summaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h
diff options
context:
space:
mode:
authorDevtools Arcadia <[email protected]>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <[email protected]>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h1642
1 files changed, 1642 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h b/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h
new file mode 100644
index 00000000000..9d3248b877a
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h
@@ -0,0 +1,1642 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// Generic dominator tree construction - this file provides routines to
+/// construct immediate dominator information for a flow-graph based on the
+/// Semi-NCA algorithm described in this dissertation:
+///
+/// [1] Linear-Time Algorithms for Dominators and Related Problems
+/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
+/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
+///
+/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
+/// faster than Simple Lengauer-Tarjan in practice.
+///
+/// O(n^2) worst cases happen when the computation of nearest common ancestors
+/// requires O(n) average time, which is very unlikely in real world. If this
+/// ever turns out to be an issue, consider implementing a hybrid algorithm
+/// that uses SLT to perform full constructions and SemiNCA for incremental
+/// updates.
+///
+/// The file uses the Depth Based Search algorithm to perform incremental
+/// updates (insertion and deletions). The implemented algorithm is based on
+/// this publication:
+///
+/// [2] An Experimental Study of Dynamic Dominators
+/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
+/// https://arxiv.org/pdf/1604.02711.pdf
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
+#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GenericDomTree.h"
+#include <queue>
+
+#define DEBUG_TYPE "dom-tree-builder"
+
+namespace llvm {
+namespace DomTreeBuilder {
+
+template <typename DomTreeT>
+struct SemiNCAInfo {
+ using NodePtr = typename DomTreeT::NodePtr;
+ using NodeT = typename DomTreeT::NodeType;
+ using TreeNodePtr = DomTreeNodeBase<NodeT> *;
+ using RootsT = decltype(DomTreeT::Roots);
+ static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
+ using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
+
+ // Information record used by Semi-NCA during tree construction.
+ struct InfoRec {
+ unsigned DFSNum = 0;
+ unsigned Parent = 0;
+ unsigned Semi = 0;
+ NodePtr Label = nullptr;
+ NodePtr IDom = nullptr;
+ SmallVector<NodePtr, 2> ReverseChildren;
+ };
+
+ // Number to node mapping is 1-based. Initialize the mapping to start with
+ // a dummy element.
+ std::vector<NodePtr> NumToNode = {nullptr};
+ DenseMap<NodePtr, InfoRec> NodeToInfo;
+
+ using UpdateT = typename DomTreeT::UpdateType;
+ using UpdateKind = typename DomTreeT::UpdateKind;
+ struct BatchUpdateInfo {
+ // Note: Updates inside PreViewCFG are aleady legalized.
+ BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
+ : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
+ NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
+
+ // Remembers if the whole tree was recalculated at some point during the
+ // current batch update.
+ bool IsRecalculated = false;
+ GraphDiffT &PreViewCFG;
+ GraphDiffT *PostViewCFG;
+ const size_t NumLegalized;
+ };
+
+ BatchUpdateInfo *BatchUpdates;
+ using BatchUpdatePtr = BatchUpdateInfo *;
+
+ // If BUI is a nullptr, then there's no batch update in progress.
+ SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
+
+ void clear() {
+ NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
+ NodeToInfo.clear();
+ // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
+ // in progress, we need this information to continue it.
+ }
+
+ template <bool Inversed>
+ static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
+ if (BUI)
+ return BUI->PreViewCFG.template getChildren<Inversed>(N);
+ return getChildren<Inversed>(N);
+ }
+
+ template <bool Inversed>
+ static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
+ using DirectedNodeT =
+ std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
+ auto R = children<DirectedNodeT>(N);
+ SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
+
+ // Remove nullptr children for clang.
+ llvm::erase_value(Res, nullptr);
+ return Res;
+ }
+
+ NodePtr getIDom(NodePtr BB) const {
+ auto InfoIt = NodeToInfo.find(BB);
+ if (InfoIt == NodeToInfo.end()) return nullptr;
+
+ return InfoIt->second.IDom;
+ }
+
+ TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
+ if (TreeNodePtr Node = DT.getNode(BB)) return Node;
+
+ // Haven't calculated this node yet? Get or calculate the node for the
+ // immediate dominator.
+ NodePtr IDom = getIDom(BB);
+
+ assert(IDom || DT.DomTreeNodes[nullptr]);
+ TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
+
+ // Add a new tree node for this NodeT, and link it as a child of
+ // IDomNode
+ return DT.createChild(BB, IDomNode);
+ }
+
+ static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
+
+ struct BlockNamePrinter {
+ NodePtr N;
+
+ BlockNamePrinter(NodePtr Block) : N(Block) {}
+ BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
+
+ friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
+ if (!BP.N)
+ O << "nullptr";
+ else
+ BP.N->printAsOperand(O, false);
+
+ return O;
+ }
+ };
+
+ using NodeOrderMap = DenseMap<NodePtr, unsigned>;
+
+ // Custom DFS implementation which can skip nodes based on a provided
+ // predicate. It also collects ReverseChildren so that we don't have to spend
+ // time getting predecessors in SemiNCA.
+ //
+ // If IsReverse is set to true, the DFS walk will be performed backwards
+ // relative to IsPostDom -- using reverse edges for dominators and forward
+ // edges for postdominators.
+ //
+ // If SuccOrder is specified then in this order the DFS traverses the children
+ // otherwise the order is implied by the results of getChildren().
+ template <bool IsReverse = false, typename DescendCondition>
+ unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
+ unsigned AttachToNum,
+ const NodeOrderMap *SuccOrder = nullptr) {
+ assert(V);
+ SmallVector<NodePtr, 64> WorkList = {V};
+ if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
+
+ while (!WorkList.empty()) {
+ const NodePtr BB = WorkList.pop_back_val();
+ auto &BBInfo = NodeToInfo[BB];
+
+ // Visited nodes always have positive DFS numbers.
+ if (BBInfo.DFSNum != 0) continue;
+ BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
+ BBInfo.Label = BB;
+ NumToNode.push_back(BB);
+
+ constexpr bool Direction = IsReverse != IsPostDom; // XOR.
+ auto Successors = getChildren<Direction>(BB, BatchUpdates);
+ if (SuccOrder && Successors.size() > 1)
+ llvm::sort(
+ Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
+ return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
+ });
+
+ for (const NodePtr Succ : Successors) {
+ const auto SIT = NodeToInfo.find(Succ);
+ // Don't visit nodes more than once but remember to collect
+ // ReverseChildren.
