diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h')
-rw-r--r-- | contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h | 1396 |
1 files changed, 1396 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h b/contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h new file mode 100644 index 0000000000..43d567880a --- /dev/null +++ b/contrib/libs/llvm12/include/llvm/ExecutionEngine/JITLink/JITLink.h @@ -0,0 +1,1396 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Contains generic JIT-linker types. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H +#define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H + +#include "JITLinkMemoryManager.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ExecutionEngine/JITSymbol.h" +#include "llvm/Support/Allocator.h" +#include "llvm/Support/Endian.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/FormatVariadic.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Memory.h" +#include "llvm/Support/MemoryBuffer.h" + +#include <map> +#include <string> +#include <system_error> + +namespace llvm { +namespace jitlink { + +class Symbol; +class Section; + +/// Base class for errors originating in JIT linker, e.g. missing relocation +/// support. +class JITLinkError : public ErrorInfo<JITLinkError> { +public: + static char ID; + + JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {} + + void log(raw_ostream &OS) const override; + const std::string &getErrorMessage() const { return ErrMsg; } + std::error_code convertToErrorCode() const override; + +private: + std::string ErrMsg; +}; + +/// Represents fixups and constraints in the LinkGraph. +class Edge { +public: + using Kind = uint8_t; + + enum GenericEdgeKind : Kind { + Invalid, // Invalid edge value. + FirstKeepAlive, // Keeps target alive. Offset/addend zero. + KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness. + FirstRelocation // First architecture specific relocation. + }; + + using OffsetT = uint32_t; + using AddendT = int64_t; + + Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend) + : Target(&Target), Offset(Offset), Addend(Addend), K(K) {} + + OffsetT getOffset() const { return Offset; } + void setOffset(OffsetT Offset) { this->Offset = Offset; } + Kind getKind() const { return K; } + void setKind(Kind K) { this->K = K; } + bool isRelocation() const { return K >= FirstRelocation; } + Kind getRelocation() const { + assert(isRelocation() && "Not a relocation edge"); + return K - FirstRelocation; + } + bool isKeepAlive() const { return K >= FirstKeepAlive; } + Symbol &getTarget() const { return *Target; } + void setTarget(Symbol &Target) { this->Target = &Target; } + AddendT getAddend() const { return Addend; } + void setAddend(AddendT Addend) { this->Addend = Addend; } + +private: + Symbol *Target = nullptr; + OffsetT Offset = 0; + AddendT Addend = 0; + Kind K = 0; +}; + +/// Returns the string name of the given generic edge kind, or "unknown" +/// otherwise. Useful for debugging. +const char *getGenericEdgeKindName(Edge::Kind K); + +/// Base class for Addressable entities (externals, absolutes, blocks). +class Addressable { + friend class LinkGraph; + +protected: + Addressable(JITTargetAddress Address, bool IsDefined) + : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {} + + Addressable(JITTargetAddress Address) + : Address(Address), IsDefined(false), IsAbsolute(true) { + assert(!(IsDefined && IsAbsolute) && + "Block cannot be both defined and absolute"); + } + +public: + Addressable(const Addressable &) = delete; + Addressable &operator=(const Addressable &) = default; + Addressable(Addressable &&) = delete; + Addressable &operator=(Addressable &&) = default; + + JITTargetAddress getAddress() const { return Address; } + void setAddress(JITTargetAddress Address) { this->Address = Address; } + + /// Returns true if this is a defined addressable, in which case you + /// can downcast this to a . + bool isDefined() const { return static_cast<bool>(IsDefined); } + bool isAbsolute() const { return static_cast<bool>(IsAbsolute); } + +private: + JITTargetAddress Address = 0; + uint64_t IsDefined : 1; + uint64_t IsAbsolute : 1; +}; + +using SectionOrdinal = unsigned; + +/// An Addressable with content and edges. +class Block : public Addressable { + friend class LinkGraph; + +private: + /// Create a zero-fill defined addressable. + Block(Section &Parent, JITTargetAddress Size, JITTargetAddress Address, + uint64_t Alignment, uint64_t AlignmentOffset) + : Addressable(Address, true), Parent(Parent), Size(Size) { + assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); + assert(AlignmentOffset < Alignment && + "Alignment offset cannot exceed alignment"); + assert(AlignmentOffset <= MaxAlignmentOffset && + "Alignment offset exceeds maximum"); + P2Align = Alignment ? countTrailingZeros(Alignment) : 0; + this->AlignmentOffset = AlignmentOffset; + } + + /// Create a defined addressable for the given content. + Block(Section &Parent, StringRef Content, JITTargetAddress Address, + uint64_t Alignment, uint64_t AlignmentOffset) + : Addressable(Address, true), Parent(Parent), Data(Content.data()), + Size(Content.size()) { + assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); + assert(AlignmentOffset < Alignment && + "Alignment offset cannot exceed alignment"); + assert(AlignmentOffset <= MaxAlignmentOffset && + "Alignment offset exceeds maximum"); + P2Align = Alignment ? countTrailingZeros(Alignment) : 0; + this->AlignmentOffset = AlignmentOffset; + } + +public: + using EdgeVector = std::vector<Edge>; + using edge_iterator = EdgeVector::iterator; + using const_edge_iterator = EdgeVector::const_iterator; + + Block(const Block &) = delete; + Block &operator=(const Block &) = delete; + Block(Block &&) = delete; + Block &operator=(Block &&) = delete; + + /// Return the parent section for this block. + Section &getSection() const { return Parent; } + + /// Returns true if this is a zero-fill block. + /// + /// If true, getSize is callable but getContent is not (the content is + /// defined to be a sequence of zero bytes of length Size). + bool isZeroFill() const { return !Data; } + + /// Returns the size of this defined addressable. + size_t getSize() const { return Size; } + + /// Get the content for this block. Block must not be a zero-fill block. + StringRef getContent() const { + assert(Data && "Section does not contain content"); + return StringRef(Data, Size); + } + + /// Set the content for this block. + /// Caller is responsible for ensuring the underlying bytes are not + /// deallocated while pointed to by this block. + void setContent(StringRef Content) { + Data = Content.data(); + Size = Content.size(); + } + + /// Get the alignment for this content. + uint64_t getAlignment() const { return 1ull << P2Align; } + + /// Set the alignment for this content. + void setAlignment(uint64_t Alignment) { + assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two"); + P2Align = Alignment ? countTrailingZeros(Alignment) : 0; + } + + /// Get the alignment offset for this content. + uint64_t getAlignmentOffset() const { return AlignmentOffset; } + + /// Set the alignment offset for this content. + void setAlignmentOffset(uint64_t AlignmentOffset) { + assert(AlignmentOffset < (1ull << P2Align) && + "Alignment offset can't exceed alignment"); + this->AlignmentOffset = AlignmentOffset; + } + + /// Add an edge to this block. + void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target, + Edge::AddendT Addend) { + Edges.push_back(Edge(K, Offset, Target, Addend)); + } + + /// Add an edge by copying an existing one. This is typically used when + /// moving edges between blocks. + void addEdge(const Edge &E) { Edges.push_back(E); } + + /// Return the list of edges attached to this content. + iterator_range<edge_iterator> edges() { + return make_range(Edges.begin(), Edges.end()); + } + + /// Returns the list of edges attached to this content. + iterator_range<const_edge_iterator> edges() const { + return make_range(Edges.begin(), Edges.end()); + } + + /// Return the size of the edges list. + size_t edges_size() const { return Edges.size(); } + + /// Returns true if the list of edges is empty. + bool edges_empty() const { return Edges.empty(); } + + /// Remove the edge pointed to by the given iterator. + /// Returns an iterator to the new next element. + edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); } + +private: + static constexpr uint64_t MaxAlignmentOffset = (1ULL << 57) - 1; + + uint64_t P2Align : 5; + uint64_t AlignmentOffset : 57; + Section &Parent; + const char *Data = nullptr; + size_t Size = 0; + std::vector<Edge> Edges; +}; + +/// Describes symbol linkage. This can be used to make resolve definition +/// clashes. +enum class Linkage : uint8_t { + Strong, + Weak, +}; + +/// For errors and debugging output. +const char *getLinkageName(Linkage L); + +/// Defines the scope in which this symbol should be visible: +/// Default -- Visible in the public interface of the linkage unit. +/// Hidden -- Visible within the linkage unit, but not exported from it. +/// Local -- Visible only within the LinkGraph. +enum class Scope : uint8_t { Default, Hidden, Local }; + +/// For debugging output. +const char *getScopeName(Scope S); + +raw_ostream &operator<<(raw_ostream &OS, const Block &B); + +/// Symbol representation. +/// +/// Symbols represent locations within Addressable objects. +/// They can be either Named or Anonymous. +/// Anonymous symbols have neither linkage nor visibility, and must point at +/// ContentBlocks. +/// Named symbols may be in one of four states: +/// - Null: Default initialized. Assignable, but otherwise unusable. +/// - Defined: Has both linkage and visibility and points to a ContentBlock +/// - Common: Has both linkage and visibility, points to a null Addressable. +/// - External: Has neither linkage nor visibility, points to an external +/// Addressable. +/// +class Symbol { + friend class LinkGraph; + +private: + Symbol(Addressable &Base, JITTargetAddress Offset, StringRef Name, + JITTargetAddress Size, Linkage L, Scope S, bool IsLive, + bool IsCallable) + : Name(Name), Base(&Base), Offset(Offset), Size(Size) { + assert(Offset <= MaxOffset && "Offset out of range"); + setLinkage(L); + setScope(S); + setLive(IsLive); + setCallable(IsCallable); + } + + static Symbol &constructCommon(void *SymStorage, Block &Base, StringRef Name, + JITTargetAddress Size, Scope S, bool IsLive) { + assert(SymStorage && "Storage cannot be null"); + assert(!Name.empty() && "Common symbol name cannot be empty"); + assert(Base.isDefined() && + "Cannot create common symbol from undefined block"); + assert(static_cast<Block &>(Base).getSize() == Size && + "Common symbol size should match underlying block size"); + auto *Sym = reinterpret_cast<Symbol *>(SymStorage); + new (Sym) Symbol(Base, 0, Name, Size, Linkage::Weak, S, IsLive, false); + return *Sym; + } + + static Symbol &constructExternal(void *SymStorage, Addressable &Base, + StringRef Name, JITTargetAddress Size, + Linkage L) { + assert(SymStorage && "Storage cannot be null"); + assert(!Base.isDefined() && + "Cannot create external symbol from defined block"); + assert(!Name.empty() && "External symbol name cannot be empty"); + auto *Sym = reinterpret_cast<Symbol *>(SymStorage); + new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false); + return *Sym; + } + + static Symbol &constructAbsolute(void *SymStorage, Addressable &Base, + StringRef Name, JITTargetAddress Size, + Linkage L, Scope S, bool IsLive) { + assert(SymStorage && "Storage cannot be null"); + assert(!Base.isDefined() && + "Cannot create absolute symbol from a defined block"); + auto *Sym = reinterpret_cast<Symbol *>(SymStorage); + new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false); + return *Sym; + } + + static Symbol &constructAnonDef(void *SymStorage, Block &Base, + JITTargetAddress Offset, + JITTargetAddress Size, bool IsCallable, + bool IsLive) { + assert(SymStorage && "Storage cannot be null"); + assert((Offset + Size) <= Base.getSize() && + "Symbol extends past end of block"); + auto *Sym = reinterpret_cast<Symbol *>(SymStorage); + new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong, + Scope::Local, IsLive, IsCallable); + return *Sym; + } + + static Symbol &constructNamedDef(void *SymStorage, Block &Base, + JITTargetAddress Offset, StringRef Name, + JITTargetAddress Size, Linkage L, Scope S, + bool IsLive, bool IsCallable) { + assert(SymStorage && "Storage cannot be null"); + assert((Offset + Size) <= Base.getSize() && + "Symbol extends past end of block"); + assert(!Name.empty() && "Name cannot be empty"); + auto *Sym = reinterpret_cast<Symbol *>(SymStorage); + new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable); + return *Sym; + } + +public: + /// Create a null Symbol. This allows Symbols to be default initialized for + /// use in containers (e.g. as map values). Null symbols are only useful for + /// assigning to. + Symbol() = default; + + // Symbols are not movable or copyable. + Symbol(const Symbol &) = delete; + Symbol &operator=(const Symbol &) = delete; + Symbol(Symbol &&) = delete; + Symbol &operator=(Symbol &&) = delete; + + /// Returns true if this symbol has a name. + bool hasName() const { return !Name.empty(); } + + /// Returns the name of this symbol (empty if the symbol is anonymous). + StringRef getName() const { + assert((!Name.empty() || getScope() == Scope::Local) && + "Anonymous symbol has non-local scope"); + return Name; + } + + /// Rename this symbol. The client is responsible for updating scope and + /// linkage if this name-change requires it. + void setName(StringRef Name) { this->Name = Name; } + + /// Returns true if this Symbol has content (potentially) defined within this + /// object file (i.e. is anything but an external or absolute symbol). + bool isDefined() const { + assert(Base && "Attempt to access null symbol"); + return Base->isDefined(); + } + + /// Returns true if this symbol is live (i.e. should be treated as a root for + /// dead stripping). + bool isLive() const { + assert(Base && "Attempting to access null symbol"); + return IsLive; + } + + /// Set this symbol's live bit. + void setLive(bool IsLive) { this->IsLive = IsLive; } + + /// Returns true is this symbol is callable. + bool isCallable() const { return IsCallable; } + + /// Set this symbol's callable bit. + void setCallable(bool IsCallable) { this->IsCallable = IsCallable; } + + /// Returns true if the underlying addressable is an unresolved external. + bool isExternal() const { + assert(Base && "Attempt to access null symbol"); + return !Base->isDefined() && !Base->isAbsolute(); + } + + /// Returns true if the underlying addressable is an absolute symbol. + bool isAbsolute() const { + assert(Base && "Attempt to access null symbol"); + return !Base->isDefined() && Base->isAbsolute(); + } + + /// Return the addressable that this symbol points to. + Addressable &getAddressable() { + assert(Base && "Cannot get underlying addressable for null symbol"); + return *Base; + } + + /// Return the addressable that thsi symbol points to. + const Addressable &getAddressable() const { + assert(Base && "Cannot get underlying addressable for null symbol"); + return *Base; + } + + /// Return the Block for this Symbol (Symbol must be defined). + Block &getBlock() { + assert(Base && "Cannot get block for null symbol"); + assert(Base->isDefined() && "Not a defined symbol"); + return static_cast<Block &>(*Base); + } + + /// Return the Block for this Symbol (Symbol must be defined). + const Block &getBlock() const { + assert(Base && "Cannot get block for null symbol"); + assert(Base->isDefined() && "Not a defined symbol"); + return static_cast<const Block &>(*Base); + } + + /// Returns the offset for this symbol within the underlying addressable. + JITTargetAddress getOffset() const { return Offset; } + + /// Returns the address of this symbol. + JITTargetAddress getAddress() const { return Base->getAddress() + Offset; } + + /// Returns the size of this symbol. + JITTargetAddress getSize() const { return Size; } + + /// Returns true if this symbol is backed by a zero-fill block. + /// This method may only be called on defined symbols. + bool isSymbolZeroFill() const { return getBlock().isZeroFill(); } + + /// Returns the content in the underlying block covered by this symbol. + /// This method may only be called on defined non-zero-fill symbols. + StringRef getSymbolContent() const { + return getBlock().getContent().substr(Offset, Size); + } + + /// Get the linkage for this Symbol. + Linkage getLinkage() const { return static_cast<Linkage>(L); } + + /// Set the linkage for this Symbol. + void setLinkage(Linkage L) { + assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) && + "Linkage can only be applied to defined named symbols"); + this->L = static_cast<uint8_t>(L); + } + + /// Get the visibility for this Symbol. + Scope getScope() const { return static_cast<Scope>(S); } + + /// Set the visibility for this Symbol. + void setScope(Scope S) { + assert((!Name.empty() || S == Scope::Local) && + "Can not set anonymous symbol to non-local scope"); + assert((S == Scope::Default || Base->isDefined() || Base->isAbsolute()) && + "Invalid visibility for symbol type"); + this->S = static_cast<uint8_t>(S); + } + +private: + void makeExternal(Addressable &A) { + assert(!A.isDefined() && "Attempting to make external with defined block"); + Base = &A; + Offset = 0; + setLinkage(Linkage::Strong); + setScope(Scope::Default); + IsLive = 0; + // note: Size and IsCallable fields left unchanged. + } + + void setBlock(Block &B) { Base = &B; } + + void setOffset(uint64_t NewOffset) { + assert(NewOffset <= MaxOffset && "Offset out of range"); + Offset = NewOffset; + } + + static constexpr uint64_t MaxOffset = (1ULL << 59) - 1; + + // FIXME: A char* or SymbolStringPtr may pack better. + StringRef Name; + Addressable *Base = nullptr; + uint64_t Offset : 59; + uint64_t L : 1; + uint64_t S : 2; + uint64_t IsLive : 1; + uint64_t IsCallable : 1; + JITTargetAddress Size = 0; +}; + +raw_ostream &operator<<(raw_ostream &OS, const Symbol &A); + +void printEdge(raw_ostream &OS, const Block &B, const Edge &E, + StringRef EdgeKindName); + +/// Represents an object file section. +class Section { + friend class LinkGraph; + +private: + Section(StringRef Name, sys::Memory::ProtectionFlags Prot, + SectionOrdinal SecOrdinal) + : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {} + + using SymbolSet = DenseSet<Symbol *>; + using BlockSet = DenseSet<Block *>; + +public: + using symbol_iterator = SymbolSet::iterator; + using const_symbol_iterator = SymbolSet::const_iterator; + + using block_iterator = BlockSet::iterator; + using const_block_iterator = BlockSet::const_iterator; + + ~Section(); + + /// Returns the name of this section. + StringRef getName() const { return Name; } + + /// Returns the protection flags for this section. + sys::Memory::ProtectionFlags getProtectionFlags() const { return Prot; } + + /// Returns the ordinal for this section. + SectionOrdinal getOrdinal() const { return SecOrdinal; } + + /// Returns an iterator over the blocks defined in this section. + iterator_range<block_iterator> blocks() { + return make_range(Blocks.begin(), Blocks.end()); + } + + /// Returns an iterator over the blocks defined in this section. + iterator_range<const_block_iterator> blocks() const { + return make_range(Blocks.begin(), Blocks.end()); + } + + /// Returns an iterator over the symbols defined in this section. + iterator_range<symbol_iterator> symbols() { + return make_range(Symbols.begin(), Symbols.end()); + } + + /// Returns an iterator over the symbols defined in this section. + iterator_range<const_symbol_iterator> symbols() const { + return make_range(Symbols.begin(), Symbols.end()); + } + + /// Return the number of symbols in this section. + SymbolSet::size_type symbols_size() { return Symbols.size(); } + +private: + void addSymbol(Symbol &Sym) { + assert(!Symbols.count(&Sym) && "Symbol is already in this section"); + Symbols.insert(&Sym); + } + + void removeSymbol(Symbol &Sym) { + assert(Symbols.count(&Sym) && "symbol is not in this section"); + Symbols.erase(&Sym); + } + + void addBlock(Block &B) { + assert(!Blocks.count(&B) && "Block is already in this section"); + Blocks.insert(&B); + } + + void removeBlock(Block &B) { + assert(Blocks.count(&B) && "Block is not in this section"); + Blocks.erase(&B); + } + + StringRef Name; + sys::Memory::ProtectionFlags Prot; + SectionOrdinal SecOrdinal = 0; + BlockSet Blocks; + SymbolSet Symbols; +}; + +/// Represents a section address range via a pair of Block pointers +/// to the first and last Blocks in the section. +class SectionRange { +public: + SectionRange() = default; + SectionRange(const Section &Sec) { + if (llvm::empty(Sec.blocks())) + return; + First = Last = *Sec.blocks().begin(); + for (auto *B : Sec.blocks()) { + if (B->getAddress() < First->getAddress()) + First = B; + if (B->getAddress() > Last->getAddress()) + Last = B; + } + } + Block *getFirstBlock() const { + assert((!Last || First) && "First can not be null if end is non-null"); + return First; + } + Block *getLastBlock() const { + assert((First || !Last) && "Last can not be null if start is non-null"); + return Last; + } + bool isEmpty() const { + assert((First || !Last) && "Last can not be null if start is non-null"); + return !First; + } + JITTargetAddress getStart() const { + return First ? First->getAddress() : 0; + } + JITTargetAddress getEnd() const { + return Last ? Last->getAddress() + Last->getSize() : 0; + } + uint64_t getSize() const { return getEnd() - getStart(); } + +private: + Block *First = nullptr; + Block *Last = nullptr; +}; + +class LinkGraph { +private: + using SectionList = std::vector<std::unique_ptr<Section>>; + using ExternalSymbolSet = DenseSet<Symbol *>; + using BlockSet = DenseSet<Block *>; + + template <typename... ArgTs> + Addressable &createAddressable(ArgTs &&... Args) { + Addressable *A = + reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>()); + new (A) Addressable(std::forward<ArgTs>(Args)...); + return *A; + } + + void destroyAddressable(Addressable &A) { + A.~Addressable(); + Allocator.Deallocate(&A); + } + + template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) { + Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>()); + new (B) Block(std::forward<ArgTs>(Args)...); + B->getSection().addBlock(*B); + return *B; + } + + void destroyBlock(Block &B) { + B.~Block(); + Allocator.Deallocate(&B); + } + + void destroySymbol(Symbol &S) { + S.~Symbol(); + Allocator.Deallocate(&S); + } + + static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) { + return S.blocks(); + } + + static iterator_range<Section::const_block_iterator> + getSectionConstBlocks(Section &S) { + return S.blocks(); + } + + static iterator_range<Section::symbol_iterator> + getSectionSymbols(Section &S) { + return S.symbols(); + } + + static iterator_range<Section::const_symbol_iterator> + getSectionConstSymbols(Section &S) { + return S.symbols(); + } + +public: + using external_symbol_iterator = ExternalSymbolSet::iterator; + + using section_iterator = pointee_iterator<SectionList::iterator>; + using const_section_iterator = pointee_iterator<SectionList::const_iterator>; + + template <typename OuterItrT, typename InnerItrT, typename T, + iterator_range<InnerItrT> getInnerRange( + typename OuterItrT::reference)> + class nested_collection_iterator + : public iterator_facade_base< + nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>, + std::forward_iterator_tag, T> { + public: + nested_collection_iterator() = default; + + nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE) + : OuterI(OuterI), OuterE(OuterE), + InnerI(getInnerBegin(OuterI, OuterE)) { + moveToNonEmptyInnerOrEnd(); + } + + bool operator==(const nested_collection_iterator &RHS) const { + return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI); + } + + T operator*() const { + assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?"); + return *InnerI; + } + + nested_collection_iterator operator++() { + ++InnerI; + moveToNonEmptyInnerOrEnd(); + return *this; + } + + private: + static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) { + return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT(); + } + + void moveToNonEmptyInnerOrEnd() { + while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) { + ++OuterI; + InnerI = getInnerBegin(OuterI, OuterE); + } + } + + OuterItrT OuterI, OuterE; + InnerItrT InnerI; + }; + + using defined_symbol_iterator = + nested_collection_iterator<const_section_iterator, + Section::symbol_iterator, Symbol *, + getSectionSymbols>; + + using const_defined_symbol_iterator = + nested_collection_iterator<const_section_iterator, + Section::const_symbol_iterator, const Symbol *, + getSectionConstSymbols>; + + using block_iterator = nested_collection_iterator<const_section_iterator, + Section::block_iterator, + Block *, getSectionBlocks>; + + using const_block_iterator = + nested_collection_iterator<const_section_iterator, + Section::const_block_iterator, const Block *, + getSectionConstBlocks>; + + LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize, + support::endianness Endianness) + : Name(std::move(Name)), TT(TT), PointerSize(PointerSize), + Endianness(Endianness) {} + + /// Returns the name of this graph (usually the name of the original + /// underlying MemoryBuffer). + const std::string &getName() { return Name; } + + /// Returns the target triple for this Graph. + const Triple &getTargetTriple() const { return TT; } + + /// Returns the pointer size for use in this graph. + unsigned getPointerSize() const { return PointerSize; } + + /// Returns the endianness of content in this graph. + support::endianness getEndianness() const { return Endianness; } + + /// Allocate a copy of the given string using the LinkGraph's allocator. + /// This can be useful when renaming symbols or adding new content to the + /// graph. + StringRef allocateString(StringRef Source) { + auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size()); + llvm::copy(Source, AllocatedBuffer); + return StringRef(AllocatedBuffer, Source.size()); + } + + /// Allocate a copy of the given string using the LinkGraph's allocator. + /// This can be useful when renaming symbols or adding new content to the + /// graph. + /// + /// Note: This Twine-based overload requires an extra string copy and an + /// extra heap allocation for large strings. The StringRef overload should + /// be preferred where possible. + StringRef allocateString(Twine Source) { + SmallString<256> TmpBuffer; + auto SourceStr = Source.toStringRef(TmpBuffer); + auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size()); + llvm::copy(SourceStr, AllocatedBuffer); + return StringRef(AllocatedBuffer, SourceStr.size()); + } + + /// Create a section with the given name, protection flags, and alignment. + Section &createSection(StringRef Name, sys::Memory::ProtectionFlags Prot) { + std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size())); + Sections.push_back(std::move(Sec)); + return *Sections.back(); + } + + /// Create a content block. + Block &createContentBlock(Section &Parent, StringRef Content, + uint64_t Address, uint64_t Alignment, + uint64_t AlignmentOffset) { + return createBlock(Parent, Content, Address, Alignment, AlignmentOffset); + } + + /// Create a zero-fill block. + Block &createZeroFillBlock(Section &Parent, uint64_t Size, uint64_t Address, + uint64_t Alignment, uint64_t AlignmentOffset) { + return createBlock(Parent, Size, Address, Alignment, AlignmentOffset); + } + + /// Cache type for the splitBlock function. + using SplitBlockCache = Optional<SmallVector<Symbol *, 8>>; + + /// Splits block B at the given index which must be greater than zero. + /// If SplitIndex == B.getSize() then this function is a no-op and returns B. + /// If SplitIndex < B.getSize() then this function returns a new block + /// covering the range [ 0, SplitIndex ), and B is modified to cover the range + /// [ SplitIndex, B.size() ). + /// + /// The optional Cache parameter can be used to speed up repeated calls to + /// splitBlock for a single block. If the value is None the cache will be + /// treated as uninitialized and splitBlock will populate it. Otherwise it + /// is assumed to contain the list of Symbols pointing at B, sorted in + /// descending order of offset. + /// + /// Notes: + /// + /// 1. The newly introduced block will have a new ordinal which will be + /// higher than any other ordinals in the section. Clients are responsible + /// for re-assigning block ordinals to restore a compatible order if + /// needed. + /// + /// 2. The cache is not automatically updated if new symbols are introduced + /// between calls to splitBlock. Any newly introduced symbols may be + /// added to the cache manually (descending offset order must be + /// preserved), or the cache can be set to None and rebuilt by + /// splitBlock on the next call. + Block &splitBlock(Block &B, size_t SplitIndex, + SplitBlockCache *Cache = nullptr); + + /// Add an external symbol. + /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose + /// size is not known, you should substitute '0'. + /// For external symbols Linkage determines whether the symbol must be + /// present during lookup: Externals with strong linkage must be found or + /// an error will be emitted. Externals with weak linkage are permitted to + /// be undefined, in which case they are assigned a value of 0. + Symbol &addExternalSymbol(StringRef Name, uint64_t Size, Linkage L) { + auto &Sym = + Symbol::constructExternal(Allocator.Allocate<Symbol>(), + createAddressable(0, false), Name, Size, L); + ExternalSymbols.insert(&Sym); + return Sym; + } + + /// Add an absolute symbol. + Symbol &addAbsoluteSymbol(StringRef Name, JITTargetAddress Address, + uint64_t Size, Linkage L, Scope S, bool IsLive) { + auto &Sym = Symbol::constructAbsolute(Allocator.Allocate<Symbol>(), + createAddressable(Address), Name, + Size, L, S, IsLive); + AbsoluteSymbols.insert(&Sym); + return Sym; + } + + /// Convenience method for adding a weak zero-fill symbol. + Symbol &addCommonSymbol(StringRef Name, Scope S, Section &Section, + JITTargetAddress Address, uint64_t Size, + uint64_t Alignment, bool IsLive) { + auto &Sym = Symbol::constructCommon( + Allocator.Allocate<Symbol>(), + createBlock(Section, Size, Address, Alignment, 0), Name, Size, S, + IsLive); + Section.addSymbol(Sym); + return Sym; + } + + /// Add an anonymous symbol. + Symbol &addAnonymousSymbol(Block &Content, JITTargetAddress Offset, + JITTargetAddress Size, bool IsCallable, + bool IsLive) { + auto &Sym = Symbol::constructAnonDef(Allocator.Allocate<Symbol>(), Content, + Offset, Size, IsCallable, IsLive); + Content.getSection().addSymbol(Sym); + return Sym; + } + + /// Add a named symbol. + Symbol &addDefinedSymbol(Block &Content, JITTargetAddress Offset, + StringRef Name, JITTargetAddress Size, Linkage L, + Scope S, bool IsCallable, bool IsLive) { + auto &Sym = + Symbol::constructNamedDef(Allocator.Allocate<Symbol>(), Content, Offset, + Name, Size, L, S, IsLive, IsCallable); + Content.getSection().addSymbol(Sym); + return Sym; + } + + iterator_range<section_iterator> sections() { + return make_range(section_iterator(Sections.begin()), + section_iterator(Sections.end())); + } + + /// Returns the section with the given name if it exists, otherwise returns + /// null. + Section *findSectionByName(StringRef Name) { + for (auto &S : sections()) + if (S.getName() == Name) + return &S; + return nullptr; + } + + iterator_range<block_iterator> blocks() { + return make_range(block_iterator(Sections.begin(), Sections.end()), + block_iterator(Sections.end(), Sections.end())); + } + + iterator_range<const_block_iterator> blocks() const { + return make_range(const_block_iterator(Sections.begin(), Sections.end()), + const_block_iterator(Sections.end(), Sections.end())); + } + + iterator_range<external_symbol_iterator> external_symbols() { + return make_range(ExternalSymbols.begin(), ExternalSymbols.end()); + } + + iterator_range<external_symbol_iterator> absolute_symbols() { + return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); + } + + iterator_range<defined_symbol_iterator> defined_symbols() { + return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()), + defined_symbol_iterator(Sections.end(), Sections.end())); + } + + iterator_range<const_defined_symbol_iterator> defined_symbols() const { + return make_range( + const_defined_symbol_iterator(Sections.begin(), Sections.end()), + const_defined_symbol_iterator(Sections.end(), Sections.end())); + } + + /// Turn a defined symbol into an external one. + void makeExternal(Symbol &Sym) { + if (Sym.getAddressable().isAbsolute()) { + assert(AbsoluteSymbols.count(&Sym) && + "Sym is not in the absolute symbols set"); + AbsoluteSymbols.erase(&Sym); + } else { + assert(Sym.isDefined() && "Sym is not a defined symbol"); + Section &Sec = Sym.getBlock().getSection(); + Sec.removeSymbol(Sym); + } + Sym.makeExternal(createAddressable(0, false)); + ExternalSymbols.insert(&Sym); + } + + /// Removes an external symbol. Also removes the underlying Addressable. + void removeExternalSymbol(Symbol &Sym) { + assert(!Sym.isDefined() && !Sym.isAbsolute() && + "Sym is not an external symbol"); + assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set"); + ExternalSymbols.erase(&Sym); + Addressable &Base = *Sym.Base; + destroySymbol(Sym); + destroyAddressable(Base); + } + + /// Remove an absolute symbol. Also removes the underlying Addressable. + void removeAbsoluteSymbol(Symbol &Sym) { + assert(!Sym.isDefined() && Sym.isAbsolute() && + "Sym is not an absolute symbol"); + assert(AbsoluteSymbols.count(&Sym) && + "Symbol is not in the absolute symbols set"); + AbsoluteSymbols.erase(&Sym); + Addressable &Base = *Sym.Base; + destroySymbol(Sym); + destroyAddressable(Base); + } + + /// Removes defined symbols. Does not remove the underlying block. + void removeDefinedSymbol(Symbol &Sym) { + assert(Sym.isDefined() && "Sym is not a defined symbol"); + Sym.getBlock().getSection().removeSymbol(Sym); + destroySymbol(Sym); + } + + /// Remove a block. + void removeBlock(Block &B) { + assert(llvm::none_of(B.getSection().symbols(), + [&](const Symbol *Sym) { + return &Sym->getBlock() == &B; + }) && + "Block still has symbols attached"); + B.getSection().removeBlock(B); + destroyBlock(B); + } + + /// Dump the graph. + /// + /// If supplied, the EdgeKindToName function will be used to name edge + /// kinds in the debug output. Otherwise raw edge kind numbers will be + /// displayed. + void dump(raw_ostream &OS, + std::function<StringRef(Edge::Kind)> EdegKindToName = + std::function<StringRef(Edge::Kind)>()); + +private: + // Put the BumpPtrAllocator first so that we don't free any of the underlying + // memory until the Symbol/Addressable destructors have been run. + BumpPtrAllocator Allocator; + + std::string Name; + Triple TT; + unsigned PointerSize; + support::endianness Endianness; + SectionList Sections; + ExternalSymbolSet ExternalSymbols; + ExternalSymbolSet AbsoluteSymbols; +}; + +/// Enables easy lookup of blocks by addresses. +class BlockAddressMap { +public: + using AddrToBlockMap = std::map<JITTargetAddress, Block *>; + using const_iterator = AddrToBlockMap::const_iterator; + + /// A block predicate that always adds all blocks. + static bool includeAllBlocks(const Block &B) { return true; } + + /// A block predicate that always includes blocks with non-null addresses. + static bool includeNonNull(const Block &B) { return B.getAddress(); } + + BlockAddressMap() = default; + + /// Add a block to the map. Returns an error if the block overlaps with any + /// existing block. + template <typename PredFn = decltype(includeAllBlocks)> + Error addBlock(Block &B, PredFn Pred = includeAllBlocks) { + if (!Pred(B)) + return Error::success(); + + auto I = AddrToBlock.upper_bound(B.getAddress()); + + // If we're not at the end of the map, check for overlap with the next + // element. + if (I != AddrToBlock.end()) { + if (B.getAddress() + B.getSize() > I->second->getAddress()) + return overlapError(B, *I->second); + } + + // If we're not at the start of the map, check for overlap with the previous + // element. + if (I != AddrToBlock.begin()) { + auto &PrevBlock = *std::prev(I)->second; + if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress()) + return overlapError(B, PrevBlock); + } + + AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B)); + return Error::success(); + } + + /// Add a block to the map without checking for overlap with existing blocks. + /// The client is responsible for ensuring that the block added does not + /// overlap with any existing block. + void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; } + + /// Add a range of blocks to the map. Returns an error if any block in the + /// range overlaps with any other block in the range, or with any existing + /// block in the map. + template <typename BlockPtrRange, + typename PredFn = decltype(includeAllBlocks)> + Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) { + for (auto *B : Blocks) + if (auto Err = addBlock(*B, Pred)) + return Err; + return Error::success(); + } + + /// Add a range of blocks to the map without checking for overlap with + /// existing blocks. The client is responsible for ensuring that the block + /// added does not overlap with any existing block. + template <typename BlockPtrRange> + void addBlocksWithoutChecking(BlockPtrRange &&Blocks) { + for (auto *B : Blocks) + addBlockWithoutChecking(*B); + } + + /// Iterates over (Address, Block*) pairs in ascending order of address. + const_iterator begin() const { return AddrToBlock.begin(); } + const_iterator end() const { return AddrToBlock.end(); } + + /// Returns the block starting at the given address, or nullptr if no such + /// block exists. + Block *getBlockAt(JITTargetAddress Addr) const { + auto I = AddrToBlock.find(Addr); + if (I == AddrToBlock.end()) + return nullptr; + return I->second; + } + + /// Returns the block covering the given address, or nullptr if no such block + /// exists. + Block *getBlockCovering(JITTargetAddress Addr) const { + auto I = AddrToBlock.upper_bound(Addr); + if (I == AddrToBlock.begin()) + return nullptr; + auto *B = std::prev(I)->second; + if (Addr < B->getAddress() + B->getSize()) + return B; + return nullptr; + } + +private: + Error overlapError(Block &NewBlock, Block &ExistingBlock) { + auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize(); + auto ExistingBlockEnd = + ExistingBlock.getAddress() + ExistingBlock.getSize(); + return make_error<JITLinkError>( + "Block at " + + formatv("{0:x16} -- {1:x16}", NewBlock.getAddress(), NewBlockEnd) + + " overlaps " + + formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress(), + ExistingBlockEnd)); + } + + AddrToBlockMap AddrToBlock; +}; + +/// A map of addresses to Symbols. +class SymbolAddressMap { +public: + using SymbolVector = SmallVector<Symbol *, 1>; + + /// Add a symbol to the SymbolAddressMap. + void addSymbol(Symbol &Sym) { + AddrToSymbols[Sym.getAddress()].push_back(&Sym); + } + + /// Add all symbols in a given range to the SymbolAddressMap. + template <typename SymbolPtrCollection> + void addSymbols(SymbolPtrCollection &&Symbols) { + for (auto *Sym : Symbols) + addSymbol(*Sym); + } + + /// Returns the list of symbols that start at the given address, or nullptr if + /// no such symbols exist. + const SymbolVector *getSymbolsAt(JITTargetAddress Addr) const { + auto I = AddrToSymbols.find(Addr); + if (I == AddrToSymbols.end()) + return nullptr; + return &I->second; + } + +private: + std::map<JITTargetAddress, SymbolVector> AddrToSymbols; +}; + +/// A function for mutating LinkGraphs. +using LinkGraphPassFunction = std::function<Error(LinkGraph &)>; + +/// A list of LinkGraph passes. +using LinkGraphPassList = std::vector<LinkGraphPassFunction>; + +/// An LinkGraph pass configuration, consisting of a list of pre-prune, +/// post-prune, and post-fixup passes. +struct PassConfiguration { + + /// Pre-prune passes. + /// + /// These passes are called on the graph after it is built, and before any + /// symbols have been pruned. Graph nodes still have their original vmaddrs. + /// + /// Notable use cases: Marking symbols live or should-discard. + LinkGraphPassList PrePrunePasses; + + /// Post-prune passes. + /// + /// These passes are called on the graph after dead stripping, but before + /// memory is allocated or nodes assigned their final addresses. + /// + /// Notable use cases: Building GOT, stub, and TLV symbols. + LinkGraphPassList PostPrunePasses; + + /// Post-allocation passes. + /// + /// These passes are called on the graph after memory has been allocated and + /// defined nodes have been assigned their final addresses, but before the + /// context has been notified of these addresses. At this point externals + /// have not been resolved, and symbol content has not yet been copied into + /// working memory. + /// + /// Notable use cases: Setting up data structures associated with addresses + /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the + /// JIT runtime) -- using a PostAllocationPass for this ensures that the + /// data structures are in-place before any query for resolved symbols + /// can complete. + LinkGraphPassList PostAllocationPasses; + + /// Pre-fixup passes. + /// + /// These passes are called on the graph after memory has been allocated, + /// content copied into working memory, and all nodes (including externals) + /// have been assigned their final addresses, but before any fixups have been + /// applied. + /// + /// Notable use cases: Late link-time optimizations like GOT and stub + /// elimination. + LinkGraphPassList PreFixupPasses; + + /// Post-fixup passes. + /// + /// These passes are called on the graph after block contents has been copied + /// to working memory, and fixups applied. Graph nodes have been updated to + /// their final target vmaddrs. + /// + /// Notable use cases: Testing and validation. + LinkGraphPassList PostFixupPasses; +}; + +/// Flags for symbol lookup. +/// +/// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge +/// the two types once we have an OrcSupport library. +enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol }; + +raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF); + +/// A map of symbol names to resolved addresses. +using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>; + +/// A function object to call with a resolved symbol map (See AsyncLookupResult) +/// or an error if resolution failed. +class JITLinkAsyncLookupContinuation { +public: + virtual ~JITLinkAsyncLookupContinuation() {} + virtual void run(Expected<AsyncLookupResult> LR) = 0; + +private: + virtual void anchor(); +}; + +/// Create a lookup continuation from a function object. +template <typename Continuation> +std::unique_ptr<JITLinkAsyncLookupContinuation> +createLookupContinuation(Continuation Cont) { + + class Impl final : public JITLinkAsyncLookupContinuation { + public: + Impl(Continuation C) : C(std::move(C)) {} + void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); } + + private: + Continuation C; + }; + + return std::make_unique<Impl>(std::move(Cont)); +} + +/// Holds context for a single jitLink invocation. +class JITLinkContext { +public: + using LookupMap = DenseMap<StringRef, SymbolLookupFlags>; + + /// Create a JITLinkContext. + JITLinkContext(const JITLinkDylib *JD) : JD(JD) {} + + /// Destroy a JITLinkContext. + virtual ~JITLinkContext(); + + /// Return the JITLinkDylib that this link is targeting, if any. + const JITLinkDylib *getJITLinkDylib() const { return JD; } + + /// Return the MemoryManager to be used for this link. + virtual JITLinkMemoryManager &getMemoryManager() = 0; + + /// Notify this context that linking failed. + /// Called by JITLink if linking cannot be completed. + virtual void notifyFailed(Error Err) = 0; + + /// Called by JITLink to resolve external symbols. This method is passed a + /// lookup continutation which it must call with a result to continue the + /// linking process. + virtual void lookup(const LookupMap &Symbols, + std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0; + + /// Called by JITLink once all defined symbols in the graph have been assigned + /// their final memory locations in the target process. At this point the + /// LinkGraph can be inspected to build a symbol table, however the block + /// content will not generally have been copied to the target location yet. + /// + /// If the client detects an error in the LinkGraph state (e.g. unexpected or + /// missing symbols) they may return an error here. The error will be + /// propagated to notifyFailed and the linker will bail out. + virtual Error notifyResolved(LinkGraph &G) = 0; + + /// Called by JITLink to notify the context that the object has been + /// finalized (i.e. emitted to memory and memory permissions set). If all of + /// this objects dependencies have also been finalized then the code is ready + /// to run. + virtual void + notifyFinalized(std::unique_ptr<JITLinkMemoryManager::Allocation> A) = 0; + + /// Called by JITLink prior to linking to determine whether default passes for + /// the target should be added. The default implementation returns true. + /// If subclasses override this method to return false for any target then + /// they are required to fully configure the pass pipeline for that target. + virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const; + + /// Returns the mark-live pass to be used for this link. If no pass is + /// returned (the default) then the target-specific linker implementation will + /// choose a conservative default (usually marking all symbols live). + /// This function is only called if shouldAddDefaultTargetPasses returns true, + /// otherwise the JITContext is responsible for adding a mark-live pass in + /// modifyPassConfig. + virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const; + + /// Called by JITLink to modify the pass pipeline prior to linking. + /// The default version performs no modification. + virtual Error modifyPassConfig(const Triple &TT, PassConfiguration &Config); + +private: + const JITLinkDylib *JD = nullptr; +}; + +/// Marks all symbols in a graph live. This can be used as a default, +/// conservative mark-live implementation. +Error markAllSymbolsLive(LinkGraph &G); + +/// Create a LinkGraph from the given object buffer. +/// +/// Note: The graph does not take ownership of the underlying buffer, nor copy +/// its contents. The caller is responsible for ensuring that the object buffer +/// outlives the graph. +Expected<std::unique_ptr<LinkGraph>> +createLinkGraphFromObject(MemoryBufferRef ObjectBuffer); + +/// Link the given graph. +void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx); + +} // end namespace jitlink +} // end namespace llvm + +#endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |