aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Analysis/MustExecute.cpp')
-rw-r--r--contrib/libs/llvm12/lib/Analysis/MustExecute.cpp1618
1 files changed, 809 insertions, 809 deletions
diff --git a/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp b/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
index ee5e911ed4..1e7626013e 100644
--- a/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
+++ b/contrib/libs/llvm12/lib/Analysis/MustExecute.cpp
@@ -1,309 +1,309 @@
-//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/MustExecute.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/Analysis/CFG.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/Passes.h"
-#include "llvm/Analysis/PostDominators.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/AssemblyAnnotationWriter.h"
-#include "llvm/IR/DataLayout.h"
+//===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/Passes.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/AssemblyAnnotationWriter.h"
+#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
-#include "llvm/IR/InstIterator.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Module.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/FormattedStream.h"
-#include "llvm/Support/raw_ostream.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "must-execute"
-
-const DenseMap<BasicBlock *, ColorVector> &
-LoopSafetyInfo::getBlockColors() const {
- return BlockColors;
-}
-
-void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
- ColorVector &ColorsForNewBlock = BlockColors[New];
- ColorVector &ColorsForOldBlock = BlockColors[Old];
- ColorsForNewBlock = ColorsForOldBlock;
-}
-
-bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
- (void)BB;
- return anyBlockMayThrow();
-}
-
-bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
- return MayThrow;
-}
-
-void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
- assert(CurLoop != nullptr && "CurLoop can't be null");
- BasicBlock *Header = CurLoop->getHeader();
- // Iterate over header and compute safety info.
- HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
- MayThrow = HeaderMayThrow;
- // Iterate over loop instructions and compute safety info.
- // Skip header as it has been computed and stored in HeaderMayThrow.
- // The first block in loopinfo.Blocks is guaranteed to be the header.
- assert(Header == *CurLoop->getBlocks().begin() &&
- "First block must be header");
- for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
- BBE = CurLoop->block_end();
- (BB != BBE) && !MayThrow; ++BB)
- MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
-
- computeBlockColors(CurLoop);
-}
-
-bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
- return ICF.hasICF(BB);
-}
-
-bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
- return MayThrow;
-}
-
-void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
- assert(CurLoop != nullptr && "CurLoop can't be null");
- ICF.clear();
- MW.clear();
- MayThrow = false;
- // Figure out the fact that at least one block may throw.
- for (auto &BB : CurLoop->blocks())
- if (ICF.hasICF(&*BB)) {
- MayThrow = true;
- break;
- }
- computeBlockColors(CurLoop);
-}
-
-void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
- const BasicBlock *BB) {
- ICF.insertInstructionTo(Inst, BB);
- MW.insertInstructionTo(Inst, BB);
-}
-
-void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
- ICF.removeInstruction(Inst);
- MW.removeInstruction(Inst);
-}
-
-void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
- // Compute funclet colors if we might sink/hoist in a function with a funclet
- // personality routine.
- Function *Fn = CurLoop->getHeader()->getParent();
- if (Fn->hasPersonalityFn())
- if (Constant *PersonalityFn = Fn->getPersonalityFn())
- if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
- BlockColors = colorEHFunclets(*Fn);
-}
-
-/// Return true if we can prove that the given ExitBlock is not reached on the
-/// first iteration of the given loop. That is, the backedge of the loop must
-/// be executed before the ExitBlock is executed in any dynamic execution trace.
-static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
- const DominatorTree *DT,
- const Loop *CurLoop) {
- auto *CondExitBlock = ExitBlock->getSinglePredecessor();
- if (!CondExitBlock)
- // expect unique exits
- return false;
- assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
- auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
- if (!BI || !BI->isConditional())
- return false;
- // If condition is constant and false leads to ExitBlock then we always
- // execute the true branch.
- if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
- return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
- auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
- if (!Cond)
- return false;
- // todo: this would be a lot more powerful if we used scev, but all the
- // plumbing is currently missing to pass a pointer in from the pass
- // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
- auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
- auto *RHS = Cond->getOperand(1);
- if (!LHS || LHS->getParent() != CurLoop->getHeader())
- return false;
- auto DL = ExitBlock->getModule()->getDataLayout();
- auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
- auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
- IVStart, RHS,
- {DL, /*TLI*/ nullptr,
- DT, /*AC*/ nullptr, BI});
- auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
- if (!SimpleCst)
- return false;
- if (ExitBlock == BI->getSuccessor(0))
- return SimpleCst->isZeroValue();
- assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
- return SimpleCst->isAllOnesValue();
-}
-
-/// Collect all blocks from \p CurLoop which lie on all possible paths from
-/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
-/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
-static void collectTransitivePredecessors(
- const Loop *CurLoop, const BasicBlock *BB,
- SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
- assert(Predecessors.empty() && "Garbage in predecessors set?");
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- if (BB == CurLoop->getHeader())
- return;
- SmallVector<const BasicBlock *, 4> WorkList;
- for (auto *Pred : predecessors(BB)) {
- Predecessors.insert(Pred);
- WorkList.push_back(Pred);
- }
- while (!WorkList.empty()) {
- auto *Pred = WorkList.pop_back_val();
- assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
- // We are not interested in backedges and we don't want to leave loop.
- if (Pred == CurLoop->getHeader())
- continue;
- // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
- // blocks of this inner loop, even those that are always executed AFTER the
- // BB. It may make our analysis more conservative than it could be, see test
- // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
- // We can ignore backedge of all loops containing BB to get a sligtly more
- // optimistic result.
- for (auto *PredPred : predecessors(Pred))
- if (Predecessors.insert(PredPred).second)
- WorkList.push_back(PredPred);
- }
-}
-
-bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
- const BasicBlock *BB,
- const DominatorTree *DT) const {
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
-
- // Fast path: header is always reached once the loop is entered.
- if (BB == CurLoop->getHeader())
- return true;
-
- // Collect all transitive predecessors of BB in the same loop. This set will
- // be a subset of the blocks within the loop.
- SmallPtrSet<const BasicBlock *, 4> Predecessors;
- collectTransitivePredecessors(CurLoop, BB, Predecessors);
-
- // Make sure that all successors of, all predecessors of BB which are not
- // dominated by BB, are either:
- // 1) BB,
- // 2) Also predecessors of BB,
- // 3) Exit blocks which are not taken on 1st iteration.
- // Memoize blocks we've already checked.
- SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
- for (auto *Pred : Predecessors) {
- // Predecessor block may throw, so it has a side exit.
- if (blockMayThrow(Pred))
- return false;
-
- // BB dominates Pred, so if Pred runs, BB must run.
- // This is true when Pred is a loop latch.
- if (DT->dominates(BB, Pred))
- continue;
-
- for (auto *Succ : successors(Pred))
- if (CheckedSuccessors.insert(Succ).second &&
- Succ != BB && !Predecessors.count(Succ))
- // By discharging conditions that are not executed on the 1st iteration,
- // we guarantee that *at least* on the first iteration all paths from
- // header that *may* execute will lead us to the block of interest. So
- // that if we had virtually peeled one iteration away, in this peeled
- // iteration the set of predecessors would contain only paths from
- // header to BB without any exiting edges that may execute.
- //
- // TODO: We only do it for exiting edges currently. We could use the
- // same function to skip some of the edges within the loop if we know
- // that they will not be taken on the 1st iteration.
- //
- // TODO: If we somehow know the number of iterations in loop, the same
- // check may be done for any arbitrary N-th iteration as long as N is
- // not greater than minimum number of iterations in this loop.
- if (CurLoop->contains(Succ) ||
- !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
- return false;
- }
-
- // All predecessors can only lead us to BB.
- return true;
-}
-
-/// Returns true if the instruction in a loop is guaranteed to execute at least
-/// once.
-bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop) const {
- // If the instruction is in the header block for the loop (which is very
- // common), it is always guaranteed to dominate the exit blocks. Since this
- // is a common case, and can save some work, check it now.
- if (Inst.getParent() == CurLoop->getHeader())
- // If there's a throw in the header block, we can't guarantee we'll reach
- // Inst unless we can prove that Inst comes before the potential implicit
- // exit. At the moment, we use a (cheap) hack for the common case where
- // the instruction of interest is the first one in the block.
- return !HeaderMayThrow ||
- Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
-
- // If there is a path from header to exit or latch that doesn't lead to our
- // instruction's block, return false.
- return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
-}
-
-bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop) const {
- return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
- allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
-}
-
-bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
- const Loop *CurLoop) const {
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
-
- // Fast path: there are no instructions before header.
- if (BB == CurLoop->getHeader())
- return true;
-
- // Collect all transitive predecessors of BB in the same loop. This set will
- // be a subset of the blocks within the loop.
- SmallPtrSet<const BasicBlock *, 4> Predecessors;
- collectTransitivePredecessors(CurLoop, BB, Predecessors);
- // Find if there any instruction in either predecessor that could write
- // to memory.
- for (auto *Pred : Predecessors)
- if (MW.mayWriteToMemory(Pred))
- return false;
- return true;
-}
-
-bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
- const Loop *CurLoop) const {
- auto *BB = I.getParent();
- assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
- return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
- doesNotWriteMemoryBefore(BB, CurLoop);
-}
-
-namespace {
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/FormattedStream.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "must-execute"
+
+const DenseMap<BasicBlock *, ColorVector> &
+LoopSafetyInfo::getBlockColors() const {
+ return BlockColors;
+}
+
+void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
+ ColorVector &ColorsForNewBlock = BlockColors[New];
+ ColorVector &ColorsForOldBlock = BlockColors[Old];
+ ColorsForNewBlock = ColorsForOldBlock;
+}
+
+bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
+ (void)BB;
+ return anyBlockMayThrow();
+}
+
+bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
+ return MayThrow;
+}
+
+void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
+ assert(CurLoop != nullptr && "CurLoop can't be null");
+ BasicBlock *Header = CurLoop->getHeader();
+ // Iterate over header and compute safety info.
+ HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
+ MayThrow = HeaderMayThrow;
+ // Iterate over loop instructions and compute safety info.
+ // Skip header as it has been computed and stored in HeaderMayThrow.
+ // The first block in loopinfo.Blocks is guaranteed to be the header.
+ assert(Header == *CurLoop->getBlocks().begin() &&
+ "First block must be header");
+ for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
+ BBE = CurLoop->block_end();
+ (BB != BBE) && !MayThrow; ++BB)
+ MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
+
+ computeBlockColors(CurLoop);
+}
+
+bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
+ return ICF.hasICF(BB);
+}
+
+bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
+ return MayThrow;
+}
+
+void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
+ assert(CurLoop != nullptr && "CurLoop can't be null");
+ ICF.clear();
+ MW.clear();
+ MayThrow = false;
+ // Figure out the fact that at least one block may throw.
+ for (auto &BB : CurLoop->blocks())
+ if (ICF.hasICF(&*BB)) {
+ MayThrow = true;
+ break;
+ }
+ computeBlockColors(CurLoop);
+}
+
+void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
+ const BasicBlock *BB) {
+ ICF.insertInstructionTo(Inst, BB);
+ MW.insertInstructionTo(Inst, BB);
+}
+
+void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
+ ICF.removeInstruction(Inst);
+ MW.removeInstruction(Inst);
+}
+
+void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
+ // Compute funclet colors if we might sink/hoist in a function with a funclet
+ // personality routine.
+ Function *Fn = CurLoop->getHeader()->getParent();
+ if (Fn->hasPersonalityFn())
+ if (Constant *PersonalityFn = Fn->getPersonalityFn())
+ if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
+ BlockColors = colorEHFunclets(*Fn);
+}
+
+/// Return true if we can prove that the given ExitBlock is not reached on the
+/// first iteration of the given loop. That is, the backedge of the loop must
+/// be executed before the ExitBlock is executed in any dynamic execution trace.
+static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
+ const DominatorTree *DT,
+ const Loop *CurLoop) {
+ auto *CondExitBlock = ExitBlock->getSinglePredecessor();
+ if (!CondExitBlock)
+ // expect unique exits
+ return false;
+ assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
+ auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
+ if (!BI || !BI->isConditional())
+ return false;
+ // If condition is constant and false leads to ExitBlock then we always
+ // execute the true branch.
+ if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
+ return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
+ auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
+ if (!Cond)
+ return false;
+ // todo: this would be a lot more powerful if we used scev, but all the
+ // plumbing is currently missing to pass a pointer in from the pass
+ // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
+ auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
+ auto *RHS = Cond->getOperand(1);
+ if (!LHS || LHS->getParent() != CurLoop->getHeader())
+ return false;
+ auto DL = ExitBlock->getModule()->getDataLayout();
+ auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
+ auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
+ IVStart, RHS,
+ {DL, /*TLI*/ nullptr,
+ DT, /*AC*/ nullptr, BI});
+ auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
+ if (!SimpleCst)
+ return false;
+ if (ExitBlock == BI->getSuccessor(0))
+ return SimpleCst->isZeroValue();
+ assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
+ return SimpleCst->isAllOnesValue();
+}
+
+/// Collect all blocks from \p CurLoop which lie on all possible paths from
+/// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
+/// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
+static void collectTransitivePredecessors(
+ const Loop *CurLoop, const BasicBlock *BB,
+ SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
+ assert(Predecessors.empty() && "Garbage in predecessors set?");
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+ if (BB == CurLoop->getHeader())
+ return;
+ SmallVector<const BasicBlock *, 4> WorkList;
+ for (auto *Pred : predecessors(BB)) {
+ Predecessors.insert(Pred);
+ WorkList.push_back(Pred);
+ }
+ while (!WorkList.empty()) {
+ auto *Pred = WorkList.pop_back_val();
+ assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
+ // We are not interested in backedges and we don't want to leave loop.
+ if (Pred == CurLoop->getHeader())
+ continue;
+ // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
+ // blocks of this inner loop, even those that are always executed AFTER the
+ // BB. It may make our analysis more conservative than it could be, see test
+ // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
+ // We can ignore backedge of all loops containing BB to get a sligtly more
+ // optimistic result.
+ for (auto *PredPred : predecessors(Pred))
+ if (Predecessors.insert(PredPred).second)
+ WorkList.push_back(PredPred);
+ }
+}
+
+bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
+ const BasicBlock *BB,
+ const DominatorTree *DT) const {
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+
+ // Fast path: header is always reached once the loop is entered.
+ if (BB == CurLoop->getHeader())
+ return true;
+
+ // Collect all transitive predecessors of BB in the same loop. This set will
+ // be a subset of the blocks within the loop.
+ SmallPtrSet<const BasicBlock *, 4> Predecessors;
+ collectTransitivePredecessors(CurLoop, BB, Predecessors);
+
+ // Make sure that all successors of, all predecessors of BB which are not
+ // dominated by BB, are either:
+ // 1) BB,
+ // 2) Also predecessors of BB,
+ // 3) Exit blocks which are not taken on 1st iteration.
+ // Memoize blocks we've already checked.
+ SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
+ for (auto *Pred : Predecessors) {
+ // Predecessor block may throw, so it has a side exit.
+ if (blockMayThrow(Pred))
+ return false;
+
+ // BB dominates Pred, so if Pred runs, BB must run.
+ // This is true when Pred is a loop latch.
+ if (DT->dominates(BB, Pred))
+ continue;
+
+ for (auto *Succ : successors(Pred))
+ if (CheckedSuccessors.insert(Succ).second &&
+ Succ != BB && !Predecessors.count(Succ))
+ // By discharging conditions that are not executed on the 1st iteration,
+ // we guarantee that *at least* on the first iteration all paths from
+ // header that *may* execute will lead us to the block of interest. So
+ // that if we had virtually peeled one iteration away, in this peeled
+ // iteration the set of predecessors would contain only paths from
+ // header to BB without any exiting edges that may execute.
+ //
+ // TODO: We only do it for exiting edges currently. We could use the
+ // same function to skip some of the edges within the loop if we know
+ // that they will not be taken on the 1st iteration.
+ //
+ // TODO: If we somehow know the number of iterations in loop, the same
+ // check may be done for any arbitrary N-th iteration as long as N is
+ // not greater than minimum number of iterations in this loop.
+ if (CurLoop->contains(Succ) ||
+ !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
+ return false;
+ }
+
+ // All predecessors can only lead us to BB.
+ return true;
+}
+
+/// Returns true if the instruction in a loop is guaranteed to execute at least
+/// once.
+bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop) const {
+ // If the instruction is in the header block for the loop (which is very
+ // common), it is always guaranteed to dominate the exit blocks. Since this
+ // is a common case, and can save some work, check it now.
+ if (Inst.getParent() == CurLoop->getHeader())
+ // If there's a throw in the header block, we can't guarantee we'll reach
+ // Inst unless we can prove that Inst comes before the potential implicit
+ // exit. At the moment, we use a (cheap) hack for the common case where
+ // the instruction of interest is the first one in the block.
+ return !HeaderMayThrow ||
+ Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
+
+ // If there is a path from header to exit or latch that doesn't lead to our
+ // instruction's block, return false.
+ return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
+}
+
+bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop) const {
+ return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
+ allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
+}
+
+bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
+ const Loop *CurLoop) const {
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+
+ // Fast path: there are no instructions before header.
+ if (BB == CurLoop->getHeader())
+ return true;
+
+ // Collect all transitive predecessors of BB in the same loop. This set will
+ // be a subset of the blocks within the loop.
+ SmallPtrSet<const BasicBlock *, 4> Predecessors;
+ collectTransitivePredecessors(CurLoop, BB, Predecessors);
+ // Find if there any instruction in either predecessor that could write
+ // to memory.