+ if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
+ if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
+ continue;
+ }
+
+ if (!Condition(BB, Succ)) continue;
+
+ // It's fine to add Succ to the map, because we know that it will be
+ // visited later.
+ auto &SuccInfo = NodeToInfo[Succ];
+ WorkList.push_back(Succ);
+ SuccInfo.Parent = LastNum;
+ SuccInfo.ReverseChildren.push_back(BB);
+ }
+ }
+
+ return LastNum;
+ }
+
+ // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
+ // of sdom(U), where U > W and there is a virtual forest path from U to V. The
+ // virtual forest consists of linked edges of processed vertices.
+ //
+ // We can follow Parent pointers (virtual forest edges) to determine the
+ // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
+ // compression technique to speed up to O(m*log(n)). Theoretically the virtual
+ // forest can be organized as balanced trees to achieve almost linear
+ // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
+ // and Child) and is unlikely to be faster than the simple implementation.
+ //
+ // For each vertex V, its Label points to the vertex with the minimal sdom(U)
+ // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
+ NodePtr eval(NodePtr V, unsigned LastLinked,
+ SmallVectorImpl<InfoRec *> &Stack) {
+ InfoRec *VInfo = &NodeToInfo[V];
+ if (VInfo->Parent < LastLinked)
+ return VInfo->Label;
+
+ // Store ancestors except the last (root of a virtual tree) into a stack.
+ assert(Stack.empty());
+ do {
+ Stack.push_back(VInfo);
+ VInfo = &NodeToInfo[NumToNode[VInfo->Parent]];
+ } while (VInfo->Parent >= LastLinked);
+
+ // Path compression. Point each vertex's Parent to the root and update its
+ // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
+ const InfoRec *PInfo = VInfo;
+ const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label];
+ do {
+ VInfo = Stack.pop_back_val();
+ VInfo->Parent = PInfo->Parent;
+ const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label];
+ if (PLabelInfo->Semi < VLabelInfo->Semi)
+ VInfo->Label = PInfo->Label;
+ else
+ PLabelInfo = VLabelInfo;
+ PInfo = VInfo;
+ } while (!Stack.empty());
+ return VInfo->Label;
+ }
+
+ // This function requires DFS to be run before calling it.
+ void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
+ const unsigned NextDFSNum(NumToNode.size());
+ // Initialize IDoms to spanning tree parents.
+ for (unsigned i = 1; i < NextDFSNum; ++i) {
+ const NodePtr V = NumToNode[i];
+ auto &VInfo = NodeToInfo[V];
+ VInfo.IDom = NumToNode[VInfo.Parent];
+ }
+
+ // Step #1: Calculate the semidominators of all vertices.
+ SmallVector<InfoRec *, 32> EvalStack;
+ for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
+ NodePtr W = NumToNode[i];
+ auto &WInfo = NodeToInfo[W];
+
+ // Initialize the semi dominator to point to the parent node.
+ WInfo.Semi = WInfo.Parent;
+ for (const auto &N : WInfo.ReverseChildren) {
+ if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
+ continue;
+
+ const TreeNodePtr TN = DT.getNode(N);
+ // Skip predecessors whose level is above the subtree we are processing.
+ if (TN && TN->getLevel() < MinLevel)
+ continue;
+
+ unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi;
+ if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
+ }
+ }
+
+ // Step #2: Explicitly define the immediate dominator of each vertex.
+ // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
+ // Note that the parents were stored in IDoms and later got invalidated
+ // during path compression in Eval.
+ for (unsigned i = 2; i < NextDFSNum; ++i) {
+ const NodePtr W = NumToNode[i];
+ auto &WInfo = NodeToInfo[W];
+ const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
+ NodePtr WIDomCandidate = WInfo.IDom;
+ while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
+ WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
+
+ WInfo.IDom = WIDomCandidate;
+ }
+ }
+
+ // PostDominatorTree always has a virtual root that represents a virtual CFG
+ // node that serves as a single exit from the function. All the other exits
+ // (CFG nodes with terminators and nodes in infinite loops are logically
+ // connected to this virtual CFG exit node).
+ // This functions maps a nullptr CFG node to the virtual root tree node.
+ void addVirtualRoot() {
+ assert(IsPostDom && "Only postdominators have a virtual root");
+ assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
+
+ auto &BBInfo = NodeToInfo[nullptr];
+ BBInfo.DFSNum = BBInfo.Semi = 1;
+ BBInfo.Label = nullptr;
+
+ NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
+ }
+
+ // For postdominators, nodes with no forward successors are trivial roots that
+ // are always selected as tree roots. Roots with forward successors correspond
+ // to CFG nodes within infinite loops.
+ static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
+ assert(N && "N must be a valid node");
+ return !getChildren<false>(N, BUI).empty();
+ }
+
+ static NodePtr GetEntryNode(const DomTreeT &DT) {
+ assert(DT.Parent && "Parent not set");
+ return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
+ }
+
+ // Finds all roots without relaying on the set of roots already stored in the
+ // tree.
+ // We define roots to be some non-redundant set of the CFG nodes
+ static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
+ assert(DT.Parent && "Parent pointer is not set");
+ RootsT Roots;
+
+ // For dominators, function entry CFG node is always a tree root node.
+ if (!IsPostDom) {
+ Roots.push_back(GetEntryNode(DT));
+ return Roots;
+ }
+
+ SemiNCAInfo SNCA(BUI);
+
+ // PostDominatorTree always has a virtual root.
+ SNCA.addVirtualRoot();
+ unsigned Num = 1;
+
+ LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
+
+ // Step #1: Find all the trivial roots that are going to will definitely
+ // remain tree roots.
+ unsigned Total = 0;
+ // It may happen that there are some new nodes in the CFG that are result of
+ // the ongoing batch update, but we cannot really pretend that they don't
+ // exist -- we won't see any outgoing or incoming edges to them, so it's
+ // fine to discover them here, as they would end up appearing in the CFG at
+ // some point anyway.
+ for (const NodePtr N : nodes(DT.Parent)) {
+ ++Total;
+ // If it has no *successors*, it is definitely a root.
+ if (!HasForwardSuccessors(N, BUI)) {
+ Roots.push_back(N);
+ // Run DFS not to walk this part of CFG later.
+ Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
+ LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
+ << "\n");
+ LLVM_DEBUG(dbgs() << "Last visited node: "
+ << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
+
+ // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
+ // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
+ // nodes in infinite loops).
+ bool HasNonTrivialRoots = false;
+ // Accounting for the virtual exit, see if we had any reverse-unreachable
+ // nodes.
+ if (Total + 1 != Num) {
+ HasNonTrivialRoots = true;
+
+ // SuccOrder is the order of blocks in the function. It is needed to make
+ // the calculation of the FurthestAway node and the whole PostDomTree
+ // immune to swap successors transformation (e.g. canonicalizing branch
+ // predicates). SuccOrder is initialized lazily only for successors of
+ // reverse unreachable nodes.
+ Optional<NodeOrderMap> SuccOrder;
+ auto InitSuccOrderOnce = [&]() {
+ SuccOrder = NodeOrderMap();
+ for (const auto Node : nodes(DT.Parent))
+ if (SNCA.NodeToInfo.count(Node) == 0)
+ for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
+ SuccOrder->try_emplace(Succ, 0);
+
+ // Add mapping for all entries of SuccOrder.
+ unsigned NodeNum = 0;
+ for (const auto Node : nodes(DT.Parent)) {
+ ++NodeNum;
+ auto Order = SuccOrder->find(Node);
+ if (Order != SuccOrder->end()) {
+ assert(Order->second == 0);
+ Order->second = NodeNum;
+ }
+ }
+ };
+
+ // Make another DFS pass over all other nodes to find the
+ // reverse-unreachable blocks, and find the furthest paths we'll be able
+ // to make.
+ // Note that this looks N^2, but it's really 2N worst case, if every node
+ // is unreachable. This is because we are still going to only visit each
+ // unreachable node once, we may just visit it in two directions,
+ // depending on how lucky we get.
+ SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
+ for (const NodePtr I : nodes(DT.Parent)) {
+ if (SNCA.NodeToInfo.count(I) == 0) {
+ LLVM_DEBUG(dbgs()
+ << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
+ // Find the furthest away we can get by following successors, then
+ // follow them in reverse. This gives us some reasonable answer about
+ // the post-dom tree inside any infinite loop. In particular, it
+ // guarantees we get to the farthest away point along *some*
+ // path. This also matches the GCC's behavior.
+ // If we really wanted a totally complete picture of dominance inside
+ // this infinite loop, we could do it with SCC-like algorithms to find
+ // the lowest and highest points in the infinite loop. In theory, it
+ // would be nice to give the canonical backedge for the loop, but it's
+ // expensive and does not always lead to a minimal set of roots.
+ LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
+
+ if (!SuccOrder)
+ InitSuccOrderOnce();
+ assert(SuccOrder);
+
+ const unsigned NewNum =
+ SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
+ const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
+ LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
+ << "(non-trivial root): "
+ << BlockNamePrinter(FurthestAway) << "\n");
+ ConnectToExitBlock.insert(FurthestAway);
+ Roots.push_back(FurthestAway);
+ LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
+ << NewNum << "\n\t\t\tRemoving DFS info\n");
+ for (unsigned i = NewNum; i > Num; --i) {
+ const NodePtr N = SNCA.NumToNode[i];
+ LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
+ << BlockNamePrinter(N) << "\n");
+ SNCA.NodeToInfo.erase(N);
+ SNCA.NumToNode.pop_back();
+ }
+ const unsigned PrevNum = Num;
+ LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
+ Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
+ for (unsigned i = PrevNum + 1; i <= Num; ++i)
+ LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
+ << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
+ }
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
+ LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
+ LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
+ << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
+
+ assert((Total + 1 == Num) && "Everything should have been visited");
+
+ // Step #3: If we found some non-trivial roots, make them non-redundant.
+ if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
+
+ LLVM_DEBUG(dbgs() << "Found roots: ");
+ LLVM_DEBUG(for (auto *Root
+ : Roots) dbgs()
+ << BlockNamePrinter(Root) << " ");
+ LLVM_DEBUG(dbgs() << "\n");
+
+ return Roots;
+ }
+
+ // This function only makes sense for postdominators.
+ // We define roots to be some set of CFG nodes where (reverse) DFS walks have
+ // to start in order to visit all the CFG nodes (including the
+ // reverse-unreachable ones).
+ // When the search for non-trivial roots is done it may happen that some of
+ // the non-trivial roots are reverse-reachable from other non-trivial roots,
+ // which makes them redundant. This function removes them from the set of
+ // input roots.
+ static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
+ RootsT &Roots) {
+ assert(IsPostDom && "This function is for postdominators only");
+ LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
+
+ SemiNCAInfo SNCA(BUI);
+
+ for (unsigned i = 0; i < Roots.size(); ++i) {
+ auto &Root = Roots[i];
+ // Trivial roots are always non-redundant.
+ if (!HasForwardSuccessors(Root, BUI)) continue;
+ LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
+ << " remains a root\n");
+ SNCA.clear();
+ // Do a forward walk looking for the other roots.
+ const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
+ // Skip the start node and begin from the second one (note that DFS uses
+ // 1-based indexing).
+ for (unsigned x = 2; x <= Num; ++x) {
+ const NodePtr N = SNCA.NumToNode[x];
+ // If we wound another root in a (forward) DFS walk, remove the current
+ // root from the set of roots, as it is reverse-reachable from the other
+ // one.
+ if (llvm::is_contained(Roots, N)) {
+ LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
+ << BlockNamePrinter(N) << "\n\tRemoving root "
+ << BlockNamePrinter(Root) << "\n");
+ std::swap(Root, Roots.back());
+ Roots.pop_back();
+
+ // Root at the back takes the current root's place.
+ // Start the next loop iteration with the same index.
+ --i;
+ break;
+ }
+ }
+ }
+ }
+
+ template <typename DescendCondition>
+ void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
+ if (!IsPostDom) {
+ assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
+ runDFS(DT.Roots[0], 0, DC, 0);
+ return;
+ }
+
+ addVirtualRoot();
+ unsigned Num = 1;
+ for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
+ }
+
+ static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
+ auto *Parent = DT.Parent;
+ DT.reset();
+ DT.Parent = Parent;
+ // If the update is using the actual CFG, BUI is null. If it's using a view,
+ // BUI is non-null and the PreCFGView is used. When calculating from
+ // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
+ BatchUpdatePtr PostViewBUI = nullptr;
+ if (BUI && BUI->PostViewCFG) {
+ BUI->PreViewCFG = *BUI->PostViewCFG;
+ PostViewBUI = BUI;
+ }
+ // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
+ // used in case the caller needs a DT update with a CFGView.
+ SemiNCAInfo SNCA(PostViewBUI);
+
+ // Step #0: Number blocks in depth-first order and initialize variables used
+ // in later stages of the algorithm.
+ DT.Roots = FindRoots(DT, PostViewBUI);
+ SNCA.doFullDFSWalk(DT, AlwaysDescend);
+
+ SNCA.runSemiNCA(DT);
+ if (BUI) {
+ BUI->IsRecalculated = true;
+ LLVM_DEBUG(
+ dbgs() << "DomTree recalculated, skipping future batch updates\n");
+ }
+
+ if (DT.Roots.empty()) return;
+
+ // Add a node for the root. If the tree is a PostDominatorTree it will be
+ // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
+ // all real exits (including multiple exit blocks, infinite loops).
+ NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
+
+ DT.RootNode = DT.createNode(Root);
+ SNCA.attachNewSubtree(DT, DT.RootNode);
+ }
+
+ void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
+ // Attach the first unreachable block to AttachTo.
+ NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
+ // Loop over all of the discovered blocks in the function...
+ for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
+ NodePtr W = NumToNode[i];
+
+ // Don't replace this with 'count', the insertion side effect is important
+ if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
+
+ NodePtr ImmDom = getIDom(W);
+
+ // Get or calculate the node for the immediate dominator.
+ TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
+
+ // Add a new tree node for this BasicBlock, and link it as a child of
+ // IDomNode.
+ DT.createChild(W, IDomNode);
+ }
+ }
+
+ void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
+ NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
+ for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
+ const NodePtr N = NumToNode[i];
+ const TreeNodePtr TN = DT.getNode(N);
+ assert(TN);
+ const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
+ TN->setIDom(NewIDom);
+ }
+ }
+
+ // Helper struct used during edge insertions.
+ struct InsertionInfo {
+ struct Compare {
+ bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
+ return LHS->getLevel() < RHS->getLevel();
+ }
+ };
+
+ // Bucket queue of tree nodes ordered by descending level. For simplicity,
+ // we use a priority_queue here.
+ std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
+ Compare>
+ Bucket;
+ SmallDenseSet<TreeNodePtr, 8> Visited;
+ SmallVector<TreeNodePtr, 8> Affected;
+#ifndef NDEBUG
+ SmallVector<TreeNodePtr, 8> VisitedUnaffected;
+#endif
+ };
+
+ static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const NodePtr From, const NodePtr To) {
+ assert((From || IsPostDom) &&
+ "From has to be a valid CFG node or a virtual root");
+ assert(To && "Cannot be a nullptr");
+ LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
+ << BlockNamePrinter(To) << "\n");
+ TreeNodePtr FromTN = DT.getNode(From);
+
+ if (!FromTN) {
+ // Ignore edges from unreachable nodes for (forward) dominators.
+ if (!IsPostDom) return;
+
+ // The unreachable node becomes a new root -- a tree node for it.
+ TreeNodePtr VirtualRoot = DT.getNode(nullptr);
+ FromTN = DT.createChild(From, VirtualRoot);
+ DT.Roots.push_back(From);
+ }
+
+ DT.DFSInfoValid = false;
+
+ const TreeNodePtr ToTN = DT.getNode(To);
+ if (!ToTN)
+ InsertUnreachable(DT, BUI, FromTN, To);
+ else
+ InsertReachable(DT, BUI, FromTN, ToTN);
+ }
+
+ // Determines if some existing root becomes reverse-reachable after the
+ // insertion. Rebuilds the whole tree if that situation happens.
+ static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr From,
+ const TreeNodePtr To) {
+ assert(IsPostDom && "This function is only for postdominators");
+ // Destination node is not attached to the virtual root, so it cannot be a
+ // root.
+ if (!DT.isVirtualRoot(To->getIDom())) return false;
+
+ if (!llvm::is_contained(DT.Roots, To->getBlock()))
+ return false; // To is not a root, nothing to update.
+
+ LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
+ << " is no longer a root\n\t\tRebuilding the tree!!!\n");
+
+ CalculateFromScratch(DT, BUI);
+ return true;
+ }
+
+ static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
+ const SmallVectorImpl<NodePtr> &B) {
+ if (A.size() != B.size())
+ return false;
+ SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
+ for (NodePtr N : B)
+ if (Set.count(N) == 0)
+ return false;
+ return true;
+ }
+
+ // Updates the set of roots after insertion or deletion. This ensures that
+ // roots are the same when after a series of updates and when the tree would
+ // be built from scratch.
+ static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
+ assert(IsPostDom && "This function is only for postdominators");
+
+ // The tree has only trivial roots -- nothing to update.
+ if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
+ return HasForwardSuccessors(N, BUI);
+ }))
+ return;
+
+ // Recalculate the set of roots.
+ RootsT Roots = FindRoots(DT, BUI);
+ if (!isPermutation(DT.Roots, Roots)) {
+ // The roots chosen in the CFG have changed. This is because the
+ // incremental algorithm does not really know or use the set of roots and
+ // can make a different (implicit) decision about which node within an
+ // infinite loop becomes a root.
+
+ LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
+ << "The entire tree needs to be rebuilt\n");
+ // It may be possible to update the tree without recalculating it, but
+ // we do not know yet how to do it, and it happens rarely in practice.
+ CalculateFromScratch(DT, BUI);
+ }
+ }
+
+ // Handles insertion to a node already in the dominator tree.
+ static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr From, const TreeNodePtr To) {
+ LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
+ << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
+ if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
+ // DT.findNCD expects both pointers to be valid. When From is a virtual
+ // root, then its CFG block pointer is a nullptr, so we have to 'compute'
+ // the NCD manually.
+ const NodePtr NCDBlock =
+ (From->getBlock() && To->getBlock())
+ ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
+ : nullptr;
+ assert(NCDBlock || DT.isPostDominator());
+ const TreeNodePtr NCD = DT.getNode(NCDBlock);
+ assert(NCD);
+
+ LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
+ const unsigned NCDLevel = NCD->getLevel();
+
+ // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
+ // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
+ // w on P s.t. depth(v) <= depth(w)
+ //
+ // This reduces to a widest path problem (maximizing the depth of the
+ // minimum vertex in the path) which can be solved by a modified version of
+ // Dijkstra with a bucket queue (named depth-based search in [2]).
+
+ // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
+ // affected if this does not hold.
+ if (NCDLevel + 1 >= To->getLevel())
+ return;
+
+ InsertionInfo II;
+ SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
+ II.Bucket.push(To);
+ II.Visited.insert(To);
+
+ while (!II.Bucket.empty()) {
+ TreeNodePtr TN = II.Bucket.top();
+ II.Bucket.pop();
+ II.Affected.push_back(TN);
+
+ const unsigned CurrentLevel = TN->getLevel();
+ LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
+ "as affected, CurrentLevel " << CurrentLevel << "\n");
+
+ assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
+
+ while (true) {
+ // Unlike regular Dijkstra, we have an inner loop to expand more
+ // vertices. The first iteration is for the (affected) vertex popped
+ // from II.Bucket and the rest are for vertices in
+ // UnaffectedOnCurrentLevel, which may eventually expand to affected
+ // vertices.
+ //
+ // Invariant: there is an optimal path from `To` to TN with the minimum
+ // depth being CurrentLevel.
+ for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
+ const TreeNodePtr SuccTN = DT.getNode(Succ);
+ assert(SuccTN &&
+ "Unreachable successor found at reachable insertion");
+ const unsigned SuccLevel = SuccTN->getLevel();
+
+ LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
+ << ", level = " << SuccLevel << "\n");
+
+ // There is an optimal path from `To` to Succ with the minimum depth
+ // being min(CurrentLevel, SuccLevel).
+ //
+ // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
+ // and no affected vertex may be reached by a path passing through it.
+ // Stop here. Also, Succ may be visited by other predecessors but the
+ // first visit has the optimal path. Stop if Succ has been visited.
+ if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
+ continue;
+
+ if (SuccLevel > CurrentLevel) {
+ // Succ is unaffected but it may (transitively) expand to affected
+ // vertices. Store it in UnaffectedOnCurrentLevel.
+ LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
+ << BlockNamePrinter(Succ) << "\n");
+ UnaffectedOnCurrentLevel.push_back(SuccTN);
+#ifndef NDEBUG
+ II.VisitedUnaffected.push_back(SuccTN);
+#endif
+ } else {
+ // The condition is satisfied (Succ is affected). Add Succ to the
+ // bucket queue.
+ LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
+ << " to a Bucket\n");
+ II.Bucket.push(SuccTN);
+ }
+ }
+
+ if (UnaffectedOnCurrentLevel.empty())
+ break;
+ TN = UnaffectedOnCurrentLevel.pop_back_val();
+ LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
+ }
+ }
+
+ // Finish by updating immediate dominators and levels.
+ UpdateInsertion(DT, BUI, NCD, II);
+ }
+
+ // Updates immediate dominators and levels after insertion.
+ static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr NCD, InsertionInfo &II) {
+ LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
+
+ for (const TreeNodePtr TN : II.Affected) {
+ LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
+ << ") = " << BlockNamePrinter(NCD) << "\n");
+ TN->setIDom(NCD);
+ }
+
+#ifndef NDEBUG
+ for (const TreeNodePtr TN : II.VisitedUnaffected)
+ assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
+ "TN should have been updated by an affected ancestor");
+#endif
+
+ if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
+ }
+
+ // Handles insertion to previously unreachable nodes.
+ static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr From, const NodePtr To) {
+ LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
+ << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
+
+ // Collect discovered edges to already reachable nodes.
+ SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
+ // Discover and connect nodes that became reachable with the insertion.
+ ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
+
+ LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
+ << " -> (prev unreachable) " << BlockNamePrinter(To)
+ << "\n");
+
+ // Used the discovered edges and inset discovered connecting (incoming)
+ // edges.
+ for (const auto &Edge : DiscoveredEdgesToReachable) {
+ LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
+ << BlockNamePrinter(Edge.first) << " -> "
+ << BlockNamePrinter(Edge.second) << "\n");
+ InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
+ }
+ }
+
+ // Connects nodes that become reachable with an insertion.
+ static void ComputeUnreachableDominators(
+ DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
+ const TreeNodePtr Incoming,
+ SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
+ &DiscoveredConnectingEdges) {
+ assert(!DT.getNode(Root) && "Root must not be reachable");
+
+ // Visit only previously unreachable nodes.
+ auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
+ NodePtr To) {
+ const TreeNodePtr ToTN = DT.getNode(To);
+ if (!ToTN) return true;
+
+ DiscoveredConnectingEdges.push_back({From, ToTN});
+ return false;
+ };
+
+ SemiNCAInfo SNCA(BUI);
+ SNCA.runDFS(Root, 0, UnreachableDescender, 0);
+ SNCA.runSemiNCA(DT);
+ SNCA.attachNewSubtree(DT, Incoming);
+
+ LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
+ }
+
+ static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const NodePtr From, const NodePtr To) {
+ assert(From && To && "Cannot disconnect nullptrs");
+ LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
+ << BlockNamePrinter(To) << "\n");
+
+#ifndef NDEBUG
+ // Ensure that the edge was in fact deleted from the CFG before informing
+ // the DomTree about it.
+ // The check is O(N), so run it only in debug configuration.
+ auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
+ auto Successors = getChildren<IsPostDom>(Of, BUI);
+ return llvm::is_contained(Successors, SuccCandidate);
+ };
+ (void)IsSuccessor;
+ assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
+#endif
+
+ const TreeNodePtr FromTN = DT.getNode(From);
+ // Deletion in an unreachable subtree -- nothing to do.
+ if (!FromTN) return;
+
+ const TreeNodePtr ToTN = DT.getNode(To);
+ if (!ToTN) {
+ LLVM_DEBUG(
+ dbgs() << "\tTo (" << BlockNamePrinter(To)
+ << ") already unreachable -- there is no edge to delete\n");
+ return;
+ }
+
+ const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
+ const TreeNodePtr NCD = DT.getNode(NCDBlock);
+
+ // If To dominates From -- nothing to do.
+ if (ToTN != NCD) {
+ DT.DFSInfoValid = false;
+
+ const TreeNodePtr ToIDom = ToTN->getIDom();
+ LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
+ << BlockNamePrinter(ToIDom) << "\n");
+
+ // To remains reachable after deletion.
+ // (Based on the caption under Figure 4. from [2].)
+ if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
+ DeleteReachable(DT, BUI, FromTN, ToTN);
+ else
+ DeleteUnreachable(DT, BUI, ToTN);
+ }
+
+ if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
+ }
+
+ // Handles deletions that leave destination nodes reachable.
+ static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr FromTN,
+ const TreeNodePtr ToTN) {
+ LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
+ << " -> " << BlockNamePrinter(ToTN) << "\n");
+ LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
+
+ // Find the top of the subtree that needs to be rebuilt.
+ // (Based on the lemma 2.6 from [2].)
+ const NodePtr ToIDom =
+ DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
+ assert(ToIDom || DT.isPostDominator());
+ const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
+ assert(ToIDomTN);
+ const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
+ // Top of the subtree to rebuild is the root node. Rebuild the tree from
+ // scratch.
+ if (!PrevIDomSubTree) {
+ LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
+ CalculateFromScratch(DT, BUI);
+ return;
+ }
+
+ // Only visit nodes in the subtree starting at To.
+ const unsigned Level = ToIDomTN->getLevel();
+ auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
+ return DT.getNode(To)->getLevel() > Level;
+ };
+
+ LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
+ << "\n");
+
+ SemiNCAInfo SNCA(BUI);
+ SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
+ LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
+ SNCA.runSemiNCA(DT, Level);
+ SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
+ }
+
+ // Checks if a node has proper support, as defined on the page 3 and later
+ // explained on the page 7 of [2].
+ static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr TN) {
+ LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
+ << "\n");
+ auto TNB = TN->getBlock();
+ for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
+ LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
+ if (!DT.getNode(Pred)) continue;
+
+ const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
+ LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
+ if (Support != TNB) {
+ LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
+ << " is reachable from support "
+ << BlockNamePrinter(Support) << "\n");
+ return true;
+ }
+ }
+
+ return false;
+ }
+
+ // Handle deletions that make destination node unreachable.
+ // (Based on the lemma 2.7 from the [2].)
+ static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
+ const TreeNodePtr ToTN) {
+ LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
+ << BlockNamePrinter(ToTN) << "\n");
+ assert(ToTN);
+ assert(ToTN->getBlock());
+
+ if (IsPostDom) {
+ // Deletion makes a region reverse-unreachable and creates a new root.
+ // Simulate that by inserting an edge from the virtual root to ToTN and
+ // adding it as a new root.
+ LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
+ LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
+ << "\n");
+ DT.Roots.push_back(ToTN->getBlock());
+ InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
+ return;
+ }
+
+ SmallVector<NodePtr, 16> AffectedQueue;
+ const unsigned Level = ToTN->getLevel();
+
+ // Traverse destination node's descendants with greater level in the tree
+ // and collect visited nodes.
+ auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
+ const TreeNodePtr TN = DT.getNode(To);
+ assert(TN);
+ if (TN->getLevel() > Level) return true;
+ if (!llvm::is_contained(AffectedQueue, To))
+ AffectedQueue.push_back(To);
+
+ return false;
+ };
+
+ SemiNCAInfo SNCA(BUI);
+ unsigned LastDFSNum =
+ SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
+
+ TreeNodePtr MinNode = ToTN;
+
+ // Identify the top of the subtree to rebuild by finding the NCD of all
+ // the affected nodes.
+ for (const NodePtr N : AffectedQueue) {
+ const TreeNodePtr TN = DT.getNode(N);
+ const NodePtr NCDBlock =
+ DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
+ assert(NCDBlock || DT.isPostDominator());
+ const TreeNodePtr NCD = DT.getNode(NCDBlock);
+ assert(NCD);
+
+ LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
+ << " with NCD = " << BlockNamePrinter(NCD)
+ << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
+ if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
+ }
+
+ // Root reached, rebuild the whole tree from scratch.
+ if (!MinNode->getIDom()) {
+ LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
+ CalculateFromScratch(DT, BUI);
+ return;
+ }
+
+ // Erase the unreachable subtree in reverse preorder to process all children
+ // before deleting their parent.
+ for (unsigned i = LastDFSNum; i > 0; --i) {
+ const NodePtr N = SNCA.NumToNode[i];
+ const TreeNodePtr TN = DT.getNode(N);
+ LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
+
+ EraseNode(DT, TN);
+ }
+
+ // The affected subtree start at the To node -- there's no extra work to do.
+ if (MinNode == ToTN) return;
+
+ LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
+ << BlockNamePrinter(MinNode) << "\n");
+ const unsigned MinLevel = MinNode->getLevel();
+ const TreeNodePtr PrevIDom = MinNode->getIDom();
+ assert(PrevIDom);
+ SNCA.clear();
+
+ // Identify nodes that remain in the affected subtree.
+ auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
+ const TreeNodePtr ToTN = DT.getNode(To);
+ return ToTN && ToTN->getLevel() > MinLevel;
+ };
+ SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
+
+ LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
+ << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
+
+ // Rebuild the remaining part of affected subtree.
+ SNCA.runSemiNCA(DT, MinLevel);
+ SNCA.reattachExistingSubtree(DT, PrevIDom);
+ }
+
+ // Removes leaf tree nodes from the dominator tree.
+ static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
+ assert(TN);
+ assert(TN->getNumChildren() == 0 && "Not a tree leaf");
+
+ const TreeNodePtr IDom = TN->getIDom();
+ assert(IDom);
+
+ auto ChIt = llvm::find(IDom->Children, TN);
+ assert(ChIt != IDom->Children.end());
+ std::swap(*ChIt, IDom->Children.back());
+ IDom->Children.pop_back();
+
+ DT.DomTreeNodes.erase(TN->getBlock());
+ }
+
+ //~~
+ //===--------------------- DomTree Batch Updater --------------------------===
+ //~~
+
+ static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
+ GraphDiffT *PostViewCFG) {
+ // Note: the PostViewCFG is only used when computing from scratch. It's data
+ // should already included in the PreViewCFG for incremental updates.
+ const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
+ if (NumUpdates == 0)
+ return;
+
+ // Take the fast path for a single update and avoid running the batch update
+ // machinery.
+ if (NumUpdates == 1) {
+ UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
+ if (!PostViewCFG) {
+ if (Update.getKind() == UpdateKind::Insert)
+ InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
+ else
+ DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
+ } else {
+ BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
+ if (Update.getKind() == UpdateKind::Insert)
+ InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
+ else
+ DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
+ }
+ return;
+ }
+
+ BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
+ // Recalculate the DominatorTree when the number of updates
+ // exceeds a threshold, which usually makes direct updating slower than
+ // recalculation. We select this threshold proportional to the
+ // size of the DominatorTree. The constant is selected
+ // by choosing the one with an acceptable performance on some real-world
+ // inputs.
+
+ // Make unittests of the incremental algorithm work
+ if (DT.DomTreeNodes.size() <= 100) {
+ if (BUI.NumLegalized > DT.DomTreeNodes.size())
+ CalculateFromScratch(DT, &BUI);
+ } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
+ CalculateFromScratch(DT, &BUI);
+
+ // If the DominatorTree was recalculated at some point, stop the batch
+ // updates. Full recalculations ignore batch updates and look at the actual
+ // CFG.
+ for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
+ ApplyNextUpdate(DT, BUI);
+ }
+
+ static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
+ // Popping the next update, will move the PreViewCFG to the next snapshot.
+ UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
+#if 0
+ // FIXME: The LLVM_DEBUG macro only plays well with a modular
+ // build of LLVM when the header is marked as textual, but doing
+ // so causes redefinition errors.
+ LLVM_DEBUG(dbgs() << "Applying update: ");
+ LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
+#endif
+
+ if (CurrentUpdate.getKind() == UpdateKind::Insert)
+ InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
+ else
+ DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
+ }
+
+ //~~
+ //===--------------- DomTree correctness verification ---------------------===
+ //~~
+
+ // Check if the tree has correct roots. A DominatorTree always has a single
+ // root which is the function's entry node. A PostDominatorTree can have
+ // multiple roots - one for each node with no successors and for infinite
+ // loops.
+ // Running time: O(N).
+ bool verifyRoots(const DomTreeT &DT) {
+ if (!DT.Parent && !DT.Roots.empty()) {
+ errs() << "Tree has no parent but has roots!\n";
+ errs().flush();
+ return false;
+ }
+
+ if (!IsPostDom) {
+ if (DT.Roots.empty()) {
+ errs() << "Tree doesn't have a root!\n";
+ errs().flush();
+ return false;
+ }
+
+ if (DT.getRoot() != GetEntryNode(DT)) {
+ errs() << "Tree's root is not its parent's entry node!\n";
+ errs().flush();
+ return false;
+ }
+ }
+
+ RootsT ComputedRoots = FindRoots(DT, nullptr);
+ if (!isPermutation(DT.Roots, ComputedRoots)) {
+ errs() << "Tree has different roots than freshly computed ones!\n";
+ errs() << "\tPDT roots: ";
+ for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
+ errs() << "\n\tComputed roots: ";
+ for (const NodePtr N : ComputedRoots)
+ errs() << BlockNamePrinter(N) << ", ";
+ errs() << "\n";
+ errs().flush();
+ return false;
+ }
+
+ return true;
+ }
+
+ // Checks if the tree contains all reachable nodes in the input graph.
+ // Running time: O(N).
+ bool verifyReachability(const DomTreeT &DT) {
+ clear();
+ doFullDFSWalk(DT, AlwaysDescend);
+
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+
+ // Virtual root has a corresponding virtual CFG node.
+ if (DT.isVirtualRoot(TN)) continue;
+
+ if (NodeToInfo.count(BB) == 0) {
+ errs() << "DomTree node " << BlockNamePrinter(BB)
+ << " not found by DFS walk!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ for (const NodePtr N : NumToNode) {
+ if (N && !DT.getNode(N)) {
+ errs() << "CFG node " << BlockNamePrinter(N)
+ << " not found in the DomTree!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ // Check if for every parent with a level L in the tree all of its children
+ // have level L + 1.
+ // Running time: O(N).
+ static bool VerifyLevels(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB) continue;
+
+ const TreeNodePtr IDom = TN->getIDom();
+ if (!IDom && TN->getLevel() != 0) {
+ errs() << "Node without an IDom " << BlockNamePrinter(BB)
+ << " has a nonzero level " << TN->getLevel() << "!\n";
+ errs().flush();
+
+ return false;
+ }
+
+ if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
+ errs() << "Node " << BlockNamePrinter(BB) << " has level "
+ << TN->getLevel() << " while its IDom "
+ << BlockNamePrinter(IDom->getBlock()) << " has level "
+ << IDom->getLevel() << "!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ // Check if the computed DFS numbers are correct. Note that DFS info may not
+ // be valid, and when that is the case, we don't verify the numbers.
+ // Running time: O(N log(N)).
+ static bool VerifyDFSNumbers(const DomTreeT &DT) {
+ if (!DT.DFSInfoValid || !DT.Parent)
+ return true;
+
+ const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
+ const TreeNodePtr Root = DT.getNode(RootBB);
+
+ auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
+ errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
+ << TN->getDFSNumOut() << '}';
+ };
+
+ // Verify the root's DFS In number. Although DFS numbering would also work
+ // if we started from some other value, we assume 0-based numbering.
+ if (Root->getDFSNumIn() != 0) {
+ errs() << "DFSIn number for the tree root is not:\n\t";
+ PrintNodeAndDFSNums(Root);
+ errs() << '\n';
+ errs().flush();
+ return false;
+ }
+
+ // For each tree node verify if children's DFS numbers cover their parent's
+ // DFS numbers with no gaps.
+ for (const auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr Node = NodeToTN.second.get();
+
+ // Handle tree leaves.
+ if (Node->isLeaf()) {
+ if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
+ errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
+ PrintNodeAndDFSNums(Node);
+ errs() << '\n';
+ errs().flush();
+ return false;
+ }
+
+ continue;
+ }
+
+ // Make a copy and sort it such that it is possible to check if there are
+ // no gaps between DFS numbers of adjacent children.
+ SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
+ llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
+ return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
+ });
+
+ auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
+ const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
+ assert(FirstCh);
+
+ errs() << "Incorrect DFS numbers for:\n\tParent ";
+ PrintNodeAndDFSNums(Node);
+
+ errs() << "\n\tChild ";
+ PrintNodeAndDFSNums(FirstCh);
+
+ if (SecondCh) {
+ errs() << "\n\tSecond child ";
+ PrintNodeAndDFSNums(SecondCh);
+ }
+
+ errs() << "\nAll children: ";
+ for (const TreeNodePtr Ch : Children) {
+ PrintNodeAndDFSNums(Ch);
+ errs() << ", ";
+ }
+
+ errs() << '\n';
+ errs().flush();
+ };
+
+ if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
+ PrintChildrenError(Children.front(), nullptr);
+ return false;
+ }
+
+ if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
+ PrintChildrenError(Children.back(), nullptr);
+ return false;
+ }
+
+ for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
+ if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
+ PrintChildrenError(Children[i], Children[i + 1]);
+ return false;
+ }
+ }
+ }
+
+ return true;
+ }
+
+ // The below routines verify the correctness of the dominator tree relative to
+ // the CFG it's coming from. A tree is a dominator tree iff it has two
+ // properties, called the parent property and the sibling property. Tarjan
+ // and Lengauer prove (but don't explicitly name) the properties as part of
+ // the proofs in their 1972 paper, but the proofs are mostly part of proving
+ // things about semidominators and idoms, and some of them are simply asserted
+ // based on even earlier papers (see, e.g., lemma 2). Some papers refer to
+ // these properties as "valid" and "co-valid". See, e.g., "Dominators,
+ // directed bipolar orders, and independent spanning trees" by Loukas
+ // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
+ // and Vertex-Disjoint Paths " by the same authors.
+
+ // A very simple and direct explanation of these properties can be found in
+ // "An Experimental Study of Dynamic Dominators", found at
+ // https://arxiv.org/abs/1604.02711
+
+ // The easiest way to think of the parent property is that it's a requirement
+ // of being a dominator. Let's just take immediate dominators. For PARENT to
+ // be an immediate dominator of CHILD, all paths in the CFG must go through
+ // PARENT before they hit CHILD. This implies that if you were to cut PARENT
+ // out of the CFG, there should be no paths to CHILD that are reachable. If
+ // there are, then you now have a path from PARENT to CHILD that goes around
+ // PARENT and still reaches CHILD, which by definition, means PARENT can't be
+ // a dominator of CHILD (let alone an immediate one).
+
+ // The sibling property is similar. It says that for each pair of sibling
+ // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
+ // other. If sibling LEFT dominated sibling RIGHT, it means there are no
+ // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
+ // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
+ // RIGHT, not a sibling.
+
+ // It is possible to verify the parent and sibling properties in linear time,
+ // but the algorithms are complex. Instead, we do it in a straightforward
+ // N^2 and N^3 way below, using direct path reachability.
+
+ // Checks if the tree has the parent property: if for all edges from V to W in
+ // the input graph, such that V is reachable, the parent of W in the tree is
+ // an ancestor of V in the tree.
+ // Running time: O(N^2).
+ //
+ // This means that if a node gets disconnected from the graph, then all of
+ // the nodes it dominated previously will now become unreachable.
+ bool verifyParentProperty(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB || TN->isLeaf())
+ continue;
+
+ LLVM_DEBUG(dbgs() << "Verifying parent property of node "
+ << BlockNamePrinter(TN) << "\n");
+ clear();
+ doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
+ return From != BB && To != BB;
+ });
+
+ for (TreeNodePtr Child : TN->children())
+ if (NodeToInfo.count(Child->getBlock()) != 0) {
+ errs() << "Child " << BlockNamePrinter(Child)
+ << " reachable after its parent " << BlockNamePrinter(BB)
+ << " is removed!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+
+ return true;
+ }
+
+ // Check if the tree has sibling property: if a node V does not dominate a
+ // node W for all siblings V and W in the tree.
+ // Running time: O(N^3).
+ //
+ // This means that if a node gets disconnected from the graph, then all of its
+ // siblings will now still be reachable.
+ bool verifySiblingProperty(const DomTreeT &DT) {
+ for (auto &NodeToTN : DT.DomTreeNodes) {
+ const TreeNodePtr TN = NodeToTN.second.get();
+ const NodePtr BB = TN->getBlock();
+ if (!BB || TN->isLeaf())
+ continue;
+
+ for (const TreeNodePtr N : TN->children()) {
+ clear();
+ NodePtr BBN = N->getBlock();
+ doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
+ return From != BBN && To != BBN;
+ });
+
+ for (const TreeNodePtr S : TN->children()) {
+ if (S == N) continue;
+
+ if (NodeToInfo.count(S->getBlock()) == 0) {
+ errs() << "Node " << BlockNamePrinter(S)
+ << " not reachable when its sibling " << BlockNamePrinter(N)
+ << " is removed!\n";
+ errs().flush();
+
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+ }
+
+ // Check if the given tree is the same as a freshly computed one for the same
+ // Parent.
+ // Running time: O(N^2), but faster in practice (same as tree construction).
+ //
+ // Note that this does not check if that the tree construction algorithm is
+ // correct and should be only used for fast (but possibly unsound)
+ // verification.
+ static bool IsSameAsFreshTree(const DomTreeT &DT) {
+ DomTreeT FreshTree;
+ FreshTree.recalculate(*DT.Parent);
+ const bool Different = DT.compare(FreshTree);
+
+ if (Different) {
+ errs() << (DT.isPostDominator() ? "Post" : "")
+ << "DominatorTree is different than a freshly computed one!\n"
+ << "\tCurrent:\n";
+ DT.print(errs());
+ errs() << "\n\tFreshly computed tree:\n";
+ FreshTree.print(errs());
+ errs().flush();
+ }
+
+ return !Different;
+ }
+};
+
+template <class DomTreeT>
+void Calculate(DomTreeT &DT) {
+ SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
+}
+
+template <typename DomTreeT>
+void CalculateWithUpdates(DomTreeT &DT,
+ ArrayRef<typename DomTreeT::UpdateType> Updates) {
+ // FIXME: Updated to use the PreViewCFG and behave the same as until now.
+ // This behavior is however incorrect; this actually needs the PostViewCFG.
+ GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
+ Updates, /*ReverseApplyUpdates=*/true);
+ typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
+ SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
+}
+
+template <class DomTreeT>
+void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
+ typename DomTreeT::NodePtr To) {
+ if (DT.isPostDominator()) std::swap(From, To);
+ SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
+}
+
+template <class DomTreeT>
+void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
+ typename DomTreeT::NodePtr To) {
+ if (DT.isPostDominator()) std::swap(From, To);
+ SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
+}
+
+template <class DomTreeT>
+void ApplyUpdates(DomTreeT &DT,
+ GraphDiff<typename DomTreeT::NodePtr,
+ DomTreeT::IsPostDominator> &PreViewCFG,
+ GraphDiff<typename DomTreeT::NodePtr,
+ DomTreeT::IsPostDominator> *PostViewCFG) {
+ SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
+}
+
+template <class DomTreeT>
+bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
+ SemiNCAInfo<DomTreeT> SNCA(nullptr);
+
+ // Simplist check is to compare against a new tree. This will also
+ // usefully print the old and new trees, if they are different.
+ if (!SNCA.IsSameAsFreshTree(DT))
+ return false;
+
+ // Common checks to verify the properties of the tree. O(N log N) at worst.
+ if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
+ !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
+ return false;
+
+ // Extra checks depending on VerificationLevel. Up to O(N^3).
+ if (VL == DomTreeT::VerificationLevel::Basic ||
+ VL == DomTreeT::VerificationLevel::Full)
+ if (!SNCA.verifyParentProperty(DT))
+ return false;
+ if (VL == DomTreeT::VerificationLevel::Full)
+ if (!SNCA.verifySiblingProperty(DT))
+ return false;
+
+ return true;
+}
+
+} // namespace DomTreeBuilder
+} // namespace llvm
+
+#undef DEBUG_TYPE
+
+#endif
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif