condition of DefSI does not match with SI"); - V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); - } - - assert(V && "Failed to get select true/false value"); - return V; -} - -bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { - assert(Shift->isShift() && "Expected a shift"); - - // If this is (1) a vector shift, (2) shifts by scalars are cheaper than - // general vector shifts, and (3) the shift amount is a select-of-splatted - // values, hoist the shifts before the select: - // shift Op0, (select Cond, TVal, FVal) --> - // select Cond, (shift Op0, TVal), (shift Op0, FVal) - // - // This is inverting a generic IR transform when we know that the cost of a - // general vector shift is more than the cost of 2 shift-by-scalars. - // We can't do this effectively in SDAG because we may not be able to - // determine if the select operands are splats from within a basic block. - Type *Ty = Shift->getType(); - if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) - return false; - Value *Cond, *TVal, *FVal; - if (!match(Shift->getOperand(1), - m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) - return false; - if (!isSplatValue(TVal) || !isSplatValue(FVal)) - return false; - - IRBuilder<> Builder(Shift); - BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); - Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); - Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); - Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); - Shift->replaceAllUsesWith(NewSel); - Shift->eraseFromParent(); - return true; -} - -bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { - Intrinsic::ID Opcode = Fsh->getIntrinsicID(); - assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && - "Expected a funnel shift"); - - // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper - // than general vector shifts, and (3) the shift amount is select-of-splatted - // values, hoist the funnel shifts before the select: - // fsh Op0, Op1, (select Cond, TVal, FVal) --> - // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) - // - // This is inverting a generic IR transform when we know that the cost of a - // general vector shift is more than the cost of 2 shift-by-scalars. - // We can't do this effectively in SDAG because we may not be able to - // determine if the select operands are splats from within a basic block. - Type *Ty = Fsh->getType(); - if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) - return false; - Value *Cond, *TVal, *FVal; - if (!match(Fsh->getOperand(2), - m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) - return false; - if (!isSplatValue(TVal) || !isSplatValue(FVal)) - return false; - - IRBuilder<> Builder(Fsh); - Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); - Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); - Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); - Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); - Fsh->replaceAllUsesWith(NewSel); - Fsh->eraseFromParent(); - return true; -} - -/// If we have a SelectInst that will likely profit from branch prediction, -/// turn it into a branch. -bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { + U->setOperand(0, + new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U)); + } + } + + // Save the removed phis to be deleted later. + for (PHINode *Phi : PhiNodes) + DeletedInstrs.insert(Phi); + return true; +} + +bool CodeGenPrepare::optimizePhiTypes(Function &F) { + if (!OptimizePhiTypes) + return false; + + bool Changed = false; + SmallPtrSet<PHINode *, 4> Visited; + SmallPtrSet<Instruction *, 4> DeletedInstrs; + + // Attempt to optimize all the phis in the functions to the correct type. + for (auto &BB : F) + for (auto &Phi : BB.phis()) + Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs); + + // Remove any old phi's that have been converted. + for (auto *I : DeletedInstrs) { + I->replaceAllUsesWith(UndefValue::get(I->getType())); + I->eraseFromParent(); + } + + return Changed; +} + +/// Return true, if an ext(load) can be formed from an extension in +/// \p MovedExts. +bool CodeGenPrepare::canFormExtLd( + const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, + Instruction *&Inst, bool HasPromoted) { + for (auto *MovedExtInst : MovedExts) { + if (isa<LoadInst>(MovedExtInst->getOperand(0))) { + LI = cast<LoadInst>(MovedExtInst->getOperand(0)); + Inst = MovedExtInst; + break; + } + } + if (!LI) + return false; + + // If they're already in the same block, there's nothing to do. + // Make the cheap checks first if we did not promote. + // If we promoted, we need to check if it is indeed profitable. + if (!HasPromoted && LI->getParent() == Inst->getParent()) + return false; + + return TLI->isExtLoad(LI, Inst, *DL); +} + +/// Move a zext or sext fed by a load into the same basic block as the load, +/// unless conditions are unfavorable. This allows SelectionDAG to fold the +/// extend into the load. +/// +/// E.g., +/// \code +/// %ld = load i32* %addr +/// %add = add nuw i32 %ld, 4 +/// %zext = zext i32 %add to i64 +// \endcode +/// => +/// \code +/// %ld = load i32* %addr +/// %zext = zext i32 %ld to i64 +/// %add = add nuw i64 %zext, 4 +/// \encode +/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which +/// allow us to match zext(load i32*) to i64. +/// +/// Also, try to promote the computations used to obtain a sign extended +/// value used into memory accesses. +/// E.g., +/// \code +/// a = add nsw i32 b, 3 +/// d = sext i32 a to i64 +/// e = getelementptr ..., i64 d +/// \endcode +/// => +/// \code +/// f = sext i32 b to i64 +/// a = add nsw i64 f, 3 +/// e = getelementptr ..., i64 a +/// \endcode +/// +/// \p Inst[in/out] the extension may be modified during the process if some +/// promotions apply. +bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { + bool AllowPromotionWithoutCommonHeader = false; + /// See if it is an interesting sext operations for the address type + /// promotion before trying to promote it, e.g., the ones with the right + /// type and used in memory accesses. + bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( + *Inst, AllowPromotionWithoutCommonHeader); + TypePromotionTransaction TPT(RemovedInsts); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 1> Exts; + SmallVector<Instruction *, 2> SpeculativelyMovedExts; + Exts.push_back(Inst); + + bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); + + // Look for a load being extended. + LoadInst *LI = nullptr; + Instruction *ExtFedByLoad; + + // Try to promote a chain of computation if it allows to form an extended + // load. + if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { + assert(LI && ExtFedByLoad && "Expect a valid load and extension"); + TPT.commit(); + // Move the extend into the same block as the load. + ExtFedByLoad->moveAfter(LI); + ++NumExtsMoved; + Inst = ExtFedByLoad; + return true; + } + + // Continue promoting SExts if known as considerable depending on targets. + if (ATPConsiderable && + performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, + HasPromoted, TPT, SpeculativelyMovedExts)) + return true; + + TPT.rollback(LastKnownGood); + return false; +} + +// Perform address type promotion if doing so is profitable. +// If AllowPromotionWithoutCommonHeader == false, we should find other sext +// instructions that sign extended the same initial value. However, if +// AllowPromotionWithoutCommonHeader == true, we expect promoting the +// extension is just profitable. +bool CodeGenPrepare::performAddressTypePromotion( + Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, + bool HasPromoted, TypePromotionTransaction &TPT, + SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { + bool Promoted = false; + SmallPtrSet<Instruction *, 1> UnhandledExts; + bool AllSeenFirst = true; + for (auto *I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + DenseMap<Value *, Instruction *>::iterator AlreadySeen = + SeenChainsForSExt.find(HeadOfChain); + // If there is an unhandled SExt which has the same header, try to promote + // it as well. + if (AlreadySeen != SeenChainsForSExt.end()) { + if (AlreadySeen->second != nullptr) + UnhandledExts.insert(AlreadySeen->second); + AllSeenFirst = false; + } + } + + if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && + SpeculativelyMovedExts.size() == 1)) { + TPT.commit(); + if (HasPromoted) + Promoted = true; + for (auto *I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + SeenChainsForSExt[HeadOfChain] = nullptr; + ValToSExtendedUses[HeadOfChain].push_back(I); + } + // Update Inst as promotion happen. + Inst = SpeculativelyMovedExts.pop_back_val(); + } else { + // This is the first chain visited from the header, keep the current chain + // as unhandled. Defer to promote this until we encounter another SExt + // chain derived from the same header. + for (auto *I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + SeenChainsForSExt[HeadOfChain] = Inst; + } + return false; + } + + if (!AllSeenFirst && !UnhandledExts.empty()) + for (auto *VisitedSExt : UnhandledExts) { + if (RemovedInsts.count(VisitedSExt)) + continue; + TypePromotionTransaction TPT(RemovedInsts); + SmallVector<Instruction *, 1> Exts; + SmallVector<Instruction *, 2> Chains; + Exts.push_back(VisitedSExt); + bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); + TPT.commit(); + if (HasPromoted) + Promoted = true; + for (auto *I : Chains) { + Value *HeadOfChain = I->getOperand(0); + // Mark this as handled. + SeenChainsForSExt[HeadOfChain] = nullptr; + ValToSExtendedUses[HeadOfChain].push_back(I); + } + } + return Promoted; +} + +bool CodeGenPrepare::optimizeExtUses(Instruction *I) { + BasicBlock *DefBB = I->getParent(); + + // If the result of a {s|z}ext and its source are both live out, rewrite all + // other uses of the source with result of extension. + Value *Src = I->getOperand(0); + if (Src->hasOneUse()) + return false; + + // Only do this xform if truncating is free. + if (!TLI->isTruncateFree(I->getType(), Src->getType())) + return false; + + // Only safe to perform the optimization if the source is also defined in + // this block. + if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) + return false; + + bool DefIsLiveOut = false; + for (User *U : I->users()) { + Instruction *UI = cast<Instruction>(U); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + DefIsLiveOut = true; + break; + } + if (!DefIsLiveOut) + return false; + + // Make sure none of the uses are PHI nodes. + for (User *U : Src->users()) { + Instruction *UI = cast<Instruction>(U); + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + // Be conservative. We don't want this xform to end up introducing + // reloads just before load / store instructions. + if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) + return false; + } + + // InsertedTruncs - Only insert one trunc in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedTruncs; + + bool MadeChange = false; + for (Use &U : Src->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + + // Both src and def are live in this block. Rewrite the use. + Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; + + if (!InsertedTrunc) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); + InsertedInsts.insert(InsertedTrunc); + } + + // Replace a use of the {s|z}ext source with a use of the result. + U = InsertedTrunc; + ++NumExtUses; + MadeChange = true; + } + + return MadeChange; +} + +// Find loads whose uses only use some of the loaded value's bits. Add an "and" +// just after the load if the target can fold this into one extload instruction, +// with the hope of eliminating some of the other later "and" instructions using +// the loaded value. "and"s that are made trivially redundant by the insertion +// of the new "and" are removed by this function, while others (e.g. those whose +// path from the load goes through a phi) are left for isel to potentially +// remove. +// +// For example: +// +// b0: +// x = load i32 +// ... +// b1: +// y = and x, 0xff +// z = use y +// +// becomes: +// +// b0: +// x = load i32 +// x' = and x, 0xff +// ... +// b1: +// z = use x' +// +// whereas: +// +// b0: +// x1 = load i32 +// ... +// b1: +// x2 = load i32 +// ... +// b2: +// x = phi x1, x2 +// y = and x, 0xff +// +// becomes (after a call to optimizeLoadExt for each load): +// +// b0: +// x1 = load i32 +// x1' = and x1, 0xff +// ... +// b1: +// x2 = load i32 +// x2' = and x2, 0xff +// ... +// b2: +// x = phi x1', x2' +// y = and x, 0xff +bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { + if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) + return false; + + // Skip loads we've already transformed. + if (Load->hasOneUse() && + InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) + return false; + + // Look at all uses of Load, looking through phis, to determine how many bits + // of the loaded value are needed. + SmallVector<Instruction *, 8> WorkList; + SmallPtrSet<Instruction *, 16> Visited; + SmallVector<Instruction *, 8> AndsToMaybeRemove; + for (auto *U : Load->users()) + WorkList.push_back(cast<Instruction>(U)); + + EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); + unsigned BitWidth = LoadResultVT.getSizeInBits(); + APInt DemandBits(BitWidth, 0); + APInt WidestAndBits(BitWidth, 0); + + while (!WorkList.empty()) { + Instruction *I = WorkList.back(); + WorkList.pop_back(); + + // Break use-def graph loops. + if (!Visited.insert(I).second) + continue; + + // For a PHI node, push all of its users. + if (auto *Phi = dyn_cast<PHINode>(I)) { + for (auto *U : Phi->users()) + WorkList.push_back(cast<Instruction>(U)); + continue; + } + + switch (I->getOpcode()) { + case Instruction::And: { + auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!AndC) + return false; + APInt AndBits = AndC->getValue(); + DemandBits |= AndBits; + // Keep track of the widest and mask we see. + if (AndBits.ugt(WidestAndBits)) + WidestAndBits = AndBits; + if (AndBits == WidestAndBits && I->getOperand(0) == Load) + AndsToMaybeRemove.push_back(I); + break; + } + + case Instruction::Shl: { + auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!ShlC) + return false; + uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); + DemandBits.setLowBits(BitWidth - ShiftAmt); + break; + } + + case Instruction::Trunc: { + EVT TruncVT = TLI->getValueType(*DL, I->getType()); + unsigned TruncBitWidth = TruncVT.getSizeInBits(); + DemandBits.setLowBits(TruncBitWidth); + break; + } + + default: + return false; + } + } + + uint32_t ActiveBits = DemandBits.getActiveBits(); + // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the + // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, + // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but + // (and (load x) 1) is not matched as a single instruction, rather as a LDR + // followed by an AND. + // TODO: Look into removing this restriction by fixing backends to either + // return false for isLoadExtLegal for i1 or have them select this pattern to + // a single instruction. + // + // Also avoid hoisting if we didn't see any ands with the exact DemandBits + // mask, since these are the only ands that will be removed by isel. + if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || + WidestAndBits != DemandBits) + return false; + + LLVMContext &Ctx = Load->getType()->getContext(); + Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); + EVT TruncVT = TLI->getValueType(*DL, TruncTy); + + // Reject cases that won't be matched as extloads. + if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || + !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) + return false; + + IRBuilder<> Builder(Load->getNextNode()); + auto *NewAnd = cast<Instruction>( + Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); + // Mark this instruction as "inserted by CGP", so that other + // optimizations don't touch it. + InsertedInsts.insert(NewAnd); + + // Replace all uses of load with new and (except for the use of load in the + // new and itself). + Load->replaceAllUsesWith(NewAnd); + NewAnd->setOperand(0, Load); + + // Remove any and instructions that are now redundant. + for (auto *And : AndsToMaybeRemove) + // Check that the and mask is the same as the one we decided to put on the + // new and. + if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { + And->replaceAllUsesWith(NewAnd); + if (&*CurInstIterator == And) + CurInstIterator = std::next(And->getIterator()); + And->eraseFromParent(); + ++NumAndUses; + } + + ++NumAndsAdded; + return true; +} + +/// Check if V (an operand of a select instruction) is an expensive instruction +/// that is only used once. +static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { + auto *I = dyn_cast<Instruction>(V); + // If it's safe to speculatively execute, then it should not have side + // effects; therefore, it's safe to sink and possibly *not* execute. + return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && + TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >= + TargetTransformInfo::TCC_Expensive; +} + +/// Returns true if a SelectInst should be turned into an explicit branch. +static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, + const TargetLowering *TLI, + SelectInst *SI) { + // If even a predictable select is cheap, then a branch can't be cheaper. + if (!TLI->isPredictableSelectExpensive()) + return false; + + // FIXME: This should use the same heuristics as IfConversion to determine + // whether a select is better represented as a branch. + + // If metadata tells us that the select condition is obviously predictable, + // then we want to replace the select with a branch. + uint64_t TrueWeight, FalseWeight; + if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t Max = std::max(TrueWeight, FalseWeight); + uint64_t Sum = TrueWeight + FalseWeight; + if (Sum != 0) { + auto Probability = BranchProbability::getBranchProbability(Max, Sum); + if (Probability > TLI->getPredictableBranchThreshold()) + return true; + } + } + + CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); + + // If a branch is predictable, an out-of-order CPU can avoid blocking on its + // comparison condition. If the compare has more than one use, there's + // probably another cmov or setcc around, so it's not worth emitting a branch. + if (!Cmp || !Cmp->hasOneUse()) + return false; + + // If either operand of the select is expensive and only needed on one side + // of the select, we should form a branch. + if (sinkSelectOperand(TTI, SI->getTrueValue()) || + sinkSelectOperand(TTI, SI->getFalseValue())) + return true; + + return false; +} + +/// If \p isTrue is true, return the true value of \p SI, otherwise return +/// false value of \p SI. If the true/false value of \p SI is defined by any +/// select instructions in \p Selects, look through the defining select +/// instruction until the true/false value is not defined in \p Selects. +static Value *getTrueOrFalseValue( + SelectInst *SI, bool isTrue, + const SmallPtrSet<const Instruction *, 2> &Selects) { + Value *V = nullptr; + + for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); + DefSI = dyn_cast<SelectInst>(V)) { + assert(DefSI->getCondition() == SI->getCondition() && + "The condition of DefSI does not match with SI"); + V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); + } + + assert(V && "Failed to get select true/false value"); + return V; +} + +bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { + assert(Shift->isShift() && "Expected a shift"); + + // If this is (1) a vector shift, (2) shifts by scalars are cheaper than + // general vector shifts, and (3) the shift amount is a select-of-splatted + // values, hoist the shifts before the select: + // shift Op0, (select Cond, TVal, FVal) --> + // select Cond, (shift Op0, TVal), (shift Op0, FVal) + // + // This is inverting a generic IR transform when we know that the cost of a + // general vector shift is more than the cost of 2 shift-by-scalars. + // We can't do this effectively in SDAG because we may not be able to + // determine if the select operands are splats from within a basic block. + Type *Ty = Shift->getType(); + if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) + return false; + Value *Cond, *TVal, *FVal; + if (!match(Shift->getOperand(1), + m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) + return false; + if (!isSplatValue(TVal) || !isSplatValue(FVal)) + return false; + + IRBuilder<> Builder(Shift); + BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); + Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); + Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); + Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); + Shift->replaceAllUsesWith(NewSel); + Shift->eraseFromParent(); + return true; +} + +bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) { + Intrinsic::ID Opcode = Fsh->getIntrinsicID(); + assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) && + "Expected a funnel shift"); + + // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper + // than general vector shifts, and (3) the shift amount is select-of-splatted + // values, hoist the funnel shifts before the select: + // fsh Op0, Op1, (select Cond, TVal, FVal) --> + // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal) + // + // This is inverting a generic IR transform when we know that the cost of a + // general vector shift is more than the cost of 2 shift-by-scalars. + // We can't do this effectively in SDAG because we may not be able to + // determine if the select operands are splats from within a basic block. + Type *Ty = Fsh->getType(); + if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) + return false; + Value *Cond, *TVal, *FVal; + if (!match(Fsh->getOperand(2), + m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) + return false; + if (!isSplatValue(TVal) || !isSplatValue(FVal)) + return false; + + IRBuilder<> Builder(Fsh); + Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1); + Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal }); + Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal }); + Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); + Fsh->replaceAllUsesWith(NewSel); + Fsh->eraseFromParent(); + return true; +} + +/// If we have a SelectInst that will likely profit from branch prediction, +/// turn it into a branch. +bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { if (DisableSelectToBranch) - return false; - - // Find all consecutive select instructions that share the same condition. - SmallVector<SelectInst *, 2> ASI; - ASI.push_back(SI); - for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); - It != SI->getParent()->end(); ++It) { - SelectInst *I = dyn_cast<SelectInst>(&*It); - if (I && SI->getCondition() == I->getCondition()) { - ASI.push_back(I); - } else { - break; - } - } - - SelectInst *LastSI = ASI.back(); - // Increment the current iterator to skip all the rest of select instructions - // because they will be either "not lowered" or "all lowered" to branch. - CurInstIterator = std::next(LastSI->getIterator()); - - bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); - - // Can we convert the 'select' to CF ? - if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) - return false; - - TargetLowering::SelectSupportKind SelectKind; - if (VectorCond) - SelectKind = TargetLowering::VectorMaskSelect; - else if (SI->getType()->isVectorTy()) - SelectKind = TargetLowering::ScalarCondVectorVal; - else - SelectKind = TargetLowering::ScalarValSelect; - - if (TLI->isSelectSupported(SelectKind) && + return false; + + // Find all consecutive select instructions that share the same condition. + SmallVector<SelectInst *, 2> ASI; + ASI.push_back(SI); + for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); + It != SI->getParent()->end(); ++It) { + SelectInst *I = dyn_cast<SelectInst>(&*It); + if (I && SI->getCondition() == I->getCondition()) { + ASI.push_back(I); + } else { + break; + } + } + + SelectInst *LastSI = ASI.back(); + // Increment the current iterator to skip all the rest of select instructions + // because they will be either "not lowered" or "all lowered" to branch. + CurInstIterator = std::next(LastSI->getIterator()); + + bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); + + // Can we convert the 'select' to CF ? + if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) + return false; + + TargetLowering::SelectSupportKind SelectKind; + if (VectorCond) + SelectKind = TargetLowering::VectorMaskSelect; + else if (SI->getType()->isVectorTy()) + SelectKind = TargetLowering::ScalarCondVectorVal; + else + SelectKind = TargetLowering::ScalarValSelect; + + if (TLI->isSelectSupported(SelectKind) && (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize || llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get()))) - return false; - - // The DominatorTree needs to be rebuilt by any consumers after this - // transformation. We simply reset here rather than setting the ModifiedDT - // flag to avoid restarting the function walk in runOnFunction for each - // select optimized. - DT.reset(); - - // Transform a sequence like this: - // start: - // %cmp = cmp uge i32 %a, %b - // %sel = select i1 %cmp, i32 %c, i32 %d - // - // Into: - // start: - // %cmp = cmp uge i32 %a, %b - // %cmp.frozen = freeze %cmp - // br i1 %cmp.frozen, label %select.true, label %select.false - // select.true: - // br label %select.end - // select.false: - // br label %select.end - // select.end: - // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] - // - // %cmp should be frozen, otherwise it may introduce undefined behavior. - // In addition, we may sink instructions that produce %c or %d from - // the entry block into the destination(s) of the new branch. - // If the true or false blocks do not contain a sunken instruction, that - // block and its branch may be optimized away. In that case, one side of the - // first branch will point directly to select.end, and the corresponding PHI - // predecessor block will be the start block. - - // First, we split the block containing the select into 2 blocks. - BasicBlock *StartBlock = SI->getParent(); - BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); - BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); - BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); - - // Delete the unconditional branch that was just created by the split. - StartBlock->getTerminator()->eraseFromParent(); - - // These are the new basic blocks for the conditional branch. - // At least one will become an actual new basic block. - BasicBlock *TrueBlock = nullptr; - BasicBlock *FalseBlock = nullptr; - BranchInst *TrueBranch = nullptr; - BranchInst *FalseBranch = nullptr; - - // Sink expensive instructions into the conditional blocks to avoid executing - // them speculatively. - for (SelectInst *SI : ASI) { - if (sinkSelectOperand(TTI, SI->getTrueValue())) { - if (TrueBlock == nullptr) { - TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", - EndBlock->getParent(), EndBlock); - TrueBranch = BranchInst::Create(EndBlock, TrueBlock); - TrueBranch->setDebugLoc(SI->getDebugLoc()); - } - auto *TrueInst = cast<Instruction>(SI->getTrueValue()); - TrueInst->moveBefore(TrueBranch); - } - if (sinkSelectOperand(TTI, SI->getFalseValue())) { - if (FalseBlock == nullptr) { - FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", - EndBlock->getParent(), EndBlock); - FalseBranch = BranchInst::Create(EndBlock, FalseBlock); - FalseBranch->setDebugLoc(SI->getDebugLoc()); - } - auto *FalseInst = cast<Instruction>(SI->getFalseValue()); - FalseInst->moveBefore(FalseBranch); - } - } - - // If there was nothing to sink, then arbitrarily choose the 'false' side - // for a new input value to the PHI. - if (TrueBlock == FalseBlock) { - assert(TrueBlock == nullptr && - "Unexpected basic block transform while optimizing select"); - - FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", - EndBlock->getParent(), EndBlock); - auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); - FalseBranch->setDebugLoc(SI->getDebugLoc()); - } - - // Insert the real conditional branch based on the original condition. - // If we did not create a new block for one of the 'true' or 'false' paths - // of the condition, it means that side of the branch goes to the end block - // directly and the path originates from the start block from the point of - // view of the new PHI. - BasicBlock *TT, *FT; - if (TrueBlock == nullptr) { - TT = EndBlock; - FT = FalseBlock; - TrueBlock = StartBlock; - } else if (FalseBlock == nullptr) { - TT = TrueBlock; - FT = EndBlock; - FalseBlock = StartBlock; - } else { - TT = TrueBlock; - FT = FalseBlock; - } - IRBuilder<> IB(SI); - auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); - IB.CreateCondBr(CondFr, TT, FT, SI); - - SmallPtrSet<const Instruction *, 2> INS; - INS.insert(ASI.begin(), ASI.end()); - // Use reverse iterator because later select may use the value of the - // earlier select, and we need to propagate value through earlier select - // to get the PHI operand. - for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { - SelectInst *SI = *It; - // The select itself is replaced with a PHI Node. - PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); - PN->takeName(SI); - PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); - PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); - PN->setDebugLoc(SI->getDebugLoc()); - - SI->replaceAllUsesWith(PN); - SI->eraseFromParent(); - INS.erase(SI); - ++NumSelectsExpanded; - } - - // Instruct OptimizeBlock to skip to the next block. - CurInstIterator = StartBlock->end(); - return true; -} - -/// Some targets only accept certain types for splat inputs. For example a VDUP -/// in MVE takes a GPR (integer) register, and the instruction that incorporate -/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. -bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { + return false; + + // The DominatorTree needs to be rebuilt by any consumers after this + // transformation. We simply reset here rather than setting the ModifiedDT + // flag to avoid restarting the function walk in runOnFunction for each + // select optimized. + DT.reset(); + + // Transform a sequence like this: + // start: + // %cmp = cmp uge i32 %a, %b + // %sel = select i1 %cmp, i32 %c, i32 %d + // + // Into: + // start: + // %cmp = cmp uge i32 %a, %b + // %cmp.frozen = freeze %cmp + // br i1 %cmp.frozen, label %select.true, label %select.false + // select.true: + // br label %select.end + // select.false: + // br label %select.end + // select.end: + // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] + // + // %cmp should be frozen, otherwise it may introduce undefined behavior. + // In addition, we may sink instructions that produce %c or %d from + // the entry block into the destination(s) of the new branch. + // If the true or false blocks do not contain a sunken instruction, that + // block and its branch may be optimized away. In that case, one side of the + // first branch will point directly to select.end, and the corresponding PHI + // predecessor block will be the start block. + + // First, we split the block containing the select into 2 blocks. + BasicBlock *StartBlock = SI->getParent(); + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); + BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); + BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency()); + + // Delete the unconditional branch that was just created by the split. + StartBlock->getTerminator()->eraseFromParent(); + + // These are the new basic blocks for the conditional branch. + // At least one will become an actual new basic block. + BasicBlock *TrueBlock = nullptr; + BasicBlock *FalseBlock = nullptr; + BranchInst *TrueBranch = nullptr; + BranchInst *FalseBranch = nullptr; + + // Sink expensive instructions into the conditional blocks to avoid executing + // them speculatively. + for (SelectInst *SI : ASI) { + if (sinkSelectOperand(TTI, SI->getTrueValue())) { + if (TrueBlock == nullptr) { + TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", + EndBlock->getParent(), EndBlock); + TrueBranch = BranchInst::Create(EndBlock, TrueBlock); + TrueBranch->setDebugLoc(SI->getDebugLoc()); + } + auto *TrueInst = cast<Instruction>(SI->getTrueValue()); + TrueInst->moveBefore(TrueBranch); + } + if (sinkSelectOperand(TTI, SI->getFalseValue())) { + if (FalseBlock == nullptr) { + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", + EndBlock->getParent(), EndBlock); + FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + FalseBranch->setDebugLoc(SI->getDebugLoc()); + } + auto *FalseInst = cast<Instruction>(SI->getFalseValue()); + FalseInst->moveBefore(FalseBranch); + } + } + + // If there was nothing to sink, then arbitrarily choose the 'false' side + // for a new input value to the PHI. + if (TrueBlock == FalseBlock) { + assert(TrueBlock == nullptr && + "Unexpected basic block transform while optimizing select"); + + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", + EndBlock->getParent(), EndBlock); + auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + FalseBranch->setDebugLoc(SI->getDebugLoc()); + } + + // Insert the real conditional branch based on the original condition. + // If we did not create a new block for one of the 'true' or 'false' paths + // of the condition, it means that side of the branch goes to the end block + // directly and the path originates from the start block from the point of + // view of the new PHI. + BasicBlock *TT, *FT; + if (TrueBlock == nullptr) { + TT = EndBlock; + FT = FalseBlock; + TrueBlock = StartBlock; + } else if (FalseBlock == nullptr) { + TT = TrueBlock; + FT = EndBlock; + FalseBlock = StartBlock; + } else { + TT = TrueBlock; + FT = FalseBlock; + } + IRBuilder<> IB(SI); + auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen"); + IB.CreateCondBr(CondFr, TT, FT, SI); + + SmallPtrSet<const Instruction *, 2> INS; + INS.insert(ASI.begin(), ASI.end()); + // Use reverse iterator because later select may use the value of the + // earlier select, and we need to propagate value through earlier select + // to get the PHI operand. + for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { + SelectInst *SI = *It; + // The select itself is replaced with a PHI Node. + PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); + PN->takeName(SI); + PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); + PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); + PN->setDebugLoc(SI->getDebugLoc()); + + SI->replaceAllUsesWith(PN); + SI->eraseFromParent(); + INS.erase(SI); + ++NumSelectsExpanded; + } + + // Instruct OptimizeBlock to skip to the next block. + CurInstIterator = StartBlock->end(); + return true; +} + +/// Some targets only accept certain types for splat inputs. For example a VDUP +/// in MVE takes a GPR (integer) register, and the instruction that incorporate +/// a VDUP (such as a VADD qd, qm, rm) also require a gpr register. +bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only - if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), - m_Undef(), m_ZeroMask()))) - return false; - Type *NewType = TLI->shouldConvertSplatType(SVI); - if (!NewType) - return false; - - auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); - assert(!NewType->isVectorTy() && "Expected a scalar type!"); - assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && - "Expected a type of the same size!"); - auto *NewVecType = - FixedVectorType::get(NewType, SVIVecType->getNumElements()); - - // Create a bitcast (shuffle (insert (bitcast(..)))) - IRBuilder<> Builder(SVI->getContext()); - Builder.SetInsertPoint(SVI); - Value *BC1 = Builder.CreateBitCast( - cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); + if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()), + m_Undef(), m_ZeroMask()))) + return false; + Type *NewType = TLI->shouldConvertSplatType(SVI); + if (!NewType) + return false; + + auto *SVIVecType = cast<FixedVectorType>(SVI->getType()); + assert(!NewType->isVectorTy() && "Expected a scalar type!"); + assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() && + "Expected a type of the same size!"); + auto *NewVecType = + FixedVectorType::get(NewType, SVIVecType->getNumElements()); + + // Create a bitcast (shuffle (insert (bitcast(..)))) + IRBuilder<> Builder(SVI->getContext()); + Builder.SetInsertPoint(SVI); + Value *BC1 = Builder.CreateBitCast( + cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType); Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1); - Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); - - SVI->replaceAllUsesWith(BC2); + Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType); + + SVI->replaceAllUsesWith(BC2); RecursivelyDeleteTriviallyDeadInstructions( SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); - - // Also hoist the bitcast up to its operand if it they are not in the same - // block. - if (auto *BCI = dyn_cast<Instruction>(BC1)) - if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) - if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && - !Op->isTerminator() && !Op->isEHPad()) - BCI->moveAfter(Op); - - return true; -} - -bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { - // If the operands of I can be folded into a target instruction together with - // I, duplicate and sink them. - SmallVector<Use *, 4> OpsToSink; - if (!TLI->shouldSinkOperands(I, OpsToSink)) - return false; - - // OpsToSink can contain multiple uses in a use chain (e.g. - // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating - // uses must come first, so we process the ops in reverse order so as to not - // create invalid IR. - BasicBlock *TargetBB = I->getParent(); - bool Changed = false; - SmallVector<Use *, 4> ToReplace; - for (Use *U : reverse(OpsToSink)) { - auto *UI = cast<Instruction>(U->get()); - if (UI->getParent() == TargetBB || isa<PHINode>(UI)) - continue; - ToReplace.push_back(U); - } - - SetVector<Instruction *> MaybeDead; - DenseMap<Instruction *, Instruction *> NewInstructions; - Instruction *InsertPoint = I; - for (Use *U : ToReplace) { - auto *UI = cast<Instruction>(U->get()); - Instruction *NI = UI->clone(); - NewInstructions[UI] = NI; - MaybeDead.insert(UI); - LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); - NI->insertBefore(InsertPoint); - InsertPoint = NI; - InsertedInsts.insert(NI); - - // Update the use for the new instruction, making sure that we update the - // sunk instruction uses, if it is part of a chain that has already been - // sunk. - Instruction *OldI = cast<Instruction>(U->getUser()); - if (NewInstructions.count(OldI)) - NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); - else - U->set(NI); - Changed = true; - } - - // Remove instructions that are dead after sinking. - for (auto *I : MaybeDead) { - if (!I->hasNUsesOrMore(1)) { - LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); - I->eraseFromParent(); - } - } - - return Changed; -} - -bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { - Value *Cond = SI->getCondition(); - Type *OldType = Cond->getType(); - LLVMContext &Context = Cond->getContext(); - MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); - unsigned RegWidth = RegType.getSizeInBits(); - - if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) - return false; - - // If the register width is greater than the type width, expand the condition - // of the switch instruction and each case constant to the width of the - // register. By widening the type of the switch condition, subsequent - // comparisons (for case comparisons) will not need to be extended to the - // preferred register width, so we will potentially eliminate N-1 extends, - // where N is the number of cases in the switch. - auto *NewType = Type::getIntNTy(Context, RegWidth); - - // Zero-extend the switch condition and case constants unless the switch - // condition is a function argument that is already being sign-extended. - // In that case, we can avoid an unnecessary mask/extension by sign-extending - // everything instead. - Instruction::CastOps ExtType = Instruction::ZExt; - if (auto *Arg = dyn_cast<Argument>(Cond)) - if (Arg->hasSExtAttr()) - ExtType = Instruction::SExt; - - auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); - ExtInst->insertBefore(SI); - ExtInst->setDebugLoc(SI->getDebugLoc()); - SI->setCondition(ExtInst); - for (auto Case : SI->cases()) { - APInt NarrowConst = Case.getCaseValue()->getValue(); - APInt WideConst = (ExtType == Instruction::ZExt) ? - NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); - Case.setValue(ConstantInt::get(Context, WideConst)); - } - - return true; -} - - -namespace { - -/// Helper class to promote a scalar operation to a vector one. -/// This class is used to move downward extractelement transition. -/// E.g., -/// a = vector_op <2 x i32> -/// b = extractelement <2 x i32> a, i32 0 -/// c = scalar_op b -/// store c -/// -/// => -/// a = vector_op <2 x i32> -/// c = vector_op a (equivalent to scalar_op on the related lane) -/// * d = extractelement <2 x i32> c, i32 0 -/// * store d -/// Assuming both extractelement and store can be combine, we get rid of the -/// transition. -class VectorPromoteHelper { - /// DataLayout associated with the current module. - const DataLayout &DL; - - /// Used to perform some checks on the legality of vector operations. - const TargetLowering &TLI; - - /// Used to estimated the cost of the promoted chain. - const TargetTransformInfo &TTI; - - /// The transition being moved downwards. - Instruction *Transition; - - /// The sequence of instructions to be promoted. - SmallVector<Instruction *, 4> InstsToBePromoted; - - /// Cost of combining a store and an extract. - unsigned StoreExtractCombineCost; - - /// Instruction that will be combined with the transition. - Instruction *CombineInst = nullptr; - - /// The instruction that represents the current end of the transition. - /// Since we are faking the promotion until we reach the end of the chain - /// of computation, we need a way to get the current end of the transition. - Instruction *getEndOfTransition() const { - if (InstsToBePromoted.empty()) - return Transition; - return InstsToBePromoted.back(); - } - - /// Return the index of the original value in the transition. - /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, - /// c, is at index 0. - unsigned getTransitionOriginalValueIdx() const { - assert(isa<ExtractElementInst>(Transition) && - "Other kind of transitions are not supported yet"); - return 0; - } - - /// Return the index of the index in the transition. - /// E.g., for "extractelement <2 x i32> c, i32 0" the index - /// is at index 1. - unsigned getTransitionIdx() const { - assert(isa<ExtractElementInst>(Transition) && - "Other kind of transitions are not supported yet"); - return 1; - } - - /// Get the type of the transition. - /// This is the type of the original value. - /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the - /// transition is <2 x i32>. - Type *getTransitionType() const { - return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); - } - - /// Promote \p ToBePromoted by moving \p Def downward through. - /// I.e., we have the following sequence: - /// Def = Transition <ty1> a to <ty2> - /// b = ToBePromoted <ty2> Def, ... - /// => - /// b = ToBePromoted <ty1> a, ... - /// Def = Transition <ty1> ToBePromoted to <ty2> - void promoteImpl(Instruction *ToBePromoted); - - /// Check whether or not it is profitable to promote all the - /// instructions enqueued to be promoted. - bool isProfitableToPromote() { - Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); - unsigned Index = isa<ConstantInt>(ValIdx) - ? cast<ConstantInt>(ValIdx)->getZExtValue() - : -1; - Type *PromotedType = getTransitionType(); - - StoreInst *ST = cast<StoreInst>(CombineInst); - unsigned AS = ST->getPointerAddressSpace(); - unsigned Align = ST->getAlignment(); - // Check if this store is supported. - if (!TLI.allowsMisalignedMemoryAccesses( - TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, - Align)) { - // If this is not supported, there is no way we can combine - // the extract with the store. - return false; - } - - // The scalar chain of computation has to pay for the transition - // scalar to vector. - // The vector chain has to account for the combining cost. - uint64_t ScalarCost = - TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); - uint64_t VectorCost = StoreExtractCombineCost; - enum TargetTransformInfo::TargetCostKind CostKind = - TargetTransformInfo::TCK_RecipThroughput; - for (const auto &Inst : InstsToBePromoted) { - // Compute the cost. - // By construction, all instructions being promoted are arithmetic ones. - // Moreover, one argument is a constant that can be viewed as a splat - // constant. - Value *Arg0 = Inst->getOperand(0); - bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || - isa<ConstantFP>(Arg0); - TargetTransformInfo::OperandValueKind Arg0OVK = - IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue - : TargetTransformInfo::OK_AnyValue; - TargetTransformInfo::OperandValueKind Arg1OVK = - !