+ for (auto *Pred : Predecessors)
+ if (MW.mayWriteToMemory(Pred))
+ return false;
+ return true;
+}
+
+bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
+ const Loop *CurLoop) const {
+ auto *BB = I.getParent();
+ assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
+ return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
+ doesNotWriteMemoryBefore(BB, CurLoop);
+}
+
+namespace {
struct MustExecutePrinter : public FunctionPass {
-
+
static char ID; // Pass identification, replacement for typeid
MustExecutePrinter() : FunctionPass(ID) {
initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
@@ -317,7 +317,7 @@ struct MustExecutePrinter : public FunctionPass {
};
struct MustBeExecutedContextPrinter : public ModulePass {
static char ID;
-
+
MustBeExecutedContextPrinter() : ModulePass(ID) {
initializeMustBeExecutedContextPrinterPass(
*PassRegistry::getPassRegistry());
@@ -327,517 +327,517 @@ struct MustBeExecutedContextPrinter : public ModulePass {
}
bool runOnModule(Module &M) override;
};
-}
-
-char MustExecutePrinter::ID = 0;
-INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
- "Instructions which execute on loop entry", false, true)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
- "Instructions which execute on loop entry", false, true)
-
-FunctionPass *llvm::createMustExecutePrinter() {
- return new MustExecutePrinter();
-}
-
-char MustBeExecutedContextPrinter::ID = 0;
+}
+
+char MustExecutePrinter::ID = 0;
+INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
+ "Instructions which execute on loop entry", false, true)
+
+FunctionPass *llvm::createMustExecutePrinter() {
+ return new MustExecutePrinter();
+}
+
+char MustBeExecutedContextPrinter::ID = 0;
INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
"print-must-be-executed-contexts",
"print the must-be-executed-context for all instructions",
false, true)
-INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
-INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
- "print-must-be-executed-contexts",
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
+ "print-must-be-executed-contexts",
"print the must-be-executed-context for all instructions",
- false, true)
-
-ModulePass *llvm::createMustBeExecutedContextPrinter() {
- return new MustBeExecutedContextPrinter();
-}
-
-bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
- // We provide non-PM analysis here because the old PM doesn't like to query
- // function passes from a module pass.
- SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
- SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
- SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
-
- GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
- DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
- LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
- return LIs.back().get();
- };
- GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
- DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
- return DTs.back().get();
- };
- GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
- PDTs.push_back(
- std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
- return PDTs.back().get();
- };
- MustBeExecutedContextExplorer Explorer(
- /* ExploreInterBlock */ true,
- /* ExploreCFGForward */ true,
- /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
-
- for (Function &F : M) {
- for (Instruction &I : instructions(F)) {
- dbgs() << "-- Explore context of: " << I << "\n";
- for (const Instruction *CI : Explorer.range(&I))
- dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
- << "\n";
- }
- }
-
- return false;
-}
-
-static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
- // TODO: merge these two routines. For the moment, we display the best
- // result obtained by *either* implementation. This is a bit unfair since no
- // caller actually gets the full power at the moment.
- SimpleLoopSafetyInfo LSI;
- LSI.computeLoopSafetyInfo(L);
- return LSI.isGuaranteedToExecute(I, DT, L) ||
- isGuaranteedToExecuteForEveryIteration(&I, L);
-}
-
-namespace {
-/// An assembly annotator class to print must execute information in
-/// comments.
-class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
- DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
-
-public:
- MustExecuteAnnotatedWriter(const Function &F,
- DominatorTree &DT, LoopInfo &LI) {
- for (auto &I: instructions(F)) {
- Loop *L = LI.getLoopFor(I.getParent());
- while (L) {
- if (isMustExecuteIn(I, L, &DT)) {
- MustExec[&I].push_back(L);
- }
- L = L->getParentLoop();
- };
- }
- }
- MustExecuteAnnotatedWriter(const Module &M,
- DominatorTree &DT, LoopInfo &LI) {
- for (auto &F : M)
- for (auto &I: instructions(F)) {
- Loop *L = LI.getLoopFor(I.getParent());
- while (L) {
- if (isMustExecuteIn(I, L, &DT)) {
- MustExec[&I].push_back(L);
- }
- L = L->getParentLoop();
- };
- }
- }
-
-
- void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
- if (!MustExec.count(&V))
- return;
-
- const auto &Loops = MustExec.lookup(&V);
- const auto NumLoops = Loops.size();
- if (NumLoops > 1)
- OS << " ; (mustexec in " << NumLoops << " loops: ";
- else
- OS << " ; (mustexec in: ";
-
- bool first = true;
- for (const Loop *L : Loops) {
- if (!first)
- OS << ", ";
- first = false;
- OS << L->getHeader()->getName();
- }
- OS << ")";
- }
-};
-} // namespace
-
-bool MustExecutePrinter::runOnFunction(Function &F) {
- auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
- auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
-
- MustExecuteAnnotatedWriter Writer(F, DT, LI);
- F.print(dbgs(), &Writer);
-
- return false;
-}
-
-/// Return true if \p L might be an endless loop.
-static bool maybeEndlessLoop(const Loop &L) {
- if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
- return false;
- // TODO: Actually try to prove it is not.
- // TODO: If maybeEndlessLoop is going to be expensive, cache it.
- return true;
-}
-
-bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
- if (!LI)
- return false;
- using RPOTraversal = ReversePostOrderTraversal<const Function *>;
- RPOTraversal FuncRPOT(&F);
- return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
- const LoopInfo>(FuncRPOT, *LI);
-}
-
-/// Lookup \p Key in \p Map and return the result, potentially after
-/// initializing the optional through \p Fn(\p args).
-template <typename K, typename V, typename FnTy, typename... ArgsTy>
-static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
- FnTy &&Fn, ArgsTy&&... args) {
- Optional<V> &OptVal = Map[Key];
- if (!OptVal.hasValue())
- OptVal = Fn(std::forward<ArgsTy>(args)...);
- return OptVal.getValue();
-}
-
-const BasicBlock *
-MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
- const LoopInfo *LI = LIGetter(*InitBB->getParent());
- const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
-
- LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
- << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
-
- const Function &F = *InitBB->getParent();
- const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
- const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
- bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
- (L && !maybeEndlessLoop(*L))) &&
- F.doesNotThrow();
- LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
- << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
- << "\n");
-
- // Determine the adjacent blocks in the given direction but exclude (self)
- // loops under certain circumstances.
- SmallVector<const BasicBlock *, 8> Worklist;
- for (const BasicBlock *SuccBB : successors(InitBB)) {
- bool IsLatch = SuccBB == HeaderBB;
- // Loop latches are ignored in forward propagation if the loop cannot be
- // endless and may not throw: control has to go somewhere.
- if (!WillReturnAndNoThrow || !IsLatch)
- Worklist.push_back(SuccBB);
- }
- LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
-
- // If there are no other adjacent blocks, there is no join point.
- if (Worklist.empty())
- return nullptr;
-
- // If there is one adjacent block, it is the join point.
- if (Worklist.size() == 1)
- return Worklist[0];
-
- // Try to determine a join block through the help of the post-dominance
- // tree. If no tree was provided, we perform simple pattern matching for one
- // block conditionals and one block loops only.
- const BasicBlock *JoinBB = nullptr;
- if (PDT)
- if (const auto *InitNode = PDT->getNode(InitBB))
- if (const auto *IDomNode = InitNode->getIDom())
- JoinBB = IDomNode->getBlock();
-
- if (!JoinBB && Worklist.size() == 2) {
- const BasicBlock *Succ0 = Worklist[0];
- const BasicBlock *Succ1 = Worklist[1];
- const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
- const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
- if (Succ0UniqueSucc == InitBB) {
- // InitBB -> Succ0 -> InitBB
- // InitBB -> Succ1 = JoinBB
- JoinBB = Succ1;
- } else if (Succ1UniqueSucc == InitBB) {
- // InitBB -> Succ1 -> InitBB
- // InitBB -> Succ0 = JoinBB
- JoinBB = Succ0;
- } else if (Succ0 == Succ1UniqueSucc) {
- // InitBB -> Succ0 = JoinBB
- // InitBB -> Succ1 -> Succ0 = JoinBB
- JoinBB = Succ0;
- } else if (Succ1 == Succ0UniqueSucc) {
- // InitBB -> Succ0 -> Succ1 = JoinBB
- // InitBB -> Succ1 = JoinBB
- JoinBB = Succ1;
- } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
- // InitBB -> Succ0 -> JoinBB
- // InitBB -> Succ1 -> JoinBB
- JoinBB = Succ0UniqueSucc;
- }
- }
-
- if (!JoinBB && L)
- JoinBB = L->getUniqueExitBlock();
-
- if (!JoinBB)
- return nullptr;
-
- LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
-
- // In forward direction we check if control will for sure reach JoinBB from
- // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
- // are: infinite loops and instructions that do not necessarily transfer
- // execution to their successor. To check for them we traverse the CFG from
- // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
-
- // If we know the function is "will-return" and "no-throw" there is no need
- // for futher checks.
- if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
-
- auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
- return isGuaranteedToTransferExecutionToSuccessor(BB);
- };
-
- SmallPtrSet<const BasicBlock *, 16> Visited;
- while (!Worklist.empty()) {
- const BasicBlock *ToBB = Worklist.pop_back_val();
- if (ToBB == JoinBB)
- continue;
-
- // Make sure all loops in-between are finite.
- if (!Visited.insert(ToBB).second) {
- if (!F.hasFnAttribute(Attribute::WillReturn)) {
- if (!LI)
- return nullptr;
-
- bool MayContainIrreducibleControl = getOrCreateCachedOptional(
- &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
- if (MayContainIrreducibleControl)
- return nullptr;
-
- const Loop *L = LI->getLoopFor(ToBB);
- if (L && maybeEndlessLoop(*L))
- return nullptr;
- }
-
- continue;
- }
-
- // Make sure the block has no instructions that could stop control
- // transfer.
- bool TransfersExecution = getOrCreateCachedOptional(
- ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
- if (!TransfersExecution)
- return nullptr;
-
+ false, true)
+
+ModulePass *llvm::createMustBeExecutedContextPrinter() {
+ return new MustBeExecutedContextPrinter();
+}
+
+bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
+ // We provide non-PM analysis here because the old PM doesn't like to query
+ // function passes from a module pass.
+ SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
+ SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
+ SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
+
+ GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
+ DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
+ LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
+ return LIs.back().get();
+ };
+ GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
+ DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
+ return DTs.back().get();
+ };
+ GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
+ PDTs.push_back(
+ std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
+ return PDTs.back().get();
+ };
+ MustBeExecutedContextExplorer Explorer(
+ /* ExploreInterBlock */ true,
+ /* ExploreCFGForward */ true,
+ /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
+
+ for (Function &F : M) {
+ for (Instruction &I : instructions(F)) {
+ dbgs() << "-- Explore context of: " << I << "\n";
+ for (const Instruction *CI : Explorer.range(&I))
+ dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
+ << "\n";
+ }
+ }
+
+ return false;
+}
+
+static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
+ // TODO: merge these two routines. For the moment, we display the best
+ // result obtained by *either* implementation. This is a bit unfair since no
+ // caller actually gets the full power at the moment.
+ SimpleLoopSafetyInfo LSI;
+ LSI.computeLoopSafetyInfo(L);
+ return LSI.isGuaranteedToExecute(I, DT, L) ||
+ isGuaranteedToExecuteForEveryIteration(&I, L);
+}
+
+namespace {
+/// An assembly annotator class to print must execute information in
+/// comments.
+class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
+ DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
+
+public:
+ MustExecuteAnnotatedWriter(const Function &F,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+ MustExecuteAnnotatedWriter(const Module &M,
+ DominatorTree &DT, LoopInfo &LI) {
+ for (auto &F : M)
+ for (auto &I: instructions(F)) {
+ Loop *L = LI.getLoopFor(I.getParent());
+ while (L) {
+ if (isMustExecuteIn(I, L, &DT)) {
+ MustExec[&I].push_back(L);
+ }
+ L = L->getParentLoop();
+ };
+ }
+ }
+
+
+ void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
+ if (!MustExec.count(&V))
+ return;
+
+ const auto &Loops = MustExec.lookup(&V);
+ const auto NumLoops = Loops.size();
+ if (NumLoops > 1)
+ OS << " ; (mustexec in " << NumLoops << " loops: ";
+ else
+ OS << " ; (mustexec in: ";
+
+ bool first = true;
+ for (const Loop *L : Loops) {
+ if (!first)
+ OS << ", ";
+ first = false;
+ OS << L->getHeader()->getName();
+ }
+ OS << ")";
+ }
+};
+} // namespace
+
+bool MustExecutePrinter::runOnFunction(Function &F) {
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ MustExecuteAnnotatedWriter Writer(F, DT, LI);
+ F.print(dbgs(), &Writer);
+
+ return false;
+}
+
+/// Return true if \p L might be an endless loop.
+static bool maybeEndlessLoop(const Loop &L) {
+ if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
+ return false;
+ // TODO: Actually try to prove it is not.
+ // TODO: If maybeEndlessLoop is going to be expensive, cache it.
+ return true;
+}
+
+bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
+ if (!LI)
+ return false;
+ using RPOTraversal = ReversePostOrderTraversal<const Function *>;
+ RPOTraversal FuncRPOT(&F);
+ return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
+ const LoopInfo>(FuncRPOT, *LI);
+}
+
+/// Lookup \p Key in \p Map and return the result, potentially after
+/// initializing the optional through \p Fn(\p args).
+template <typename K, typename V, typename FnTy, typename... ArgsTy>
+static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
+ FnTy &&Fn, ArgsTy&&... args) {
+ Optional<V> &OptVal = Map[Key];
+ if (!OptVal.hasValue())
+ OptVal = Fn(std::forward<ArgsTy>(args)...);
+ return OptVal.getValue();
+}
+
+const BasicBlock *
+MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
+ const LoopInfo *LI = LIGetter(*InitBB->getParent());
+ const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
+
+ LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
+ << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
+
+ const Function &F = *InitBB->getParent();
+ const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
+ const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
+ bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
+ (L && !maybeEndlessLoop(*L))) &&
+ F.doesNotThrow();
+ LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
+ << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
+ << "\n");
+
+ // Determine the adjacent blocks in the given direction but exclude (self)
+ // loops under certain circumstances.
+ SmallVector<const BasicBlock *, 8> Worklist;
+ for (const BasicBlock *SuccBB : successors(InitBB)) {
+ bool IsLatch = SuccBB == HeaderBB;
+ // Loop latches are ignored in forward propagation if the loop cannot be
+ // endless and may not throw: control has to go somewhere.
+ if (!WillReturnAndNoThrow || !IsLatch)
+ Worklist.push_back(SuccBB);
+ }
+ LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
+
+ // If there are no other adjacent blocks, there is no join point.
+ if (Worklist.empty())
+ return nullptr;
+
+ // If there is one adjacent block, it is the join point.
+ if (Worklist.size() == 1)
+ return Worklist[0];
+
+ // Try to determine a join block through the help of the post-dominance
+ // tree. If no tree was provided, we perform simple pattern matching for one
+ // block conditionals and one block loops only.
+ const BasicBlock *JoinBB = nullptr;
+ if (PDT)
+ if (const auto *InitNode = PDT->getNode(InitBB))
+ if (const auto *IDomNode = InitNode->getIDom())
+ JoinBB = IDomNode->getBlock();
+
+ if (!JoinBB && Worklist.size() == 2) {
+ const BasicBlock *Succ0 = Worklist[0];
+ const BasicBlock *Succ1 = Worklist[1];
+ const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
+ const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
+ if (Succ0UniqueSucc == InitBB) {
+ // InitBB -> Succ0 -> InitBB
+ // InitBB -> Succ1 = JoinBB
+ JoinBB = Succ1;
+ } else if (Succ1UniqueSucc == InitBB) {
+ // InitBB -> Succ1 -> InitBB
+ // InitBB -> Succ0 = JoinBB
+ JoinBB = Succ0;
+ } else if (Succ0 == Succ1UniqueSucc) {
+ // InitBB -> Succ0 = JoinBB
+ // InitBB -> Succ1 -> Succ0 = JoinBB
+ JoinBB = Succ0;
+ } else if (Succ1 == Succ0UniqueSucc) {
+ // InitBB -> Succ0 -> Succ1 = JoinBB
+ // InitBB -> Succ1 = JoinBB
+ JoinBB = Succ1;
+ } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
+ // InitBB -> Succ0 -> JoinBB
+ // InitBB -> Succ1 -> JoinBB
+ JoinBB = Succ0UniqueSucc;
+ }
+ }
+
+ if (!JoinBB && L)
+ JoinBB = L->getUniqueExitBlock();
+
+ if (!JoinBB)
+ return nullptr;
+
+ LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
+
+ // In forward direction we check if control will for sure reach JoinBB from
+ // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
+ // are: infinite loops and instructions that do not necessarily transfer
+ // execution to their successor. To check for them we traverse the CFG from
+ // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
+
+ // If we know the function is "will-return" and "no-throw" there is no need
+ // for futher checks.
+ if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
+
+ auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
+ return isGuaranteedToTransferExecutionToSuccessor(BB);
+ };
+
+ SmallPtrSet<const BasicBlock *, 16> Visited;
+ while (!Worklist.empty()) {
+ const BasicBlock *ToBB = Worklist.pop_back_val();
+ if (ToBB == JoinBB)
+ continue;
+
+ // Make sure all loops in-between are finite.
+ if (!Visited.insert(ToBB).second) {
+ if (!F.hasFnAttribute(Attribute::WillReturn)) {
+ if (!LI)
+ return nullptr;
+
+ bool MayContainIrreducibleControl = getOrCreateCachedOptional(
+ &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
+ if (MayContainIrreducibleControl)
+ return nullptr;
+
+ const Loop *L = LI->getLoopFor(ToBB);
+ if (L && maybeEndlessLoop(*L))
+ return nullptr;
+ }
+
+ continue;
+ }
+
+ // Make sure the block has no instructions that could stop control
+ // transfer.
+ bool TransfersExecution = getOrCreateCachedOptional(
+ ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
+ if (!TransfersExecution)
+ return nullptr;
+
append_range(Worklist, successors(ToBB));
- }
- }
-
- LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
- return JoinBB;
-}
-const BasicBlock *
-MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
- const LoopInfo *LI = LIGetter(*InitBB->getParent());
- const DominatorTree *DT = DTGetter(*InitBB->getParent());
- LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
- << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
-
- // Try to determine a join block through the help of the dominance tree. If no
- // tree was provided, we perform simple pattern matching for one block
- // conditionals only.
- if (DT)
- if (const auto *InitNode = DT->getNode(InitBB))
- if (const auto *IDomNode = InitNode->getIDom())
- return IDomNode->getBlock();
-
- const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
- const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
-
- // Determine the predecessor blocks but ignore backedges.
- SmallVector<const BasicBlock *, 8> Worklist;
- for (const BasicBlock *PredBB : predecessors(InitBB)) {
- bool IsBackedge =
- (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
- // Loop backedges are ignored in backwards propagation: control has to come
- // from somewhere.
- if (!IsBackedge)
- Worklist.push_back(PredBB);
- }
-
- // If there are no other predecessor blocks, there is no join point.
- if (Worklist.empty())
- return nullptr;
-
- // If there is one predecessor block, it is the join point.
- if (Worklist.size() == 1)
- return Worklist[0];
-
- const BasicBlock *JoinBB = nullptr;
- if (Worklist.size() == 2) {
- const BasicBlock *Pred0 = Worklist[0];
- const BasicBlock *Pred1 = Worklist[1];
- const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
- const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
- if (Pred0 == Pred1UniquePred) {
- // InitBB <- Pred0 = JoinBB
- // InitBB <- Pred1 <- Pred0 = JoinBB
- JoinBB = Pred0;
- } else if (Pred1 == Pred0UniquePred) {
- // InitBB <- Pred0 <- Pred1 = JoinBB
- // InitBB <- Pred1 = JoinBB
- JoinBB = Pred1;
- } else if (Pred0UniquePred == Pred1UniquePred) {
- // InitBB <- Pred0 <- JoinBB
- // InitBB <- Pred1 <- JoinBB
- JoinBB = Pred0UniquePred;
- }
- }
-
- if (!JoinBB && L)
- JoinBB = L->getHeader();
-
- // In backwards direction there is no need to show termination of previous
- // instructions. If they do not terminate, the code afterward is dead, making
- // any information/transformation correct anyway.
- return JoinBB;
-}
-
-const Instruction *
-MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
- MustBeExecutedIterator &It, const Instruction *PP) {
- if (!PP)
- return PP;
- LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
-
- // If we explore only inside a given basic block we stop at terminators.
- if (!ExploreInterBlock && PP->isTerminator()) {
- LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
- return nullptr;
- }
-
- // If we do not traverse the call graph we check if we can make progress in
- // the current function. First, check if the instruction is guaranteed to
- // transfer execution to the successor.
- bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
- if (!TransfersExecution)
- return nullptr;
-
- // If this is not a terminator we know that there is a single instruction
- // after this one that is executed next if control is transfered. If not,
- // we can try to go back to a call site we entered earlier. If none exists, we
- // do not know any instruction that has to be executd next.
- if (!PP->isTerminator()) {
- const Instruction *NextPP = PP->getNextNode();
- LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
- return NextPP;
- }
-
- // Finally, we have to handle terminators, trivial ones first.
- assert(PP->isTerminator() && "Expected a terminator!");
-
- // A terminator without a successor is not handled yet.
- if (PP->getNumSuccessors() == 0) {
- LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
- return nullptr;
- }
-
- // A terminator with a single successor, we will continue at the beginning of
- // that one.
- if (PP->getNumSuccessors() == 1) {
- LLVM_DEBUG(
- dbgs() << "\tUnconditional terminator, continue with successor\n");
- return &PP->getSuccessor(0)->front();
- }
-
- // Multiple successors mean we need to find the join point where control flow
- // converges again. We use the findForwardJoinPoint helper function with
- // information about the function and helper analyses, if available.
- if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
- return &JoinBB->front();
-
- LLVM_DEBUG(dbgs() << "\tNo join point found\n");
- return nullptr;
-}
-
-const Instruction *
-MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
- MustBeExecutedIterator &It, const Instruction *PP) {
- if (!PP)
- return PP;
-
- bool IsFirst = !(PP->getPrevNode());
- LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
- << (IsFirst ? " [IsFirst]" : "") << "\n");
-
- // If we explore only inside a given basic block we stop at the first
- // instruction.
- if (!ExploreInterBlock && IsFirst) {
- LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
- return nullptr;
- }
-
- // The block and function that contains the current position.
- const BasicBlock *PPBlock = PP->getParent();
-
- // If we are inside a block we know what instruction was executed before, the
- // previous one.
- if (!IsFirst) {
- const Instruction *PrevPP = PP->getPrevNode();
- LLVM_DEBUG(
- dbgs() << "\tIntermediate instruction, continue with previous\n");
- // We did not enter a callee so we simply return the previous instruction.
- return PrevPP;
- }
-
- // Finally, we have to handle the case where the program point is the first in
- // a block but not in the function. We use the findBackwardJoinPoint helper
- // function with information about the function and helper analyses, if
- // available.
- if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
- return &JoinBB->back();
-
- LLVM_DEBUG(dbgs() << "\tNo join point found\n");
- return nullptr;
-}
-
-MustBeExecutedIterator::MustBeExecutedIterator(
- MustBeExecutedContextExplorer &Explorer, const Instruction *I)
- : Explorer(Explorer), CurInst(I) {
- reset(I);
-}
-
-void MustBeExecutedIterator::reset(const Instruction *I) {
- Visited.clear();
- resetInstruction(I);
-}
-
-void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
- CurInst = I;
- Head = Tail = nullptr;
- Visited.insert({I, ExplorationDirection::FORWARD});
- Visited.insert({I, ExplorationDirection::BACKWARD});
- if (Explorer.ExploreCFGForward)
- Head = I;
- if (Explorer.ExploreCFGBackward)
- Tail = I;
-}
-
-const Instruction *MustBeExecutedIterator::advance() {
- assert(CurInst && "Cannot advance an end iterator!");
- Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
- if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
- return Head;
- Head = nullptr;
-
- Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
- if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
- return Tail;
- Tail = nullptr;
- return nullptr;
-}
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
+ return JoinBB;
+}
+const BasicBlock *
+MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
+ const LoopInfo *LI = LIGetter(*InitBB->getParent());
+ const DominatorTree *DT = DTGetter(*InitBB->getParent());
+ LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
+ << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
+
+ // Try to determine a join block through the help of the dominance tree. If no
+ // tree was provided, we perform simple pattern matching for one block
+ // conditionals only.
+ if (DT)
+ if (const auto *InitNode = DT->getNode(InitBB))
+ if (const auto *IDomNode = InitNode->getIDom())
+ return IDomNode->getBlock();
+
+ const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
+ const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
+
+ // Determine the predecessor blocks but ignore backedges.
+ SmallVector<const BasicBlock *, 8> Worklist;
+ for (const BasicBlock *PredBB : predecessors(InitBB)) {
+ bool IsBackedge =
+ (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
+ // Loop backedges are ignored in backwards propagation: control has to come
+ // from somewhere.
+ if (!IsBackedge)
+ Worklist.push_back(PredBB);
+ }
+
+ // If there are no other predecessor blocks, there is no join point.
+ if (Worklist.empty())
+ return nullptr;
+
+ // If there is one predecessor block, it is the join point.
+ if (Worklist.size() == 1)
+ return Worklist[0];
+
+ const BasicBlock *JoinBB = nullptr;
+ if (Worklist.size() == 2) {
+ const BasicBlock *Pred0 = Worklist[0];
+ const BasicBlock *Pred1 = Worklist[1];
+ const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
+ const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
+ if (Pred0 == Pred1UniquePred) {
+ // InitBB <- Pred0 = JoinBB
+ // InitBB <- Pred1 <- Pred0 = JoinBB
+ JoinBB = Pred0;
+ } else if (Pred1 == Pred0UniquePred) {
+ // InitBB <- Pred0 <- Pred1 = JoinBB
+ // InitBB <- Pred1 = JoinBB
+ JoinBB = Pred1;
+ } else if (Pred0UniquePred == Pred1UniquePred) {
+ // InitBB <- Pred0 <- JoinBB
+ // InitBB <- Pred1 <- JoinBB
+ JoinBB = Pred0UniquePred;
+ }
+ }
+
+ if (!JoinBB && L)
+ JoinBB = L->getHeader();
+
+ // In backwards direction there is no need to show termination of previous
+ // instructions. If they do not terminate, the code afterward is dead, making
+ // any information/transformation correct anyway.
+ return JoinBB;
+}
+
+const Instruction *
+MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
+ MustBeExecutedIterator &It, const Instruction *PP) {
+ if (!PP)
+ return PP;
+ LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
+
+ // If we explore only inside a given basic block we stop at terminators.
+ if (!ExploreInterBlock && PP->isTerminator()) {
+ LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
+ return nullptr;
+ }
+
+ // If we do not traverse the call graph we check if we can make progress in
+ // the current function. First, check if the instruction is guaranteed to
+ // transfer execution to the successor.
+ bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
+ if (!TransfersExecution)
+ return nullptr;
+
+ // If this is not a terminator we know that there is a single instruction
+ // after this one that is executed next if control is transfered. If not,
+ // we can try to go back to a call site we entered earlier. If none exists, we
+ // do not know any instruction that has to be executd next.
+ if (!PP->isTerminator()) {
+ const Instruction *NextPP = PP->getNextNode();
+ LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
+ return NextPP;
+ }
+
+ // Finally, we have to handle terminators, trivial ones first.
+ assert(PP->isTerminator() && "Expected a terminator!");
+
+ // A terminator without a successor is not handled yet.
+ if (PP->getNumSuccessors() == 0) {
+ LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
+ return nullptr;
+ }
+
+ // A terminator with a single successor, we will continue at the beginning of
+ // that one.
+ if (PP->getNumSuccessors() == 1) {
+ LLVM_DEBUG(
+ dbgs() << "\tUnconditional terminator, continue with successor\n");
+ return &PP->getSuccessor(0)->front();
+ }
+
+ // Multiple successors mean we need to find the join point where control flow
+ // converges again. We use the findForwardJoinPoint helper function with
+ // information about the function and helper analyses, if available.
+ if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
+ return &JoinBB->front();
+
+ LLVM_DEBUG(dbgs() << "\tNo join point found\n");
+ return nullptr;
+}
+
+const Instruction *
+MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
+ MustBeExecutedIterator &It, const Instruction *PP) {
+ if (!PP)
+ return PP;
+
+ bool IsFirst = !(PP->getPrevNode());
+ LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
+ << (IsFirst ? " [IsFirst]" : "") << "\n");
+
+ // If we explore only inside a given basic block we stop at the first
+ // instruction.
+ if (!ExploreInterBlock && IsFirst) {
+ LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
+ return nullptr;
+ }
+
+ // The block and function that contains the current position.
+ const BasicBlock *PPBlock = PP->getParent();
+
+ // If we are inside a block we know what instruction was executed before, the
+ // previous one.
+ if (!IsFirst) {
+ const Instruction *PrevPP = PP->getPrevNode();
+ LLVM_DEBUG(
+ dbgs() << "\tIntermediate instruction, continue with previous\n");
+ // We did not enter a callee so we simply return the previous instruction.
+ return PrevPP;
+ }
+
+ // Finally, we have to handle the case where the program point is the first in
+ // a block but not in the function. We use the findBackwardJoinPoint helper
+ // function with information about the function and helper analyses, if
+ // available.
+ if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
+ return &JoinBB->back();
+
+ LLVM_DEBUG(dbgs() << "\tNo join point found\n");
+ return nullptr;
+}
+
+MustBeExecutedIterator::MustBeExecutedIterator(
+ MustBeExecutedContextExplorer &Explorer, const Instruction *I)
+ : Explorer(Explorer), CurInst(I) {
+ reset(I);
+}
+
+void MustBeExecutedIterator::reset(const Instruction *I) {
+ Visited.clear();
+ resetInstruction(I);
+}
+
+void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
+ CurInst = I;
+ Head = Tail = nullptr;
+ Visited.insert({I, ExplorationDirection::FORWARD});
+ Visited.insert({I, ExplorationDirection::BACKWARD});
+ if (Explorer.ExploreCFGForward)
+ Head = I;
+ if (Explorer.ExploreCFGBackward)
+ Tail = I;
+}
+
+const Instruction *MustBeExecutedIterator::advance() {
+ assert(CurInst && "Cannot advance an end iterator!");
+ Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
+ if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
+ return Head;
+ Head = nullptr;
+
+ Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
+ if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
+ return Tail;
+ Tail = nullptr;
+ return nullptr;
+}
PreservedAnalyses MustExecutePrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {