diff options
| author | Devtools Arcadia <[email protected]> | 2022-02-07 18:08:42 +0300 |
|---|---|---|
| committer | Devtools Arcadia <[email protected]> | 2022-02-07 18:08:42 +0300 |
| commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
| tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h | |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h')
| -rw-r--r-- | contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h | 1642 |
1 files changed, 1642 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h b/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h new file mode 100644 index 00000000000..9d3248b877a --- /dev/null +++ b/contrib/libs/llvm12/include/llvm/Support/GenericDomTreeConstruction.h @@ -0,0 +1,1642 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file +/// +/// Generic dominator tree construction - this file provides routines to +/// construct immediate dominator information for a flow-graph based on the +/// Semi-NCA algorithm described in this dissertation: +/// +/// [1] Linear-Time Algorithms for Dominators and Related Problems +/// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: +/// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf +/// +/// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly +/// faster than Simple Lengauer-Tarjan in practice. +/// +/// O(n^2) worst cases happen when the computation of nearest common ancestors +/// requires O(n) average time, which is very unlikely in real world. If this +/// ever turns out to be an issue, consider implementing a hybrid algorithm +/// that uses SLT to perform full constructions and SemiNCA for incremental +/// updates. +/// +/// The file uses the Depth Based Search algorithm to perform incremental +/// updates (insertion and deletions). The implemented algorithm is based on +/// this publication: +/// +/// [2] An Experimental Study of Dynamic Dominators +/// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: +/// https://arxiv.org/pdf/1604.02711.pdf +/// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H +#define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/GenericDomTree.h" +#include <queue> + +#define DEBUG_TYPE "dom-tree-builder" + +namespace llvm { +namespace DomTreeBuilder { + +template <typename DomTreeT> +struct SemiNCAInfo { + using NodePtr = typename DomTreeT::NodePtr; + using NodeT = typename DomTreeT::NodeType; + using TreeNodePtr = DomTreeNodeBase<NodeT> *; + using RootsT = decltype(DomTreeT::Roots); + static constexpr bool IsPostDom = DomTreeT::IsPostDominator; + using GraphDiffT = GraphDiff<NodePtr, IsPostDom>; + + // Information record used by Semi-NCA during tree construction. + struct InfoRec { + unsigned DFSNum = 0; + unsigned Parent = 0; + unsigned Semi = 0; + NodePtr Label = nullptr; + NodePtr IDom = nullptr; + SmallVector<NodePtr, 2> ReverseChildren; + }; + + // Number to node mapping is 1-based. Initialize the mapping to start with + // a dummy element. + std::vector<NodePtr> NumToNode = {nullptr}; + DenseMap<NodePtr, InfoRec> NodeToInfo; + + using UpdateT = typename DomTreeT::UpdateType; + using UpdateKind = typename DomTreeT::UpdateKind; + struct BatchUpdateInfo { + // Note: Updates inside PreViewCFG are aleady legalized. + BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) + : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), + NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {} + + // Remembers if the whole tree was recalculated at some point during the + // current batch update. + bool IsRecalculated = false; + GraphDiffT &PreViewCFG; + GraphDiffT *PostViewCFG; + const size_t NumLegalized; + }; + + BatchUpdateInfo *BatchUpdates; + using BatchUpdatePtr = BatchUpdateInfo *; + + // If BUI is a nullptr, then there's no batch update in progress. + SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} + + void clear() { + NumToNode = {nullptr}; // Restore to initial state with a dummy start node. + NodeToInfo.clear(); + // Don't reset the pointer to BatchUpdateInfo here -- if there's an update + // in progress, we need this information to continue it. + } + + template <bool Inversed> + static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { + if (BUI) + return BUI->PreViewCFG.template getChildren<Inversed>(N); + return getChildren<Inversed>(N); + } + + template <bool Inversed> + static SmallVector<NodePtr, 8> getChildren(NodePtr N) { + using DirectedNodeT = + std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; + auto R = children<DirectedNodeT>(N); + SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R)); + + // Remove nullptr children for clang. + llvm::erase_value(Res, nullptr); + return Res; + } + + NodePtr getIDom(NodePtr BB) const { + auto InfoIt = NodeToInfo.find(BB); + if (InfoIt == NodeToInfo.end()) return nullptr; + + return InfoIt->second.IDom; + } + + TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { + if (TreeNodePtr Node = DT.getNode(BB)) return Node; + + // Haven't calculated this node yet? Get or calculate the node for the + // immediate dominator. + NodePtr IDom = getIDom(BB); + + assert(IDom || DT.DomTreeNodes[nullptr]); + TreeNodePtr IDomNode = getNodeForBlock(IDom, DT); + + // Add a new tree node for this NodeT, and link it as a child of + // IDomNode + return DT.createChild(BB, IDomNode); + } + + static bool AlwaysDescend(NodePtr, NodePtr) { return true; } + + struct BlockNamePrinter { + NodePtr N; + + BlockNamePrinter(NodePtr Block) : N(Block) {} + BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} + + friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { + if (!BP.N) + O << "nullptr"; + else + BP.N->printAsOperand(O, false); + + return O; + } + }; + + using NodeOrderMap = DenseMap<NodePtr, unsigned>; + + // Custom DFS implementation which can skip nodes based on a provided + // predicate. It also collects ReverseChildren so that we don't have to spend + // time getting predecessors in SemiNCA. + // + // If IsReverse is set to true, the DFS walk will be performed backwards + // relative to IsPostDom -- using reverse edges for dominators and forward + // edges for postdominators. + // + // If SuccOrder is specified then in this order the DFS traverses the children + // otherwise the order is implied by the results of getChildren(). + template <bool IsReverse = false, typename DescendCondition> + unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, + unsigned AttachToNum, + const NodeOrderMap *SuccOrder = nullptr) { + assert(V); + SmallVector<NodePtr, 64> WorkList = {V}; + if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum; + + while (!WorkList.empty()) { + const NodePtr BB = WorkList.pop_back_val(); + auto &BBInfo = NodeToInfo[BB]; + + // Visited nodes always have positive DFS numbers. + if (BBInfo.DFSNum != 0) continue; + BBInfo.DFSNum = BBInfo.Semi = ++LastNum; + BBInfo.Label = BB; + NumToNode.push_back(BB); + + constexpr bool Direction = IsReverse != IsPostDom; // XOR. + auto Successors = getChildren<Direction>(BB, BatchUpdates); + if (SuccOrder && Successors.size() > 1) + llvm::sort( + Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { + return SuccOrder->find(A)->second < SuccOrder->find(B)->second; + }); + + for (const NodePtr Succ : Successors) { + const auto SIT = NodeToInfo.find(Succ); + // Don't visit nodes more than once but remember to collect + // ReverseChildren. + if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) { + if (Succ != BB) SIT->second.ReverseChildren.push_back(BB); + continue; + } + + if (!Condition(BB, Succ)) continue; + + // It's fine to add Succ to the map, because we know that it will be + // visited later. + auto &SuccInfo = NodeToInfo[Succ]; + WorkList.push_back(Succ); + SuccInfo.Parent = LastNum; + SuccInfo.ReverseChildren.push_back(BB); + } + } + + return LastNum; + } + + // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum + // of sdom(U), where U > W and there is a virtual forest path from U to V. The + // virtual forest consists of linked edges of processed vertices. + // + // We can follow Parent pointers (virtual forest edges) to determine the + // ancestor U with minimum sdom(U). But it is slow and thus we employ the path + // compression technique to speed up to O(m*log(n)). Theoretically the virtual + // forest can be organized as balanced trees to achieve almost linear + // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size + // and Child) and is unlikely to be faster than the simple implementation. + // + // For each vertex V, its Label points to the vertex with the minimal sdom(U) + // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). + NodePtr eval(NodePtr V, unsigned LastLinked, + SmallVectorImpl<InfoRec *> &Stack) { + InfoRec *VInfo = &NodeToInfo[V]; + if (VInfo->Parent < LastLinked) + return VInfo->Label; + + // Store ancestors except the last (root of a virtual tree) into a stack. + assert(Stack.empty()); + do { + Stack.push_back(VInfo); + VInfo = &NodeToInfo[NumToNode[VInfo->Parent]]; + } while (VInfo->Parent >= LastLinked); + + // Path compression. Point each vertex's Parent to the root and update its + // Label if any of its ancestors (PInfo->Label) has a smaller Semi. + const InfoRec *PInfo = VInfo; + const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label]; + do { + VInfo = Stack.pop_back_val(); + VInfo->Parent = PInfo->Parent; + const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label]; + if (PLabelInfo->Semi < VLabelInfo->Semi) + VInfo->Label = PInfo->Label; + else + PLabelInfo = VLabelInfo; + PInfo = VInfo; + } while (!Stack.empty()); + return VInfo->Label; + } + + // This function requires DFS to be run before calling it. + void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) { + const unsigned NextDFSNum(NumToNode.size()); + // Initialize IDoms to spanning tree parents. + for (unsigned i = 1; i < NextDFSNum; ++i) { + const NodePtr V = NumToNode[i]; + auto &VInfo = NodeToInfo[V]; + VInfo.IDom = NumToNode[VInfo.Parent]; + } + + // Step #1: Calculate the semidominators of all vertices. + SmallVector<InfoRec *, 32> EvalStack; + for (unsigned i = NextDFSNum - 1; i >= 2; --i) { + NodePtr W = NumToNode[i]; + auto &WInfo = NodeToInfo[W]; + + // Initialize the semi dominator to point to the parent node. + WInfo.Semi = WInfo.Parent; + for (const auto &N : WInfo.ReverseChildren) { + if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors. + continue; + + const TreeNodePtr TN = DT.getNode(N); + // Skip predecessors whose level is above the subtree we are processing. + if (TN && TN->getLevel() < MinLevel) + continue; + + unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi; + if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; + } + } + + // Step #2: Explicitly define the immediate dominator of each vertex. + // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). + // Note that the parents were stored in IDoms and later got invalidated + // during path compression in Eval. + for (unsigned i = 2; i < NextDFSNum; ++i) { + const NodePtr W = NumToNode[i]; + auto &WInfo = NodeToInfo[W]; + const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum; + NodePtr WIDomCandidate = WInfo.IDom; + while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum) + WIDomCandidate = NodeToInfo[WIDomCandidate].IDom; + + WInfo.IDom = WIDomCandidate; + } + } + + // PostDominatorTree always has a virtual root that represents a virtual CFG + // node that serves as a single exit from the function. All the other exits + // (CFG nodes with terminators and nodes in infinite loops are logically + // connected to this virtual CFG exit node). + // This functions maps a nullptr CFG node to the virtual root tree node. + void addVirtualRoot() { + assert(IsPostDom && "Only postdominators have a virtual root"); + assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed"); + + auto &BBInfo = NodeToInfo[nullptr]; + BBInfo.DFSNum = BBInfo.Semi = 1; + BBInfo.Label = nullptr; + + NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; + } + + // For postdominators, nodes with no forward successors are trivial roots that + // are always selected as tree roots. Roots with forward successors correspond + // to CFG nodes within infinite loops. + static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { + assert(N && "N must be a valid node"); + return !getChildren<false>(N, BUI).empty(); + } + + static NodePtr GetEntryNode(const DomTreeT &DT) { + assert(DT.Parent && "Parent not set"); + return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); + } + + // Finds all roots without relaying on the set of roots already stored in the + // tree. + // We define roots to be some non-redundant set of the CFG nodes + static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { + assert(DT.Parent && "Parent pointer is not set"); + RootsT Roots; + + // For dominators, function entry CFG node is always a tree root node. + if (!IsPostDom) { + Roots.push_back(GetEntryNode(DT)); + return Roots; + } + + SemiNCAInfo SNCA(BUI); + + // PostDominatorTree always has a virtual root. + SNCA.addVirtualRoot(); + unsigned Num = 1; + + LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n"); + + // Step #1: Find all the trivial roots that are going to will definitely + // remain tree roots. + unsigned Total = 0; + // It may happen that there are some new nodes in the CFG that are result of + // the ongoing batch update, but we cannot really pretend that they don't + // exist -- we won't see any outgoing or incoming edges to them, so it's + // fine to discover them here, as they would end up appearing in the CFG at + // some point anyway. + for (const NodePtr N : nodes(DT.Parent)) { + ++Total; + // If it has no *successors*, it is definitely a root. + if (!HasForwardSuccessors(N, BUI)) { + Roots.push_back(N); + // Run DFS not to walk this part of CFG later. + Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); + LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) + << "\n"); + LLVM_DEBUG(dbgs() << "Last visited node: " + << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n"); + } + } + + LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n"); + + // Step #2: Find all non-trivial root candidates. Those are CFG nodes that + // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG + // nodes in infinite loops). + bool HasNonTrivialRoots = false; + // Accounting for the virtual exit, see if we had any reverse-unreachable + // nodes. + if (Total + 1 != Num) { + HasNonTrivialRoots = true; + + // SuccOrder is the order of blocks in the function. It is needed to make + // the calculation of the FurthestAway node and the whole PostDomTree + // immune to swap successors transformation (e.g. canonicalizing branch + // predicates). SuccOrder is initialized lazily only for successors of + // reverse unreachable nodes. + Optional<NodeOrderMap> SuccOrder; + auto InitSuccOrderOnce = [&]() { + SuccOrder = NodeOrderMap(); + for (const auto Node : nodes(DT.Parent)) + if (SNCA.NodeToInfo.count(Node) == 0) + for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) + SuccOrder->try_emplace(Succ, 0); + + // Add mapping for all entries of SuccOrder. + unsigned NodeNum = 0; + for (const auto Node : nodes(DT.Parent)) { + ++NodeNum; + auto Order = SuccOrder->find(Node); + if (Order != SuccOrder->end()) { + assert(Order->second == 0); + Order->second = NodeNum; + } + } + }; + + // Make another DFS pass over all other nodes to find the + // reverse-unreachable blocks, and find the furthest paths we'll be able + // to make. + // Note that this looks N^2, but it's really 2N worst case, if every node + // is unreachable. This is because we are still going to only visit each + // unreachable node once, we may just visit it in two directions, + // depending on how lucky we get. + SmallPtrSet<NodePtr, 4> ConnectToExitBlock; + for (const NodePtr I : nodes(DT.Parent)) { + if (SNCA.NodeToInfo.count(I) == 0) { + LLVM_DEBUG(dbgs() + << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n"); + // Find the furthest away we can get by following successors, then + // follow them in reverse. This gives us some reasonable answer about + // the post-dom tree inside any infinite loop. In particular, it + // guarantees we get to the farthest away point along *some* + // path. This also matches the GCC's behavior. + // If we really wanted a totally complete picture of dominance inside + // this infinite loop, we could do it with SCC-like algorithms to find + // the lowest and highest points in the infinite loop. In theory, it + // would be nice to give the canonical backedge for the loop, but it's + // expensive and does not always lead to a minimal set of roots. + LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n"); + + if (!SuccOrder) + InitSuccOrderOnce(); + assert(SuccOrder); + + const unsigned NewNum = + SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); + const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; + LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " + << "(non-trivial root): " + << BlockNamePrinter(FurthestAway) << "\n"); + ConnectToExitBlock.insert(FurthestAway); + Roots.push_back(FurthestAway); + LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " + << NewNum << "\n\t\t\tRemoving DFS info\n"); + for (unsigned i = NewNum; i > Num; --i) { + const NodePtr N = SNCA.NumToNode[i]; + LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " + << BlockNamePrinter(N) << "\n"); + SNCA.NodeToInfo.erase(N); + SNCA.NumToNode.pop_back(); + } + const unsigned PrevNum = Num; + LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n"); + Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); + for (unsigned i = PrevNum + 1; i <= Num; ++i) + LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " + << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); + } + } + } + + LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n"); + LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n"); + LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() + << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); + + assert((Total + 1 == Num) && "Everything should have been visited"); + + // Step #3: If we found some non-trivial roots, make them non-redundant. + if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); + + LLVM_DEBUG(dbgs() << "Found roots: "); + LLVM_DEBUG(for (auto *Root + : Roots) dbgs() + << BlockNamePrinter(Root) << " "); + LLVM_DEBUG(dbgs() << "\n"); + + return Roots; + } + + // This function only makes sense for postdominators. + // We define roots to be some set of CFG nodes where (reverse) DFS walks have + // to start in order to visit all the CFG nodes (including the + // reverse-unreachable ones). + // When the search for non-trivial roots is done it may happen that some of + // the non-trivial roots are reverse-reachable from other non-trivial roots, + // which makes them redundant. This function removes them from the set of + // input roots. + static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, + RootsT &Roots) { + assert(IsPostDom && "This function is for postdominators only"); + LLVM_DEBUG(dbgs() << "Removing redundant roots\n"); + + SemiNCAInfo SNCA(BUI); + + for (unsigned i = 0; i < Roots.size(); ++i) { + auto &Root = Roots[i]; + // Trivial roots are always non-redundant. + if (!HasForwardSuccessors(Root, BUI)) continue; + LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) + << " remains a root\n"); + SNCA.clear(); + // Do a forward walk looking for the other roots. + const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); + // Skip the start node and begin from the second one (note that DFS uses + // 1-based indexing). + for (unsigned x = 2; x <= Num; ++x) { + const NodePtr N = SNCA.NumToNode[x]; + // If we wound another root in a (forward) DFS walk, remove the current + // root from the set of roots, as it is reverse-reachable from the other + // one. + if (llvm::is_contained(Roots, N)) { + LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " + << BlockNamePrinter(N) << "\n\tRemoving root " + << BlockNamePrinter(Root) << "\n"); + std::swap(Root, Roots.back()); + Roots.pop_back(); + + // Root at the back takes the current root's place. + // Start the next loop iteration with the same index. + --i; + break; + } + } + } + } + + template <typename DescendCondition> + void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { + if (!IsPostDom) { + assert(DT.Roots.size() == 1 && "Dominators should have a singe root"); + runDFS(DT.Roots[0], 0, DC, 0); + return; + } + + addVirtualRoot(); + unsigned Num = 1; + for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0); + } + + static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { + auto *Parent = DT.Parent; + DT.reset(); + DT.Parent = Parent; + // If the update is using the actual CFG, BUI is null. If it's using a view, + // BUI is non-null and the PreCFGView is used. When calculating from + // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. + BatchUpdatePtr PostViewBUI = nullptr; + if (BUI && BUI->PostViewCFG) { + BUI->PreViewCFG = *BUI->PostViewCFG; + PostViewBUI = BUI; + } + // This is rebuilding the whole tree, not incrementally, but PostViewBUI is + // used in case the caller needs a DT update with a CFGView. + SemiNCAInfo SNCA(PostViewBUI); + + // Step #0: Number blocks in depth-first order and initialize variables used + // in later stages of the algorithm. + DT.Roots = FindRoots(DT, PostViewBUI); + SNCA.doFullDFSWalk(DT, AlwaysDescend); + + SNCA.runSemiNCA(DT); + if (BUI) { + BUI->IsRecalculated = true; + LLVM_DEBUG( + dbgs() << "DomTree recalculated, skipping future batch updates\n"); + } + + if (DT.Roots.empty()) return; + + // Add a node for the root. If the tree is a PostDominatorTree it will be + // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates + // all real exits (including multiple exit blocks, infinite loops). + NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; + + DT.RootNode = DT.createNode(Root); + SNCA.attachNewSubtree(DT, DT.RootNode); + } + + void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { + // Attach the first unreachable block to AttachTo. + NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); + // Loop over all of the discovered blocks in the function... + for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { + NodePtr W = NumToNode[i]; + + // Don't replace this with 'count', the insertion side effect is important + if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? + + NodePtr ImmDom = getIDom(W); + + // Get or calculate the node for the immediate dominator. + TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT); + + // Add a new tree node for this BasicBlock, and link it as a child of + // IDomNode. + DT.createChild(W, IDomNode); + } + } + + void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { + NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); + for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { + const NodePtr N = NumToNode[i]; + const TreeNodePtr TN = DT.getNode(N); + assert(TN); + const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); + TN->setIDom(NewIDom); + } + } + + // Helper struct used during edge insertions. + struct InsertionInfo { + struct Compare { + bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { + return LHS->getLevel() < RHS->getLevel(); + } + }; + + // Bucket queue of tree nodes ordered by descending level. For simplicity, + // we use a priority_queue here. + std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, + Compare> + Bucket; + SmallDenseSet<TreeNodePtr, 8> Visited; + SmallVector<TreeNodePtr, 8> Affected; +#ifndef NDEBUG + SmallVector<TreeNodePtr, 8> VisitedUnaffected; +#endif + }; + + static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, + const NodePtr From, const NodePtr To) { + assert((From || IsPostDom) && + "From has to be a valid CFG node or a virtual root"); + assert(To && "Cannot be a nullptr"); + LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " + << BlockNamePrinter(To) << "\n"); + TreeNodePtr FromTN = DT.getNode(From); + + if (!FromTN) { + // Ignore edges from unreachable nodes for (forward) dominators. + if (!IsPostDom) return; + + // The unreachable node becomes a new root -- a tree node for it. + TreeNodePtr VirtualRoot = DT.getNode(nullptr); + FromTN = DT.createChild(From, VirtualRoot); + DT.Roots.push_back(From); + } + + DT.DFSInfoValid = false; + + const TreeNodePtr ToTN = DT.getNode(To); + if (!ToTN) + InsertUnreachable(DT, BUI, FromTN, To); + else + InsertReachable(DT, BUI, FromTN, ToTN); + } + + // Determines if some existing root becomes reverse-reachable after the + // insertion. Rebuilds the whole tree if that situation happens. + static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr From, + const TreeNodePtr To) { + assert(IsPostDom && "This function is only for postdominators"); + // Destination node is not attached to the virtual root, so it cannot be a + // root. + if (!DT.isVirtualRoot(To->getIDom())) return false; + + if (!llvm::is_contained(DT.Roots, To->getBlock())) + return false; // To is not a root, nothing to update. + + LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) + << " is no longer a root\n\t\tRebuilding the tree!!!\n"); + + CalculateFromScratch(DT, BUI); + return true; + } + + static bool isPermutation(const SmallVectorImpl<NodePtr> &A, + const SmallVectorImpl<NodePtr> &B) { + if (A.size() != B.size()) + return false; + SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end()); + for (NodePtr N : B) + if (Set.count(N) == 0) + return false; + return true; + } + + // Updates the set of roots after insertion or deletion. This ensures that + // roots are the same when after a series of updates and when the tree would + // be built from scratch. + static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { + assert(IsPostDom && "This function is only for postdominators"); + + // The tree has only trivial roots -- nothing to update. + if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) { + return HasForwardSuccessors(N, BUI); + })) + return; + + // Recalculate the set of roots. + RootsT Roots = FindRoots(DT, BUI); + if (!isPermutation(DT.Roots, Roots)) { + // The roots chosen in the CFG have changed. This is because the + // incremental algorithm does not really know or use the set of roots and + // can make a different (implicit) decision about which node within an + // infinite loop becomes a root. + + LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" + << "The entire tree needs to be rebuilt\n"); + // It may be possible to update the tree without recalculating it, but + // we do not know yet how to do it, and it happens rarely in practice. + CalculateFromScratch(DT, BUI); + } + } + + // Handles insertion to a node already in the dominator tree. + static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr From, const TreeNodePtr To) { + LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) + << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); + if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; + // DT.findNCD expects both pointers to be valid. When From is a virtual + // root, then its CFG block pointer is a nullptr, so we have to 'compute' + // the NCD manually. + const NodePtr NCDBlock = + (From->getBlock() && To->getBlock()) + ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) + : nullptr; + assert(NCDBlock || DT.isPostDominator()); + const TreeNodePtr NCD = DT.getNode(NCDBlock); + assert(NCD); + + LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); + const unsigned NCDLevel = NCD->getLevel(); + + // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected + // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every + // w on P s.t. depth(v) <= depth(w) + // + // This reduces to a widest path problem (maximizing the depth of the + // minimum vertex in the path) which can be solved by a modified version of + // Dijkstra with a bucket queue (named depth-based search in [2]). + + // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing + // affected if this does not hold. + if (NCDLevel + 1 >= To->getLevel()) + return; + + InsertionInfo II; + SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; + II.Bucket.push(To); + II.Visited.insert(To); + + while (!II.Bucket.empty()) { + TreeNodePtr TN = II.Bucket.top(); + II.Bucket.pop(); + II.Affected.push_back(TN); + + const unsigned CurrentLevel = TN->getLevel(); + LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << + "as affected, CurrentLevel " << CurrentLevel << "\n"); + + assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!"); + + while (true) { + // Unlike regular Dijkstra, we have an inner loop to expand more + // vertices. The first iteration is for the (affected) vertex popped + // from II.Bucket and the rest are for vertices in + // UnaffectedOnCurrentLevel, which may eventually expand to affected + // vertices. + // + // Invariant: there is an optimal path from `To` to TN with the minimum + // depth being CurrentLevel. + for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { + const TreeNodePtr SuccTN = DT.getNode(Succ); + assert(SuccTN && + "Unreachable successor found at reachable insertion"); + const unsigned SuccLevel = SuccTN->getLevel(); + + LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) + << ", level = " << SuccLevel << "\n"); + + // There is an optimal path from `To` to Succ with the minimum depth + // being min(CurrentLevel, SuccLevel). + // + // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected + // and no affected vertex may be reached by a path passing through it. + // Stop here. Also, Succ may be visited by other predecessors but the + // first visit has the optimal path. Stop if Succ has been visited. + if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) + continue; + + if (SuccLevel > CurrentLevel) { + // Succ is unaffected but it may (transitively) expand to affected + // vertices. Store it in UnaffectedOnCurrentLevel. + LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " + << BlockNamePrinter(Succ) << "\n"); + UnaffectedOnCurrentLevel.push_back(SuccTN); +#ifndef NDEBUG + II.VisitedUnaffected.push_back(SuccTN); +#endif + } else { + // The condition is satisfied (Succ is affected). Add Succ to the + // bucket queue. + LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) + << " to a Bucket\n"); + II.Bucket.push(SuccTN); + } + } + + if (UnaffectedOnCurrentLevel.empty()) + break; + TN = UnaffectedOnCurrentLevel.pop_back_val(); + LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n"); + } + } + + // Finish by updating immediate dominators and levels. + UpdateInsertion(DT, BUI, NCD, II); + } + + // Updates immediate dominators and levels after insertion. + static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr NCD, InsertionInfo &II) { + LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n"); + + for (const TreeNodePtr TN : II.Affected) { + LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) + << ") = " << BlockNamePrinter(NCD) << "\n"); + TN->setIDom(NCD); + } + +#ifndef NDEBUG + for (const TreeNodePtr TN : II.VisitedUnaffected) + assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && + "TN should have been updated by an affected ancestor"); +#endif + + if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); + } + + // Handles insertion to previously unreachable nodes. + static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr From, const NodePtr To) { + LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) + << " -> (unreachable) " << BlockNamePrinter(To) << "\n"); + + // Collect discovered edges to already reachable nodes. + SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; + // Discover and connect nodes that became reachable with the insertion. + ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable); + + LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) + << " -> (prev unreachable) " << BlockNamePrinter(To) + << "\n"); + + // Used the discovered edges and inset discovered connecting (incoming) + // edges. + for (const auto &Edge : DiscoveredEdgesToReachable) { + LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " + << BlockNamePrinter(Edge.first) << " -> " + << BlockNamePrinter(Edge.second) << "\n"); + InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second); + } + } + + // Connects nodes that become reachable with an insertion. + static void ComputeUnreachableDominators( + DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, + const TreeNodePtr Incoming, + SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> + &DiscoveredConnectingEdges) { + assert(!DT.getNode(Root) && "Root must not be reachable"); + + // Visit only previously unreachable nodes. + auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, + NodePtr To) { + const TreeNodePtr ToTN = DT.getNode(To); + if (!ToTN) return true; + + DiscoveredConnectingEdges.push_back({From, ToTN}); + return false; + }; + + SemiNCAInfo SNCA(BUI); + SNCA.runDFS(Root, 0, UnreachableDescender, 0); + SNCA.runSemiNCA(DT); + SNCA.attachNewSubtree(DT, Incoming); + + LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n"); + } + + static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, + const NodePtr From, const NodePtr To) { + assert(From && To && "Cannot disconnect nullptrs"); + LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " + << BlockNamePrinter(To) << "\n"); + +#ifndef NDEBUG + // Ensure that the edge was in fact deleted from the CFG before informing + // the DomTree about it. + // The check is O(N), so run it only in debug configuration. + auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { + auto Successors = getChildren<IsPostDom>(Of, BUI); + return llvm::is_contained(Successors, SuccCandidate); + }; + (void)IsSuccessor; + assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); +#endif + + const TreeNodePtr FromTN = DT.getNode(From); + // Deletion in an unreachable subtree -- nothing to do. + if (!FromTN) return; + + const TreeNodePtr ToTN = DT.getNode(To); + if (!ToTN) { + LLVM_DEBUG( + dbgs() << "\tTo (" << BlockNamePrinter(To) + << ") already unreachable -- there is no edge to delete\n"); + return; + } + + const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); + const TreeNodePtr NCD = DT.getNode(NCDBlock); + + // If To dominates From -- nothing to do. + if (ToTN != NCD) { + DT.DFSInfoValid = false; + + const TreeNodePtr ToIDom = ToTN->getIDom(); + LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " + << BlockNamePrinter(ToIDom) << "\n"); + + // To remains reachable after deletion. + // (Based on the caption under Figure 4. from [2].) + if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN)) + DeleteReachable(DT, BUI, FromTN, ToTN); + else + DeleteUnreachable(DT, BUI, ToTN); + } + + if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); + } + + // Handles deletions that leave destination nodes reachable. + static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr FromTN, + const TreeNodePtr ToTN) { + LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) + << " -> " << BlockNamePrinter(ToTN) << "\n"); + LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n"); + + // Find the top of the subtree that needs to be rebuilt. + // (Based on the lemma 2.6 from [2].) + const NodePtr ToIDom = + DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); + assert(ToIDom || DT.isPostDominator()); + const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); + assert(ToIDomTN); + const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); + // Top of the subtree to rebuild is the root node. Rebuild the tree from + // scratch. + if (!PrevIDomSubTree) { + LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); + CalculateFromScratch(DT, BUI); + return; + } + + // Only visit nodes in the subtree starting at To. + const unsigned Level = ToIDomTN->getLevel(); + auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { + return DT.getNode(To)->getLevel() > Level; + }; + + LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) + << "\n"); + + SemiNCAInfo SNCA(BUI); + SNCA.runDFS(ToIDom, 0, DescendBelow, 0); + LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n"); + SNCA.runSemiNCA(DT, Level); + SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); + } + + // Checks if a node has proper support, as defined on the page 3 and later + // explained on the page 7 of [2]. + static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr TN) { + LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) + << "\n"); + auto TNB = TN->getBlock(); + for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { + LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); + if (!DT.getNode(Pred)) continue; + + const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); + LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); + if (Support != TNB) { + LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) + << " is reachable from support " + << BlockNamePrinter(Support) << "\n"); + return true; + } + } + + return false; + } + + // Handle deletions that make destination node unreachable. + // (Based on the lemma 2.7 from the [2].) + static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, + const TreeNodePtr ToTN) { + LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " + << BlockNamePrinter(ToTN) << "\n"); + assert(ToTN); + assert(ToTN->getBlock()); + + if (IsPostDom) { + // Deletion makes a region reverse-unreachable and creates a new root. + // Simulate that by inserting an edge from the virtual root to ToTN and + // adding it as a new root. + LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n"); + LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) + << "\n"); + DT.Roots.push_back(ToTN->getBlock()); + InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN); + return; + } + + SmallVector<NodePtr, 16> AffectedQueue; + const unsigned Level = ToTN->getLevel(); + + // Traverse destination node's descendants with greater level in the tree + // and collect visited nodes. + auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { + const TreeNodePtr TN = DT.getNode(To); + assert(TN); + if (TN->getLevel() > Level) return true; + if (!llvm::is_contained(AffectedQueue, To)) + AffectedQueue.push_back(To); + + return false; + }; + + SemiNCAInfo SNCA(BUI); + unsigned LastDFSNum = + SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); + + TreeNodePtr MinNode = ToTN; + + // Identify the top of the subtree to rebuild by finding the NCD of all + // the affected nodes. + for (const NodePtr N : AffectedQueue) { + const TreeNodePtr TN = DT.getNode(N); + const NodePtr NCDBlock = + DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); + assert(NCDBlock || DT.isPostDominator()); + const TreeNodePtr NCD = DT.getNode(NCDBlock); + assert(NCD); + + LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) + << " with NCD = " << BlockNamePrinter(NCD) + << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); + if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; + } + + // Root reached, rebuild the whole tree from scratch. + if (!MinNode->getIDom()) { + LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); + CalculateFromScratch(DT, BUI); + return; + } + + // Erase the unreachable subtree in reverse preorder to process all children + // before deleting their parent. + for (unsigned i = LastDFSNum; i > 0; --i) { + const NodePtr N = SNCA.NumToNode[i]; + const TreeNodePtr TN = DT.getNode(N); + LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n"); + + EraseNode(DT, TN); + } + + // The affected subtree start at the To node -- there's no extra work to do. + if (MinNode == ToTN) return; + + LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " + << BlockNamePrinter(MinNode) << "\n"); + const unsigned MinLevel = MinNode->getLevel(); + const TreeNodePtr PrevIDom = MinNode->getIDom(); + assert(PrevIDom); + SNCA.clear(); + + // Identify nodes that remain in the affected subtree. + auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { + const TreeNodePtr ToTN = DT.getNode(To); + return ToTN && ToTN->getLevel() > MinLevel; + }; + SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); + + LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " + << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n"); + + // Rebuild the remaining part of affected subtree. + SNCA.runSemiNCA(DT, MinLevel); + SNCA.reattachExistingSubtree(DT, PrevIDom); + } + + // Removes leaf tree nodes from the dominator tree. + static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { + assert(TN); + assert(TN->getNumChildren() == 0 && "Not a tree leaf"); + + const TreeNodePtr IDom = TN->getIDom(); + assert(IDom); + + auto ChIt = llvm::find(IDom->Children, TN); + assert(ChIt != IDom->Children.end()); + std::swap(*ChIt, IDom->Children.back()); + IDom->Children.pop_back(); + + DT.DomTreeNodes.erase(TN->getBlock()); + } + + //~~ + //===--------------------- DomTree Batch Updater --------------------------=== + //~~ + + static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, + GraphDiffT *PostViewCFG) { + // Note: the PostViewCFG is only used when computing from scratch. It's data + // should already included in the PreViewCFG for incremental updates. + const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); + if (NumUpdates == 0) + return; + + // Take the fast path for a single update and avoid running the batch update + // machinery. + if (NumUpdates == 1) { + UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); + if (!PostViewCFG) { + if (Update.getKind() == UpdateKind::Insert) + InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); + else + DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); + } else { + BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); + if (Update.getKind() == UpdateKind::Insert) + InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo()); + else + DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo()); + } + return; + } + + BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); + // Recalculate the DominatorTree when the number of updates + // exceeds a threshold, which usually makes direct updating slower than + // recalculation. We select this threshold proportional to the + // size of the DominatorTree. The constant is selected + // by choosing the one with an acceptable performance on some real-world + // inputs. + + // Make unittests of the incremental algorithm work + if (DT.DomTreeNodes.size() <= 100) { + if (BUI.NumLegalized > DT.DomTreeNodes.size()) + CalculateFromScratch(DT, &BUI); + } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) + CalculateFromScratch(DT, &BUI); + + // If the DominatorTree was recalculated at some point, stop the batch + // updates. Full recalculations ignore batch updates and look at the actual + // CFG. + for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) + ApplyNextUpdate(DT, BUI); + } + + static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { + // Popping the next update, will move the PreViewCFG to the next snapshot. + UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); +#if 0 + // FIXME: The LLVM_DEBUG macro only plays well with a modular + // build of LLVM when the header is marked as textual, but doing + // so causes redefinition errors. + LLVM_DEBUG(dbgs() << "Applying update: "); + LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n"); +#endif + + if (CurrentUpdate.getKind() == UpdateKind::Insert) + InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); + else + DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); + } + + //~~ + //===--------------- DomTree correctness verification ---------------------=== + //~~ + + // Check if the tree has correct roots. A DominatorTree always has a single + // root which is the function's entry node. A PostDominatorTree can have + // multiple roots - one for each node with no successors and for infinite + // loops. + // Running time: O(N). + bool verifyRoots(const DomTreeT &DT) { + if (!DT.Parent && !DT.Roots.empty()) { + errs() << "Tree has no parent but has roots!\n"; + errs().flush(); + return false; + } + + if (!IsPostDom) { + if (DT.Roots.empty()) { + errs() << "Tree doesn't have a root!\n"; + errs().flush(); + return false; + } + + if (DT.getRoot() != GetEntryNode(DT)) { + errs() << "Tree's root is not its parent's entry node!\n"; + errs().flush(); + return false; + } + } + + RootsT ComputedRoots = FindRoots(DT, nullptr); + if (!isPermutation(DT.Roots, ComputedRoots)) { + errs() << "Tree has different roots than freshly computed ones!\n"; + errs() << "\tPDT roots: "; + for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", "; + errs() << "\n\tComputed roots: "; + for (const NodePtr N : ComputedRoots) + errs() << BlockNamePrinter(N) << ", "; + errs() << "\n"; + errs().flush(); + return false; + } + + return true; + } + + // Checks if the tree contains all reachable nodes in the input graph. + // Running time: O(N). + bool verifyReachability(const DomTreeT &DT) { + clear(); + doFullDFSWalk(DT, AlwaysDescend); + + for (auto &NodeToTN : DT.DomTreeNodes) { + const TreeNodePtr TN = NodeToTN.second.get(); + const NodePtr BB = TN->getBlock(); + + // Virtual root has a corresponding virtual CFG node. + if (DT.isVirtualRoot(TN)) continue; + + if (NodeToInfo.count(BB) == 0) { + errs() << "DomTree node " << BlockNamePrinter(BB) + << " not found by DFS walk!\n"; + errs().flush(); + + return false; + } + } + + for (const NodePtr N : NumToNode) { + if (N && !DT.getNode(N)) { + errs() << "CFG node " << BlockNamePrinter(N) + << " not found in the DomTree!\n"; + errs().flush(); + + return false; + } + } + + return true; + } + + // Check if for every parent with a level L in the tree all of its children + // have level L + 1. + // Running time: O(N). + static bool VerifyLevels(const DomTreeT &DT) { + for (auto &NodeToTN : DT.DomTreeNodes) { + const TreeNodePtr TN = NodeToTN.second.get(); + const NodePtr BB = TN->getBlock(); + if (!BB) continue; + + const TreeNodePtr IDom = TN->getIDom(); + if (!IDom && TN->getLevel() != 0) { + errs() << "Node without an IDom " << BlockNamePrinter(BB) + << " has a nonzero level " << TN->getLevel() << "!\n"; + errs().flush(); + + return false; + } + + if (IDom && TN->getLevel() != IDom->getLevel() + 1) { + errs() << "Node " << BlockNamePrinter(BB) << " has level " + << TN->getLevel() << " while its IDom " + << BlockNamePrinter(IDom->getBlock()) << " has level " + << IDom->getLevel() << "!\n"; + errs().flush(); + + return false; + } + } + + return true; + } + + // Check if the computed DFS numbers are correct. Note that DFS info may not + // be valid, and when that is the case, we don't verify the numbers. + // Running time: O(N log(N)). + static bool VerifyDFSNumbers(const DomTreeT &DT) { + if (!DT.DFSInfoValid || !DT.Parent) + return true; + + const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); + const TreeNodePtr Root = DT.getNode(RootBB); + + auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { + errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " + << TN->getDFSNumOut() << '}'; + }; + + // Verify the root's DFS In number. Although DFS numbering would also work + // if we started from some other value, we assume 0-based numbering. + if (Root->getDFSNumIn() != 0) { + errs() << "DFSIn number for the tree root is not:\n\t"; + PrintNodeAndDFSNums(Root); + errs() << '\n'; + errs().flush(); + return false; + } + + // For each tree node verify if children's DFS numbers cover their parent's + // DFS numbers with no gaps. + for (const auto &NodeToTN : DT.DomTreeNodes) { + const TreeNodePtr Node = NodeToTN.second.get(); + + // Handle tree leaves. + if (Node->isLeaf()) { + if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { + errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t"; + PrintNodeAndDFSNums(Node); + errs() << '\n'; + errs().flush(); + return false; + } + + continue; + } + + // Make a copy and sort it such that it is possible to check if there are + // no gaps between DFS numbers of adjacent children. + SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); + llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { + return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); + }); + + auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( + const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { + assert(FirstCh); + + errs() << "Incorrect DFS numbers for:\n\tParent "; + PrintNodeAndDFSNums(Node); + + errs() << "\n\tChild "; + PrintNodeAndDFSNums(FirstCh); + + if (SecondCh) { + errs() << "\n\tSecond child "; + PrintNodeAndDFSNums(SecondCh); + } + + errs() << "\nAll children: "; + for (const TreeNodePtr Ch : Children) { + PrintNodeAndDFSNums(Ch); + errs() << ", "; + } + + errs() << '\n'; + errs().flush(); + }; + + if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { + PrintChildrenError(Children.front(), nullptr); + return false; + } + + if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { + PrintChildrenError(Children.back(), nullptr); + return false; + } + + for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { + if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { + PrintChildrenError(Children[i], Children[i + 1]); + return false; + } + } + } + + return true; + } + + // The below routines verify the correctness of the dominator tree relative to + // the CFG it's coming from. A tree is a dominator tree iff it has two + // properties, called the parent property and the sibling property. Tarjan + // and Lengauer prove (but don't explicitly name) the properties as part of + // the proofs in their 1972 paper, but the proofs are mostly part of proving + // things about semidominators and idoms, and some of them are simply asserted + // based on even earlier papers (see, e.g., lemma 2). Some papers refer to + // these properties as "valid" and "co-valid". See, e.g., "Dominators, + // directed bipolar orders, and independent spanning trees" by Loukas + // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification + // and Vertex-Disjoint Paths " by the same authors. + + // A very simple and direct explanation of these properties can be found in + // "An Experimental Study of Dynamic Dominators", found at + // https://arxiv.org/abs/1604.02711 + + // The easiest way to think of the parent property is that it's a requirement + // of being a dominator. Let's just take immediate dominators. For PARENT to + // be an immediate dominator of CHILD, all paths in the CFG must go through + // PARENT before they hit CHILD. This implies that if you were to cut PARENT + // out of the CFG, there should be no paths to CHILD that are reachable. If + // there are, then you now have a path from PARENT to CHILD that goes around + // PARENT and still reaches CHILD, which by definition, means PARENT can't be + // a dominator of CHILD (let alone an immediate one). + + // The sibling property is similar. It says that for each pair of sibling + // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each + // other. If sibling LEFT dominated sibling RIGHT, it means there are no + // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through + // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of + // RIGHT, not a sibling. + + // It is possible to verify the parent and sibling properties in linear time, + // but the algorithms are complex. Instead, we do it in a straightforward + // N^2 and N^3 way below, using direct path reachability. + + // Checks if the tree has the parent property: if for all edges from V to W in + // the input graph, such that V is reachable, the parent of W in the tree is + // an ancestor of V in the tree. + // Running time: O(N^2). + // + // This means that if a node gets disconnected from the graph, then all of + // the nodes it dominated previously will now become unreachable. + bool verifyParentProperty(const DomTreeT &DT) { + for (auto &NodeToTN : DT.DomTreeNodes) { + const TreeNodePtr TN = NodeToTN.second.get(); + const NodePtr BB = TN->getBlock(); + if (!BB || TN->isLeaf()) + continue; + + LLVM_DEBUG(dbgs() << "Verifying parent property of node " + << BlockNamePrinter(TN) << "\n"); + clear(); + doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { + return From != BB && To != BB; + }); + + for (TreeNodePtr Child : TN->children()) + if (NodeToInfo.count(Child->getBlock()) != 0) { + errs() << "Child " << BlockNamePrinter(Child) + << " reachable after its parent " << BlockNamePrinter(BB) + << " is removed!\n"; + errs().flush(); + + return false; + } + } + + return true; + } + + // Check if the tree has sibling property: if a node V does not dominate a + // node W for all siblings V and W in the tree. + // Running time: O(N^3). + // + // This means that if a node gets disconnected from the graph, then all of its + // siblings will now still be reachable. + bool verifySiblingProperty(const DomTreeT &DT) { + for (auto &NodeToTN : DT.DomTreeNodes) { + const TreeNodePtr TN = NodeToTN.second.get(); + const NodePtr BB = TN->getBlock(); + if (!BB || TN->isLeaf()) + continue; + + for (const TreeNodePtr N : TN->children()) { + clear(); + NodePtr BBN = N->getBlock(); + doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { + return From != BBN && To != BBN; + }); + + for (const TreeNodePtr S : TN->children()) { + if (S == N) continue; + + if (NodeToInfo.count(S->getBlock()) == 0) { + errs() << "Node " << BlockNamePrinter(S) + << " not reachable when its sibling " << BlockNamePrinter(N) + << " is removed!\n"; + errs().flush(); + + return false; + } + } + } + } + + return true; + } + + // Check if the given tree is the same as a freshly computed one for the same + // Parent. + // Running time: O(N^2), but faster in practice (same as tree construction). + // + // Note that this does not check if that the tree construction algorithm is + // correct and should be only used for fast (but possibly unsound) + // verification. + static bool IsSameAsFreshTree(const DomTreeT &DT) { + DomTreeT FreshTree; + FreshTree.recalculate(*DT.Parent); + const bool Different = DT.compare(FreshTree); + + if (Different) { + errs() << (DT.isPostDominator() ? "Post" : "") + << "DominatorTree is different than a freshly computed one!\n" + << "\tCurrent:\n"; + DT.print(errs()); + errs() << "\n\tFreshly computed tree:\n"; + FreshTree.print(errs()); + errs().flush(); + } + + return !Different; + } +}; + +template <class DomTreeT> +void Calculate(DomTreeT &DT) { + SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); +} + +template <typename DomTreeT> +void CalculateWithUpdates(DomTreeT &DT, + ArrayRef<typename DomTreeT::UpdateType> Updates) { + // FIXME: Updated to use the PreViewCFG and behave the same as until now. + // This behavior is however incorrect; this actually needs the PostViewCFG. + GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( + Updates, /*ReverseApplyUpdates=*/true); + typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); + SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); +} + +template <class DomTreeT> +void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, + typename DomTreeT::NodePtr To) { + if (DT.isPostDominator()) std::swap(From, To); + SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); +} + +template <class DomTreeT> +void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, + typename DomTreeT::NodePtr To) { + if (DT.isPostDominator()) std::swap(From, To); + SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); +} + +template <class DomTreeT> +void ApplyUpdates(DomTreeT &DT, + GraphDiff<typename DomTreeT::NodePtr, + DomTreeT::IsPostDominator> &PreViewCFG, + GraphDiff<typename DomTreeT::NodePtr, + DomTreeT::IsPostDominator> *PostViewCFG) { + SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); +} + +template <class DomTreeT> +bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { + SemiNCAInfo<DomTreeT> SNCA(nullptr); + + // Simplist check is to compare against a new tree. This will also + // usefully print the old and new trees, if they are different. + if (!SNCA.IsSameAsFreshTree(DT)) + return false; + + // Common checks to verify the properties of the tree. O(N log N) at worst. + if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || + !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) + return false; + + // Extra checks depending on VerificationLevel. Up to O(N^3). + if (VL == DomTreeT::VerificationLevel::Basic || + VL == DomTreeT::VerificationLevel::Full) + if (!SNCA.verifyParentProperty(DT)) + return false; + if (VL == DomTreeT::VerificationLevel::Full) + if (!SNCA.verifySiblingProperty(DT)) + return false; + + return true; +} + +} // namespace DomTreeBuilder +} // namespace llvm + +#undef DEBUG_TYPE + +#endif + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |