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue - : TargetTransformInfo::OK_AnyValue; - ScalarCost += TTI.getArithmeticInstrCost( - Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); - VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, - CostKind, - Arg0OVK, Arg1OVK); - } - LLVM_DEBUG( - dbgs() << "Estimated cost of computation to be promoted:\nScalar: " - << ScalarCost << "\nVector: " << VectorCost << '\n'); - return ScalarCost > VectorCost; - } - - /// Generate a constant vector with \p Val with the same - /// number of elements as the transition. - /// \p UseSplat defines whether or not \p Val should be replicated - /// across the whole vector. - /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, - /// otherwise we generate a vector with as many undef as possible: - /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only - /// used at the index of the extract. - Value *getConstantVector(Constant *Val, bool UseSplat) const { - unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); - if (!UseSplat) { - // If we cannot determine where the constant must be, we have to - // use a splat constant. - Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); - if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) - ExtractIdx = CstVal->getSExtValue(); - else - UseSplat = true; - } - - ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); - if (UseSplat) - return ConstantVector::getSplat(EC, Val); - + + // Also hoist the bitcast up to its operand if it they are not in the same + // block. + if (auto *BCI = dyn_cast<Instruction>(BC1)) + if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0))) + if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) && + !Op->isTerminator() && !Op->isEHPad()) + BCI->moveAfter(Op); + + return true; +} + +bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { + // If the operands of I can be folded into a target instruction together with + // I, duplicate and sink them. + SmallVector<Use *, 4> OpsToSink; + if (!TLI->shouldSinkOperands(I, OpsToSink)) + return false; + + // OpsToSink can contain multiple uses in a use chain (e.g. + // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating + // uses must come first, so we process the ops in reverse order so as to not + // create invalid IR. + BasicBlock *TargetBB = I->getParent(); + bool Changed = false; + SmallVector<Use *, 4> ToReplace; + for (Use *U : reverse(OpsToSink)) { + auto *UI = cast<Instruction>(U->get()); + if (UI->getParent() == TargetBB || isa<PHINode>(UI)) + continue; + ToReplace.push_back(U); + } + + SetVector<Instruction *> MaybeDead; + DenseMap<Instruction *, Instruction *> NewInstructions; + Instruction *InsertPoint = I; + for (Use *U : ToReplace) { + auto *UI = cast<Instruction>(U->get()); + Instruction *NI = UI->clone(); + NewInstructions[UI] = NI; + MaybeDead.insert(UI); + LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); + NI->insertBefore(InsertPoint); + InsertPoint = NI; + InsertedInsts.insert(NI); + + // Update the use for the new instruction, making sure that we update the + // sunk instruction uses, if it is part of a chain that has already been + // sunk. + Instruction *OldI = cast<Instruction>(U->getUser()); + if (NewInstructions.count(OldI)) + NewInstructions[OldI]->setOperand(U->getOperandNo(), NI); + else + U->set(NI); + Changed = true; + } + + // Remove instructions that are dead after sinking. + for (auto *I : MaybeDead) { + if (!I->hasNUsesOrMore(1)) { + LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n"); + I->eraseFromParent(); + } + } + + return Changed; +} + +bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { + Value *Cond = SI->getCondition(); + Type *OldType = Cond->getType(); + LLVMContext &Context = Cond->getContext(); + MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); + unsigned RegWidth = RegType.getSizeInBits(); + + if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) + return false; + + // If the register width is greater than the type width, expand the condition + // of the switch instruction and each case constant to the width of the + // register. By widening the type of the switch condition, subsequent + // comparisons (for case comparisons) will not need to be extended to the + // preferred register width, so we will potentially eliminate N-1 extends, + // where N is the number of cases in the switch. + auto *NewType = Type::getIntNTy(Context, RegWidth); + + // Zero-extend the switch condition and case constants unless the switch + // condition is a function argument that is already being sign-extended. + // In that case, we can avoid an unnecessary mask/extension by sign-extending + // everything instead. + Instruction::CastOps ExtType = Instruction::ZExt; + if (auto *Arg = dyn_cast<Argument>(Cond)) + if (Arg->hasSExtAttr()) + ExtType = Instruction::SExt; + + auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); + ExtInst->insertBefore(SI); + ExtInst->setDebugLoc(SI->getDebugLoc()); + SI->setCondition(ExtInst); + for (auto Case : SI->cases()) { + APInt NarrowConst = Case.getCaseValue()->getValue(); + APInt WideConst = (ExtType == Instruction::ZExt) ? + NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); + Case.setValue(ConstantInt::get(Context, WideConst)); + } + + return true; +} + + +namespace { + +/// Helper class to promote a scalar operation to a vector one. +/// This class is used to move downward extractelement transition. +/// E.g., +/// a = vector_op <2 x i32> +/// b = extractelement <2 x i32> a, i32 0 +/// c = scalar_op b +/// store c +/// +/// => +/// a = vector_op <2 x i32> +/// c = vector_op a (equivalent to scalar_op on the related lane) +/// * d = extractelement <2 x i32> c, i32 0 +/// * store d +/// Assuming both extractelement and store can be combine, we get rid of the +/// transition. +class VectorPromoteHelper { + /// DataLayout associated with the current module. + const DataLayout &DL; + + /// Used to perform some checks on the legality of vector operations. + const TargetLowering &TLI; + + /// Used to estimated the cost of the promoted chain. + const TargetTransformInfo &TTI; + + /// The transition being moved downwards. + Instruction *Transition; + + /// The sequence of instructions to be promoted. + SmallVector<Instruction *, 4> InstsToBePromoted; + + /// Cost of combining a store and an extract. + unsigned StoreExtractCombineCost; + + /// Instruction that will be combined with the transition. + Instruction *CombineInst = nullptr; + + /// The instruction that represents the current end of the transition. + /// Since we are faking the promotion until we reach the end of the chain + /// of computation, we need a way to get the current end of the transition. + Instruction *getEndOfTransition() const { + if (InstsToBePromoted.empty()) + return Transition; + return InstsToBePromoted.back(); + } + + /// Return the index of the original value in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, + /// c, is at index 0. + unsigned getTransitionOriginalValueIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 0; + } + + /// Return the index of the index in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 0" the index + /// is at index 1. + unsigned getTransitionIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 1; + } + + /// Get the type of the transition. + /// This is the type of the original value. + /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the + /// transition is <2 x i32>. + Type *getTransitionType() const { + return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); + } + + /// Promote \p ToBePromoted by moving \p Def downward through. + /// I.e., we have the following sequence: + /// Def = Transition <ty1> a to <ty2> + /// b = ToBePromoted <ty2> Def, ... + /// => + /// b = ToBePromoted <ty1> a, ... + /// Def = Transition <ty1> ToBePromoted to <ty2> + void promoteImpl(Instruction *ToBePromoted); + + /// Check whether or not it is profitable to promote all the + /// instructions enqueued to be promoted. + bool isProfitableToPromote() { + Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); + unsigned Index = isa<ConstantInt>(ValIdx) + ? cast<ConstantInt>(ValIdx)->getZExtValue() + : -1; + Type *PromotedType = getTransitionType(); + + StoreInst *ST = cast<StoreInst>(CombineInst); + unsigned AS = ST->getPointerAddressSpace(); + unsigned Align = ST->getAlignment(); + // Check if this store is supported. + if (!TLI.allowsMisalignedMemoryAccesses( + TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, + Align)) { + // If this is not supported, there is no way we can combine + // the extract with the store. + return false; + } + + // The scalar chain of computation has to pay for the transition + // scalar to vector. + // The vector chain has to account for the combining cost. + uint64_t ScalarCost = + TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); + uint64_t VectorCost = StoreExtractCombineCost; + enum TargetTransformInfo::TargetCostKind CostKind = + TargetTransformInfo::TCK_RecipThroughput; + for (const auto &Inst : InstsToBePromoted) { + // Compute the cost. + // By construction, all instructions being promoted are arithmetic ones. + // Moreover, one argument is a constant that can be viewed as a splat + // constant. + Value *Arg0 = Inst->getOperand(0); + bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || + isa<ConstantFP>(Arg0); + TargetTransformInfo::OperandValueKind Arg0OVK = + IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Arg1OVK = + !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + ScalarCost += TTI.getArithmeticInstrCost( + Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK); + VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, + CostKind, + Arg0OVK, Arg1OVK); + } + LLVM_DEBUG( + dbgs() << "Estimated cost of computation to be promoted:\nScalar: " + << ScalarCost << "\nVector: " << VectorCost << '\n'); + return ScalarCost > VectorCost; + } + + /// Generate a constant vector with \p Val with the same + /// number of elements as the transition. + /// \p UseSplat defines whether or not \p Val should be replicated + /// across the whole vector. + /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, + /// otherwise we generate a vector with as many undef as possible: + /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only + /// used at the index of the extract. + Value *getConstantVector(Constant *Val, bool UseSplat) const { + unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); + if (!UseSplat) { + // If we cannot determine where the constant must be, we have to + // use a splat constant. + Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); + if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) + ExtractIdx = CstVal->getSExtValue(); + else + UseSplat = true; + } + + ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount(); + if (UseSplat) + return ConstantVector::getSplat(EC, Val); + if (!EC.isScalable()) { - SmallVector<Constant *, 4> ConstVec; - UndefValue *UndefVal = UndefValue::get(Val->getType()); + SmallVector<Constant *, 4> ConstVec; + UndefValue *UndefVal = UndefValue::get(Val->getType()); for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) { - if (Idx == ExtractIdx) - ConstVec.push_back(Val); - else - ConstVec.push_back(UndefVal); - } - return ConstantVector::get(ConstVec); - } else - llvm_unreachable( - "Generate scalable vector for non-splat is unimplemented"); - } - - /// Check if promoting to a vector type an operand at \p OperandIdx - /// in \p Use can trigger undefined behavior. - static bool canCauseUndefinedBehavior(const Instruction *Use, - unsigned OperandIdx) { - // This is not safe to introduce undef when the operand is on - // the right hand side of a division-like instruction. - if (OperandIdx != 1) - return false; - switch (Use->getOpcode()) { - default: - return false; - case Instruction::SDiv: - case Instruction::UDiv: - case Instruction::SRem: - case Instruction::URem: - return true; - case Instruction::FDiv: - case Instruction::FRem: - return !Use->hasNoNaNs(); - } - llvm_unreachable(nullptr); - } - -public: - VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, - const TargetTransformInfo &TTI, Instruction *Transition, - unsigned CombineCost) - : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), - StoreExtractCombineCost(CombineCost) { - assert(Transition && "Do not know how to promote null"); - } - - /// Check if we can promote \p ToBePromoted to \p Type. - bool canPromote(const Instruction *ToBePromoted) const { - // We could support CastInst too. - return isa<BinaryOperator>(ToBePromoted); - } - - /// Check if it is profitable to promote \p ToBePromoted - /// by moving downward the transition through. - bool shouldPromote(const Instruction *ToBePromoted) const { - // Promote only if all the operands can be statically expanded. - // Indeed, we do not want to introduce any new kind of transitions. - for (const Use &U : ToBePromoted->operands()) { - const Value *Val = U.get(); - if (Val == getEndOfTransition()) { - // If the use is a division and the transition is on the rhs, - // we cannot promote the operation, otherwise we may create a - // division by zero. - if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) - return false; - continue; - } - if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && - !isa<ConstantFP>(Val)) - return false; - } - // Check that the resulting operation is legal. - int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); - if (!ISDOpcode) - return false; - return StressStoreExtract || - TLI.isOperationLegalOrCustom( - ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); - } - - /// Check whether or not \p Use can be combined - /// with the transition. - /// I.e., is it possible to do Use(Transition) => AnotherUse? - bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } - - /// Record \p ToBePromoted as part of the chain to be promoted. - void enqueueForPromotion(Instruction *ToBePromoted) { - InstsToBePromoted.push_back(ToBePromoted); - } - - /// Set the instruction that will be combined with the transition. - void recordCombineInstruction(Instruction *ToBeCombined) { - assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); - CombineInst = ToBeCombined; - } - - /// Promote all the instructions enqueued for promotion if it is - /// is profitable. - /// \return True if the promotion happened, false otherwise. - bool promote() { - // Check if there is something to promote. - // Right now, if we do not have anything to combine with, - // we assume the promotion is not profitable. - if (InstsToBePromoted.empty() || !CombineInst) - return false; - - // Check cost. - if (!StressStoreExtract && !isProfitableToPromote()) - return false; - - // Promote. - for (auto &ToBePromoted : InstsToBePromoted) - promoteImpl(ToBePromoted); - InstsToBePromoted.clear(); - return true; - } -}; - -} // end anonymous namespace - -void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { - // At this point, we know that all the operands of ToBePromoted but Def - // can be statically promoted. - // For Def, we need to use its parameter in ToBePromoted: - // b = ToBePromoted ty1 a - // Def = Transition ty1 b to ty2 - // Move the transition down. - // 1. Replace all uses of the promoted operation by the transition. - // = ... b => = ... Def. - assert(ToBePromoted->getType() == Transition->getType() && - "The type of the result of the transition does not match " - "the final type"); - ToBePromoted->replaceAllUsesWith(Transition); - // 2. Update the type of the uses. - // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. - Type *TransitionTy = getTransitionType(); - ToBePromoted->mutateType(TransitionTy); - // 3. Update all the operands of the promoted operation with promoted - // operands. - // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. - for (Use &U : ToBePromoted->operands()) { - Value *Val = U.get(); - Value *NewVal = nullptr; - if (Val == Transition) - NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); - else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || - isa<ConstantFP>(Val)) { - // Use a splat constant if it is not safe to use undef. - NewVal = getConstantVector( - cast<Constant>(Val), - isa<UndefValue>(Val) || - canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); - } else - llvm_unreachable("Did you modified shouldPromote and forgot to update " - "this?"); - ToBePromoted->setOperand(U.getOperandNo(), NewVal); - } - Transition->moveAfter(ToBePromoted); - Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); -} - -/// Some targets can do store(extractelement) with one instruction. -/// Try to push the extractelement towards the stores when the target -/// has this feature and this is profitable. -bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { - unsigned CombineCost = std::numeric_limits<unsigned>::max(); - if (DisableStoreExtract || - (!StressStoreExtract && - !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), - Inst->getOperand(1), CombineCost))) - return false; - - // At this point we know that Inst is a vector to scalar transition. - // Try to move it down the def-use chain, until: - // - We can combine the transition with its single use - // => we got rid of the transition. - // - We escape the current basic block - // => we would need to check that we are moving it at a cheaper place and - // we do not do that for now. - BasicBlock *Parent = Inst->getParent(); - LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); - VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); - // If the transition has more than one use, assume this is not going to be - // beneficial. - while (Inst->hasOneUse()) { - Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); - LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); - - if (ToBePromoted->getParent() != Parent) { - LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" - << ToBePromoted->getParent()->getName() - << ") than the transition (" << Parent->getName() - << ").\n"); - return false; - } - - if (VPH.canCombine(ToBePromoted)) { - LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' - << "will be combined with: " << *ToBePromoted << '\n'); - VPH.recordCombineInstruction(ToBePromoted); - bool Changed = VPH.promote(); - NumStoreExtractExposed += Changed; - return Changed; - } - - LLVM_DEBUG(dbgs() << "Try promoting.\n"); - if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) - return false; - - LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); - - VPH.enqueueForPromotion(ToBePromoted); - Inst = ToBePromoted; - } - return false; -} - -/// For the instruction sequence of store below, F and I values -/// are bundled together as an i64 value before being stored into memory. -/// Sometimes it is more efficient to generate separate stores for F and I, -/// which can remove the bitwise instructions or sink them to colder places. -/// -/// (store (or (zext (bitcast F to i32) to i64), -/// (shl (zext I to i64), 32)), addr) --> -/// (store F, addr) and (store I, addr+4) -/// -/// Similarly, splitting for other merged store can also be beneficial, like: -/// For pair of {i32, i32}, i64 store --> two i32 stores. -/// For pair of {i32, i16}, i64 store --> two i32 stores. -/// For pair of {i16, i16}, i32 store --> two i16 stores. -/// For pair of {i16, i8}, i32 store --> two i16 stores. -/// For pair of {i8, i8}, i16 store --> two i8 stores. -/// -/// We allow each target to determine specifically which kind of splitting is -/// supported. -/// -/// The store patterns are commonly seen from the simple code snippet below -/// if only std::make_pair(...) is sroa transformed before inlined into hoo. -/// void goo(const std::pair<int, float> &); -/// hoo() { -/// ... -/// goo(std::make_pair(tmp, ftmp)); -/// ... -/// } -/// -/// Although we already have similar splitting in DAG Combine, we duplicate -/// it in CodeGenPrepare to catch the case in which pattern is across -/// multiple BBs. The logic in DAG Combine is kept to catch case generated -/// during code expansion. -static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, - const TargetLowering &TLI) { - // Handle simple but common cases only. - Type *StoreType = SI.getValueOperand()->getType(); - - // The code below assumes shifting a value by <number of bits>, - // whereas scalable vectors would have to be shifted by - // <2log(vscale) + number of bits> in order to store the - // low/high parts. Bailing out for now. - if (isa<ScalableVectorType>(StoreType)) - return false; - - if (!DL.typeSizeEqualsStoreSize(StoreType) || - DL.getTypeSizeInBits(StoreType) == 0) - return false; - - unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; - Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); - if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) - return false; - - // Don't split the store if it is volatile. - if (SI.isVolatile()) - return false; - - // Match the following patterns: - // (store (or (zext LValue to i64), - // (shl (zext HValue to i64), 32)), HalfValBitSize) - // or - // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) - // (zext LValue to i64), - // Expect both operands of OR and the first operand of SHL have only - // one use. - Value *LValue, *HValue; - if (!match(SI.getValueOperand(), - m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), - m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), - m_SpecificInt(HalfValBitSize)))))) - return false; - - // Check LValue and HValue are int with size less or equal than 32. - if (!LValue->getType()->isIntegerTy() || - DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || - !HValue->getType()->isIntegerTy() || - DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) - return false; - - // If LValue/HValue is a bitcast instruction, use the EVT before bitcast - // as the input of target query. - auto *LBC = dyn_cast<BitCastInst>(LValue); - auto *HBC = dyn_cast<BitCastInst>(HValue); - EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) - : EVT::getEVT(LValue->getType()); - EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) - : EVT::getEVT(HValue->getType()); - if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) - return false; - - // Start to split store. - IRBuilder<> Builder(SI.getContext()); - Builder.SetInsertPoint(&SI); - - // If LValue/HValue is a bitcast in another BB, create a new one in current - // BB so it may be merged with the splitted stores by dag combiner. - if (LBC && LBC->getParent() != SI.getParent()) - LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); - if (HBC && HBC->getParent() != SI.getParent()) - HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); - - bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); - auto CreateSplitStore = [&](Value *V, bool Upper) { - V = Builder.CreateZExtOrBitCast(V, SplitStoreType); - Value *Addr = Builder.CreateBitCast( - SI.getOperand(1), - SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); - Align Alignment = SI.getAlign(); - const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); - if (IsOffsetStore) { - Addr = Builder.CreateGEP( - SplitStoreType, Addr, - ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); - - // When splitting the store in half, naturally one half will retain the - // alignment of the original wider store, regardless of whether it was - // over-aligned or not, while the other will require adjustment. - Alignment = commonAlignment(Alignment, HalfValBitSize / 8); - } - Builder.CreateAlignedStore(V, Addr, Alignment); - }; - - CreateSplitStore(LValue, false); - CreateSplitStore(HValue, true); - - // Delete the old store. - SI.eraseFromParent(); - return true; -} - -// Return true if the GEP has two operands, the first operand is of a sequential -// type, and the second operand is a constant. -static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { - gep_type_iterator I = gep_type_begin(*GEP); - return GEP->getNumOperands() == 2 && - I.isSequential() && - isa<ConstantInt>(GEP->getOperand(1)); -} - -// Try unmerging GEPs to reduce liveness interference (register pressure) across -// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, -// reducing liveness interference across those edges benefits global register -// allocation. Currently handles only certain cases. -// -// For example, unmerge %GEPI and %UGEPI as below. -// -// ---------- BEFORE ---------- -// SrcBlock: -// ... -// %GEPIOp = ... -// ... -// %GEPI = gep %GEPIOp, Idx -// ... -// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] -// (* %GEPI is alive on the indirectbr edges due to other uses ahead) -// (* %GEPIOp is alive on the indirectbr edges only because of it's used by -// %UGEPI) -// -// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) -// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) -// ... -// -// DstBi: -// ... -// %UGEPI = gep %GEPIOp, UIdx -// ... -// --------------------------- -// -// ---------- AFTER ---------- -// SrcBlock: -// ... (same as above) -// (* %GEPI is still alive on the indirectbr edges) -// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the -// unmerging) -// ... -// -// DstBi: -// ... -// %UGEPI = gep %GEPI, (UIdx-Idx) -// ... -// --------------------------- -// -// The register pressure on the IndirectBr edges is reduced because %GEPIOp is -// no longer alive on them. -// -// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging -// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as -// not to disable further simplications and optimizations as a result of GEP -// merging. -// -// Note this unmerging may increase the length of the data flow critical path -// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff -// between the register pressure and the length of data-flow critical -// path. Restricting this to the uncommon IndirectBr case would minimize the -// impact of potentially longer critical path, if any, and the impact on compile -// time. -static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, - const TargetTransformInfo *TTI) { - BasicBlock *SrcBlock = GEPI->getParent(); - // Check that SrcBlock ends with an IndirectBr. If not, give up. The common - // (non-IndirectBr) cases exit early here. - if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) - return false; - // Check that GEPI is a simple gep with a single constant index. - if (!GEPSequentialConstIndexed(GEPI)) - return false; - ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); - // Check that GEPI is a cheap one. - if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), - TargetTransformInfo::TCK_SizeAndLatency) - > TargetTransformInfo::TCC_Basic) - return false; - Value *GEPIOp = GEPI->getOperand(0); - // Check that GEPIOp is an instruction that's also defined in SrcBlock. - if (!isa<Instruction>(GEPIOp)) - return false; - auto *GEPIOpI = cast<Instruction>(GEPIOp); - if (GEPIOpI->getParent() != SrcBlock) - return false; - // Check that GEP is used outside the block, meaning it's alive on the - // IndirectBr edge(s). - if (find_if(GEPI->users(), [&](User *Usr) { - if (auto *I = dyn_cast<Instruction>(Usr)) { - if (I->getParent() != SrcBlock) { - return true; - } - } - return false; - }) == GEPI->users().end()) - return false; - // The second elements of the GEP chains to be unmerged. - std::vector<GetElementPtrInst *> UGEPIs; - // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive - // on IndirectBr edges. - for (User *Usr : GEPIOp->users()) { - if (Usr == GEPI) continue; - // Check if Usr is an Instruction. If not, give up. - if (!isa<Instruction>(Usr)) - return false; - auto *UI = cast<Instruction>(Usr); - // Check if Usr in the same block as GEPIOp, which is fine, skip. - if (UI->getParent() == SrcBlock) - continue; - // Check if Usr is a GEP. If not, give up. - if (!isa<GetElementPtrInst>(Usr)) - return false; - auto *UGEPI = cast<GetElementPtrInst>(Usr); - // Check if UGEPI is a simple gep with a single constant index and GEPIOp is - // the pointer operand to it. If so, record it in the vector. If not, give - // up. - if (!GEPSequentialConstIndexed(UGEPI)) - return false; - if (UGEPI->getOperand(0) != GEPIOp) - return false; - if (GEPIIdx->getType() != - cast<ConstantInt>(UGEPI->getOperand(1))->getType()) - return false; - ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); - if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), - TargetTransformInfo::TCK_SizeAndLatency) - > TargetTransformInfo::TCC_Basic) - return false; - UGEPIs.push_back(UGEPI); - } - if (UGEPIs.size() == 0) - return false; - // Check the materializing cost of (Uidx-Idx). - for (GetElementPtrInst *UGEPI : UGEPIs) { - ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); - APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); - unsigned ImmCost = - TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), - TargetTransformInfo::TCK_SizeAndLatency); - if (ImmCost > TargetTransformInfo::TCC_Basic) - return false; - } - // Now unmerge between GEPI and UGEPIs. - for (GetElementPtrInst *UGEPI : UGEPIs) { - UGEPI->setOperand(0, GEPI); - ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); - Constant *NewUGEPIIdx = - ConstantInt::get(GEPIIdx->getType(), - UGEPIIdx->getValue() - GEPIIdx->getValue()); - UGEPI->setOperand(1, NewUGEPIIdx); - // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not - // inbounds to avoid UB. - if (!GEPI->isInBounds()) { - UGEPI->setIsInBounds(false); - } - } - // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not - // alive on IndirectBr edges). - assert(find_if(GEPIOp->users(), [&](User *Usr) { - return cast<Instruction>(Usr)->getParent() != SrcBlock; - }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); - return true; -} - -bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { - // Bail out if we inserted the instruction to prevent optimizations from - // stepping on each other's toes. - if (InsertedInsts.count(I)) - return false; - - // TODO: Move into the switch on opcode below here. - if (PHINode *P = dyn_cast<PHINode>(I)) { - // It is possible for very late stage optimizations (such as SimplifyCFG) - // to introduce PHI nodes too late to be cleaned up. If we detect such a - // trivial PHI, go ahead and zap it here. - if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { - LargeOffsetGEPMap.erase(P); - P->replaceAllUsesWith(V); - P->eraseFromParent(); - ++NumPHIsElim; - return true; - } - return false; - } - - if (CastInst *CI = dyn_cast<CastInst>(I)) { - // If the source of the cast is a constant, then this should have - // already been constant folded. The only reason NOT to constant fold - // it is if something (e.g. LSR) was careful to place the constant - // evaluation in a block other than then one that uses it (e.g. to hoist - // the address of globals out of a loop). If this is the case, we don't - // want to forward-subst the cast. - if (isa<Constant>(CI->getOperand(0))) - return false; - - if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) - return true; - - if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { - /// Sink a zext or sext into its user blocks if the target type doesn't - /// fit in one register - if (TLI->getTypeAction(CI->getContext(), - TLI->getValueType(*DL, CI->getType())) == - TargetLowering::TypeExpandInteger) { - return SinkCast(CI); - } else { - bool MadeChange = optimizeExt(I); - return MadeChange | optimizeExtUses(I); - } - } - return false; - } - - if (auto *Cmp = dyn_cast<CmpInst>(I)) - if (optimizeCmp(Cmp, ModifiedDT)) - return true; - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); - bool Modified = optimizeLoadExt(LI); - unsigned AS = LI->getPointerAddressSpace(); - Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); - return Modified; - } - - if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (splitMergedValStore(*SI, *DL, *TLI)) - return true; - SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); - unsigned AS = SI->getPointerAddressSpace(); - return optimizeMemoryInst(I, SI->getOperand(1), - SI->getOperand(0)->getType(), AS); - } - - if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { - unsigned AS = RMW->getPointerAddressSpace(); - return optimizeMemoryInst(I, RMW->getPointerOperand(), - RMW->getType(), AS); - } - - if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { - unsigned AS = CmpX->getPointerAddressSpace(); - return optimizeMemoryInst(I, CmpX->getPointerOperand(), - CmpX->getCompareOperand()->getType(), AS); - } - - BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); - - if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) - return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); - - // TODO: Move this into the switch on opcode - it handles shifts already. - if (BinOp && (BinOp->getOpcode() == Instruction::AShr || - BinOp->getOpcode() == Instruction::LShr)) { - ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); - if (CI && TLI->hasExtractBitsInsn()) - if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) - return true; - } - - if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { - if (GEPI->hasAllZeroIndices()) { - /// The GEP operand must be a pointer, so must its result -> BitCast - Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), - GEPI->getName(), GEPI); - NC->setDebugLoc(GEPI->getDebugLoc()); - GEPI->replaceAllUsesWith(NC); - GEPI->eraseFromParent(); - ++NumGEPsElim; - optimizeInst(NC, ModifiedDT); - return true; - } - if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { - return true; - } - return false; - } - - if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { - // freeze(icmp a, const)) -> icmp (freeze a), const - // This helps generate efficient conditional jumps. - Instruction *CmpI = nullptr; - if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) - CmpI = II; - else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) - CmpI = F->getFastMathFlags().none() ? F : nullptr; - - if (CmpI && CmpI->hasOneUse()) { - auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); - bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || - isa<ConstantPointerNull>(Op0); - bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || - isa<ConstantPointerNull>(Op1); - if (Const0 || Const1) { - if (!Const0 || !Const1) { - auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); - F->takeName(FI); - CmpI->setOperand(Const0 ? 1 : 0, F); - } - FI->replaceAllUsesWith(CmpI); - FI->eraseFromParent(); - return true; - } - } - return false; - } - - if (tryToSinkFreeOperands(I)) - return true; - - switch (I->getOpcode()) { - case Instruction::Shl: - case Instruction::LShr: - case Instruction::AShr: - return optimizeShiftInst(cast<BinaryOperator>(I)); - case Instruction::Call: - return optimizeCallInst(cast<CallInst>(I), ModifiedDT); - case Instruction::Select: - return optimizeSelectInst(cast<SelectInst>(I)); - case Instruction::ShuffleVector: - return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); - case Instruction::Switch: - return optimizeSwitchInst(cast<SwitchInst>(I)); - case Instruction::ExtractElement: - return optimizeExtractElementInst(cast<ExtractElementInst>(I)); - } - - return false; -} - -/// Given an OR instruction, check to see if this is a bitreverse -/// idiom. If so, insert the new intrinsic and return true. + if (Idx == ExtractIdx) + ConstVec.push_back(Val); + else + ConstVec.push_back(UndefVal); + } + return ConstantVector::get(ConstVec); + } else + llvm_unreachable( + "Generate scalable vector for non-splat is unimplemented"); + } + + /// Check if promoting to a vector type an operand at \p OperandIdx + /// in \p Use can trigger undefined behavior. + static bool canCauseUndefinedBehavior(const Instruction *Use, + unsigned OperandIdx) { + // This is not safe to introduce undef when the operand is on + // the right hand side of a division-like instruction. + if (OperandIdx != 1) + return false; + switch (Use->getOpcode()) { + default: + return false; + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + return true; + case Instruction::FDiv: + case Instruction::FRem: + return !Use->hasNoNaNs(); + } + llvm_unreachable(nullptr); + } + +public: + VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, + const TargetTransformInfo &TTI, Instruction *Transition, + unsigned CombineCost) + : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), + StoreExtractCombineCost(CombineCost) { + assert(Transition && "Do not know how to promote null"); + } + + /// Check if we can promote \p ToBePromoted to \p Type. + bool canPromote(const Instruction *ToBePromoted) const { + // We could support CastInst too. + return isa<BinaryOperator>(ToBePromoted); + } + + /// Check if it is profitable to promote \p ToBePromoted + /// by moving downward the transition through. + bool shouldPromote(const Instruction *ToBePromoted) const { + // Promote only if all the operands can be statically expanded. + // Indeed, we do not want to introduce any new kind of transitions. + for (const Use &U : ToBePromoted->operands()) { + const Value *Val = U.get(); + if (Val == getEndOfTransition()) { + // If the use is a division and the transition is on the rhs, + // we cannot promote the operation, otherwise we may create a + // division by zero. + if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) + return false; + continue; + } + if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && + !isa<ConstantFP>(Val)) + return false; + } + // Check that the resulting operation is legal. + int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); + if (!ISDOpcode) + return false; + return StressStoreExtract || + TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); + } + + /// Check whether or not \p Use can be combined + /// with the transition. + /// I.e., is it possible to do Use(Transition) => AnotherUse? + bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } + + /// Record \p ToBePromoted as part of the chain to be promoted. + void enqueueForPromotion(Instruction *ToBePromoted) { + InstsToBePromoted.push_back(ToBePromoted); + } + + /// Set the instruction that will be combined with the transition. + void recordCombineInstruction(Instruction *ToBeCombined) { + assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); + CombineInst = ToBeCombined; + } + + /// Promote all the instructions enqueued for promotion if it is + /// is profitable. + /// \return True if the promotion happened, false otherwise. + bool promote() { + // Check if there is something to promote. + // Right now, if we do not have anything to combine with, + // we assume the promotion is not profitable. + if (InstsToBePromoted.empty() || !CombineInst) + return false; + + // Check cost. + if (!StressStoreExtract && !isProfitableToPromote()) + return false; + + // Promote. + for (auto &ToBePromoted : InstsToBePromoted) + promoteImpl(ToBePromoted); + InstsToBePromoted.clear(); + return true; + } +}; + +} // end anonymous namespace + +void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { + // At this point, we know that all the operands of ToBePromoted but Def + // can be statically promoted. + // For Def, we need to use its parameter in ToBePromoted: + // b = ToBePromoted ty1 a + // Def = Transition ty1 b to ty2 + // Move the transition down. + // 1. Replace all uses of the promoted operation by the transition. + // = ... b => = ... Def. + assert(ToBePromoted->getType() == Transition->getType() && + "The type of the result of the transition does not match " + "the final type"); + ToBePromoted->replaceAllUsesWith(Transition); + // 2. Update the type of the uses. + // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. + Type *TransitionTy = getTransitionType(); + ToBePromoted->mutateType(TransitionTy); + // 3. Update all the operands of the promoted operation with promoted + // operands. + // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. + for (Use &U : ToBePromoted->operands()) { + Value *Val = U.get(); + Value *NewVal = nullptr; + if (Val == Transition) + NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); + else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || + isa<ConstantFP>(Val)) { + // Use a splat constant if it is not safe to use undef. + NewVal = getConstantVector( + cast<Constant>(Val), + isa<UndefValue>(Val) || + canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); + } else + llvm_unreachable("Did you modified shouldPromote and forgot to update " + "this?"); + ToBePromoted->setOperand(U.getOperandNo(), NewVal); + } + Transition->moveAfter(ToBePromoted); + Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); +} + +/// Some targets can do store(extractelement) with one instruction. +/// Try to push the extractelement towards the stores when the target +/// has this feature and this is profitable. +bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { + unsigned CombineCost = std::numeric_limits<unsigned>::max(); + if (DisableStoreExtract || + (!StressStoreExtract && + !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), + Inst->getOperand(1), CombineCost))) + return false; + + // At this point we know that Inst is a vector to scalar transition. + // Try to move it down the def-use chain, until: + // - We can combine the transition with its single use + // => we got rid of the transition. + // - We escape the current basic block + // => we would need to check that we are moving it at a cheaper place and + // we do not do that for now. + BasicBlock *Parent = Inst->getParent(); + LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); + VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); + // If the transition has more than one use, assume this is not going to be + // beneficial. + while (Inst->hasOneUse()) { + Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); + LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); + + if (ToBePromoted->getParent() != Parent) { + LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" + << ToBePromoted->getParent()->getName() + << ") than the transition (" << Parent->getName() + << ").\n"); + return false; + } + + if (VPH.canCombine(ToBePromoted)) { + LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' + << "will be combined with: " << *ToBePromoted << '\n'); + VPH.recordCombineInstruction(ToBePromoted); + bool Changed = VPH.promote(); + NumStoreExtractExposed += Changed; + return Changed; + } + + LLVM_DEBUG(dbgs() << "Try promoting.\n"); + if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) + return false; + + LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); + + VPH.enqueueForPromotion(ToBePromoted); + Inst = ToBePromoted; + } + return false; +} + +/// For the instruction sequence of store below, F and I values +/// are bundled together as an i64 value before being stored into memory. +/// Sometimes it is more efficient to generate separate stores for F and I, +/// which can remove the bitwise instructions or sink them to colder places. +/// +/// (store (or (zext (bitcast F to i32) to i64), +/// (shl (zext I to i64), 32)), addr) --> +/// (store F, addr) and (store I, addr+4) +/// +/// Similarly, splitting for other merged store can also be beneficial, like: +/// For pair of {i32, i32}, i64 store --> two i32 stores. +/// For pair of {i32, i16}, i64 store --> two i32 stores. +/// For pair of {i16, i16}, i32 store --> two i16 stores. +/// For pair of {i16, i8}, i32 store --> two i16 stores. +/// For pair of {i8, i8}, i16 store --> two i8 stores. +/// +/// We allow each target to determine specifically which kind of splitting is +/// supported. +/// +/// The store patterns are commonly seen from the simple code snippet below +/// if only std::make_pair(...) is sroa transformed before inlined into hoo. +/// void goo(const std::pair<int, float> &); +/// hoo() { +/// ... +/// goo(std::make_pair(tmp, ftmp)); +/// ... +/// } +/// +/// Although we already have similar splitting in DAG Combine, we duplicate +/// it in CodeGenPrepare to catch the case in which pattern is across +/// multiple BBs. The logic in DAG Combine is kept to catch case generated +/// during code expansion. +static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, + const TargetLowering &TLI) { + // Handle simple but common cases only. + Type *StoreType = SI.getValueOperand()->getType(); + + // The code below assumes shifting a value by <number of bits>, + // whereas scalable vectors would have to be shifted by + // <2log(vscale) + number of bits> in order to store the + // low/high parts. Bailing out for now. + if (isa<ScalableVectorType>(StoreType)) + return false; + + if (!DL.typeSizeEqualsStoreSize(StoreType) || + DL.getTypeSizeInBits(StoreType) == 0) + return false; + + unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; + Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); + if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) + return false; + + // Don't split the store if it is volatile. + if (SI.isVolatile()) + return false; + + // Match the following patterns: + // (store (or (zext LValue to i64), + // (shl (zext HValue to i64), 32)), HalfValBitSize) + // or + // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) + // (zext LValue to i64), + // Expect both operands of OR and the first operand of SHL have only + // one use. + Value *LValue, *HValue; + if (!match(SI.getValueOperand(), + m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), + m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), + m_SpecificInt(HalfValBitSize)))))) + return false; + + // Check LValue and HValue are int with size less or equal than 32. + if (!LValue->getType()->isIntegerTy() || + DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || + !HValue->getType()->isIntegerTy() || + DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) + return false; + + // If LValue/HValue is a bitcast instruction, use the EVT before bitcast + // as the input of target query. + auto *LBC = dyn_cast<BitCastInst>(LValue); + auto *HBC = dyn_cast<BitCastInst>(HValue); + EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) + : EVT::getEVT(LValue->getType()); + EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) + : EVT::getEVT(HValue->getType()); + if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) + return false; + + // Start to split store. + IRBuilder<> Builder(SI.getContext()); + Builder.SetInsertPoint(&SI); + + // If LValue/HValue is a bitcast in another BB, create a new one in current + // BB so it may be merged with the splitted stores by dag combiner. + if (LBC && LBC->getParent() != SI.getParent()) + LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); + if (HBC && HBC->getParent() != SI.getParent()) + HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); + + bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); + auto CreateSplitStore = [&](Value *V, bool Upper) { + V = Builder.CreateZExtOrBitCast(V, SplitStoreType); + Value *Addr = Builder.CreateBitCast( + SI.getOperand(1), + SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); + Align Alignment = SI.getAlign(); + const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper); + if (IsOffsetStore) { + Addr = Builder.CreateGEP( + SplitStoreType, Addr, + ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); + + // When splitting the store in half, naturally one half will retain the + // alignment of the original wider store, regardless of whether it was + // over-aligned or not, while the other will require adjustment. + Alignment = commonAlignment(Alignment, HalfValBitSize / 8); + } + Builder.CreateAlignedStore(V, Addr, Alignment); + }; + + CreateSplitStore(LValue, false); + CreateSplitStore(HValue, true); + + // Delete the old store. + SI.eraseFromParent(); + return true; +} + +// Return true if the GEP has two operands, the first operand is of a sequential +// type, and the second operand is a constant. +static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { + gep_type_iterator I = gep_type_begin(*GEP); + return GEP->getNumOperands() == 2 && + I.isSequential() && + isa<ConstantInt>(GEP->getOperand(1)); +} + +// Try unmerging GEPs to reduce liveness interference (register pressure) across +// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, +// reducing liveness interference across those edges benefits global register +// allocation. Currently handles only certain cases. +// +// For example, unmerge %GEPI and %UGEPI as below. +// +// ---------- BEFORE ---------- +// SrcBlock: +// ... +// %GEPIOp = ... +// ... +// %GEPI = gep %GEPIOp, Idx +// ... +// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] +// (* %GEPI is alive on the indirectbr edges due to other uses ahead) +// (* %GEPIOp is alive on the indirectbr edges only because of it's used by +// %UGEPI) +// +// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) +// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) +// ... +// +// DstBi: +// ... +// %UGEPI = gep %GEPIOp, UIdx +// ... +// --------------------------- +// +// ---------- AFTER ---------- +// SrcBlock: +// ... (same as above) +// (* %GEPI is still alive on the indirectbr edges) +// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the +// unmerging) +// ... +// +// DstBi: +// ... +// %UGEPI = gep %GEPI, (UIdx-Idx) +// ... +// --------------------------- +// +// The register pressure on the IndirectBr edges is reduced because %GEPIOp is +// no longer alive on them. +// +// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging +// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as +// not to disable further simplications and optimizations as a result of GEP +// merging. +// +// Note this unmerging may increase the length of the data flow critical path +// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff +// between the register pressure and the length of data-flow critical +// path. Restricting this to the uncommon IndirectBr case would minimize the +// impact of potentially longer critical path, if any, and the impact on compile +// time. +static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, + const TargetTransformInfo *TTI) { + BasicBlock *SrcBlock = GEPI->getParent(); + // Check that SrcBlock ends with an IndirectBr. If not, give up. The common + // (non-IndirectBr) cases exit early here. + if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) + return false; + // Check that GEPI is a simple gep with a single constant index. + if (!GEPSequentialConstIndexed(GEPI)) + return false; + ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); + // Check that GEPI is a cheap one. + if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(), + TargetTransformInfo::TCK_SizeAndLatency) + > TargetTransformInfo::TCC_Basic) + return false; + Value *GEPIOp = GEPI->getOperand(0); + // Check that GEPIOp is an instruction that's also defined in SrcBlock. + if (!isa<Instruction>(GEPIOp)) + return false; + auto *GEPIOpI = cast<Instruction>(GEPIOp); + if (GEPIOpI->getParent() != SrcBlock) + return false; + // Check that GEP is used outside the block, meaning it's alive on the + // IndirectBr edge(s). + if (find_if(GEPI->users(), [&](User *Usr) { + if (auto *I = dyn_cast<Instruction>(Usr)) { + if (I->getParent() != SrcBlock) { + return true; + } + } + return false; + }) == GEPI->users().end()) + return false; + // The second elements of the GEP chains to be unmerged. + std::vector<GetElementPtrInst *> UGEPIs; + // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive + // on IndirectBr edges. + for (User *Usr : GEPIOp->users()) { + if (Usr == GEPI) continue; + // Check if Usr is an Instruction. If not, give up. + if (!isa<Instruction>(Usr)) + return false; + auto *UI = cast<Instruction>(Usr); + // Check if Usr in the same block as GEPIOp, which is fine, skip. + if (UI->getParent() == SrcBlock) + continue; + // Check if Usr is a GEP. If not, give up. + if (!isa<GetElementPtrInst>(Usr)) + return false; + auto *UGEPI = cast<GetElementPtrInst>(Usr); + // Check if UGEPI is a simple gep with a single constant index and GEPIOp is + // the pointer operand to it. If so, record it in the vector. If not, give + // up. + if (!GEPSequentialConstIndexed(UGEPI)) + return false; + if (UGEPI->getOperand(0) != GEPIOp) + return false; + if (GEPIIdx->getType() != + cast<ConstantInt>(UGEPI->getOperand(1))->getType()) + return false; + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(), + TargetTransformInfo::TCK_SizeAndLatency) + > TargetTransformInfo::TCC_Basic) + return false; + UGEPIs.push_back(UGEPI); + } + if (UGEPIs.size() == 0) + return false; + // Check the materializing cost of (Uidx-Idx). + for (GetElementPtrInst *UGEPI : UGEPIs) { + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); + unsigned ImmCost = + TTI->getIntImmCost(NewIdx, GEPIIdx->getType(), + TargetTransformInfo::TCK_SizeAndLatency); + if (ImmCost > TargetTransformInfo::TCC_Basic) + return false; + } + // Now unmerge between GEPI and UGEPIs. + for (GetElementPtrInst *UGEPI : UGEPIs) { + UGEPI->setOperand(0, GEPI); + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + Constant *NewUGEPIIdx = + ConstantInt::get(GEPIIdx->getType(), + UGEPIIdx->getValue() - GEPIIdx->getValue()); + UGEPI->setOperand(1, NewUGEPIIdx); + // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not + // inbounds to avoid UB. + if (!GEPI->isInBounds()) { + UGEPI->setIsInBounds(false); + } + } + // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not + // alive on IndirectBr edges). + assert(find_if(GEPIOp->users(), [&](User *Usr) { + return cast<Instruction>(Usr)->getParent() != SrcBlock; + }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); + return true; +} + +bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { + // Bail out if we inserted the instruction to prevent optimizations from + // stepping on each other's toes. + if (InsertedInsts.count(I)) + return false; + + // TODO: Move into the switch on opcode below here. + if (PHINode *P = dyn_cast<PHINode>(I)) { + // It is possible for very late stage optimizations (such as SimplifyCFG) + // to introduce PHI nodes too late to be cleaned up. If we detect such a + // trivial PHI, go ahead and zap it here. + if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { + LargeOffsetGEPMap.erase(P); + P->replaceAllUsesWith(V); + P->eraseFromParent(); + ++NumPHIsElim; + return true; + } + return false; + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) { + // If the source of the cast is a constant, then this should have + // already been constant folded. The only reason NOT to constant fold + // it is if something (e.g. LSR) was careful to place the constant + // evaluation in a block other than then one that uses it (e.g. to hoist + // the address of globals out of a loop). If this is the case, we don't + // want to forward-subst the cast. + if (isa<Constant>(CI->getOperand(0))) + return false; + + if (OptimizeNoopCopyExpression(CI, *TLI, *DL)) + return true; + + if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { + /// Sink a zext or sext into its user blocks if the target type doesn't + /// fit in one register + if (TLI->getTypeAction(CI->getContext(), + TLI->getValueType(*DL, CI->getType())) == + TargetLowering::TypeExpandInteger) { + return SinkCast(CI); + } else { + bool MadeChange = optimizeExt(I); + return MadeChange | optimizeExtUses(I); + } + } + return false; + } + + if (auto *Cmp = dyn_cast<CmpInst>(I)) + if (optimizeCmp(Cmp, ModifiedDT)) + return true; + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); + bool Modified = optimizeLoadExt(LI); + unsigned AS = LI->getPointerAddressSpace(); + Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); + return Modified; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (splitMergedValStore(*SI, *DL, *TLI)) + return true; + SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); + unsigned AS = SI->getPointerAddressSpace(); + return optimizeMemoryInst(I, SI->getOperand(1), + SI->getOperand(0)->getType(), AS); + } + + if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { + unsigned AS = RMW->getPointerAddressSpace(); + return optimizeMemoryInst(I, RMW->getPointerOperand(), + RMW->getType(), AS); + } + + if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { + unsigned AS = CmpX->getPointerAddressSpace(); + return optimizeMemoryInst(I, CmpX->getPointerOperand(), + CmpX->getCompareOperand()->getType(), AS); + } + + BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); + + if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking) + return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); + + // TODO: Move this into the switch on opcode - it handles shifts already. + if (BinOp && (BinOp->getOpcode() == Instruction::AShr || + BinOp->getOpcode() == Instruction::LShr)) { + ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); + if (CI && TLI->hasExtractBitsInsn()) + if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) + return true; + } + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { + if (GEPI->hasAllZeroIndices()) { + /// The GEP operand must be a pointer, so must its result -> BitCast + Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), + GEPI->getName(), GEPI); + NC->setDebugLoc(GEPI->getDebugLoc()); + GEPI->replaceAllUsesWith(NC); + GEPI->eraseFromParent(); + ++NumGEPsElim; + optimizeInst(NC, ModifiedDT); + return true; + } + if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { + return true; + } + return false; + } + + if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { + // freeze(icmp a, const)) -> icmp (freeze a), const + // This helps generate efficient conditional jumps. + Instruction *CmpI = nullptr; + if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0))) + CmpI = II; + else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0))) + CmpI = F->getFastMathFlags().none() ? F : nullptr; + + if (CmpI && CmpI->hasOneUse()) { + auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1); + bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) || + isa<ConstantPointerNull>(Op0); + bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) || + isa<ConstantPointerNull>(Op1); + if (Const0 || Const1) { + if (!Const0 || !Const1) { + auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI); + F->takeName(FI); + CmpI->setOperand(Const0 ? 1 : 0, F); + } + FI->replaceAllUsesWith(CmpI); + FI->eraseFromParent(); + return true; + } + } + return false; + } + + if (tryToSinkFreeOperands(I)) + return true; + + switch (I->getOpcode()) { + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return optimizeShiftInst(cast<BinaryOperator>(I)); + case Instruction::Call: + return optimizeCallInst(cast<CallInst>(I), ModifiedDT); + case Instruction::Select: + return optimizeSelectInst(cast<SelectInst>(I)); + case Instruction::ShuffleVector: + return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); + case Instruction::Switch: + return optimizeSwitchInst(cast<SwitchInst>(I)); + case Instruction::ExtractElement: + return optimizeExtractElementInst(cast<ExtractElementInst>(I)); + } + + return false; +} + +/// Given an OR instruction, check to see if this is a bitreverse +/// idiom. If so, insert the new intrinsic and return true. bool CodeGenPrepare::makeBitReverse(Instruction &I) { - if (!I.getType()->isIntegerTy() || + if (!I.getType()->isIntegerTy() || !TLI->isOperationLegalOrCustom(ISD::BITREVERSE, TLI->getValueType(*DL, I.getType(), true))) - return false; - - SmallVector<Instruction*, 4> Insts; - if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) - return false; - Instruction *LastInst = Insts.back(); - I.replaceAllUsesWith(LastInst); + return false; + + SmallVector<Instruction*, 4> Insts; + if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) + return false; + Instruction *LastInst = Insts.back(); + I.replaceAllUsesWith(LastInst); RecursivelyDeleteTriviallyDeadInstructions( &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); }); - return true; -} - -// In this pass we look for GEP and cast instructions that are used -// across basic blocks and rewrite them to improve basic-block-at-a-time -// selection. -bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { - SunkAddrs.clear(); - bool MadeChange = false; - - CurInstIterator = BB.begin(); - while (CurInstIterator != BB.end()) { - MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); - if (ModifiedDT) - return true; - } - - bool MadeBitReverse = true; - while (MadeBitReverse) { - MadeBitReverse = false; - for (auto &I : reverse(BB)) { + return true; +} + +// In this pass we look for GEP and cast instructions that are used +// across basic blocks and rewrite them to improve basic-block-at-a-time +// selection. +bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { + SunkAddrs.clear(); + bool MadeChange = false; + + CurInstIterator = BB.begin(); + while (CurInstIterator != BB.end()) { + MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); + if (ModifiedDT) + return true; + } + + bool MadeBitReverse = true; + while (MadeBitReverse) { + MadeBitReverse = false; + for (auto &I : reverse(BB)) { if (makeBitReverse(I)) { - MadeBitReverse = MadeChange = true; - break; - } - } - } - MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); - - return MadeChange; -} - -// Some CGP optimizations may move or alter what's computed in a block. Check -// whether a dbg.value intrinsic could be pointed at a more appropriate operand. -bool CodeGenPrepare::fixupDbgValue(Instruction *I) { - assert(isa<DbgValueInst>(I)); - DbgValueInst &DVI = *cast<DbgValueInst>(I); - - // Does this dbg.value refer to a sunk address calculation? - Value *Location = DVI.getVariableLocation(); - WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; - Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; - if (SunkAddr) { - // Point dbg.value at locally computed address, which should give the best - // opportunity to be accurately lowered. This update may change the type of - // pointer being referred to; however this makes no difference to debugging - // information, and we can't generate bitcasts that may affect codegen. - DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), - ValueAsMetadata::get(SunkAddr))); - return true; - } - return false; -} - -// A llvm.dbg.value may be using a value before its definition, due to -// optimizations in this pass and others. Scan for such dbg.values, and rescue -// them by moving the dbg.value to immediately after the value definition. -// FIXME: Ideally this should never be necessary, and this has the potential -// to re-order dbg.value intrinsics. -bool CodeGenPrepare::placeDbgValues(Function &F) { - bool MadeChange = false; - DominatorTree DT(F); - - for (BasicBlock &BB : F) { - for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { - Instruction *Insn = &*BI++; - DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); - if (!DVI) - continue; - - Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); - - if (!VI || VI->isTerminator()) - continue; - - // If VI is a phi in a block with an EHPad terminator, we can't insert - // after it. - if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) - continue; - - // If the defining instruction dominates the dbg.value, we do not need - // to move the dbg.value. - if (DT.dominates(VI, DVI)) - continue; - - LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" - << *DVI << ' ' << *VI); - DVI->removeFromParent(); - if (isa<PHINode>(VI)) - DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); - else - DVI->insertAfter(VI); - MadeChange = true; - ++NumDbgValueMoved; - } - } - return MadeChange; -} - -/// Scale down both weights to fit into uint32_t. -static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { - uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; - uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; - NewTrue = NewTrue / Scale; - NewFalse = NewFalse / Scale; -} - -/// Some targets prefer to split a conditional branch like: -/// \code -/// %0 = icmp ne i32 %a, 0 -/// %1 = icmp ne i32 %b, 0 -/// %or.cond = or i1 %0, %1 -/// br i1 %or.cond, label %TrueBB, label %FalseBB -/// \endcode -/// into multiple branch instructions like: -/// \code -/// bb1: -/// %0 = icmp ne i32 %a, 0 -/// br i1 %0, label %TrueBB, label %bb2 -/// bb2: -/// %1 = icmp ne i32 %b, 0 -/// br i1 %1, label %TrueBB, label %FalseBB -/// \endcode -/// This usually allows instruction selection to do even further optimizations -/// and combine the compare with the branch instruction. Currently this is -/// applied for targets which have "cheap" jump instructions. -/// -/// FIXME: Remove the (equivalent?) implementation in SelectionDAG. -/// -bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { - if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) - return false; - - bool MadeChange = false; - for (auto &BB : F) { - // Does this BB end with the following? - // %cond1 = icmp|fcmp|binary instruction ... - // %cond2 = icmp|fcmp|binary instruction ... - // %cond.or = or|and i1 %cond1, cond2 - // br i1 %cond.or label %dest1, label %dest2" + MadeBitReverse = MadeChange = true; + break; + } + } + } + MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); + + return MadeChange; +} + +// Some CGP optimizations may move or alter what's computed in a block. Check +// whether a dbg.value intrinsic could be pointed at a more appropriate operand. +bool CodeGenPrepare::fixupDbgValue(Instruction *I) { + assert(isa<DbgValueInst>(I)); + DbgValueInst &DVI = *cast<DbgValueInst>(I); + + // Does this dbg.value refer to a sunk address calculation? + Value *Location = DVI.getVariableLocation(); + WeakTrackingVH SunkAddrVH = SunkAddrs[Location]; + Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; + if (SunkAddr) { + // Point dbg.value at locally computed address, which should give the best + // opportunity to be accurately lowered. This update may change the type of + // pointer being referred to; however this makes no difference to debugging + // information, and we can't generate bitcasts that may affect codegen. + DVI.setOperand(0, MetadataAsValue::get(DVI.getContext(), + ValueAsMetadata::get(SunkAddr))); + return true; + } + return false; +} + +// A llvm.dbg.value may be using a value before its definition, due to +// optimizations in this pass and others. Scan for such dbg.values, and rescue +// them by moving the dbg.value to immediately after the value definition. +// FIXME: Ideally this should never be necessary, and this has the potential +// to re-order dbg.value intrinsics. +bool CodeGenPrepare::placeDbgValues(Function &F) { + bool MadeChange = false; + DominatorTree DT(F); + + for (BasicBlock &BB : F) { + for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { + Instruction *Insn = &*BI++; + DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); + if (!DVI) + continue; + + Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); + + if (!VI || VI->isTerminator()) + continue; + + // If VI is a phi in a block with an EHPad terminator, we can't insert + // after it. + if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) + continue; + + // If the defining instruction dominates the dbg.value, we do not need + // to move the dbg.value. + if (DT.dominates(VI, DVI)) + continue; + + LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" + << *DVI << ' ' << *VI); + DVI->removeFromParent(); + if (isa<PHINode>(VI)) + DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); + else + DVI->insertAfter(VI); + MadeChange = true; + ++NumDbgValueMoved; + } + } + return MadeChange; +} + +/// Scale down both weights to fit into uint32_t. +static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { + uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; + uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; + NewTrue = NewTrue / Scale; + NewFalse = NewFalse / Scale; +} + +/// Some targets prefer to split a conditional branch like: +/// \code +/// %0 = icmp ne i32 %a, 0 +/// %1 = icmp ne i32 %b, 0 +/// %or.cond = or i1 %0, %1 +/// br i1 %or.cond, label %TrueBB, label %FalseBB +/// \endcode +/// into multiple branch instructions like: +/// \code +/// bb1: +/// %0 = icmp ne i32 %a, 0 +/// br i1 %0, label %TrueBB, label %bb2 +/// bb2: +/// %1 = icmp ne i32 %b, 0 +/// br i1 %1, label %TrueBB, label %FalseBB +/// \endcode +/// This usually allows instruction selection to do even further optimizations +/// and combine the compare with the branch instruction. Currently this is +/// applied for targets which have "cheap" jump instructions. +/// +/// FIXME: Remove the (equivalent?) implementation in SelectionDAG. +/// +bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { + if (!TM->Options.EnableFastISel || TLI->isJumpExpensive()) + return false; + + bool MadeChange = false; + for (auto &BB : F) { + // Does this BB end with the following? + // %cond1 = icmp|fcmp|binary instruction ... + // %cond2 = icmp|fcmp|binary instruction ... + // %cond.or = or|and i1 %cond1, cond2 + // br i1 %cond.or label %dest1, label %dest2" Instruction *LogicOp; - BasicBlock *TBB, *FBB; + BasicBlock *TBB, *FBB; if (!match(BB.getTerminator(), m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB))) - continue; - - auto *Br1 = cast<BranchInst>(BB.getTerminator()); - if (Br1->getMetadata(LLVMContext::MD_unpredictable)) - continue; - - // The merging of mostly empty BB can cause a degenerate branch. - if (TBB == FBB) - continue; - - unsigned Opc; - Value *Cond1, *Cond2; + continue; + + auto *Br1 = cast<BranchInst>(BB.getTerminator()); + if (Br1->getMetadata(LLVMContext::MD_unpredictable)) + continue; + + // The merging of mostly empty BB can cause a degenerate branch. + if (TBB == FBB) + continue; + + unsigned Opc; + Value *Cond1, *Cond2; if (match(LogicOp, m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) - Opc = Instruction::And; + Opc = Instruction::And; else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2))))) - Opc = Instruction::Or; - else - continue; - + Opc = Instruction::Or; + else + continue; + auto IsGoodCond = [](Value *Cond) { return match( Cond, @@ -7864,131 +7864,131 @@ bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { m_LogicalOr(m_Value(), m_Value())))); }; if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2)) - continue; - - LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); - - // Create a new BB. - auto *TmpBB = - BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", - BB.getParent(), BB.getNextNode()); - - // Update original basic block by using the first condition directly by the - // branch instruction and removing the no longer needed and/or instruction. - Br1->setCondition(Cond1); - LogicOp->eraseFromParent(); - - // Depending on the condition we have to either replace the true or the - // false successor of the original branch instruction. - if (Opc == Instruction::And) - Br1->setSuccessor(0, TmpBB); - else - Br1->setSuccessor(1, TmpBB); - - // Fill in the new basic block. - auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); - if (auto *I = dyn_cast<Instruction>(Cond2)) { - I->removeFromParent(); - I->insertBefore(Br2); - } - - // Update PHI nodes in both successors. The original BB needs to be - // replaced in one successor's PHI nodes, because the branch comes now from - // the newly generated BB (NewBB). In the other successor we need to add one - // incoming edge to the PHI nodes, because both branch instructions target - // now the same successor. Depending on the original branch condition - // (and/or) we have to swap the successors (TrueDest, FalseDest), so that - // we perform the correct update for the PHI nodes. - // This doesn't change the successor order of the just created branch - // instruction (or any other instruction). - if (Opc == Instruction::Or) - std::swap(TBB, FBB); - - // Replace the old BB with the new BB. - TBB->replacePhiUsesWith(&BB, TmpBB); - - // Add another incoming edge form the new BB. - for (PHINode &PN : FBB->phis()) { - auto *Val = PN.getIncomingValueForBlock(&BB); - PN.addIncoming(Val, TmpBB); - } - - // Update the branch weights (from SelectionDAGBuilder:: - // FindMergedConditions). - if (Opc == Instruction::Or) { - // Codegen X | Y as: - // BB1: - // jmp_if_X TBB - // jmp TmpBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - - // We have flexibility in setting Prob for BB1 and Prob for NewBB. - // The requirement is that - // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) - // = TrueProb for original BB. - // Assuming the original weights are A and B, one choice is to set BB1's - // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice - // assumes that - // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. - // Another choice is to assume TrueProb for BB1 equals to TrueProb for - // TmpBB, but the math is more complicated. - uint64_t TrueWeight, FalseWeight; - if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { - uint64_t NewTrueWeight = TrueWeight; - uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; - scaleWeights(NewTrueWeight, NewFalseWeight); - Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) - .createBranchWeights(TrueWeight, FalseWeight)); - - NewTrueWeight = TrueWeight; - NewFalseWeight = 2 * FalseWeight; - scaleWeights(NewTrueWeight, NewFalseWeight); - Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) - .createBranchWeights(TrueWeight, FalseWeight)); - } - } else { - // Codegen X & Y as: - // BB1: - // jmp_if_X TmpBB - // jmp FBB - // TmpBB: - // jmp_if_Y TBB - // jmp FBB - // - // This requires creation of TmpBB after CurBB. - - // We have flexibility in setting Prob for BB1 and Prob for TmpBB. - // The requirement is that - // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) - // = FalseProb for original BB. - // Assuming the original weights are A and B, one choice is to set BB1's - // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice - // assumes that - // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. - uint64_t TrueWeight, FalseWeight; - if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { - uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; - uint64_t NewFalseWeight = FalseWeight; - scaleWeights(NewTrueWeight, NewFalseWeight); - Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) - .createBranchWeights(TrueWeight, FalseWeight)); - - NewTrueWeight = 2 * TrueWeight; - NewFalseWeight = FalseWeight; - scaleWeights(NewTrueWeight, NewFalseWeight); - Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) - .createBranchWeights(TrueWeight, FalseWeight)); - } - } - - ModifiedDT = true; - MadeChange = true; - - LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); - TmpBB->dump()); - } - return MadeChange; -} + continue; + + LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); + + // Create a new BB. + auto *TmpBB = + BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", + BB.getParent(), BB.getNextNode()); + + // Update original basic block by using the first condition directly by the + // branch instruction and removing the no longer needed and/or instruction. + Br1->setCondition(Cond1); + LogicOp->eraseFromParent(); + + // Depending on the condition we have to either replace the true or the + // false successor of the original branch instruction. + if (Opc == Instruction::And) + Br1->setSuccessor(0, TmpBB); + else + Br1->setSuccessor(1, TmpBB); + + // Fill in the new basic block. + auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); + if (auto *I = dyn_cast<Instruction>(Cond2)) { + I->removeFromParent(); + I->insertBefore(Br2); + } + + // Update PHI nodes in both successors. The original BB needs to be + // replaced in one successor's PHI nodes, because the branch comes now from + // the newly generated BB (NewBB). In the other successor we need to add one + // incoming edge to the PHI nodes, because both branch instructions target + // now the same successor. Depending on the original branch condition + // (and/or) we have to swap the successors (TrueDest, FalseDest), so that + // we perform the correct update for the PHI nodes. + // This doesn't change the successor order of the just created branch + // instruction (or any other instruction). + if (Opc == Instruction::Or) + std::swap(TBB, FBB); + + // Replace the old BB with the new BB. + TBB->replacePhiUsesWith(&BB, TmpBB); + + // Add another incoming edge form the new BB. + for (PHINode &PN : FBB->phis()) { + auto *Val = PN.getIncomingValueForBlock(&BB); + PN.addIncoming(Val, TmpBB); + } + + // Update the branch weights (from SelectionDAGBuilder:: + // FindMergedConditions). + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // BB1: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // We have flexibility in setting Prob for BB1 and Prob for NewBB. + // The requirement is that + // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) + // = TrueProb for original BB. + // Assuming the original weights are A and B, one choice is to set BB1's + // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice + // assumes that + // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. + // Another choice is to assume TrueProb for BB1 equals to TrueProb for + // TmpBB, but the math is more complicated. + uint64_t TrueWeight, FalseWeight; + if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = TrueWeight; + uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = TrueWeight; + NewFalseWeight = 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } else { + // Codegen X & Y as: + // BB1: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // We have flexibility in setting Prob for BB1 and Prob for TmpBB. + // The requirement is that + // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) + // = FalseProb for original BB. + // Assuming the original weights are A and B, one choice is to set BB1's + // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice + // assumes that + // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. + uint64_t TrueWeight, FalseWeight; + if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; + uint64_t NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = 2 * TrueWeight; + NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } + + ModifiedDT = true; + MadeChange = true; + + LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); + TmpBB->dump()); + } + return MadeChange; +} |