aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/ADT/STLExtras.h
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/include/llvm/ADT/STLExtras.h
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/ADT/STLExtras.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/ADT/STLExtras.h3956
1 files changed, 1978 insertions, 1978 deletions
diff --git a/contrib/libs/llvm12/include/llvm/ADT/STLExtras.h b/contrib/libs/llvm12/include/llvm/ADT/STLExtras.h
index 2f8bdba5f7..ba115875ce 100644
--- a/contrib/libs/llvm12/include/llvm/ADT/STLExtras.h
+++ b/contrib/libs/llvm12/include/llvm/ADT/STLExtras.h
@@ -1,1255 +1,1255 @@
-#pragma once
-
-#ifdef __GNUC__
-#pragma GCC diagnostic push
-#pragma GCC diagnostic ignored "-Wunused-parameter"
-#endif
-
-//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains some templates that are useful if you are working with the
-// STL at all.
-//
-// No library is required when using these functions.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_ADT_STLEXTRAS_H
-#define LLVM_ADT_STLEXTRAS_H
-
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/iterator.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Config/abi-breaking.h"
-#include "llvm/Support/ErrorHandling.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <cstdint>
-#include <cstdlib>
-#include <functional>
-#include <initializer_list>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <tuple>
-#include <type_traits>
-#include <utility>
-
-#ifdef EXPENSIVE_CHECKS
-#include <random> // for std::mt19937
-#endif
-
-namespace llvm {
-
-// Only used by compiler if both template types are the same. Useful when
-// using SFINAE to test for the existence of member functions.
-template <typename T, T> struct SameType;
-
-namespace detail {
-
-template <typename RangeT>
-using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
-
-template <typename RangeT>
-using ValueOfRange = typename std::remove_reference<decltype(
- *std::begin(std::declval<RangeT &>()))>::type;
-
-} // end namespace detail
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <type_traits>
-//===----------------------------------------------------------------------===//
-
-template <typename T>
-struct negation : std::integral_constant<bool, !bool(T::value)> {};
-
-template <typename...> struct conjunction : std::true_type {};
-template <typename B1> struct conjunction<B1> : B1 {};
-template <typename B1, typename... Bn>
-struct conjunction<B1, Bn...>
- : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
-
-template <typename T> struct make_const_ptr {
- using type =
- typename std::add_pointer<typename std::add_const<T>::type>::type;
-};
-
-template <typename T> struct make_const_ref {
- using type = typename std::add_lvalue_reference<
- typename std::add_const<T>::type>::type;
-};
-
-/// Utilities for detecting if a given trait holds for some set of arguments
-/// 'Args'. For example, the given trait could be used to detect if a given type
-/// has a copy assignment operator:
-/// template<class T>
-/// using has_copy_assign_t = decltype(std::declval<T&>()
-/// = std::declval<const T&>());
-/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
-namespace detail {
-template <typename...> using void_t = void;
-template <class, template <class...> class Op, class... Args> struct detector {
- using value_t = std::false_type;
-};
-template <template <class...> class Op, class... Args>
-struct detector<void_t<Op<Args...>>, Op, Args...> {
- using value_t = std::true_type;
-};
-} // end namespace detail
-
-template <template <class...> class Op, class... Args>
-using is_detected = typename detail::detector<void, Op, Args...>::value_t;
-
-/// Check if a Callable type can be invoked with the given set of arg types.
-namespace detail {
-template <typename Callable, typename... Args>
-using is_invocable =
- decltype(std::declval<Callable &>()(std::declval<Args>()...));
-} // namespace detail
-
-template <typename Callable, typename... Args>
-using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
-
-/// This class provides various trait information about a callable object.
-/// * To access the number of arguments: Traits::num_args
-/// * To access the type of an argument: Traits::arg_t<Index>
-/// * To access the type of the result: Traits::result_t
-template <typename T, bool isClass = std::is_class<T>::value>
-struct function_traits : public function_traits<decltype(&T::operator())> {};
-
-/// Overload for class function types.
-template <typename ClassType, typename ReturnType, typename... Args>
-struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
- /// The number of arguments to this function.
- enum { num_args = sizeof...(Args) };
-
- /// The result type of this function.
- using result_t = ReturnType;
-
- /// The type of an argument to this function.
- template <size_t Index>
- using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
-};
-/// Overload for class function types.
-template <typename ClassType, typename ReturnType, typename... Args>
-struct function_traits<ReturnType (ClassType::*)(Args...), false>
- : function_traits<ReturnType (ClassType::*)(Args...) const> {};
-/// Overload for non-class function types.
-template <typename ReturnType, typename... Args>
-struct function_traits<ReturnType (*)(Args...), false> {
- /// The number of arguments to this function.
- enum { num_args = sizeof...(Args) };
-
- /// The result type of this function.
- using result_t = ReturnType;
-
- /// The type of an argument to this function.
- template <size_t i>
- using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
-};
-/// Overload for non-class function type references.
-template <typename ReturnType, typename... Args>
-struct function_traits<ReturnType (&)(Args...), false>
- : public function_traits<ReturnType (*)(Args...)> {};
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <functional>
-//===----------------------------------------------------------------------===//
-
-template <class Ty> struct identity {
- using argument_type = Ty;
-
- Ty &operator()(Ty &self) const {
- return self;
- }
- const Ty &operator()(const Ty &self) const {
- return self;
- }
-};
-
-/// An efficient, type-erasing, non-owning reference to a callable. This is
-/// intended for use as the type of a function parameter that is not used
-/// after the function in question returns.
-///
-/// This class does not own the callable, so it is not in general safe to store
-/// a function_ref.
-template<typename Fn> class function_ref;
-
-template<typename Ret, typename ...Params>
-class function_ref<Ret(Params...)> {
- Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
- intptr_t callable;
-
- template<typename Callable>
- static Ret callback_fn(intptr_t callable, Params ...params) {
- return (*reinterpret_cast<Callable*>(callable))(
- std::forward<Params>(params)...);
- }
-
-public:
- function_ref() = default;
- function_ref(std::nullptr_t) {}
-
- template <typename Callable>
- function_ref(
- Callable &&callable,
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains some templates that are useful if you are working with the
+// STL at all.
+//
+// No library is required when using these functions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_STLEXTRAS_H
+#define LLVM_ADT_STLEXTRAS_H
+
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Config/abi-breaking.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <cstdlib>
+#include <functional>
+#include <initializer_list>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#ifdef EXPENSIVE_CHECKS
+#include <random> // for std::mt19937
+#endif
+
+namespace llvm {
+
+// Only used by compiler if both template types are the same. Useful when
+// using SFINAE to test for the existence of member functions.
+template <typename T, T> struct SameType;
+
+namespace detail {
+
+template <typename RangeT>
+using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
+
+template <typename RangeT>
+using ValueOfRange = typename std::remove_reference<decltype(
+ *std::begin(std::declval<RangeT &>()))>::type;
+
+} // end namespace detail
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <type_traits>
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+struct negation : std::integral_constant<bool, !bool(T::value)> {};
+
+template <typename...> struct conjunction : std::true_type {};
+template <typename B1> struct conjunction<B1> : B1 {};
+template <typename B1, typename... Bn>
+struct conjunction<B1, Bn...>
+ : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
+
+template <typename T> struct make_const_ptr {
+ using type =
+ typename std::add_pointer<typename std::add_const<T>::type>::type;
+};
+
+template <typename T> struct make_const_ref {
+ using type = typename std::add_lvalue_reference<
+ typename std::add_const<T>::type>::type;
+};
+
+/// Utilities for detecting if a given trait holds for some set of arguments
+/// 'Args'. For example, the given trait could be used to detect if a given type
+/// has a copy assignment operator:
+/// template<class T>
+/// using has_copy_assign_t = decltype(std::declval<T&>()
+/// = std::declval<const T&>());
+/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
+namespace detail {
+template <typename...> using void_t = void;
+template <class, template <class...> class Op, class... Args> struct detector {
+ using value_t = std::false_type;
+};
+template <template <class...> class Op, class... Args>
+struct detector<void_t<Op<Args...>>, Op, Args...> {
+ using value_t = std::true_type;
+};
+} // end namespace detail
+
+template <template <class...> class Op, class... Args>
+using is_detected = typename detail::detector<void, Op, Args...>::value_t;
+
+/// Check if a Callable type can be invoked with the given set of arg types.
+namespace detail {
+template <typename Callable, typename... Args>
+using is_invocable =
+ decltype(std::declval<Callable &>()(std::declval<Args>()...));
+} // namespace detail
+
+template <typename Callable, typename... Args>
+using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
+
+/// This class provides various trait information about a callable object.
+/// * To access the number of arguments: Traits::num_args
+/// * To access the type of an argument: Traits::arg_t<Index>
+/// * To access the type of the result: Traits::result_t
+template <typename T, bool isClass = std::is_class<T>::value>
+struct function_traits : public function_traits<decltype(&T::operator())> {};
+
+/// Overload for class function types.
+template <typename ClassType, typename ReturnType, typename... Args>
+struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
+ /// The number of arguments to this function.
+ enum { num_args = sizeof...(Args) };
+
+ /// The result type of this function.
+ using result_t = ReturnType;
+
+ /// The type of an argument to this function.
+ template <size_t Index>
+ using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
+};
+/// Overload for class function types.
+template <typename ClassType, typename ReturnType, typename... Args>
+struct function_traits<ReturnType (ClassType::*)(Args...), false>
+ : function_traits<ReturnType (ClassType::*)(Args...) const> {};
+/// Overload for non-class function types.
+template <typename ReturnType, typename... Args>
+struct function_traits<ReturnType (*)(Args...), false> {
+ /// The number of arguments to this function.
+ enum { num_args = sizeof...(Args) };
+
+ /// The result type of this function.
+ using result_t = ReturnType;
+
+ /// The type of an argument to this function.
+ template <size_t i>
+ using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
+};
+/// Overload for non-class function type references.
+template <typename ReturnType, typename... Args>
+struct function_traits<ReturnType (&)(Args...), false>
+ : public function_traits<ReturnType (*)(Args...)> {};
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <functional>
+//===----------------------------------------------------------------------===//
+
+template <class Ty> struct identity {
+ using argument_type = Ty;
+
+ Ty &operator()(Ty &self) const {
+ return self;
+ }
+ const Ty &operator()(const Ty &self) const {
+ return self;
+ }
+};
+
+/// An efficient, type-erasing, non-owning reference to a callable. This is
+/// intended for use as the type of a function parameter that is not used
+/// after the function in question returns.
+///
+/// This class does not own the callable, so it is not in general safe to store
+/// a function_ref.
+template<typename Fn> class function_ref;
+
+template<typename Ret, typename ...Params>
+class function_ref<Ret(Params...)> {
+ Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
+ intptr_t callable;
+
+ template<typename Callable>
+ static Ret callback_fn(intptr_t callable, Params ...params) {
+ return (*reinterpret_cast<Callable*>(callable))(
+ std::forward<Params>(params)...);
+ }
+
+public:
+ function_ref() = default;
+ function_ref(std::nullptr_t) {}
+
+ template <typename Callable>
+ function_ref(
+ Callable &&callable,
// This is not the copy-constructor.
- std::enable_if_t<
- !std::is_same<std::remove_cv_t<std::remove_reference_t<Callable>>,
+ std::enable_if_t<
+ !std::is_same<std::remove_cv_t<std::remove_reference_t<Callable>>,
function_ref>::value> * = nullptr,
// Functor must be callable and return a suitable type.
std::enable_if_t<std::is_void<Ret>::value ||
std::is_convertible<decltype(std::declval<Callable>()(
std::declval<Params>()...)),
Ret>::value> * = nullptr)
- : callback(callback_fn<typename std::remove_reference<Callable>::type>),
- callable(reinterpret_cast<intptr_t>(&callable)) {}
-
- Ret operator()(Params ...params) const {
- return callback(callable, std::forward<Params>(params)...);
- }
-
- explicit operator bool() const { return callback; }
-};
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <iterator>
-//===----------------------------------------------------------------------===//
-
-namespace adl_detail {
-
-using std::begin;
-
-template <typename ContainerTy>
-decltype(auto) adl_begin(ContainerTy &&container) {
- return begin(std::forward<ContainerTy>(container));
-}
-
-using std::end;
-
-template <typename ContainerTy>
-decltype(auto) adl_end(ContainerTy &&container) {
- return end(std::forward<ContainerTy>(container));
-}
-
-using std::swap;
-
-template <typename T>
-void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
- std::declval<T>()))) {
- swap(std::forward<T>(lhs), std::forward<T>(rhs));
-}
-
-} // end namespace adl_detail
-
-template <typename ContainerTy>
-decltype(auto) adl_begin(ContainerTy &&container) {
- return adl_detail::adl_begin(std::forward<ContainerTy>(container));
-}
-
-template <typename ContainerTy>
-decltype(auto) adl_end(ContainerTy &&container) {
- return adl_detail::adl_end(std::forward<ContainerTy>(container));
-}
-
-template <typename T>
-void adl_swap(T &&lhs, T &&rhs) noexcept(
- noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
- adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
-}
-
-/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
-template <typename T>
-constexpr bool empty(const T &RangeOrContainer) {
- return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
-}
-
-/// Returns true if the given container only contains a single element.
-template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
- auto B = std::begin(C), E = std::end(C);
- return B != E && std::next(B) == E;
-}
-
-/// Return a range covering \p RangeOrContainer with the first N elements
-/// excluded.
+ : callback(callback_fn<typename std::remove_reference<Callable>::type>),
+ callable(reinterpret_cast<intptr_t>(&callable)) {}
+
+ Ret operator()(Params ...params) const {
+ return callback(callable, std::forward<Params>(params)...);
+ }
+
+ explicit operator bool() const { return callback; }
+};
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <iterator>
+//===----------------------------------------------------------------------===//
+
+namespace adl_detail {
+
+using std::begin;
+
+template <typename ContainerTy>
+decltype(auto) adl_begin(ContainerTy &&container) {
+ return begin(std::forward<ContainerTy>(container));
+}
+
+using std::end;
+
+template <typename ContainerTy>
+decltype(auto) adl_end(ContainerTy &&container) {
+ return end(std::forward<ContainerTy>(container));
+}
+
+using std::swap;
+
+template <typename T>
+void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
+ std::declval<T>()))) {
+ swap(std::forward<T>(lhs), std::forward<T>(rhs));
+}
+
+} // end namespace adl_detail
+
+template <typename ContainerTy>
+decltype(auto) adl_begin(ContainerTy &&container) {
+ return adl_detail::adl_begin(std::forward<ContainerTy>(container));
+}
+
+template <typename ContainerTy>
+decltype(auto) adl_end(ContainerTy &&container) {
+ return adl_detail::adl_end(std::forward<ContainerTy>(container));
+}
+
+template <typename T>
+void adl_swap(T &&lhs, T &&rhs) noexcept(
+ noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
+ adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
+}
+
+/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
+template <typename T>
+constexpr bool empty(const T &RangeOrContainer) {
+ return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
+}
+
+/// Returns true if the given container only contains a single element.
+template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
+ auto B = std::begin(C), E = std::end(C);
+ return B != E && std::next(B) == E;
+}
+
+/// Return a range covering \p RangeOrContainer with the first N elements
+/// excluded.
template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
- return make_range(std::next(adl_begin(RangeOrContainer), N),
- adl_end(RangeOrContainer));
-}
-
-// mapped_iterator - This is a simple iterator adapter that causes a function to
-// be applied whenever operator* is invoked on the iterator.
-
-template <typename ItTy, typename FuncTy,
- typename FuncReturnTy =
- decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
-class mapped_iterator
- : public iterator_adaptor_base<
- mapped_iterator<ItTy, FuncTy>, ItTy,
- typename std::iterator_traits<ItTy>::iterator_category,
- typename std::remove_reference<FuncReturnTy>::type> {
-public:
- mapped_iterator(ItTy U, FuncTy F)
- : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
-
- ItTy getCurrent() { return this->I; }
-
- FuncReturnTy operator*() const { return F(*this->I); }
-
-private:
- FuncTy F;
-};
-
-// map_iterator - Provide a convenient way to create mapped_iterators, just like
-// make_pair is useful for creating pairs...
-template <class ItTy, class FuncTy>
-inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
- return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
-}
-
-template <class ContainerTy, class FuncTy>
-auto map_range(ContainerTy &&C, FuncTy F) {
- return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
-}
-
-/// Helper to determine if type T has a member called rbegin().
-template <typename Ty> class has_rbegin_impl {
- using yes = char[1];
- using no = char[2];
-
- template <typename Inner>
- static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
-
- template <typename>
- static no& test(...);
-
-public:
- static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
-};
-
-/// Metafunction to determine if T& or T has a member called rbegin().
-template <typename Ty>
-struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
-};
-
-// Returns an iterator_range over the given container which iterates in reverse.
-// Note that the container must have rbegin()/rend() methods for this to work.
-template <typename ContainerTy>
-auto reverse(ContainerTy &&C,
- std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
- return make_range(C.rbegin(), C.rend());
-}
-
-// Returns a std::reverse_iterator wrapped around the given iterator.
-template <typename IteratorTy>
-std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
- return std::reverse_iterator<IteratorTy>(It);
-}
-
-// Returns an iterator_range over the given container which iterates in reverse.
-// Note that the container must have begin()/end() methods which return
-// bidirectional iterators for this to work.
-template <typename ContainerTy>
-auto reverse(ContainerTy &&C,
- std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
- return make_range(llvm::make_reverse_iterator(std::end(C)),
- llvm::make_reverse_iterator(std::begin(C)));
-}
-
-/// An iterator adaptor that filters the elements of given inner iterators.
-///
-/// The predicate parameter should be a callable object that accepts the wrapped
-/// iterator's reference type and returns a bool. When incrementing or
-/// decrementing the iterator, it will call the predicate on each element and
-/// skip any where it returns false.
-///
-/// \code
-/// int A[] = { 1, 2, 3, 4 };
-/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
-/// // R contains { 1, 3 }.
-/// \endcode
-///
-/// Note: filter_iterator_base implements support for forward iteration.
-/// filter_iterator_impl exists to provide support for bidirectional iteration,
-/// conditional on whether the wrapped iterator supports it.
-template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
-class filter_iterator_base
- : public iterator_adaptor_base<
- filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
- WrappedIteratorT,
- typename std::common_type<
- IterTag, typename std::iterator_traits<
- WrappedIteratorT>::iterator_category>::type> {
- using BaseT = iterator_adaptor_base<
- filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
- WrappedIteratorT,
- typename std::common_type<
- IterTag, typename std::iterator_traits<
- WrappedIteratorT>::iterator_category>::type>;
-
-protected:
- WrappedIteratorT End;
- PredicateT Pred;
-
- void findNextValid() {
- while (this->I != End && !Pred(*this->I))
- BaseT::operator++();
- }
-
- // Construct the iterator. The begin iterator needs to know where the end
- // is, so that it can properly stop when it gets there. The end iterator only
- // needs the predicate to support bidirectional iteration.
- filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : BaseT(Begin), End(End), Pred(Pred) {
- findNextValid();
- }
-
-public:
- using BaseT::operator++;
-
- filter_iterator_base &operator++() {
- BaseT::operator++();
- findNextValid();
- return *this;
- }
-};
-
-/// Specialization of filter_iterator_base for forward iteration only.
-template <typename WrappedIteratorT, typename PredicateT,
- typename IterTag = std::forward_iterator_tag>
-class filter_iterator_impl
- : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
- using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
-
-public:
- filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : BaseT(Begin, End, Pred) {}
-};
-
-/// Specialization of filter_iterator_base for bidirectional iteration.
-template <typename WrappedIteratorT, typename PredicateT>
-class filter_iterator_impl<WrappedIteratorT, PredicateT,
- std::bidirectional_iterator_tag>
- : public filter_iterator_base<WrappedIteratorT, PredicateT,
- std::bidirectional_iterator_tag> {
- using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
- std::bidirectional_iterator_tag>;
- void findPrevValid() {
- while (!this->Pred(*this->I))
- BaseT::operator--();
- }
-
-public:
- using BaseT::operator--;
-
- filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
- PredicateT Pred)
- : BaseT(Begin, End, Pred) {}
-
- filter_iterator_impl &operator--() {
- BaseT::operator--();
- findPrevValid();
- return *this;
- }
-};
-
-namespace detail {
-
-template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
- using type = std::forward_iterator_tag;
-};
-
-template <> struct fwd_or_bidi_tag_impl<true> {
- using type = std::bidirectional_iterator_tag;
-};
-
-/// Helper which sets its type member to forward_iterator_tag if the category
-/// of \p IterT does not derive from bidirectional_iterator_tag, and to
-/// bidirectional_iterator_tag otherwise.
-template <typename IterT> struct fwd_or_bidi_tag {
- using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
- std::bidirectional_iterator_tag,
- typename std::iterator_traits<IterT>::iterator_category>::value>::type;
-};
-
-} // namespace detail
-
-/// Defines filter_iterator to a suitable specialization of
-/// filter_iterator_impl, based on the underlying iterator's category.
-template <typename WrappedIteratorT, typename PredicateT>
-using filter_iterator = filter_iterator_impl<
- WrappedIteratorT, PredicateT,
- typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
-
-/// Convenience function that takes a range of elements and a predicate,
-/// and return a new filter_iterator range.
-///
-/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
-/// lifetime of that temporary is not kept by the returned range object, and the
-/// temporary is going to be dropped on the floor after the make_iterator_range
-/// full expression that contains this function call.
-template <typename RangeT, typename PredicateT>
-iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
-make_filter_range(RangeT &&Range, PredicateT Pred) {
- using FilterIteratorT =
- filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
- return make_range(
- FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
- std::end(std::forward<RangeT>(Range)), Pred),
- FilterIteratorT(std::end(std::forward<RangeT>(Range)),
- std::end(std::forward<RangeT>(Range)), Pred));
-}
-
-/// A pseudo-iterator adaptor that is designed to implement "early increment"
-/// style loops.
-///
-/// This is *not a normal iterator* and should almost never be used directly. It
-/// is intended primarily to be used with range based for loops and some range
-/// algorithms.
-///
-/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
-/// somewhere between them. The constraints of these iterators are:
-///
-/// - On construction or after being incremented, it is comparable and
-/// dereferencable. It is *not* incrementable.
-/// - After being dereferenced, it is neither comparable nor dereferencable, it
-/// is only incrementable.
-///
-/// This means you can only dereference the iterator once, and you can only
-/// increment it once between dereferences.
-template <typename WrappedIteratorT>
-class early_inc_iterator_impl
- : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
- WrappedIteratorT, std::input_iterator_tag> {
- using BaseT =
- iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
- WrappedIteratorT, std::input_iterator_tag>;
-
- using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
-
-protected:
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
- bool IsEarlyIncremented = false;
-#endif
-
-public:
- early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
-
- using BaseT::operator*;
+ return make_range(std::next(adl_begin(RangeOrContainer), N),
+ adl_end(RangeOrContainer));
+}
+
+// mapped_iterator - This is a simple iterator adapter that causes a function to
+// be applied whenever operator* is invoked on the iterator.
+
+template <typename ItTy, typename FuncTy,
+ typename FuncReturnTy =
+ decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
+class mapped_iterator
+ : public iterator_adaptor_base<
+ mapped_iterator<ItTy, FuncTy>, ItTy,
+ typename std::iterator_traits<ItTy>::iterator_category,
+ typename std::remove_reference<FuncReturnTy>::type> {
+public:
+ mapped_iterator(ItTy U, FuncTy F)
+ : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
+
+ ItTy getCurrent() { return this->I; }
+
+ FuncReturnTy operator*() const { return F(*this->I); }
+
+private:
+ FuncTy F;
+};
+
+// map_iterator - Provide a convenient way to create mapped_iterators, just like
+// make_pair is useful for creating pairs...
+template <class ItTy, class FuncTy>
+inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
+ return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
+}
+
+template <class ContainerTy, class FuncTy>
+auto map_range(ContainerTy &&C, FuncTy F) {
+ return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
+}
+
+/// Helper to determine if type T has a member called rbegin().
+template <typename Ty> class has_rbegin_impl {
+ using yes = char[1];
+ using no = char[2];
+
+ template <typename Inner>
+ static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
+
+ template <typename>
+ static no& test(...);
+
+public:
+ static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
+};
+
+/// Metafunction to determine if T& or T has a member called rbegin().
+template <typename Ty>
+struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
+};
+
+// Returns an iterator_range over the given container which iterates in reverse.
+// Note that the container must have rbegin()/rend() methods for this to work.
+template <typename ContainerTy>
+auto reverse(ContainerTy &&C,
+ std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
+ return make_range(C.rbegin(), C.rend());
+}
+
+// Returns a std::reverse_iterator wrapped around the given iterator.
+template <typename IteratorTy>
+std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
+ return std::reverse_iterator<IteratorTy>(It);
+}
+
+// Returns an iterator_range over the given container which iterates in reverse.
+// Note that the container must have begin()/end() methods which return
+// bidirectional iterators for this to work.
+template <typename ContainerTy>
+auto reverse(ContainerTy &&C,
+ std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
+ return make_range(llvm::make_reverse_iterator(std::end(C)),
+ llvm::make_reverse_iterator(std::begin(C)));
+}
+
+/// An iterator adaptor that filters the elements of given inner iterators.
+///
+/// The predicate parameter should be a callable object that accepts the wrapped
+/// iterator's reference type and returns a bool. When incrementing or
+/// decrementing the iterator, it will call the predicate on each element and
+/// skip any where it returns false.
+///
+/// \code
+/// int A[] = { 1, 2, 3, 4 };
+/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
+/// // R contains { 1, 3 }.
+/// \endcode
+///
+/// Note: filter_iterator_base implements support for forward iteration.
+/// filter_iterator_impl exists to provide support for bidirectional iteration,
+/// conditional on whether the wrapped iterator supports it.
+template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
+class filter_iterator_base
+ : public iterator_adaptor_base<
+ filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
+ WrappedIteratorT,
+ typename std::common_type<
+ IterTag, typename std::iterator_traits<
+ WrappedIteratorT>::iterator_category>::type> {
+ using BaseT = iterator_adaptor_base<
+ filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
+ WrappedIteratorT,
+ typename std::common_type<
+ IterTag, typename std::iterator_traits<
+ WrappedIteratorT>::iterator_category>::type>;
+
+protected:
+ WrappedIteratorT End;
+ PredicateT Pred;
+
+ void findNextValid() {
+ while (this->I != End && !Pred(*this->I))
+ BaseT::operator++();
+ }
+
+ // Construct the iterator. The begin iterator needs to know where the end
+ // is, so that it can properly stop when it gets there. The end iterator only
+ // needs the predicate to support bidirectional iteration.
+ filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin), End(End), Pred(Pred) {
+ findNextValid();
+ }
+
+public:
+ using BaseT::operator++;
+
+ filter_iterator_base &operator++() {
+ BaseT::operator++();
+ findNextValid();
+ return *this;
+ }
+};
+
+/// Specialization of filter_iterator_base for forward iteration only.
+template <typename WrappedIteratorT, typename PredicateT,
+ typename IterTag = std::forward_iterator_tag>
+class filter_iterator_impl
+ : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
+ using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
+
+public:
+ filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin, End, Pred) {}
+};
+
+/// Specialization of filter_iterator_base for bidirectional iteration.
+template <typename WrappedIteratorT, typename PredicateT>
+class filter_iterator_impl<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag>
+ : public filter_iterator_base<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag> {
+ using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
+ std::bidirectional_iterator_tag>;
+ void findPrevValid() {
+ while (!this->Pred(*this->I))
+ BaseT::operator--();
+ }
+
+public:
+ using BaseT::operator--;
+
+ filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
+ PredicateT Pred)
+ : BaseT(Begin, End, Pred) {}
+
+ filter_iterator_impl &operator--() {
+ BaseT::operator--();
+ findPrevValid();
+ return *this;
+ }
+};
+
+namespace detail {
+
+template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
+ using type = std::forward_iterator_tag;
+};
+
+template <> struct fwd_or_bidi_tag_impl<true> {
+ using type = std::bidirectional_iterator_tag;
+};
+
+/// Helper which sets its type member to forward_iterator_tag if the category
+/// of \p IterT does not derive from bidirectional_iterator_tag, and to
+/// bidirectional_iterator_tag otherwise.
+template <typename IterT> struct fwd_or_bidi_tag {
+ using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
+ std::bidirectional_iterator_tag,
+ typename std::iterator_traits<IterT>::iterator_category>::value>::type;
+};
+
+} // namespace detail
+
+/// Defines filter_iterator to a suitable specialization of
+/// filter_iterator_impl, based on the underlying iterator's category.
+template <typename WrappedIteratorT, typename PredicateT>
+using filter_iterator = filter_iterator_impl<
+ WrappedIteratorT, PredicateT,
+ typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
+
+/// Convenience function that takes a range of elements and a predicate,
+/// and return a new filter_iterator range.
+///
+/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
+/// lifetime of that temporary is not kept by the returned range object, and the
+/// temporary is going to be dropped on the floor after the make_iterator_range
+/// full expression that contains this function call.
+template <typename RangeT, typename PredicateT>
+iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
+make_filter_range(RangeT &&Range, PredicateT Pred) {
+ using FilterIteratorT =
+ filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
+ return make_range(
+ FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
+ std::end(std::forward<RangeT>(Range)), Pred),
+ FilterIteratorT(std::end(std::forward<RangeT>(Range)),
+ std::end(std::forward<RangeT>(Range)), Pred));
+}
+
+/// A pseudo-iterator adaptor that is designed to implement "early increment"
+/// style loops.
+///
+/// This is *not a normal iterator* and should almost never be used directly. It
+/// is intended primarily to be used with range based for loops and some range
+/// algorithms.
+///
+/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
+/// somewhere between them. The constraints of these iterators are:
+///
+/// - On construction or after being incremented, it is comparable and
+/// dereferencable. It is *not* incrementable.
+/// - After being dereferenced, it is neither comparable nor dereferencable, it
+/// is only incrementable.
+///
+/// This means you can only dereference the iterator once, and you can only
+/// increment it once between dereferences.
+template <typename WrappedIteratorT>
+class early_inc_iterator_impl
+ : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
+ WrappedIteratorT, std::input_iterator_tag> {
+ using BaseT =
+ iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
+ WrappedIteratorT, std::input_iterator_tag>;
+
+ using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
+
+protected:
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ bool IsEarlyIncremented = false;
+#endif
+
+public:
+ early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
+
+ using BaseT::operator*;
decltype(*std::declval<WrappedIteratorT>()) operator*() {
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(!IsEarlyIncremented && "Cannot dereference twice!");
- IsEarlyIncremented = true;
-#endif
- return *(this->I)++;
- }
-
- using BaseT::operator++;
- early_inc_iterator_impl &operator++() {
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
- IsEarlyIncremented = false;
-#endif
- return *this;
- }
-
- friend bool operator==(const early_inc_iterator_impl &LHS,
- const early_inc_iterator_impl &RHS) {
-#if LLVM_ENABLE_ABI_BREAKING_CHECKS
- assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
-#endif
- return (const BaseT &)LHS == (const BaseT &)RHS;
- }
-};
-
-/// Make a range that does early increment to allow mutation of the underlying
-/// range without disrupting iteration.
-///
-/// The underlying iterator will be incremented immediately after it is
-/// dereferenced, allowing deletion of the current node or insertion of nodes to
-/// not disrupt iteration provided they do not invalidate the *next* iterator --
-/// the current iterator can be invalidated.
-///
-/// This requires a very exact pattern of use that is only really suitable to
-/// range based for loops and other range algorithms that explicitly guarantee
-/// to dereference exactly once each element, and to increment exactly once each
-/// element.
-template <typename RangeT>
-iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
-make_early_inc_range(RangeT &&Range) {
- using EarlyIncIteratorT =
- early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
- return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
- EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
-}
-
-// forward declarations required by zip_shortest/zip_first/zip_longest
-template <typename R, typename UnaryPredicate>
-bool all_of(R &&range, UnaryPredicate P);
-template <typename R, typename UnaryPredicate>
-bool any_of(R &&range, UnaryPredicate P);
-
-namespace detail {
-
-using std::declval;
-
-// We have to alias this since inlining the actual type at the usage site
-// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
-template<typename... Iters> struct ZipTupleType {
- using type = std::tuple<decltype(*declval<Iters>())...>;
-};
-
-template <typename ZipType, typename... Iters>
-using zip_traits = iterator_facade_base<
- ZipType, typename std::common_type<std::bidirectional_iterator_tag,
- typename std::iterator_traits<
- Iters>::iterator_category...>::type,
- // ^ TODO: Implement random access methods.
- typename ZipTupleType<Iters...>::type,
- typename std::iterator_traits<typename std::tuple_element<
- 0, std::tuple<Iters...>>::type>::difference_type,
- // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
- // inner iterators have the same difference_type. It would fail if, for
- // instance, the second field's difference_type were non-numeric while the
- // first is.
- typename ZipTupleType<Iters...>::type *,
- typename ZipTupleType<Iters...>::type>;
-
-template <typename ZipType, typename... Iters>
-struct zip_common : public zip_traits<ZipType, Iters...> {
- using Base = zip_traits<ZipType, Iters...>;
- using value_type = typename Base::value_type;
-
- std::tuple<Iters...> iterators;
-
-protected:
- template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
- return value_type(*std::get<Ns>(iterators)...);
- }
-
- template <size_t... Ns>
- decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
- }
-
- template <size_t... Ns>
- decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
- }
-
-public:
- zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
-
- value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
-
- const value_type operator*() const {
- return deref(std::index_sequence_for<Iters...>{});
- }
-
- ZipType &operator++() {
- iterators = tup_inc(std::index_sequence_for<Iters...>{});
- return *reinterpret_cast<ZipType *>(this);
- }
-
- ZipType &operator--() {
- static_assert(Base::IsBidirectional,
- "All inner iterators must be at least bidirectional.");
- iterators = tup_dec(std::index_sequence_for<Iters...>{});
- return *reinterpret_cast<ZipType *>(this);
- }
-};
-
-template <typename... Iters>
-struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
- using Base = zip_common<zip_first<Iters...>, Iters...>;
-
- bool operator==(const zip_first<Iters...> &other) const {
- return std::get<0>(this->iterators) == std::get<0>(other.iterators);
- }
-
- zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
-};
-
-template <typename... Iters>
-class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
- template <size_t... Ns>
- bool test(const zip_shortest<Iters...> &other,
- std::index_sequence<Ns...>) const {
- return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
- std::get<Ns>(other.iterators)...},
- identity<bool>{});
- }
-
-public:
- using Base = zip_common<zip_shortest<Iters...>, Iters...>;
-
- zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
-
- bool operator==(const zip_shortest<Iters...> &other) const {
- return !test(other, std::index_sequence_for<Iters...>{});
- }
-};
-
-template <template <typename...> class ItType, typename... Args> class zippy {
-public:
- using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
- using iterator_category = typename iterator::iterator_category;
- using value_type = typename iterator::value_type;
- using difference_type = typename iterator::difference_type;
- using pointer = typename iterator::pointer;
- using reference = typename iterator::reference;
-
-private:
- std::tuple<Args...> ts;
-
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) const {
- return iterator(std::begin(std::get<Ns>(ts))...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
- return iterator(std::end(std::get<Ns>(ts))...);
- }
-
-public:
- zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
-
- iterator begin() const {
- return begin_impl(std::index_sequence_for<Args...>{});
- }
- iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
-};
-
-} // end namespace detail
-
-/// zip iterator for two or more iteratable types.
-template <typename T, typename U, typename... Args>
-detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
- Args &&... args) {
- return detail::zippy<detail::zip_shortest, T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
-}
-
-/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
-/// be the shortest.
-template <typename T, typename U, typename... Args>
-detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
- Args &&... args) {
- return detail::zippy<detail::zip_first, T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
-}
-
-namespace detail {
-template <typename Iter>
-Iter next_or_end(const Iter &I, const Iter &End) {
- if (I == End)
- return End;
- return std::next(I);
-}
-
-template <typename Iter>
-auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
- std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
- if (I == End)
- return None;
- return *I;
-}
-
-template <typename Iter> struct ZipLongestItemType {
- using type =
- llvm::Optional<typename std::remove_const<typename std::remove_reference<
- decltype(*std::declval<Iter>())>::type>::type>;
-};
-
-template <typename... Iters> struct ZipLongestTupleType {
- using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
-};
-
-template <typename... Iters>
-class zip_longest_iterator
- : public iterator_facade_base<
- zip_longest_iterator<Iters...>,
- typename std::common_type<
- std::forward_iterator_tag,
- typename std::iterator_traits<Iters>::iterator_category...>::type,
- typename ZipLongestTupleType<Iters...>::type,
- typename std::iterator_traits<typename std::tuple_element<
- 0, std::tuple<Iters...>>::type>::difference_type,
- typename ZipLongestTupleType<Iters...>::type *,
- typename ZipLongestTupleType<Iters...>::type> {
-public:
- using value_type = typename ZipLongestTupleType<Iters...>::type;
-
-private:
- std::tuple<Iters...> iterators;
- std::tuple<Iters...> end_iterators;
-
- template <size_t... Ns>
- bool test(const zip_longest_iterator<Iters...> &other,
- std::index_sequence<Ns...>) const {
- return llvm::any_of(
- std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
- std::get<Ns>(other.iterators)...},
- identity<bool>{});
- }
-
- template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
- return value_type(
- deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
- }
-
- template <size_t... Ns>
- decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
- return std::tuple<Iters...>(
- next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
- }
-
-public:
- zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
- : iterators(std::forward<Iters>(ts.first)...),
- end_iterators(std::forward<Iters>(ts.second)...) {}
-
- value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
-
- value_type operator*() const {
- return deref(std::index_sequence_for<Iters...>{});
- }
-
- zip_longest_iterator<Iters...> &operator++() {
- iterators = tup_inc(std::index_sequence_for<Iters...>{});
- return *this;
- }
-
- bool operator==(const zip_longest_iterator<Iters...> &other) const {
- return !test(other, std::index_sequence_for<Iters...>{});
- }
-};
-
-template <typename... Args> class zip_longest_range {
-public:
- using iterator =
- zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
- using iterator_category = typename iterator::iterator_category;
- using value_type = typename iterator::value_type;
- using difference_type = typename iterator::difference_type;
- using pointer = typename iterator::pointer;
- using reference = typename iterator::reference;
-
-private:
- std::tuple<Args...> ts;
-
- template <size_t... Ns>
- iterator begin_impl(std::index_sequence<Ns...>) const {
- return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
- adl_end(std::get<Ns>(ts)))...);
- }
-
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
- return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
- adl_end(std::get<Ns>(ts)))...);
- }
-
-public:
- zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
-
- iterator begin() const {
- return begin_impl(std::index_sequence_for<Args...>{});
- }
- iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
-};
-} // namespace detail
-
-/// Iterate over two or more iterators at the same time. Iteration continues
-/// until all iterators reach the end. The llvm::Optional only contains a value
-/// if the iterator has not reached the end.
-template <typename T, typename U, typename... Args>
-detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
- Args &&... args) {
- return detail::zip_longest_range<T, U, Args...>(
- std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
-}
-
-/// Iterator wrapper that concatenates sequences together.
-///
-/// This can concatenate different iterators, even with different types, into
-/// a single iterator provided the value types of all the concatenated
-/// iterators expose `reference` and `pointer` types that can be converted to
-/// `ValueT &` and `ValueT *` respectively. It doesn't support more
-/// interesting/customized pointer or reference types.
-///
-/// Currently this only supports forward or higher iterator categories as
-/// inputs and always exposes a forward iterator interface.
-template <typename ValueT, typename... IterTs>
-class concat_iterator
- : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
- std::forward_iterator_tag, ValueT> {
- using BaseT = typename concat_iterator::iterator_facade_base;
-
- /// We store both the current and end iterators for each concatenated
- /// sequence in a tuple of pairs.
- ///
- /// Note that something like iterator_range seems nice at first here, but the
- /// range properties are of little benefit and end up getting in the way
- /// because we need to do mutation on the current iterators.
- std::tuple<IterTs...> Begins;
- std::tuple<IterTs...> Ends;
-
- /// Attempts to increment a specific iterator.
- ///
- /// Returns true if it was able to increment the iterator. Returns false if
- /// the iterator is already at the end iterator.
- template <size_t Index> bool incrementHelper() {
- auto &Begin = std::get<Index>(Begins);
- auto &End = std::get<Index>(Ends);
- if (Begin == End)
- return false;
-
- ++Begin;
- return true;
- }
-
- /// Increments the first non-end iterator.
- ///
- /// It is an error to call this with all iterators at the end.
- template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
- // Build a sequence of functions to increment each iterator if possible.
- bool (concat_iterator::*IncrementHelperFns[])() = {
- &concat_iterator::incrementHelper<Ns>...};
-
- // Loop over them, and stop as soon as we succeed at incrementing one.
- for (auto &IncrementHelperFn : IncrementHelperFns)
- if ((this->*IncrementHelperFn)())
- return;
-
- llvm_unreachable("Attempted to increment an end concat iterator!");
- }
-
- /// Returns null if the specified iterator is at the end. Otherwise,
- /// dereferences the iterator and returns the address of the resulting
- /// reference.
- template <size_t Index> ValueT *getHelper() const {
- auto &Begin = std::get<Index>(Begins);
- auto &End = std::get<Index>(Ends);
- if (Begin == End)
- return nullptr;
-
- return &*Begin;
- }
-
- /// Finds the first non-end iterator, dereferences, and returns the resulting
- /// reference.
- ///
- /// It is an error to call this with all iterators at the end.
- template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
- // Build a sequence of functions to get from iterator if possible.
- ValueT *(concat_iterator::*GetHelperFns[])() const = {
- &concat_iterator::getHelper<Ns>...};
-
- // Loop over them, and return the first result we find.
- for (auto &GetHelperFn : GetHelperFns)
- if (ValueT *P = (this->*GetHelperFn)())
- return *P;
-
- llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
- }
-
-public:
- /// Constructs an iterator from a sequence of ranges.
- ///
- /// We need the full range to know how to switch between each of the
- /// iterators.
- template <typename... RangeTs>
- explicit concat_iterator(RangeTs &&... Ranges)
- : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
-
- using BaseT::operator++;
-
- concat_iterator &operator++() {
- increment(std::index_sequence_for<IterTs...>());
- return *this;
- }
-
- ValueT &operator*() const {
- return get(std::index_sequence_for<IterTs...>());
- }
-
- bool operator==(const concat_iterator &RHS) const {
- return Begins == RHS.Begins && Ends == RHS.Ends;
- }
-};
-
-namespace detail {
-
-/// Helper to store a sequence of ranges being concatenated and access them.
-///
-/// This is designed to facilitate providing actual storage when temporaries
-/// are passed into the constructor such that we can use it as part of range
-/// based for loops.
-template <typename ValueT, typename... RangeTs> class concat_range {
-public:
- using iterator =
- concat_iterator<ValueT,
- decltype(std::begin(std::declval<RangeTs &>()))...>;
-
-private:
- std::tuple<RangeTs...> Ranges;
-
- template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
- return iterator(std::get<Ns>(Ranges)...);
- }
- template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
- return iterator(make_range(std::end(std::get<Ns>(Ranges)),
- std::end(std::get<Ns>(Ranges)))...);
- }
-
-public:
- concat_range(RangeTs &&... Ranges)
- : Ranges(std::forward<RangeTs>(Ranges)...) {}
-
- iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
- iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
-};
-
-} // end namespace detail
-
-/// Concatenated range across two or more ranges.
-///
-/// The desired value type must be explicitly specified.
-template <typename ValueT, typename... RangeTs>
-detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
- static_assert(sizeof...(RangeTs) > 1,
- "Need more than one range to concatenate!");
- return detail::concat_range<ValueT, RangeTs...>(
- std::forward<RangeTs>(Ranges)...);
-}
-
-/// A utility class used to implement an iterator that contains some base object
-/// and an index. The iterator moves the index but keeps the base constant.
-template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
-class indexed_accessor_iterator
- : public llvm::iterator_facade_base<DerivedT,
- std::random_access_iterator_tag, T,
- std::ptrdiff_t, PointerT, ReferenceT> {
-public:
- ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
- assert(base == rhs.base && "incompatible iterators");
- return index - rhs.index;
- }
- bool operator==(const indexed_accessor_iterator &rhs) const {
- return base == rhs.base && index == rhs.index;
- }
- bool operator<(const indexed_accessor_iterator &rhs) const {
- assert(base == rhs.base && "incompatible iterators");
- return index < rhs.index;
- }
-
- DerivedT &operator+=(ptrdiff_t offset) {
- this->index += offset;
- return static_cast<DerivedT &>(*this);
- }
- DerivedT &operator-=(ptrdiff_t offset) {
- this->index -= offset;
- return static_cast<DerivedT &>(*this);
- }
-
- /// Returns the current index of the iterator.
- ptrdiff_t getIndex() const { return index; }
-
- /// Returns the current base of the iterator.
- const BaseT &getBase() const { return base; }
-
-protected:
- indexed_accessor_iterator(BaseT base, ptrdiff_t index)
- : base(base), index(index) {}
- BaseT base;
- ptrdiff_t index;
-};
-
-namespace detail {
-/// The class represents the base of a range of indexed_accessor_iterators. It
-/// provides support for many different range functionalities, e.g.
-/// drop_front/slice/etc.. Derived range classes must implement the following
-/// static methods:
-/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
-/// - Dereference an iterator pointing to the base object at the given
-/// index.
-/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
-/// - Return a new base that is offset from the provide base by 'index'
-/// elements.
-template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
-class indexed_accessor_range_base {
-public:
- using RangeBaseT =
- indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>;
-
- /// An iterator element of this range.
- class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
- PointerT, ReferenceT> {
- public:
- // Index into this iterator, invoking a static method on the derived type.
- ReferenceT operator*() const {
- return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
- }
-
- private:
- iterator(BaseT owner, ptrdiff_t curIndex)
- : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>(
- owner, curIndex) {}
-
- /// Allow access to the constructor.
- friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
- ReferenceT>;
- };
-
- indexed_accessor_range_base(iterator begin, iterator end)
- : base(offset_base(begin.getBase(), begin.getIndex())),
- count(end.getIndex() - begin.getIndex()) {}
- indexed_accessor_range_base(const iterator_range<iterator> &range)
- : indexed_accessor_range_base(range.begin(), range.end()) {}
- indexed_accessor_range_base(BaseT base, ptrdiff_t count)
- : base(base), count(count) {}
-
- iterator begin() const { return iterator(base, 0); }
- iterator end() const { return iterator(base, count); }
- ReferenceT operator[](unsigned index) const {
- assert(index < size() && "invalid index for value range");
- return DerivedT::dereference_iterator(base, index);
- }
- ReferenceT front() const {
- assert(!empty() && "expected non-empty range");
- return (*this)[0];
- }
- ReferenceT back() const {
- assert(!empty() && "expected non-empty range");
- return (*this)[size() - 1];
- }
-
- /// Compare this range with another.
- template <typename OtherT> bool operator==(const OtherT &other) const {
- return size() ==
- static_cast<size_t>(std::distance(other.begin(), other.end())) &&
- std::equal(begin(), end(), other.begin());
- }
- template <typename OtherT> bool operator!=(const OtherT &other) const {
- return !(*this == other);
- }
-
- /// Return the size of this range.
- size_t size() const { return count; }
-
- /// Return if the range is empty.
- bool empty() const { return size() == 0; }
-
- /// Drop the first N elements, and keep M elements.
- DerivedT slice(size_t n, size_t m) const {
- assert(n + m <= size() && "invalid size specifiers");
- return DerivedT(offset_base(base, n), m);
- }
-
- /// Drop the first n elements.
- DerivedT drop_front(size_t n = 1) const {
- assert(size() >= n && "Dropping more elements than exist");
- return slice(n, size() - n);
- }
- /// Drop the last n elements.
- DerivedT drop_back(size_t n = 1) const {
- assert(size() >= n && "Dropping more elements than exist");
- return DerivedT(base, size() - n);
- }
-
- /// Take the first n elements.
- DerivedT take_front(size_t n = 1) const {
- return n < size() ? drop_back(size() - n)
- : static_cast<const DerivedT &>(*this);
- }
-
- /// Take the last n elements.
- DerivedT take_back(size_t n = 1) const {
- return n < size() ? drop_front(size() - n)
- : static_cast<const DerivedT &>(*this);
- }
-
- /// Allow conversion to any type accepting an iterator_range.
- template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
- RangeT, iterator_range<iterator>>::value>>
- operator RangeT() const {
- return RangeT(iterator_range<iterator>(*this));
- }
-
- /// Returns the base of this range.
- const BaseT &getBase() const { return base; }
-
-private:
- /// Offset the given base by the given amount.
- static BaseT offset_base(const BaseT &base, size_t n) {
- return n == 0 ? base : DerivedT::offset_base(base, n);
- }
-
-protected:
- indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
- indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
- indexed_accessor_range_base &
- operator=(const indexed_accessor_range_base &) = default;
-
- /// The base that owns the provided range of values.
- BaseT base;
- /// The size from the owning range.
- ptrdiff_t count;
-};
-} // end namespace detail
-
-/// This class provides an implementation of a range of
-/// indexed_accessor_iterators where the base is not indexable. Ranges with
-/// bases that are offsetable should derive from indexed_accessor_range_base
-/// instead. Derived range classes are expected to implement the following
-/// static method:
-/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
-/// - Dereference an iterator pointing to a parent base at the given index.
-template <typename DerivedT, typename BaseT, typename T,
- typename PointerT = T *, typename ReferenceT = T &>
-class indexed_accessor_range
- : public detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
-public:
- indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
- : detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
- std::make_pair(base, startIndex), count) {}
- using detail::indexed_accessor_range_base<
- DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
- ReferenceT>::indexed_accessor_range_base;
-
- /// Returns the current base of the range.
- const BaseT &getBase() const { return this->base.first; }
-
- /// Returns the current start index of the range.
- ptrdiff_t getStartIndex() const { return this->base.second; }
-
- /// See `detail::indexed_accessor_range_base` for details.
- static std::pair<BaseT, ptrdiff_t>
- offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
- // We encode the internal base as a pair of the derived base and a start
- // index into the derived base.
- return std::make_pair(base.first, base.second + index);
- }
- /// See `detail::indexed_accessor_range_base` for details.
- static ReferenceT
- dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
- ptrdiff_t index) {
- return DerivedT::dereference(base.first, base.second + index);
- }
-};
-
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(!IsEarlyIncremented && "Cannot dereference twice!");
+ IsEarlyIncremented = true;
+#endif
+ return *(this->I)++;
+ }
+
+ using BaseT::operator++;
+ early_inc_iterator_impl &operator++() {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
+ IsEarlyIncremented = false;
+#endif
+ return *this;
+ }
+
+ friend bool operator==(const early_inc_iterator_impl &LHS,
+ const early_inc_iterator_impl &RHS) {
+#if LLVM_ENABLE_ABI_BREAKING_CHECKS
+ assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
+#endif
+ return (const BaseT &)LHS == (const BaseT &)RHS;
+ }
+};
+
+/// Make a range that does early increment to allow mutation of the underlying
+/// range without disrupting iteration.
+///
+/// The underlying iterator will be incremented immediately after it is
+/// dereferenced, allowing deletion of the current node or insertion of nodes to
+/// not disrupt iteration provided they do not invalidate the *next* iterator --
+/// the current iterator can be invalidated.
+///
+/// This requires a very exact pattern of use that is only really suitable to
+/// range based for loops and other range algorithms that explicitly guarantee
+/// to dereference exactly once each element, and to increment exactly once each
+/// element.
+template <typename RangeT>
+iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
+make_early_inc_range(RangeT &&Range) {
+ using EarlyIncIteratorT =
+ early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
+ return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
+ EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
+}
+
+// forward declarations required by zip_shortest/zip_first/zip_longest
+template <typename R, typename UnaryPredicate>
+bool all_of(R &&range, UnaryPredicate P);
+template <typename R, typename UnaryPredicate>
+bool any_of(R &&range, UnaryPredicate P);
+
+namespace detail {
+
+using std::declval;
+
+// We have to alias this since inlining the actual type at the usage site
+// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
+template<typename... Iters> struct ZipTupleType {
+ using type = std::tuple<decltype(*declval<Iters>())...>;
+};
+
+template <typename ZipType, typename... Iters>
+using zip_traits = iterator_facade_base<
+ ZipType, typename std::common_type<std::bidirectional_iterator_tag,
+ typename std::iterator_traits<
+ Iters>::iterator_category...>::type,
+ // ^ TODO: Implement random access methods.
+ typename ZipTupleType<Iters...>::type,
+ typename std::iterator_traits<typename std::tuple_element<
+ 0, std::tuple<Iters...>>::type>::difference_type,
+ // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
+ // inner iterators have the same difference_type. It would fail if, for
+ // instance, the second field's difference_type were non-numeric while the
+ // first is.
+ typename ZipTupleType<Iters...>::type *,
+ typename ZipTupleType<Iters...>::type>;
+
+template <typename ZipType, typename... Iters>
+struct zip_common : public zip_traits<ZipType, Iters...> {
+ using Base = zip_traits<ZipType, Iters...>;
+ using value_type = typename Base::value_type;
+
+ std::tuple<Iters...> iterators;
+
+protected:
+ template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
+ return value_type(*std::get<Ns>(iterators)...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
+ }
+
+public:
+ zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
+
+ value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
+
+ const value_type operator*() const {
+ return deref(std::index_sequence_for<Iters...>{});
+ }
+
+ ZipType &operator++() {
+ iterators = tup_inc(std::index_sequence_for<Iters...>{});
+ return *reinterpret_cast<ZipType *>(this);
+ }
+
+ ZipType &operator--() {
+ static_assert(Base::IsBidirectional,
+ "All inner iterators must be at least bidirectional.");
+ iterators = tup_dec(std::index_sequence_for<Iters...>{});
+ return *reinterpret_cast<ZipType *>(this);
+ }
+};
+
+template <typename... Iters>
+struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
+ using Base = zip_common<zip_first<Iters...>, Iters...>;
+
+ bool operator==(const zip_first<Iters...> &other) const {
+ return std::get<0>(this->iterators) == std::get<0>(other.iterators);
+ }
+
+ zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
+};
+
+template <typename... Iters>
+class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
+ template <size_t... Ns>
+ bool test(const zip_shortest<Iters...> &other,
+ std::index_sequence<Ns...>) const {
+ return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
+ std::get<Ns>(other.iterators)...},
+ identity<bool>{});
+ }
+
+public:
+ using Base = zip_common<zip_shortest<Iters...>, Iters...>;
+
+ zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
+
+ bool operator==(const zip_shortest<Iters...> &other) const {
+ return !test(other, std::index_sequence_for<Iters...>{});
+ }
+};
+
+template <template <typename...> class ItType, typename... Args> class zippy {
+public:
+ using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
+ using iterator_category = typename iterator::iterator_category;
+ using value_type = typename iterator::value_type;
+ using difference_type = typename iterator::difference_type;
+ using pointer = typename iterator::pointer;
+ using reference = typename iterator::reference;
+
+private:
+ std::tuple<Args...> ts;
+
+ template <size_t... Ns>
+ iterator begin_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::begin(std::get<Ns>(ts))...);
+ }
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::end(std::get<Ns>(ts))...);
+ }
+
+public:
+ zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
+
+ iterator begin() const {
+ return begin_impl(std::index_sequence_for<Args...>{});
+ }
+ iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
+};
+
+} // end namespace detail
+
+/// zip iterator for two or more iteratable types.
+template <typename T, typename U, typename... Args>
+detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zippy<detail::zip_shortest, T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
+/// be the shortest.
+template <typename T, typename U, typename... Args>
+detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zippy<detail::zip_first, T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+namespace detail {
+template <typename Iter>
+Iter next_or_end(const Iter &I, const Iter &End) {
+ if (I == End)
+ return End;
+ return std::next(I);
+}
+
+template <typename Iter>
+auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
+ std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
+ if (I == End)
+ return None;
+ return *I;
+}
+
+template <typename Iter> struct ZipLongestItemType {
+ using type =
+ llvm::Optional<typename std::remove_const<typename std::remove_reference<
+ decltype(*std::declval<Iter>())>::type>::type>;
+};
+
+template <typename... Iters> struct ZipLongestTupleType {
+ using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
+};
+
+template <typename... Iters>
+class zip_longest_iterator
+ : public iterator_facade_base<
+ zip_longest_iterator<Iters...>,
+ typename std::common_type<
+ std::forward_iterator_tag,
+ typename std::iterator_traits<Iters>::iterator_category...>::type,
+ typename ZipLongestTupleType<Iters...>::type,
+ typename std::iterator_traits<typename std::tuple_element<
+ 0, std::tuple<Iters...>>::type>::difference_type,
+ typename ZipLongestTupleType<Iters...>::type *,
+ typename ZipLongestTupleType<Iters...>::type> {
+public:
+ using value_type = typename ZipLongestTupleType<Iters...>::type;
+
+private:
+ std::tuple<Iters...> iterators;
+ std::tuple<Iters...> end_iterators;
+
+ template <size_t... Ns>
+ bool test(const zip_longest_iterator<Iters...> &other,
+ std::index_sequence<Ns...>) const {
+ return llvm::any_of(
+ std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
+ std::get<Ns>(other.iterators)...},
+ identity<bool>{});
+ }
+
+ template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
+ return value_type(
+ deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
+ }
+
+ template <size_t... Ns>
+ decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
+ return std::tuple<Iters...>(
+ next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
+ }
+
+public:
+ zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
+ : iterators(std::forward<Iters>(ts.first)...),
+ end_iterators(std::forward<Iters>(ts.second)...) {}
+
+ value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
+
+ value_type operator*() const {
+ return deref(std::index_sequence_for<Iters...>{});
+ }
+
+ zip_longest_iterator<Iters...> &operator++() {
+ iterators = tup_inc(std::index_sequence_for<Iters...>{});
+ return *this;
+ }
+
+ bool operator==(const zip_longest_iterator<Iters...> &other) const {
+ return !test(other, std::index_sequence_for<Iters...>{});
+ }
+};
+
+template <typename... Args> class zip_longest_range {
+public:
+ using iterator =
+ zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
+ using iterator_category = typename iterator::iterator_category;
+ using value_type = typename iterator::value_type;
+ using difference_type = typename iterator::difference_type;
+ using pointer = typename iterator::pointer;
+ using reference = typename iterator::reference;
+
+private:
+ std::tuple<Args...> ts;
+
+ template <size_t... Ns>
+ iterator begin_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
+ adl_end(std::get<Ns>(ts)))...);
+ }
+
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
+ return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
+ adl_end(std::get<Ns>(ts)))...);
+ }
+
+public:
+ zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
+
+ iterator begin() const {
+ return begin_impl(std::index_sequence_for<Args...>{});
+ }
+ iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
+};
+} // namespace detail
+
+/// Iterate over two or more iterators at the same time. Iteration continues
+/// until all iterators reach the end. The llvm::Optional only contains a value
+/// if the iterator has not reached the end.
+template <typename T, typename U, typename... Args>
+detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
+ Args &&... args) {
+ return detail::zip_longest_range<T, U, Args...>(
+ std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
+}
+
+/// Iterator wrapper that concatenates sequences together.
+///
+/// This can concatenate different iterators, even with different types, into
+/// a single iterator provided the value types of all the concatenated
+/// iterators expose `reference` and `pointer` types that can be converted to
+/// `ValueT &` and `ValueT *` respectively. It doesn't support more
+/// interesting/customized pointer or reference types.
+///
+/// Currently this only supports forward or higher iterator categories as
+/// inputs and always exposes a forward iterator interface.
+template <typename ValueT, typename... IterTs>
+class concat_iterator
+ : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
+ std::forward_iterator_tag, ValueT> {
+ using BaseT = typename concat_iterator::iterator_facade_base;
+
+ /// We store both the current and end iterators for each concatenated
+ /// sequence in a tuple of pairs.
+ ///
+ /// Note that something like iterator_range seems nice at first here, but the
+ /// range properties are of little benefit and end up getting in the way
+ /// because we need to do mutation on the current iterators.
+ std::tuple<IterTs...> Begins;
+ std::tuple<IterTs...> Ends;
+
+ /// Attempts to increment a specific iterator.
+ ///
+ /// Returns true if it was able to increment the iterator. Returns false if
+ /// the iterator is already at the end iterator.
+ template <size_t Index> bool incrementHelper() {
+ auto &Begin = std::get<Index>(Begins);
+ auto &End = std::get<Index>(Ends);
+ if (Begin == End)
+ return false;
+
+ ++Begin;
+ return true;
+ }
+
+ /// Increments the first non-end iterator.
+ ///
+ /// It is an error to call this with all iterators at the end.
+ template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
+ // Build a sequence of functions to increment each iterator if possible.
+ bool (concat_iterator::*IncrementHelperFns[])() = {
+ &concat_iterator::incrementHelper<Ns>...};
+
+ // Loop over them, and stop as soon as we succeed at incrementing one.
+ for (auto &IncrementHelperFn : IncrementHelperFns)
+ if ((this->*IncrementHelperFn)())
+ return;
+
+ llvm_unreachable("Attempted to increment an end concat iterator!");
+ }
+
+ /// Returns null if the specified iterator is at the end. Otherwise,
+ /// dereferences the iterator and returns the address of the resulting
+ /// reference.
+ template <size_t Index> ValueT *getHelper() const {
+ auto &Begin = std::get<Index>(Begins);
+ auto &End = std::get<Index>(Ends);
+ if (Begin == End)
+ return nullptr;
+
+ return &*Begin;
+ }
+
+ /// Finds the first non-end iterator, dereferences, and returns the resulting
+ /// reference.
+ ///
+ /// It is an error to call this with all iterators at the end.
+ template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
+ // Build a sequence of functions to get from iterator if possible.
+ ValueT *(concat_iterator::*GetHelperFns[])() const = {
+ &concat_iterator::getHelper<Ns>...};
+
+ // Loop over them, and return the first result we find.
+ for (auto &GetHelperFn : GetHelperFns)
+ if (ValueT *P = (this->*GetHelperFn)())
+ return *P;
+
+ llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
+ }
+
+public:
+ /// Constructs an iterator from a sequence of ranges.
+ ///
+ /// We need the full range to know how to switch between each of the
+ /// iterators.
+ template <typename... RangeTs>
+ explicit concat_iterator(RangeTs &&... Ranges)
+ : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
+
+ using BaseT::operator++;
+
+ concat_iterator &operator++() {
+ increment(std::index_sequence_for<IterTs...>());
+ return *this;
+ }
+
+ ValueT &operator*() const {
+ return get(std::index_sequence_for<IterTs...>());
+ }
+
+ bool operator==(const concat_iterator &RHS) const {
+ return Begins == RHS.Begins && Ends == RHS.Ends;
+ }
+};
+
+namespace detail {
+
+/// Helper to store a sequence of ranges being concatenated and access them.
+///
+/// This is designed to facilitate providing actual storage when temporaries
+/// are passed into the constructor such that we can use it as part of range
+/// based for loops.
+template <typename ValueT, typename... RangeTs> class concat_range {
+public:
+ using iterator =
+ concat_iterator<ValueT,
+ decltype(std::begin(std::declval<RangeTs &>()))...>;
+
+private:
+ std::tuple<RangeTs...> Ranges;
+
+ template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
+ return iterator(std::get<Ns>(Ranges)...);
+ }
+ template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
+ return iterator(make_range(std::end(std::get<Ns>(Ranges)),
+ std::end(std::get<Ns>(Ranges)))...);
+ }
+
+public:
+ concat_range(RangeTs &&... Ranges)
+ : Ranges(std::forward<RangeTs>(Ranges)...) {}
+
+ iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
+ iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
+};
+
+} // end namespace detail
+
+/// Concatenated range across two or more ranges.
+///
+/// The desired value type must be explicitly specified.
+template <typename ValueT, typename... RangeTs>
+detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
+ static_assert(sizeof...(RangeTs) > 1,
+ "Need more than one range to concatenate!");
+ return detail::concat_range<ValueT, RangeTs...>(
+ std::forward<RangeTs>(Ranges)...);
+}
+
+/// A utility class used to implement an iterator that contains some base object
+/// and an index. The iterator moves the index but keeps the base constant.
+template <typename DerivedT, typename BaseT, typename T,
+ typename PointerT = T *, typename ReferenceT = T &>
+class indexed_accessor_iterator
+ : public llvm::iterator_facade_base<DerivedT,
+ std::random_access_iterator_tag, T,
+ std::ptrdiff_t, PointerT, ReferenceT> {
+public:
+ ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
+ assert(base == rhs.base && "incompatible iterators");
+ return index - rhs.index;
+ }
+ bool operator==(const indexed_accessor_iterator &rhs) const {
+ return base == rhs.base && index == rhs.index;
+ }
+ bool operator<(const indexed_accessor_iterator &rhs) const {
+ assert(base == rhs.base && "incompatible iterators");
+ return index < rhs.index;
+ }
+
+ DerivedT &operator+=(ptrdiff_t offset) {
+ this->index += offset;
+ return static_cast<DerivedT &>(*this);
+ }
+ DerivedT &operator-=(ptrdiff_t offset) {
+ this->index -= offset;
+ return static_cast<DerivedT &>(*this);
+ }
+
+ /// Returns the current index of the iterator.
+ ptrdiff_t getIndex() const { return index; }
+
+ /// Returns the current base of the iterator.
+ const BaseT &getBase() const { return base; }
+
+protected:
+ indexed_accessor_iterator(BaseT base, ptrdiff_t index)
+ : base(base), index(index) {}
+ BaseT base;
+ ptrdiff_t index;
+};
+
+namespace detail {
+/// The class represents the base of a range of indexed_accessor_iterators. It
+/// provides support for many different range functionalities, e.g.
+/// drop_front/slice/etc.. Derived range classes must implement the following
+/// static methods:
+/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
+/// - Dereference an iterator pointing to the base object at the given
+/// index.
+/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
+/// - Return a new base that is offset from the provide base by 'index'
+/// elements.
+template <typename DerivedT, typename BaseT, typename T,
+ typename PointerT = T *, typename ReferenceT = T &>
+class indexed_accessor_range_base {
+public:
+ using RangeBaseT =
+ indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>;
+
+ /// An iterator element of this range.
+ class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
+ PointerT, ReferenceT> {
+ public:
+ // Index into this iterator, invoking a static method on the derived type.
+ ReferenceT operator*() const {
+ return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
+ }
+
+ private:
+ iterator(BaseT owner, ptrdiff_t curIndex)
+ : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>(
+ owner, curIndex) {}
+
+ /// Allow access to the constructor.
+ friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
+ ReferenceT>;
+ };
+
+ indexed_accessor_range_base(iterator begin, iterator end)
+ : base(offset_base(begin.getBase(), begin.getIndex())),
+ count(end.getIndex() - begin.getIndex()) {}
+ indexed_accessor_range_base(const iterator_range<iterator> &range)
+ : indexed_accessor_range_base(range.begin(), range.end()) {}
+ indexed_accessor_range_base(BaseT base, ptrdiff_t count)
+ : base(base), count(count) {}
+
+ iterator begin() const { return iterator(base, 0); }
+ iterator end() const { return iterator(base, count); }
+ ReferenceT operator[](unsigned index) const {
+ assert(index < size() && "invalid index for value range");
+ return DerivedT::dereference_iterator(base, index);
+ }
+ ReferenceT front() const {
+ assert(!empty() && "expected non-empty range");
+ return (*this)[0];
+ }
+ ReferenceT back() const {
+ assert(!empty() && "expected non-empty range");
+ return (*this)[size() - 1];
+ }
+
+ /// Compare this range with another.
+ template <typename OtherT> bool operator==(const OtherT &other) const {
+ return size() ==
+ static_cast<size_t>(std::distance(other.begin(), other.end())) &&
+ std::equal(begin(), end(), other.begin());
+ }
+ template <typename OtherT> bool operator!=(const OtherT &other) const {
+ return !(*this == other);
+ }
+
+ /// Return the size of this range.
+ size_t size() const { return count; }
+
+ /// Return if the range is empty.
+ bool empty() const { return size() == 0; }
+
+ /// Drop the first N elements, and keep M elements.
+ DerivedT slice(size_t n, size_t m) const {
+ assert(n + m <= size() && "invalid size specifiers");
+ return DerivedT(offset_base(base, n), m);
+ }
+
+ /// Drop the first n elements.
+ DerivedT drop_front(size_t n = 1) const {
+ assert(size() >= n && "Dropping more elements than exist");
+ return slice(n, size() - n);
+ }
+ /// Drop the last n elements.
+ DerivedT drop_back(size_t n = 1) const {
+ assert(size() >= n && "Dropping more elements than exist");
+ return DerivedT(base, size() - n);
+ }
+
+ /// Take the first n elements.
+ DerivedT take_front(size_t n = 1) const {
+ return n < size() ? drop_back(size() - n)
+ : static_cast<const DerivedT &>(*this);
+ }
+
+ /// Take the last n elements.
+ DerivedT take_back(size_t n = 1) const {
+ return n < size() ? drop_front(size() - n)
+ : static_cast<const DerivedT &>(*this);
+ }
+
+ /// Allow conversion to any type accepting an iterator_range.
+ template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
+ RangeT, iterator_range<iterator>>::value>>
+ operator RangeT() const {
+ return RangeT(iterator_range<iterator>(*this));
+ }
+
+ /// Returns the base of this range.
+ const BaseT &getBase() const { return base; }
+
+private:
+ /// Offset the given base by the given amount.
+ static BaseT offset_base(const BaseT &base, size_t n) {
+ return n == 0 ? base : DerivedT::offset_base(base, n);
+ }
+
+protected:
+ indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
+ indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
+ indexed_accessor_range_base &
+ operator=(const indexed_accessor_range_base &) = default;
+
+ /// The base that owns the provided range of values.
+ BaseT base;
+ /// The size from the owning range.
+ ptrdiff_t count;
+};
+} // end namespace detail
+
+/// This class provides an implementation of a range of
+/// indexed_accessor_iterators where the base is not indexable. Ranges with
+/// bases that are offsetable should derive from indexed_accessor_range_base
+/// instead. Derived range classes are expected to implement the following
+/// static method:
+/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
+/// - Dereference an iterator pointing to a parent base at the given index.
+template <typename DerivedT, typename BaseT, typename T,
+ typename PointerT = T *, typename ReferenceT = T &>
+class indexed_accessor_range
+ : public detail::indexed_accessor_range_base<
+ DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
+public:
+ indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
+ : detail::indexed_accessor_range_base<
+ DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
+ std::make_pair(base, startIndex), count) {}
+ using detail::indexed_accessor_range_base<
+ DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
+ ReferenceT>::indexed_accessor_range_base;
+
+ /// Returns the current base of the range.
+ const BaseT &getBase() const { return this->base.first; }
+
+ /// Returns the current start index of the range.
+ ptrdiff_t getStartIndex() const { return this->base.second; }
+
+ /// See `detail::indexed_accessor_range_base` for details.
+ static std::pair<BaseT, ptrdiff_t>
+ offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
+ // We encode the internal base as a pair of the derived base and a start
+ // index into the derived base.
+ return std::make_pair(base.first, base.second + index);
+ }
+ /// See `detail::indexed_accessor_range_base` for details.
+ static ReferenceT
+ dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
+ ptrdiff_t index) {
+ return DerivedT::dereference(base.first, base.second + index);
+ }
+};
+
/// Given a container of pairs, return a range over the first elements.
template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
return llvm::map_range(
@@ -1259,304 +1259,304 @@ template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
});
}
-/// Given a container of pairs, return a range over the second elements.
-template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
- return llvm::map_range(
- std::forward<ContainerTy>(c),
- [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) {
- return elt.second;
- });
-}
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <utility>
-//===----------------------------------------------------------------------===//
-
-/// Function object to check whether the first component of a std::pair
-/// compares less than the first component of another std::pair.
-struct less_first {
- template <typename T> bool operator()(const T &lhs, const T &rhs) const {
- return lhs.first < rhs.first;
- }
-};
-
-/// Function object to check whether the second component of a std::pair
-/// compares less than the second component of another std::pair.
-struct less_second {
- template <typename T> bool operator()(const T &lhs, const T &rhs) const {
- return lhs.second < rhs.second;
- }
-};
-
-/// \brief Function object to apply a binary function to the first component of
-/// a std::pair.
-template<typename FuncTy>
-struct on_first {
- FuncTy func;
-
- template <typename T>
- decltype(auto) operator()(const T &lhs, const T &rhs) const {
- return func(lhs.first, rhs.first);
- }
-};
-
-/// Utility type to build an inheritance chain that makes it easy to rank
-/// overload candidates.
-template <int N> struct rank : rank<N - 1> {};
-template <> struct rank<0> {};
-
-/// traits class for checking whether type T is one of any of the given
-/// types in the variadic list.
-template <typename T, typename... Ts> struct is_one_of {
- static const bool value = false;
-};
-
-template <typename T, typename U, typename... Ts>
-struct is_one_of<T, U, Ts...> {
- static const bool value =
- std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
-};
-
-/// traits class for checking whether type T is a base class for all
-/// the given types in the variadic list.
-template <typename T, typename... Ts> struct are_base_of {
- static const bool value = true;
-};
-
-template <typename T, typename U, typename... Ts>
-struct are_base_of<T, U, Ts...> {
- static const bool value =
- std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
-};
-
-//===----------------------------------------------------------------------===//
-// Extra additions for arrays
-//===----------------------------------------------------------------------===//
-
-// We have a copy here so that LLVM behaves the same when using different
-// standard libraries.
-template <class Iterator, class RNG>
-void shuffle(Iterator first, Iterator last, RNG &&g) {
- // It would be better to use a std::uniform_int_distribution,
- // but that would be stdlib dependent.
- for (auto size = last - first; size > 1; ++first, (void)--size)
- std::iter_swap(first, first + g() % size);
-}
-
-/// Find the length of an array.
-template <class T, std::size_t N>
-constexpr inline size_t array_lengthof(T (&)[N]) {
- return N;
-}
-
-/// Adapt std::less<T> for array_pod_sort.
-template<typename T>
-inline int array_pod_sort_comparator(const void *P1, const void *P2) {
- if (std::less<T>()(*reinterpret_cast<const T*>(P1),
- *reinterpret_cast<const T*>(P2)))
- return -1;
- if (std::less<T>()(*reinterpret_cast<const T*>(P2),
- *reinterpret_cast<const T*>(P1)))
- return 1;
- return 0;
-}
-
-/// get_array_pod_sort_comparator - This is an internal helper function used to
-/// get type deduction of T right.
-template<typename T>
-inline int (*get_array_pod_sort_comparator(const T &))
- (const void*, const void*) {
- return array_pod_sort_comparator<T>;
-}
-
-#ifdef EXPENSIVE_CHECKS
-namespace detail {
-
-inline unsigned presortShuffleEntropy() {
- static unsigned Result(std::random_device{}());
- return Result;
-}
-
-template <class IteratorTy>
-inline void presortShuffle(IteratorTy Start, IteratorTy End) {
- std::mt19937 Generator(presortShuffleEntropy());
- std::shuffle(Start, End, Generator);
-}
-
-} // end namespace detail
-#endif
-
-/// array_pod_sort - This sorts an array with the specified start and end
-/// extent. This is just like std::sort, except that it calls qsort instead of
-/// using an inlined template. qsort is slightly slower than std::sort, but
-/// most sorts are not performance critical in LLVM and std::sort has to be
-/// template instantiated for each type, leading to significant measured code
-/// bloat. This function should generally be used instead of std::sort where
-/// possible.
-///
-/// This function assumes that you have simple POD-like types that can be
-/// compared with std::less and can be moved with memcpy. If this isn't true,
-/// you should use std::sort.
-///
-/// NOTE: If qsort_r were portable, we could allow a custom comparator and
-/// default to std::less.
-template<class IteratorTy>
-inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
- // Don't inefficiently call qsort with one element or trigger undefined
- // behavior with an empty sequence.
- auto NElts = End - Start;
- if (NElts <= 1) return;
-#ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
-#endif
- qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
-}
-
-template <class IteratorTy>
-inline void array_pod_sort(
- IteratorTy Start, IteratorTy End,
- int (*Compare)(
- const typename std::iterator_traits<IteratorTy>::value_type *,
- const typename std::iterator_traits<IteratorTy>::value_type *)) {
- // Don't inefficiently call qsort with one element or trigger undefined
- // behavior with an empty sequence.
- auto NElts = End - Start;
- if (NElts <= 1) return;
-#ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
-#endif
- qsort(&*Start, NElts, sizeof(*Start),
- reinterpret_cast<int (*)(const void *, const void *)>(Compare));
-}
-
-namespace detail {
-template <typename T>
-// We can use qsort if the iterator type is a pointer and the underlying value
-// is trivially copyable.
-using sort_trivially_copyable = conjunction<
- std::is_pointer<T>,
+/// Given a container of pairs, return a range over the second elements.
+template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
+ return llvm::map_range(
+ std::forward<ContainerTy>(c),
+ [](decltype((*std::begin(c))) elt) -> decltype((elt.second)) {
+ return elt.second;
+ });
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <utility>
+//===----------------------------------------------------------------------===//
+
+/// Function object to check whether the first component of a std::pair
+/// compares less than the first component of another std::pair.
+struct less_first {
+ template <typename T> bool operator()(const T &lhs, const T &rhs) const {
+ return lhs.first < rhs.first;
+ }
+};
+
+/// Function object to check whether the second component of a std::pair
+/// compares less than the second component of another std::pair.
+struct less_second {
+ template <typename T> bool operator()(const T &lhs, const T &rhs) const {
+ return lhs.second < rhs.second;
+ }
+};
+
+/// \brief Function object to apply a binary function to the first component of
+/// a std::pair.
+template<typename FuncTy>
+struct on_first {
+ FuncTy func;
+
+ template <typename T>
+ decltype(auto) operator()(const T &lhs, const T &rhs) const {
+ return func(lhs.first, rhs.first);
+ }
+};
+
+/// Utility type to build an inheritance chain that makes it easy to rank
+/// overload candidates.
+template <int N> struct rank : rank<N - 1> {};
+template <> struct rank<0> {};
+
+/// traits class for checking whether type T is one of any of the given
+/// types in the variadic list.
+template <typename T, typename... Ts> struct is_one_of {
+ static const bool value = false;
+};
+
+template <typename T, typename U, typename... Ts>
+struct is_one_of<T, U, Ts...> {
+ static const bool value =
+ std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
+};
+
+/// traits class for checking whether type T is a base class for all
+/// the given types in the variadic list.
+template <typename T, typename... Ts> struct are_base_of {
+ static const bool value = true;
+};
+
+template <typename T, typename U, typename... Ts>
+struct are_base_of<T, U, Ts...> {
+ static const bool value =
+ std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
+};
+
+//===----------------------------------------------------------------------===//
+// Extra additions for arrays
+//===----------------------------------------------------------------------===//
+
+// We have a copy here so that LLVM behaves the same when using different
+// standard libraries.
+template <class Iterator, class RNG>
+void shuffle(Iterator first, Iterator last, RNG &&g) {
+ // It would be better to use a std::uniform_int_distribution,
+ // but that would be stdlib dependent.
+ for (auto size = last - first; size > 1; ++first, (void)--size)
+ std::iter_swap(first, first + g() % size);
+}
+
+/// Find the length of an array.
+template <class T, std::size_t N>
+constexpr inline size_t array_lengthof(T (&)[N]) {
+ return N;
+}
+
+/// Adapt std::less<T> for array_pod_sort.
+template<typename T>
+inline int array_pod_sort_comparator(const void *P1, const void *P2) {
+ if (std::less<T>()(*reinterpret_cast<const T*>(P1),
+ *reinterpret_cast<const T*>(P2)))
+ return -1;
+ if (std::less<T>()(*reinterpret_cast<const T*>(P2),
+ *reinterpret_cast<const T*>(P1)))
+ return 1;
+ return 0;
+}
+
+/// get_array_pod_sort_comparator - This is an internal helper function used to
+/// get type deduction of T right.
+template<typename T>
+inline int (*get_array_pod_sort_comparator(const T &))
+ (const void*, const void*) {
+ return array_pod_sort_comparator<T>;
+}
+
+#ifdef EXPENSIVE_CHECKS
+namespace detail {
+
+inline unsigned presortShuffleEntropy() {
+ static unsigned Result(std::random_device{}());
+ return Result;
+}
+
+template <class IteratorTy>
+inline void presortShuffle(IteratorTy Start, IteratorTy End) {
+ std::mt19937 Generator(presortShuffleEntropy());
+ std::shuffle(Start, End, Generator);
+}
+
+} // end namespace detail
+#endif
+
+/// array_pod_sort - This sorts an array with the specified start and end
+/// extent. This is just like std::sort, except that it calls qsort instead of
+/// using an inlined template. qsort is slightly slower than std::sort, but
+/// most sorts are not performance critical in LLVM and std::sort has to be
+/// template instantiated for each type, leading to significant measured code
+/// bloat. This function should generally be used instead of std::sort where
+/// possible.
+///
+/// This function assumes that you have simple POD-like types that can be
+/// compared with std::less and can be moved with memcpy. If this isn't true,
+/// you should use std::sort.
+///
+/// NOTE: If qsort_r were portable, we could allow a custom comparator and
+/// default to std::less.
+template<class IteratorTy>
+inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
+ // Don't inefficiently call qsort with one element or trigger undefined
+ // behavior with an empty sequence.
+ auto NElts = End - Start;
+ if (NElts <= 1) return;
+#ifdef EXPENSIVE_CHECKS
+ detail::presortShuffle<IteratorTy>(Start, End);
+#endif
+ qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
+}
+
+template <class IteratorTy>
+inline void array_pod_sort(
+ IteratorTy Start, IteratorTy End,
+ int (*Compare)(
+ const typename std::iterator_traits<IteratorTy>::value_type *,
+ const typename std::iterator_traits<IteratorTy>::value_type *)) {
+ // Don't inefficiently call qsort with one element or trigger undefined
+ // behavior with an empty sequence.
+ auto NElts = End - Start;
+ if (NElts <= 1) return;
+#ifdef EXPENSIVE_CHECKS
+ detail::presortShuffle<IteratorTy>(Start, End);
+#endif
+ qsort(&*Start, NElts, sizeof(*Start),
+ reinterpret_cast<int (*)(const void *, const void *)>(Compare));
+}
+
+namespace detail {
+template <typename T>
+// We can use qsort if the iterator type is a pointer and the underlying value
+// is trivially copyable.
+using sort_trivially_copyable = conjunction<
+ std::is_pointer<T>,
std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
-} // namespace detail
-
-// Provide wrappers to std::sort which shuffle the elements before sorting
-// to help uncover non-deterministic behavior (PR35135).
-template <typename IteratorTy,
- std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
- int> = 0>
-inline void sort(IteratorTy Start, IteratorTy End) {
-#ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
-#endif
- std::sort(Start, End);
-}
-
-// Forward trivially copyable types to array_pod_sort. This avoids a large
-// amount of code bloat for a minor performance hit.
-template <typename IteratorTy,
- std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
- int> = 0>
-inline void sort(IteratorTy Start, IteratorTy End) {
- array_pod_sort(Start, End);
-}
-
-template <typename Container> inline void sort(Container &&C) {
- llvm::sort(adl_begin(C), adl_end(C));
-}
-
-template <typename IteratorTy, typename Compare>
-inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
-#ifdef EXPENSIVE_CHECKS
- detail::presortShuffle<IteratorTy>(Start, End);
-#endif
- std::sort(Start, End, Comp);
-}
-
-template <typename Container, typename Compare>
-inline void sort(Container &&C, Compare Comp) {
- llvm::sort(adl_begin(C), adl_end(C), Comp);
-}
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <algorithm>
-//===----------------------------------------------------------------------===//
-
-/// Get the size of a range. This is a wrapper function around std::distance
-/// which is only enabled when the operation is O(1).
-template <typename R>
-auto size(R &&Range,
+} // namespace detail
+
+// Provide wrappers to std::sort which shuffle the elements before sorting
+// to help uncover non-deterministic behavior (PR35135).
+template <typename IteratorTy,
+ std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
+ int> = 0>
+inline void sort(IteratorTy Start, IteratorTy End) {
+#ifdef EXPENSIVE_CHECKS
+ detail::presortShuffle<IteratorTy>(Start, End);
+#endif
+ std::sort(Start, End);
+}
+
+// Forward trivially copyable types to array_pod_sort. This avoids a large
+// amount of code bloat for a minor performance hit.
+template <typename IteratorTy,
+ std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
+ int> = 0>
+inline void sort(IteratorTy Start, IteratorTy End) {
+ array_pod_sort(Start, End);
+}
+
+template <typename Container> inline void sort(Container &&C) {
+ llvm::sort(adl_begin(C), adl_end(C));
+}
+
+template <typename IteratorTy, typename Compare>
+inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
+#ifdef EXPENSIVE_CHECKS
+ detail::presortShuffle<IteratorTy>(Start, End);
+#endif
+ std::sort(Start, End, Comp);
+}
+
+template <typename Container, typename Compare>
+inline void sort(Container &&C, Compare Comp) {
+ llvm::sort(adl_begin(C), adl_end(C), Comp);
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <algorithm>
+//===----------------------------------------------------------------------===//
+
+/// Get the size of a range. This is a wrapper function around std::distance
+/// which is only enabled when the operation is O(1).
+template <typename R>
+auto size(R &&Range,
std::enable_if_t<
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<decltype(
Range.begin())>::iterator_category>::value,
void> * = nullptr) {
- return std::distance(Range.begin(), Range.end());
-}
-
-/// Provide wrappers to std::for_each which take ranges instead of having to
-/// pass begin/end explicitly.
+ return std::distance(Range.begin(), Range.end());
+}
+
+/// Provide wrappers to std::for_each which take ranges instead of having to
+/// pass begin/end explicitly.
template <typename R, typename UnaryFunction>
UnaryFunction for_each(R &&Range, UnaryFunction F) {
return std::for_each(adl_begin(Range), adl_end(Range), F);
-}
-
-/// Provide wrappers to std::all_of which take ranges instead of having to pass
-/// begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-bool all_of(R &&Range, UnaryPredicate P) {
- return std::all_of(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::any_of which take ranges instead of having to pass
-/// begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-bool any_of(R &&Range, UnaryPredicate P) {
- return std::any_of(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::none_of which take ranges instead of having to pass
-/// begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-bool none_of(R &&Range, UnaryPredicate P) {
- return std::none_of(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::find which take ranges instead of having to pass
-/// begin/end explicitly.
-template <typename R, typename T> auto find(R &&Range, const T &Val) {
- return std::find(adl_begin(Range), adl_end(Range), Val);
-}
-
-/// Provide wrappers to std::find_if which take ranges instead of having to pass
-/// begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-auto find_if(R &&Range, UnaryPredicate P) {
- return std::find_if(adl_begin(Range), adl_end(Range), P);
-}
-
-template <typename R, typename UnaryPredicate>
-auto find_if_not(R &&Range, UnaryPredicate P) {
- return std::find_if_not(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::remove_if which take ranges instead of having to
-/// pass begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-auto remove_if(R &&Range, UnaryPredicate P) {
- return std::remove_if(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::copy_if which take ranges instead of having to
-/// pass begin/end explicitly.
-template <typename R, typename OutputIt, typename UnaryPredicate>
-OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
- return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
-}
-
-template <typename R, typename OutputIt>
-OutputIt copy(R &&Range, OutputIt Out) {
- return std::copy(adl_begin(Range), adl_end(Range), Out);
-}
-
+}
+
+/// Provide wrappers to std::all_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool all_of(R &&Range, UnaryPredicate P) {
+ return std::all_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::any_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool any_of(R &&Range, UnaryPredicate P) {
+ return std::any_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::none_of which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+bool none_of(R &&Range, UnaryPredicate P) {
+ return std::none_of(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::find which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename T> auto find(R &&Range, const T &Val) {
+ return std::find(adl_begin(Range), adl_end(Range), Val);
+}
+
+/// Provide wrappers to std::find_if which take ranges instead of having to pass
+/// begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto find_if(R &&Range, UnaryPredicate P) {
+ return std::find_if(adl_begin(Range), adl_end(Range), P);
+}
+
+template <typename R, typename UnaryPredicate>
+auto find_if_not(R &&Range, UnaryPredicate P) {
+ return std::find_if_not(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::remove_if which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto remove_if(R &&Range, UnaryPredicate P) {
+ return std::remove_if(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::copy_if which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename OutputIt, typename UnaryPredicate>
+OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
+ return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
+}
+
+template <typename R, typename OutputIt>
+OutputIt copy(R &&Range, OutputIt Out) {
+ return std::copy(adl_begin(Range), adl_end(Range), Out);
+}
+
/// Provide wrappers to std::move which take ranges instead of having to
/// pass begin/end explicitly.
template <typename R, typename OutputIt>
@@ -1564,117 +1564,117 @@ OutputIt move(R &&Range, OutputIt Out) {
return std::move(adl_begin(Range), adl_end(Range), Out);
}
-/// Wrapper function around std::find to detect if an element exists
-/// in a container.
-template <typename R, typename E>
-bool is_contained(R &&Range, const E &Element) {
- return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
-}
-
-/// Wrapper function around std::is_sorted to check if elements in a range \p R
-/// are sorted with respect to a comparator \p C.
-template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
- return std::is_sorted(adl_begin(Range), adl_end(Range), C);
-}
-
-/// Wrapper function around std::is_sorted to check if elements in a range \p R
-/// are sorted in non-descending order.
-template <typename R> bool is_sorted(R &&Range) {
- return std::is_sorted(adl_begin(Range), adl_end(Range));
-}
-
-/// Wrapper function around std::count to count the number of times an element
-/// \p Element occurs in the given range \p Range.
-template <typename R, typename E> auto count(R &&Range, const E &Element) {
- return std::count(adl_begin(Range), adl_end(Range), Element);
-}
-
-/// Wrapper function around std::count_if to count the number of times an
-/// element satisfying a given predicate occurs in a range.
-template <typename R, typename UnaryPredicate>
-auto count_if(R &&Range, UnaryPredicate P) {
- return std::count_if(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Wrapper function around std::transform to apply a function to a range and
-/// store the result elsewhere.
+/// Wrapper function around std::find to detect if an element exists
+/// in a container.
+template <typename R, typename E>
+bool is_contained(R &&Range, const E &Element) {
+ return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
+}
+
+/// Wrapper function around std::is_sorted to check if elements in a range \p R
+/// are sorted with respect to a comparator \p C.
+template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
+ return std::is_sorted(adl_begin(Range), adl_end(Range), C);
+}
+
+/// Wrapper function around std::is_sorted to check if elements in a range \p R
+/// are sorted in non-descending order.
+template <typename R> bool is_sorted(R &&Range) {
+ return std::is_sorted(adl_begin(Range), adl_end(Range));
+}
+
+/// Wrapper function around std::count to count the number of times an element
+/// \p Element occurs in the given range \p Range.
+template <typename R, typename E> auto count(R &&Range, const E &Element) {
+ return std::count(adl_begin(Range), adl_end(Range), Element);
+}
+
+/// Wrapper function around std::count_if to count the number of times an
+/// element satisfying a given predicate occurs in a range.
+template <typename R, typename UnaryPredicate>
+auto count_if(R &&Range, UnaryPredicate P) {
+ return std::count_if(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Wrapper function around std::transform to apply a function to a range and
+/// store the result elsewhere.
template <typename R, typename OutputIt, typename UnaryFunction>
OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
-}
-
-/// Provide wrappers to std::partition which take ranges instead of having to
-/// pass begin/end explicitly.
-template <typename R, typename UnaryPredicate>
-auto partition(R &&Range, UnaryPredicate P) {
- return std::partition(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Provide wrappers to std::lower_bound which take ranges instead of having to
-/// pass begin/end explicitly.
-template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
- return std::lower_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value));
-}
-
-template <typename R, typename T, typename Compare>
-auto lower_bound(R &&Range, T &&Value, Compare C) {
- return std::lower_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value), C);
-}
-
-/// Provide wrappers to std::upper_bound which take ranges instead of having to
-/// pass begin/end explicitly.
-template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
- return std::upper_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value));
-}
-
-template <typename R, typename T, typename Compare>
-auto upper_bound(R &&Range, T &&Value, Compare C) {
- return std::upper_bound(adl_begin(Range), adl_end(Range),
- std::forward<T>(Value), C);
-}
-
-template <typename R>
-void stable_sort(R &&Range) {
- std::stable_sort(adl_begin(Range), adl_end(Range));
-}
-
-template <typename R, typename Compare>
-void stable_sort(R &&Range, Compare C) {
- std::stable_sort(adl_begin(Range), adl_end(Range), C);
-}
-
-/// Binary search for the first iterator in a range where a predicate is false.
-/// Requires that C is always true below some limit, and always false above it.
-template <typename R, typename Predicate,
- typename Val = decltype(*adl_begin(std::declval<R>()))>
-auto partition_point(R &&Range, Predicate P) {
- return std::partition_point(adl_begin(Range), adl_end(Range), P);
-}
-
-/// Wrapper function around std::equal to detect if all elements
-/// in a container are same.
-template <typename R>
-bool is_splat(R &&Range) {
- size_t range_size = size(Range);
- return range_size != 0 && (range_size == 1 ||
- std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
-}
-
-/// Provide a container algorithm similar to C++ Library Fundamentals v2's
-/// `erase_if` which is equivalent to:
-///
-/// C.erase(remove_if(C, pred), C.end());
-///
-/// This version works for any container with an erase method call accepting
-/// two iterators.
-template <typename Container, typename UnaryPredicate>
-void erase_if(Container &C, UnaryPredicate P) {
- C.erase(remove_if(C, P), C.end());
-}
-
+}
+
+/// Provide wrappers to std::partition which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename UnaryPredicate>
+auto partition(R &&Range, UnaryPredicate P) {
+ return std::partition(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Provide wrappers to std::lower_bound which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
+ return std::lower_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value));
+}
+
+template <typename R, typename T, typename Compare>
+auto lower_bound(R &&Range, T &&Value, Compare C) {
+ return std::lower_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value), C);
+}
+
+/// Provide wrappers to std::upper_bound which take ranges instead of having to
+/// pass begin/end explicitly.
+template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
+ return std::upper_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value));
+}
+
+template <typename R, typename T, typename Compare>
+auto upper_bound(R &&Range, T &&Value, Compare C) {
+ return std::upper_bound(adl_begin(Range), adl_end(Range),
+ std::forward<T>(Value), C);
+}
+
+template <typename R>
+void stable_sort(R &&Range) {
+ std::stable_sort(adl_begin(Range), adl_end(Range));
+}
+
+template <typename R, typename Compare>
+void stable_sort(R &&Range, Compare C) {
+ std::stable_sort(adl_begin(Range), adl_end(Range), C);
+}
+
+/// Binary search for the first iterator in a range where a predicate is false.
+/// Requires that C is always true below some limit, and always false above it.
+template <typename R, typename Predicate,
+ typename Val = decltype(*adl_begin(std::declval<R>()))>
+auto partition_point(R &&Range, Predicate P) {
+ return std::partition_point(adl_begin(Range), adl_end(Range), P);
+}
+
+/// Wrapper function around std::equal to detect if all elements
+/// in a container are same.
+template <typename R>
+bool is_splat(R &&Range) {
+ size_t range_size = size(Range);
+ return range_size != 0 && (range_size == 1 ||
+ std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
+}
+
+/// Provide a container algorithm similar to C++ Library Fundamentals v2's
+/// `erase_if` which is equivalent to:
+///
+/// C.erase(remove_if(C, pred), C.end());
+///
+/// This version works for any container with an erase method call accepting
+/// two iterators.
+template <typename Container, typename UnaryPredicate>
+void erase_if(Container &C, UnaryPredicate P) {
+ C.erase(remove_if(C, P), C.end());
+}
+
/// Wrapper function to remove a value from a container:
///
/// C.erase(remove(C.begin(), C.end(), V), C.end());
@@ -1691,351 +1691,351 @@ inline void append_range(Container &C, Range &&R) {
C.insert(C.end(), R.begin(), R.end());
}
-/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
-/// the range [ValIt, ValEnd) (which is not from the same container).
-template<typename Container, typename RandomAccessIterator>
-void replace(Container &Cont, typename Container::iterator ContIt,
- typename Container::iterator ContEnd, RandomAccessIterator ValIt,
- RandomAccessIterator ValEnd) {
- while (true) {
- if (ValIt == ValEnd) {
- Cont.erase(ContIt, ContEnd);
- return;
- } else if (ContIt == ContEnd) {
- Cont.insert(ContIt, ValIt, ValEnd);
- return;
- }
- *ContIt++ = *ValIt++;
- }
-}
-
-/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
-/// the range R.
-template<typename Container, typename Range = std::initializer_list<
- typename Container::value_type>>
-void replace(Container &Cont, typename Container::iterator ContIt,
- typename Container::iterator ContEnd, Range R) {
- replace(Cont, ContIt, ContEnd, R.begin(), R.end());
-}
-
-/// An STL-style algorithm similar to std::for_each that applies a second
-/// functor between every pair of elements.
-///
-/// This provides the control flow logic to, for example, print a
-/// comma-separated list:
-/// \code
-/// interleave(names.begin(), names.end(),
-/// [&](StringRef name) { os << name; },
-/// [&] { os << ", "; });
-/// \endcode
-template <typename ForwardIterator, typename UnaryFunctor,
- typename NullaryFunctor,
- typename = typename std::enable_if<
- !std::is_constructible<StringRef, UnaryFunctor>::value &&
- !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
-inline void interleave(ForwardIterator begin, ForwardIterator end,
- UnaryFunctor each_fn, NullaryFunctor between_fn) {
- if (begin == end)
- return;
- each_fn(*begin);
- ++begin;
- for (; begin != end; ++begin) {
- between_fn();
- each_fn(*begin);
- }
-}
-
-template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
- typename = typename std::enable_if<
- !std::is_constructible<StringRef, UnaryFunctor>::value &&
- !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
-inline void interleave(const Container &c, UnaryFunctor each_fn,
- NullaryFunctor between_fn) {
- interleave(c.begin(), c.end(), each_fn, between_fn);
-}
-
-/// Overload of interleave for the common case of string separator.
-template <typename Container, typename UnaryFunctor, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
-inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
- const StringRef &separator) {
- interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
-}
-template <typename Container, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
-inline void interleave(const Container &c, StreamT &os,
- const StringRef &separator) {
- interleave(
- c, os, [&](const T &a) { os << a; }, separator);
-}
-
-template <typename Container, typename UnaryFunctor, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
-inline void interleaveComma(const Container &c, StreamT &os,
- UnaryFunctor each_fn) {
- interleave(c, os, each_fn, ", ");
-}
-template <typename Container, typename StreamT,
- typename T = detail::ValueOfRange<Container>>
-inline void interleaveComma(const Container &c, StreamT &os) {
- interleaveComma(c, os, [&](const T &a) { os << a; });
-}
-
-//===----------------------------------------------------------------------===//
-// Extra additions to <memory>
-//===----------------------------------------------------------------------===//
-
-struct FreeDeleter {
- void operator()(void* v) {
- ::free(v);
- }
-};
-
-template<typename First, typename Second>
-struct pair_hash {
- size_t operator()(const std::pair<First, Second> &P) const {
- return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
- }
-};
-
-/// Binary functor that adapts to any other binary functor after dereferencing
-/// operands.
-template <typename T> struct deref {
- T func;
-
- // Could be further improved to cope with non-derivable functors and
- // non-binary functors (should be a variadic template member function
- // operator()).
- template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
- assert(lhs);
- assert(rhs);
- return func(*lhs, *rhs);
- }
-};
-
-namespace detail {
-
-template <typename R> class enumerator_iter;
-
-template <typename R> struct result_pair {
- using value_reference =
- typename std::iterator_traits<IterOfRange<R>>::reference;
-
- friend class enumerator_iter<R>;
-
- result_pair() = default;
- result_pair(std::size_t Index, IterOfRange<R> Iter)
- : Index(Index), Iter(Iter) {}
-
- result_pair<R>(const result_pair<R> &Other)
- : Index(Other.Index), Iter(Other.Iter) {}
- result_pair<R> &operator=(const result_pair<R> &Other) {
- Index = Other.Index;
- Iter = Other.Iter;
- return *this;
- }
-
- std::size_t index() const { return Index; }
- const value_reference value() const { return *Iter; }
- value_reference value() { return *Iter; }
-
-private:
- std::size_t Index = std::numeric_limits<std::size_t>::max();
- IterOfRange<R> Iter;
-};
-
-template <typename R>
-class enumerator_iter
- : public iterator_facade_base<
- enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
- typename std::iterator_traits<IterOfRange<R>>::difference_type,
- typename std::iterator_traits<IterOfRange<R>>::pointer,
- typename std::iterator_traits<IterOfRange<R>>::reference> {
- using result_type = result_pair<R>;
-
-public:
- explicit enumerator_iter(IterOfRange<R> EndIter)
- : Result(std::numeric_limits<size_t>::max(), EndIter) {}
-
- enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
- : Result(Index, Iter) {}
-
- result_type &operator*() { return Result; }
- const result_type &operator*() const { return Result; }
-
- enumerator_iter<R> &operator++() {
- assert(Result.Index != std::numeric_limits<size_t>::max());
- ++Result.Iter;
- ++Result.Index;
- return *this;
- }
-
- bool operator==(const enumerator_iter<R> &RHS) const {
- // Don't compare indices here, only iterators. It's possible for an end
- // iterator to have different indices depending on whether it was created
- // by calling std::end() versus incrementing a valid iterator.
- return Result.Iter == RHS.Result.Iter;
- }
-
- enumerator_iter<R>(const enumerator_iter<R> &Other) : Result(Other.Result) {}
- enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
- Result = Other.Result;
- return *this;
- }
-
-private:
- result_type Result;
-};
-
-template <typename R> class enumerator {
-public:
- explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
-
- enumerator_iter<R> begin() {
- return enumerator_iter<R>(0, std::begin(TheRange));
- }
-
- enumerator_iter<R> end() {
- return enumerator_iter<R>(std::end(TheRange));
- }
-
-private:
- R TheRange;
-};
-
-} // end namespace detail
-
-/// Given an input range, returns a new range whose values are are pair (A,B)
-/// such that A is the 0-based index of the item in the sequence, and B is
-/// the value from the original sequence. Example:
-///
-/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
-/// for (auto X : enumerate(Items)) {
-/// printf("Item %d - %c\n", X.index(), X.value());
-/// }
-///
-/// Output:
-/// Item 0 - A
-/// Item 1 - B
-/// Item 2 - C
-/// Item 3 - D
-///
-template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
- return detail::enumerator<R>(std::forward<R>(TheRange));
-}
-
-namespace detail {
-
-template <typename F, typename Tuple, std::size_t... I>
-decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
- return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
-}
-
-} // end namespace detail
-
-/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
-/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
-/// return the result.
-template <typename F, typename Tuple>
-decltype(auto) apply_tuple(F &&f, Tuple &&t) {
- using Indices = std::make_index_sequence<
- std::tuple_size<typename std::decay<Tuple>::type>::value>;
-
- return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
- Indices{});
-}
-
-/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
-/// time. Not meant for use with random-access iterators.
-/// Can optionally take a predicate to filter lazily some items.
+/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
+/// the range [ValIt, ValEnd) (which is not from the same container).
+template<typename Container, typename RandomAccessIterator>
+void replace(Container &Cont, typename Container::iterator ContIt,
+ typename Container::iterator ContEnd, RandomAccessIterator ValIt,
+ RandomAccessIterator ValEnd) {
+ while (true) {
+ if (ValIt == ValEnd) {
+ Cont.erase(ContIt, ContEnd);
+ return;
+ } else if (ContIt == ContEnd) {
+ Cont.insert(ContIt, ValIt, ValEnd);
+ return;
+ }
+ *ContIt++ = *ValIt++;
+ }
+}
+
+/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
+/// the range R.
+template<typename Container, typename Range = std::initializer_list<
+ typename Container::value_type>>
+void replace(Container &Cont, typename Container::iterator ContIt,
+ typename Container::iterator ContEnd, Range R) {
+ replace(Cont, ContIt, ContEnd, R.begin(), R.end());
+}
+
+/// An STL-style algorithm similar to std::for_each that applies a second
+/// functor between every pair of elements.
+///
+/// This provides the control flow logic to, for example, print a
+/// comma-separated list:
+/// \code
+/// interleave(names.begin(), names.end(),
+/// [&](StringRef name) { os << name; },
+/// [&] { os << ", "; });
+/// \endcode
+template <typename ForwardIterator, typename UnaryFunctor,
+ typename NullaryFunctor,
+ typename = typename std::enable_if<
+ !std::is_constructible<StringRef, UnaryFunctor>::value &&
+ !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
+inline void interleave(ForwardIterator begin, ForwardIterator end,
+ UnaryFunctor each_fn, NullaryFunctor between_fn) {
+ if (begin == end)
+ return;
+ each_fn(*begin);
+ ++begin;
+ for (; begin != end; ++begin) {
+ between_fn();
+ each_fn(*begin);
+ }
+}
+
+template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
+ typename = typename std::enable_if<
+ !std::is_constructible<StringRef, UnaryFunctor>::value &&
+ !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
+inline void interleave(const Container &c, UnaryFunctor each_fn,
+ NullaryFunctor between_fn) {
+ interleave(c.begin(), c.end(), each_fn, between_fn);
+}
+
+/// Overload of interleave for the common case of string separator.
+template <typename Container, typename UnaryFunctor, typename StreamT,
+ typename T = detail::ValueOfRange<Container>>
+inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
+ const StringRef &separator) {
+ interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
+}
+template <typename Container, typename StreamT,
+ typename T = detail::ValueOfRange<Container>>
+inline void interleave(const Container &c, StreamT &os,
+ const StringRef &separator) {
+ interleave(
+ c, os, [&](const T &a) { os << a; }, separator);
+}
+
+template <typename Container, typename UnaryFunctor, typename StreamT,
+ typename T = detail::ValueOfRange<Container>>
+inline void interleaveComma(const Container &c, StreamT &os,
+ UnaryFunctor each_fn) {
+ interleave(c, os, each_fn, ", ");
+}
+template <typename Container, typename StreamT,
+ typename T = detail::ValueOfRange<Container>>
+inline void interleaveComma(const Container &c, StreamT &os) {
+ interleaveComma(c, os, [&](const T &a) { os << a; });
+}
+
+//===----------------------------------------------------------------------===//
+// Extra additions to <memory>
+//===----------------------------------------------------------------------===//
+
+struct FreeDeleter {
+ void operator()(void* v) {
+ ::free(v);
+ }
+};
+
+template<typename First, typename Second>
+struct pair_hash {
+ size_t operator()(const std::pair<First, Second> &P) const {
+ return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
+ }
+};
+
+/// Binary functor that adapts to any other binary functor after dereferencing
+/// operands.
+template <typename T> struct deref {
+ T func;
+
+ // Could be further improved to cope with non-derivable functors and
+ // non-binary functors (should be a variadic template member function
+ // operator()).
+ template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
+ assert(lhs);
+ assert(rhs);
+ return func(*lhs, *rhs);
+ }
+};
+
+namespace detail {
+
+template <typename R> class enumerator_iter;
+
+template <typename R> struct result_pair {
+ using value_reference =
+ typename std::iterator_traits<IterOfRange<R>>::reference;
+
+ friend class enumerator_iter<R>;
+
+ result_pair() = default;
+ result_pair(std::size_t Index, IterOfRange<R> Iter)
+ : Index(Index), Iter(Iter) {}
+
+ result_pair<R>(const result_pair<R> &Other)
+ : Index(Other.Index), Iter(Other.Iter) {}
+ result_pair<R> &operator=(const result_pair<R> &Other) {
+ Index = Other.Index;
+ Iter = Other.Iter;
+ return *this;
+ }
+
+ std::size_t index() const { return Index; }
+ const value_reference value() const { return *Iter; }
+ value_reference value() { return *Iter; }
+
+private:
+ std::size_t Index = std::numeric_limits<std::size_t>::max();
+ IterOfRange<R> Iter;
+};
+
+template <typename R>
+class enumerator_iter
+ : public iterator_facade_base<
+ enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
+ typename std::iterator_traits<IterOfRange<R>>::difference_type,
+ typename std::iterator_traits<IterOfRange<R>>::pointer,
+ typename std::iterator_traits<IterOfRange<R>>::reference> {
+ using result_type = result_pair<R>;
+
+public:
+ explicit enumerator_iter(IterOfRange<R> EndIter)
+ : Result(std::numeric_limits<size_t>::max(), EndIter) {}
+
+ enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
+ : Result(Index, Iter) {}
+
+ result_type &operator*() { return Result; }
+ const result_type &operator*() const { return Result; }
+
+ enumerator_iter<R> &operator++() {
+ assert(Result.Index != std::numeric_limits<size_t>::max());
+ ++Result.Iter;
+ ++Result.Index;
+ return *this;
+ }
+
+ bool operator==(const enumerator_iter<R> &RHS) const {
+ // Don't compare indices here, only iterators. It's possible for an end
+ // iterator to have different indices depending on whether it was created
+ // by calling std::end() versus incrementing a valid iterator.
+ return Result.Iter == RHS.Result.Iter;
+ }
+
+ enumerator_iter<R>(const enumerator_iter<R> &Other) : Result(Other.Result) {}
+ enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
+ Result = Other.Result;
+ return *this;
+ }
+
+private:
+ result_type Result;
+};
+
+template <typename R> class enumerator {
+public:
+ explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
+
+ enumerator_iter<R> begin() {
+ return enumerator_iter<R>(0, std::begin(TheRange));
+ }
+
+ enumerator_iter<R> end() {
+ return enumerator_iter<R>(std::end(TheRange));
+ }
+
+private:
+ R TheRange;
+};
+
+} // end namespace detail
+
+/// Given an input range, returns a new range whose values are are pair (A,B)
+/// such that A is the 0-based index of the item in the sequence, and B is
+/// the value from the original sequence. Example:
+///
+/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
+/// for (auto X : enumerate(Items)) {
+/// printf("Item %d - %c\n", X.index(), X.value());
+/// }
+///
+/// Output:
+/// Item 0 - A
+/// Item 1 - B
+/// Item 2 - C
+/// Item 3 - D
+///
+template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
+ return detail::enumerator<R>(std::forward<R>(TheRange));
+}
+
+namespace detail {
+
+template <typename F, typename Tuple, std::size_t... I>
+decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
+ return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
+}
+
+} // end namespace detail
+
+/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
+/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
+/// return the result.
+template <typename F, typename Tuple>
+decltype(auto) apply_tuple(F &&f, Tuple &&t) {
+ using Indices = std::make_index_sequence<
+ std::tuple_size<typename std::decay<Tuple>::type>::value>;
+
+ return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
+ Indices{});
+}
+
+/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
+/// time. Not meant for use with random-access iterators.
+/// Can optionally take a predicate to filter lazily some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
-bool hasNItems(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted =
- [](const decltype(*std::declval<IterTy>()) &) { return true; },
- std::enable_if_t<
+bool hasNItems(
+ IterTy &&Begin, IterTy &&End, unsigned N,
+ Pred &&ShouldBeCounted =
+ [](const decltype(*std::declval<IterTy>()) &) { return true; },
+ std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
- void> * = nullptr) {
- for (; N; ++Begin) {
- if (Begin == End)
- return false; // Too few.
- N -= ShouldBeCounted(*Begin);
- }
- for (; Begin != End; ++Begin)
- if (ShouldBeCounted(*Begin))
- return false; // Too many.
- return true;
-}
-
-/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
-/// time. Not meant for use with random-access iterators.
-/// Can optionally take a predicate to lazily filter some items.
+ void> * = nullptr) {
+ for (; N; ++Begin) {
+ if (Begin == End)
+ return false; // Too few.
+ N -= ShouldBeCounted(*Begin);
+ }
+ for (; Begin != End; ++Begin)
+ if (ShouldBeCounted(*Begin))
+ return false; // Too many.
+ return true;
+}
+
+/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
+/// time. Not meant for use with random-access iterators.
+/// Can optionally take a predicate to lazily filter some items.
template <typename IterTy,
typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
-bool hasNItemsOrMore(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted =
- [](const decltype(*std::declval<IterTy>()) &) { return true; },
- std::enable_if_t<
+bool hasNItemsOrMore(
+ IterTy &&Begin, IterTy &&End, unsigned N,
+ Pred &&ShouldBeCounted =
+ [](const decltype(*std::declval<IterTy>()) &) { return true; },
+ std::enable_if_t<
!std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<std::remove_reference_t<
decltype(Begin)>>::iterator_category>::value,
- void> * = nullptr) {
- for (; N; ++Begin) {
- if (Begin == End)
- return false; // Too few.
- N -= ShouldBeCounted(*Begin);
- }
- return true;
-}
-
-/// Returns true if the sequence [Begin, End) has N or less items. Can
-/// optionally take a predicate to lazily filter some items.
-template <typename IterTy,
- typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
-bool hasNItemsOrLess(
- IterTy &&Begin, IterTy &&End, unsigned N,
- Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
- return true;
- }) {
- assert(N != std::numeric_limits<unsigned>::max());
- return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
-}
-
-/// Returns true if the given container has exactly N items
-template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
- return hasNItems(std::begin(C), std::end(C), N);
-}
-
-/// Returns true if the given container has N or more items
-template <typename ContainerTy>
-bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
- return hasNItemsOrMore(std::begin(C), std::end(C), N);
-}
-
-/// Returns true if the given container has N or less items
-template <typename ContainerTy>
-bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
- return hasNItemsOrLess(std::begin(C), std::end(C), N);
-}
-
-/// Returns a raw pointer that represents the same address as the argument.
-///
-/// This implementation can be removed once we move to C++20 where it's defined
-/// as std::to_address().
-///
-/// The std::pointer_traits<>::to_address(p) variations of these overloads has
-/// not been implemented.
-template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
-template <class T> constexpr T *to_address(T *P) { return P; }
-
-} // end namespace llvm
-
-#endif // LLVM_ADT_STLEXTRAS_H
-
-#ifdef __GNUC__
-#pragma GCC diagnostic pop
-#endif
+ void> * = nullptr) {
+ for (; N; ++Begin) {
+ if (Begin == End)
+ return false; // Too few.
+ N -= ShouldBeCounted(*Begin);
+ }
+ return true;
+}
+
+/// Returns true if the sequence [Begin, End) has N or less items. Can
+/// optionally take a predicate to lazily filter some items.
+template <typename IterTy,
+ typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
+bool hasNItemsOrLess(
+ IterTy &&Begin, IterTy &&End, unsigned N,
+ Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
+ return true;
+ }) {
+ assert(N != std::numeric_limits<unsigned>::max());
+ return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
+}
+
+/// Returns true if the given container has exactly N items
+template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
+ return hasNItems(std::begin(C), std::end(C), N);
+}
+
+/// Returns true if the given container has N or more items
+template <typename ContainerTy>
+bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
+ return hasNItemsOrMore(std::begin(C), std::end(C), N);
+}
+
+/// Returns true if the given container has N or less items
+template <typename ContainerTy>
+bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
+ return hasNItemsOrLess(std::begin(C), std::end(C), N);
+}
+
+/// Returns a raw pointer that represents the same address as the argument.
+///
+/// This implementation can be removed once we move to C++20 where it's defined
+/// as std::to_address().
+///
+/// The std::pointer_traits<>::to_address(p) variations of these overloads has
+/// not been implemented.
+template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
+template <class T> constexpr T *to_address(T *P) { return P; }
+
+} // end namespace llvm
+
+#endif // LLVM_ADT_STLEXTRAS_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif