diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp')
-rw-r--r-- | contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp | 2547 |
1 files changed, 2547 insertions, 0 deletions
diff --git a/contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp b/contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp new file mode 100644 index 0000000000..1f63ad3c6f --- /dev/null +++ b/contrib/libs/hyperscan/src/nfagraph/ng_repeat.cpp @@ -0,0 +1,2547 @@ +/* + * Copyright (c) 2015-2018, Intel Corporation + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Intel Corporation nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/** \file + * \brief Bounded repeat analysis. + */ +#include "ng_repeat.h" + +#include "grey.h" +#include "ng_depth.h" +#include "ng_holder.h" +#include "ng_limex_accel.h" +#include "ng_prune.h" +#include "ng_reports.h" +#include "ng_som_util.h" +#include "ng_util.h" +#include "nfa/accel.h" +#include "nfa/limex_limits.h" +#include "nfa/repeat_internal.h" +#include "nfa/repeatcompile.h" +#include "util/container.h" +#include "util/dump_charclass.h" +#include "util/graph_range.h" +#include "util/graph_small_color_map.h" +#include "util/graph_undirected.h" +#include "util/report_manager.h" +#include "util/unordered.h" + +#include <algorithm> +#include <map> +#include <queue> +#include <unordered_map> +#include <unordered_set> + +#include <boost/graph/connected_components.hpp> +#include <boost/graph/depth_first_search.hpp> +#include <boost/graph/filtered_graph.hpp> +#include <boost/graph/reverse_graph.hpp> +#include <boost/graph/topological_sort.hpp> +#include <boost/icl/interval_set.hpp> + +using namespace std; +using boost::depth_first_search; +using boost::depth_first_visit; +using boost::make_assoc_property_map; + +namespace ue2 { + +namespace { + +/** + * \brief Filter that retains only edges between vertices with the same + * reachability. Special vertices are dropped. + */ +template<class Graph> +struct ReachFilter { + ReachFilter() = default; + explicit ReachFilter(const Graph *g_in) : g(g_in) {} + + // Convenience typedefs. + using Traits = typename boost::graph_traits<Graph>; + using VertexDescriptor = typename Traits::vertex_descriptor; + using EdgeDescriptor = typename Traits::edge_descriptor; + + bool operator()(const VertexDescriptor &v) const { + assert(g); + // Disallow special vertices, as otherwise we will try to remove them + // later. + return !is_special(v, *g); + } + + bool operator()(const EdgeDescriptor &e) const { + assert(g); + // Vertices must have the same reach. + auto u = source(e, *g), v = target(e, *g); + const CharReach &cr_u = (*g)[u].char_reach; + const CharReach &cr_v = (*g)[v].char_reach; + return cr_u == cr_v; + } + + const Graph *g = nullptr; +}; + +using RepeatGraph = boost::filtered_graph<NGHolder, ReachFilter<NGHolder>, + ReachFilter<NGHolder>>; + +struct ReachSubgraph { + vector<NFAVertex> vertices; + depth repeatMin{0}; + depth repeatMax{0}; + u32 minPeriod = 1; + bool is_reset = false; + enum RepeatType historyType = REPEAT_RING; + bool bad = false; // if true, ignore this case +}; + +} // namespace + +static +void findInitDepths(const NGHolder &g, + unordered_map<NFAVertex, NFAVertexDepth> &depths) { + auto d = calcDepths(g); + + for (auto v : vertices_range(g)) { + size_t idx = g[v].index; + assert(idx < d.size()); + depths.emplace(v, d[idx]); + } +} + +static +vector<NFAVertex> buildTopoOrder(const RepeatGraph &g) { + /* Note: RepeatGraph is a filtered version of NGHolder and still has + * NFAVertex as its vertex descriptor */ + + typedef unordered_set<NFAEdge> EdgeSet; + EdgeSet deadEdges; + + // We don't have indices spanning [0,N] on our filtered graph, so we + // provide a colour map. + unordered_map<NFAVertex, boost::default_color_type> colours; + + depth_first_search(g, visitor(BackEdges<EdgeSet>(deadEdges)). + color_map(make_assoc_property_map(colours))); + auto acyclic_g = make_filtered_graph(g, make_bad_edge_filter(&deadEdges)); + + vector<NFAVertex> topoOrder; + topological_sort(acyclic_g, back_inserter(topoOrder), + color_map(make_assoc_property_map(colours))); + + reverse(topoOrder.begin(), topoOrder.end()); + + return topoOrder; +} + +static +void proper_pred(const NGHolder &g, NFAVertex v, + unordered_set<NFAVertex> &p) { + pred(g, v, &p); + p.erase(v); // self-loops +} + +static +void proper_succ(const NGHolder &g, NFAVertex v, + unordered_set<NFAVertex> &s) { + succ(g, v, &s); + s.erase(v); // self-loops +} + +static +bool roguePredecessor(const NGHolder &g, NFAVertex v, + const unordered_set<NFAVertex> &involved, + const unordered_set<NFAVertex> &pred) { + u32 seen = 0; + + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (contains(involved, u)) { + continue; + } + if (!contains(pred, u)) { + DEBUG_PRINTF("%zu is a rogue pred\n", g[u].index); + return true; + } + + seen++; + } + + // We must have edges from either (a) none of our external predecessors, or + // (b) all of our external predecessors. + if (!seen) { + return false; + } + return pred.size() != seen; +} + +static +bool rogueSuccessor(const NGHolder &g, NFAVertex v, + const unordered_set<NFAVertex> &involved, + const unordered_set<NFAVertex> &succ) { + u32 seen = 0; + for (auto w : adjacent_vertices_range(v, g)) { + if (contains(involved, w)) { + continue; + } + + if (!contains(succ, w)) { + DEBUG_PRINTF("%zu is a rogue succ\n", g[w].index); + return true; + } + + seen++; + } + + // We must have edges to either (a) none of our external successors, or + // (b) all of our external successors. + if (!seen) { + return false; + } + return succ.size() != seen; +} + +static +bool hasDifferentTops(const NGHolder &g, const vector<NFAVertex> &verts) { + /* TODO: check that we need this now that we allow multiple tops */ + const flat_set<u32> *tops = nullptr; + + for (auto v : verts) { + for (const auto &e : in_edges_range(v, g)) { + NFAVertex u = source(e, g); + if (u != g.start && u != g.startDs) { + continue; // Only edges from starts have valid top properties. + } + DEBUG_PRINTF("edge (%zu,%zu) with %zu tops\n", g[u].index, + g[v].index, g[e].tops.size()); + if (!tops) { + tops = &g[e].tops; + } else if (g[e].tops != *tops) { + return true; // More than one set of tops. + } + } + } + + return false; +} + +static +bool vertexIsBad(const NGHolder &g, NFAVertex v, + const unordered_set<NFAVertex> &involved, + const unordered_set<NFAVertex> &tail, + const unordered_set<NFAVertex> &pred, + const unordered_set<NFAVertex> &succ, + const flat_set<ReportID> &reports) { + DEBUG_PRINTF("check vertex %zu\n", g[v].index); + + // We must drop any vertex that is the target of a back-edge within + // our subgraph. The tail set contains all vertices that are after v in a + // topo ordering. + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (contains(tail, u)) { + DEBUG_PRINTF("back-edge (%zu,%zu) in subgraph found\n", + g[u].index, g[v].index); + return true; + } + } + + // If this vertex has an entry from outside our subgraph, it must have + // edges from *all* the vertices in pred and no other external entries. + // Similarly for exits. + if (roguePredecessor(g, v, involved, pred)) { + DEBUG_PRINTF("preds for %zu not well-formed\n", g[v].index); + return true; + } + + if (rogueSuccessor(g, v, involved, succ)) { + DEBUG_PRINTF("succs for %zu not well-formed\n", g[v].index); + return true; + } + + // All reporting vertices should have the same reports. + if (is_match_vertex(v, g) && reports != g[v].reports) { + DEBUG_PRINTF("report mismatch to %zu\n", g[v].index); + return true; + } + + return false; +} + +static +void splitSubgraph(const NGHolder &g, const deque<NFAVertex> &verts, + const u32 minNumVertices, queue<ReachSubgraph> &q) { + DEBUG_PRINTF("entry\n"); + + // We construct a copy of the graph using just the vertices we want, rather + // than using a filtered_graph -- this way is faster. + NGHolder verts_g; + unordered_map<NFAVertex, NFAVertex> verts_map; // in g -> in verts_g + fillHolder(&verts_g, g, verts, &verts_map); + + const auto ug = make_undirected_graph(verts_g); + + unordered_map<NFAVertex, u32> repeatMap; + + size_t num = connected_components(ug, make_assoc_property_map(repeatMap)); + DEBUG_PRINTF("found %zu connected repeat components\n", num); + assert(num > 0); + + vector<ReachSubgraph> rs(num); + + for (auto v : verts) { + assert(!is_special(v, g)); + auto vu = verts_map.at(v); + auto rit = repeatMap.find(vu); + if (rit == repeatMap.end()) { + continue; /* not part of a repeat */ + } + u32 comp_id = rit->second; + assert(comp_id < num); + rs[comp_id].vertices.push_back(v); + } + + for (const auto &rsi : rs) { + if (rsi.vertices.empty()) { + // Empty elements can happen when connected_components finds a + // subgraph consisting entirely of specials (which aren't added to + // ReachSubgraph in the loop above). There's nothing we can do with + // these, so we skip them. + continue; + } + DEBUG_PRINTF("repeat with %zu vertices\n", rsi.vertices.size()); + if (rsi.vertices.size() >= minNumVertices) { + DEBUG_PRINTF("enqueuing\n"); + q.push(rsi); + } + } +} + +static +void findFirstReports(const NGHolder &g, const ReachSubgraph &rsi, + flat_set<ReportID> &reports) { + for (auto v : rsi.vertices) { + if (is_match_vertex(v, g)) { + reports = g[v].reports; + return; + } + } +} + +static +void checkReachSubgraphs(const NGHolder &g, vector<ReachSubgraph> &rs, + const u32 minNumVertices) { + if (rs.empty()) { + return; + } + + DEBUG_PRINTF("%zu subgraphs\n", rs.size()); + + vector<ReachSubgraph> rs_out; + + queue<ReachSubgraph> q; + for (const auto &rsi : rs) { + if (rsi.vertices.size() < minNumVertices) { + continue; + } + q.push(rsi); + } + + while (!q.empty()) { + const ReachSubgraph &rsi = q.front(); + + if (rsi.vertices.size() < minNumVertices) { + q.pop(); // Too small for consideration as a repeat. + continue; + } + + DEBUG_PRINTF("subgraph with %zu vertices\n", rsi.vertices.size()); + + // Check that all the edges from outside have the same tops. TODO: we + // don't have to throw the whole subgraph out, we could do this check + // on a per vertex basis. + if (hasDifferentTops(g, rsi.vertices)) { + DEBUG_PRINTF("different tops!\n"); + q.pop(); + continue; + } + + unordered_set<NFAVertex> involved(rsi.vertices.begin(), + rsi.vertices.end()); + unordered_set<NFAVertex> tail(involved); // to look for back-edges. + unordered_set<NFAVertex> pred, succ; + proper_pred(g, rsi.vertices.front(), pred); + proper_succ(g, rsi.vertices.back(), succ); + + flat_set<ReportID> reports; + findFirstReports(g, rsi, reports); + + bool recalc = false; + deque<NFAVertex> verts; + + for (auto v : rsi.vertices) { + tail.erase(v); // now contains all vertices _after_ this one. + + if (vertexIsBad(g, v, involved, tail, pred, succ, reports)) { + recalc = true; + continue; + } + + verts.push_back(v); + } + + if (recalc) { + if (verts.size() < minNumVertices) { + DEBUG_PRINTF("subgraph got too small\n"); + q.pop(); + continue; + } + splitSubgraph(g, verts, minNumVertices, q); + } else { + DEBUG_PRINTF("subgraph is ok\n"); + rs_out.push_back(rsi); + } + q.pop(); + } + + rs.swap(rs_out); +} + +namespace { +class DistanceSet { +private: + // We use boost::icl to do the heavy lifting. + typedef boost::icl::closed_interval<u32> ClosedInterval; + typedef boost::icl::interval_set<u32, std::less, ClosedInterval> + IntervalSet; + IntervalSet distances; +public: + // Add a distance. + void insert(u32 d) { + distances.insert(d); + } + + void add(const DistanceSet &a) { + distances += a.distances; // union operation + } + + // Increment all the distances by one and add. + void add_incremented(const DistanceSet &a) { + for (const auto &d : a.distances) { + u32 lo = lower(d) + 1; + u32 hi = upper(d) + 1; + distances.insert(boost::icl::construct<ClosedInterval>(lo, hi)); + } + } + +#ifdef DEBUG + void dump() const { + if (distances.empty()) { + printf("<empty>"); + return; + } + + for (const auto &d : distances) { + printf("[%u,%u] ", lower(d), upper(d)); + } + } +#endif + + // True if this distance set is a single contiguous interval. + bool is_contiguous() const { + IntervalSet::const_iterator it = distances.begin(); + if (it == distances.end()) { + return false; + } + ++it; + return (it == distances.end()); + } + + pair<u32, u32> get_range() const { + assert(is_contiguous()); + return make_pair(lower(distances), upper(distances)); + } +}; +} + +/** + * Returns false if the given bounds are too large to be implemented with our + * runtime engines that handle bounded repeats. + */ +static +bool tooLargeToImplement(const depth &repeatMin, const depth &repeatMax) { + if (!repeatMin.is_finite()) { + DEBUG_PRINTF("non-finite min bound %s\n", repeatMin.str().c_str()); + assert(0); // this is a surprise! + return true; + } + + if ((u32)repeatMin >= REPEAT_INF) { + DEBUG_PRINTF("min bound %s too large\n", repeatMin.str().c_str()); + return true; + } + + if (repeatMax.is_finite() && (u32)repeatMax >= REPEAT_INF) { + DEBUG_PRINTF("finite max bound %s too large\n", repeatMax.str().c_str()); + return true; + } + + return false; +} + +/** Returns false if the graph is not a supported bounded repeat. */ +static +bool processSubgraph(const NGHolder &g, ReachSubgraph &rsi, + u32 minNumVertices) { + DEBUG_PRINTF("reach subgraph has %zu vertices\n", rsi.vertices.size()); + + if (rsi.vertices.size() < minNumVertices) { + DEBUG_PRINTF("too small, min is %u\n", minNumVertices); + return false; + } + + NFAVertex first = rsi.vertices.front(); + NFAVertex last = rsi.vertices.back(); + + typedef unordered_map<NFAVertex, DistanceSet> DistanceMap; + DistanceMap dist; + + // Initial distance sets. + for (auto u : inv_adjacent_vertices_range(first, g)) { + if (u == first) { + continue; // no self-loops + } + DEBUG_PRINTF("pred vertex %zu\n", g[u].index); + dist[u].insert(0); + } + + for (auto v : rsi.vertices) { + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (u == v) { + continue; // no self-loops + } + + auto di = dist.find(u); + if (di == dist.end()) { + assert(0); + return false; + } + + dist[v].add_incremented(di->second); + } + } + + // Remove pred distances from our map. + for (auto u : inv_adjacent_vertices_range(first, g)) { + if (u == first) { + continue; // no self-loops + } + dist.erase(u); + } + + // Calculate final union of distances. + DistanceSet final_d; + for (auto v : adjacent_vertices_range(last, g)) { + if (v == last) { + continue; // no self-loops + } + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (u == v) { + continue; // no self-loops + } + auto di = dist.find(u); + if (di == dist.end()) { + continue; + } + final_d.add(di->second); + } + } + +#ifdef DEBUG + DEBUG_PRINTF("final_d dists: "); + final_d.dump(); + printf("\n"); +#endif + + if (!final_d.is_contiguous()) { + // not handled right now + DEBUG_PRINTF("not contiguous!\n"); + return false; + } + + pair<u32, u32> range = final_d.get_range(); + if (range.first > depth::max_value() || range.second > depth::max_value()) { + DEBUG_PRINTF("repeat (%u,%u) not representable with depths\n", + range.first, range.second); + return false; + } + rsi.repeatMin = depth(range.first); + rsi.repeatMax = depth(range.second); + + // If we've got a self-loop anywhere, we've got inf max. + if (anySelfLoop(g, rsi.vertices.begin(), rsi.vertices.end())) { + DEBUG_PRINTF("repeat contains self-loop, setting max to INF\n"); + rsi.repeatMax = depth::infinity(); + } + + // If our pattern contains a bounded repeat that we wouldn't be able to + // implement as runtime, then we have no strategy that leads to + // implementation -- it's not like falling back to a DFA or other + // non-repeat engine is going to succeed. + if (tooLargeToImplement(rsi.repeatMin, rsi.repeatMax)) { + throw CompileError("Pattern too large."); + } + + return true; +} + +static +bool allPredsInSubgraph(NFAVertex v, const NGHolder &g, + const unordered_set<NFAVertex> &involved) { + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (!contains(involved, u)) { + return false; + } + } + return true; +} + +static +void buildTugTrigger(NGHolder &g, NFAVertex cyclic, NFAVertex v, + const unordered_set<NFAVertex> &involved, + unordered_map<NFAVertex, NFAVertexDepth> &depths, + vector<NFAVertex> &tugs) { + if (allPredsInSubgraph(v, g, involved)) { + // We can transform this vertex into a tug trigger in-place. + DEBUG_PRINTF("all preds in subgraph, vertex %zu becomes tug\n", + g[v].index); + add_edge(cyclic, v, g); + tugs.push_back(v); + return; + } + + // Some predecessors of v are not in the subgraph, so we need to clone v + // and split up its in-edges. + NFAVertex t = clone_vertex(g, v); + depths[t] = depths[v]; + + DEBUG_PRINTF("there are other paths, cloned tug %zu from vertex %zu\n", + g[t].index, g[v].index); + + tugs.push_back(t); + add_edge(cyclic, t, g); + + // New vertex gets all of v's successors, including v itself if it's + // cyclic. + clone_out_edges(g, v, t); +} + +static +NFAVertex createCyclic(NGHolder &g, ReachSubgraph &rsi) { + NFAVertex last = rsi.vertices.back(); + NFAVertex cyclic = clone_vertex(g, last); + add_edge(cyclic, cyclic, g); + + DEBUG_PRINTF("created cyclic vertex %zu\n", g[cyclic].index); + return cyclic; +} + +static +NFAVertex createPos(NGHolder &g, ReachSubgraph &rsi) { + NFAVertex pos = add_vertex(g); + NFAVertex first = rsi.vertices.front(); + + g[pos].char_reach = g[first].char_reach; + + DEBUG_PRINTF("created pos vertex %zu\n", g[pos].index); + return pos; +} + +// 2 if v is directly connected to an accept, or 1 if one hop away, +// or 0 otherwise. +static +u32 isCloseToAccept(const NGHolder &g, NFAVertex v) { + if (is_any_accept(v, g)) { + return 2; + } + + for (auto w : adjacent_vertices_range(v, g)) { + if (is_any_accept(w, g)) { + return 1; + } + } + + return 0; +} + +static +u32 unpeelAmount(const NGHolder &g, const ReachSubgraph &rsi) { + const NFAVertex last = rsi.vertices.back(); + u32 rv = 0; + + for (auto v : adjacent_vertices_range(last, g)) { + rv = max(rv, isCloseToAccept(g, v)); + } + + return rv; +} + +static +void unpeelNearEnd(NGHolder &g, ReachSubgraph &rsi, + unordered_map<NFAVertex, NFAVertexDepth> &depths, + vector<NFAVertex> *succs) { + u32 unpeel = unpeelAmount(g, rsi); + DEBUG_PRINTF("unpeeling %u vertices\n", unpeel); + + while (unpeel) { + NFAVertex last = rsi.vertices.back(); + NFAVertex first = rsi.vertices.front(); + + NFAVertex d = clone_vertex(g, last); + depths[d] = depths[last]; + DEBUG_PRINTF("created vertex %zu\n", g[d].index); + + for (auto v : *succs) { + add_edge(d, v, g); + } + + if (rsi.repeatMin > depth(1)) { + rsi.repeatMin -= 1; + } else { + /* Skip edge for the cyclic state; note that we must clone their + * edge properties as they may include tops. */ + for (const auto &e : in_edges_range(first, g)) { + add_edge(source(e, g), d, g[e], g); + } + } + + succs->clear(); + succs->push_back(d); + + rsi.repeatMax -= 1; + + assert(rsi.repeatMin > depth(0)); + assert(rsi.repeatMax > depth(0)); + + unpeel--; + } +} + +/** Fetch the set of successor vertices of this subgraph. */ +static +void getSuccessors(const NGHolder &g, const ReachSubgraph &rsi, + vector<NFAVertex> *succs) { + assert(!rsi.vertices.empty()); + // Successors come from successors of last vertex. + NFAVertex last = rsi.vertices.back(); + + for (auto v : adjacent_vertices_range(last, g)) { + if (v == last) { /* ignore self loop */ + continue; + } + succs->push_back(v); + } +} + +/** Disconnect the given subgraph from its predecessors and successors in the + * NFA graph and replace it with a cyclic state. */ +static +void replaceSubgraphWithSpecial(NGHolder &g, ReachSubgraph &rsi, + vector<BoundedRepeatData> *repeats, + unordered_map<NFAVertex, NFAVertexDepth> &depths, + unordered_set<NFAVertex> &created) { + assert(!rsi.bad); + /* As we may need to unpeel 2 vertices, we need the width to be more than 2. + * This should only happen if the graph did not have redundancy pass + * performed on as vertex count checks would be prevent us reaching here. + */ + if (rsi.repeatMax <= depth(2)) { + return; + } + assert(rsi.repeatMin > depth(0)); + assert(rsi.repeatMax >= rsi.repeatMin); + assert(rsi.repeatMax > depth(2)); + + DEBUG_PRINTF("entry\n"); + + const unordered_set<NFAVertex> involved(rsi.vertices.begin(), + rsi.vertices.end()); + vector<NFAVertex> succs; + getSuccessors(g, rsi, &succs); + + unpeelNearEnd(g, rsi, depths, &succs); + + // Create our replacement cyclic state with the same reachability and + // report info as the last vertex in our topo-ordered list. + NFAVertex cyclic = createCyclic(g, rsi); + created.insert(cyclic); + + // One more special vertex is necessary: the positive trigger (same + // reach as cyclic). + NFAVertex pos_trigger = createPos(g, rsi); + created.insert(pos_trigger); + add_edge(pos_trigger, cyclic, g); + + // Update depths for our new vertices. + NFAVertex first = rsi.vertices.front(), last = rsi.vertices.back(); + depths[pos_trigger] = depths[first]; + depths[cyclic].fromStart = + unionDepthMinMax(depths[first].fromStart, depths[last].fromStart); + depths[cyclic].fromStartDotStar = unionDepthMinMax( + depths[first].fromStartDotStar, depths[last].fromStartDotStar); + + // Wire predecessors to positive trigger. + for (const auto &e : in_edges_range(first, g)) { + add_edge(source(e, g), pos_trigger, g[e], g); + } + + // Wire cyclic state to tug trigger states built from successors. + vector<NFAVertex> tugs; + for (auto v : succs) { + buildTugTrigger(g, cyclic, v, involved, depths, tugs); + } + created.insert(tugs.begin(), tugs.end()); + assert(!tugs.empty()); + + // Wire pos trigger to tugs if min repeat is one -- this deals with cases + // where we can get a pos and tug trigger on the same byte. + if (rsi.repeatMin == depth(1)) { + for (auto v : tugs) { + add_edge(pos_trigger, v, g); + } + } + + // Remove the vertices/edges in the subgraph. + remove_vertices(rsi.vertices, g, false); + erase_all(&depths, rsi.vertices); + + repeats->push_back(BoundedRepeatData(rsi.historyType, rsi.repeatMin, + rsi.repeatMax, rsi.minPeriod, cyclic, + pos_trigger, tugs)); +} + +/** Variant for Rose-specific graphs that terminate in a sole accept, so we can + * use a "lazy tug". See UE-1636. */ +static +void replaceSubgraphWithLazySpecial(NGHolder &g, ReachSubgraph &rsi, + vector<BoundedRepeatData> *repeats, + unordered_map<NFAVertex, NFAVertexDepth> &depths, + unordered_set<NFAVertex> &created) { + assert(!rsi.bad); + assert(rsi.repeatMin); + assert(rsi.repeatMax >= rsi.repeatMin); + + DEBUG_PRINTF("entry\n"); + + const unordered_set<NFAVertex> involved(rsi.vertices.begin(), + rsi.vertices.end()); + vector<NFAVertex> succs; + getSuccessors(g, rsi, &succs); + + // Create our replacement cyclic state with the same reachability and + // report info as the last vertex in our topo-ordered list. + NFAVertex cyclic = createCyclic(g, rsi); + created.insert(cyclic); + + // One more special vertex is necessary: the positive trigger (same + // reach as cyclic). + NFAVertex pos_trigger = createPos(g, rsi); + created.insert(pos_trigger); + add_edge(pos_trigger, cyclic, g); + + // Update depths for our new vertices. + NFAVertex first = rsi.vertices.front(), last = rsi.vertices.back(); + depths[pos_trigger] = depths[first]; + depths[cyclic].fromStart = + unionDepthMinMax(depths[first].fromStart, depths[last].fromStart); + depths[cyclic].fromStartDotStar = unionDepthMinMax( + depths[first].fromStartDotStar, depths[last].fromStartDotStar); + + // Wire predecessors to positive trigger. + for (const auto &e : in_edges_range(first, g)) { + add_edge(source(e, g), pos_trigger, g[e], g); + } + + // In the rose case, our tug is our cyclic, and it's wired to our + // successors (which should be just the accept). + vector<NFAVertex> tugs; + assert(succs.size() == 1); + for (auto v : succs) { + add_edge(cyclic, v, g); + } + + // Wire pos trigger to accept if min repeat is one -- this deals with cases + // where we can get a pos and tug trigger on the same byte. + if (rsi.repeatMin == depth(1)) { + for (auto v : succs) { + add_edge(pos_trigger, v, g); + g[pos_trigger].reports = g[cyclic].reports; + } + } + + // Remove the vertices/edges in the subgraph. + remove_vertices(rsi.vertices, g, false); + erase_all(&depths, rsi.vertices); + + repeats->push_back(BoundedRepeatData(rsi.historyType, rsi.repeatMin, + rsi.repeatMax, rsi.minPeriod, cyclic, + pos_trigger, tugs)); +} + +static +bool isCompBigEnough(const RepeatGraph &rg, const u32 minRepeat) { + // filtered_graph doesn't filter the num_vertices call. + size_t n = 0; + RepeatGraph::vertex_iterator vi, ve; + for (tie(vi, ve) = vertices(rg); vi != ve; ++vi) { + if (++n >= minRepeat) { + return true; + } + } + return false; +} + +// Marks the subgraph as bad if it can't be handled. +static +void reprocessSubgraph(const NGHolder &h, const Grey &grey, + ReachSubgraph &rsi) { + vector<ReachSubgraph> rs(1, rsi); + checkReachSubgraphs(h, rs, grey.minExtBoundedRepeatSize); + if (rs.size() != 1) { + DEBUG_PRINTF("subgraph split into %zu\n", rs.size()); + rsi.bad = true; + return; + } + + rsi = rs.back(); // Potentially modified. + + if (processSubgraph(h, rsi, grey.minExtBoundedRepeatSize)) { + DEBUG_PRINTF("reprocessed subgraph is {%s,%s} repeat\n", + rsi.repeatMin.str().c_str(), rsi.repeatMax.str().c_str()); + } else { + DEBUG_PRINTF("reprocessed subgraph is bad\n"); + rsi.bad = true; + } +} + +/** Remove vertices from the beginning and end of the vertex set that are + * involved in other repeats as a result of earlier repeat transformations. */ +static +bool peelSubgraph(const NGHolder &g, const Grey &grey, ReachSubgraph &rsi, + const unordered_set<NFAVertex> &created) { + assert(!rsi.bad); + + if (created.empty()) { + return true; + } + + if (rsi.vertices.empty()) { + return false; + } + + // Peel involved vertices from the front. + vector<NFAVertex>::iterator zap = rsi.vertices.end(); + for (auto it = rsi.vertices.begin(), ite = rsi.vertices.end(); it != ite; + ++it) { + if (!contains(created, *it)) { + zap = it; + break; + } else { + DEBUG_PRINTF("%zu is involved in another repeat\n", g[*it].index); + } + } + DEBUG_PRINTF("peeling %zu vertices from front\n", + distance(rsi.vertices.begin(), zap)); + rsi.vertices.erase(rsi.vertices.begin(), zap); + + // Peel involved vertices and vertices with edges to involved vertices from + // the back; otherwise we may try to transform a POS into a TUG. + zap = rsi.vertices.begin(); + for (auto it = rsi.vertices.rbegin(), ite = rsi.vertices.rend(); it != ite; + ++it) { + if (!contains(created, *it) && + !contains_any_of(created, adjacent_vertices(*it, g))) { + zap = it.base(); // Note: erases everything after it. + break; + } else { + DEBUG_PRINTF("%zu is involved in another repeat\n", g[*it].index); + } + } + DEBUG_PRINTF("peeling %zu vertices from back\n", + distance(zap, rsi.vertices.end())); + rsi.vertices.erase(zap, rsi.vertices.end()); + + // If vertices in the middle are involved in other repeats, it's a definite + // no-no. + for (auto v : rsi.vertices) { + if (contains(created, v)) { + DEBUG_PRINTF("vertex %zu is in another repeat\n", g[v].index); + return false; + } + } + + reprocessSubgraph(g, grey, rsi); + return !rsi.bad; +} + +/** For performance reasons, it's nice not to have an exceptional state right + * next to a startDs state: that way we can do double-byte accel, whereas + * otherwise the NEG trigger would limit us to single. This might be a good + * idea to extend to cyclic states, too. */ +static +void peelStartDotStar(const NGHolder &g, + const unordered_map<NFAVertex, NFAVertexDepth> &depths, + const Grey &grey, ReachSubgraph &rsi) { + if (rsi.vertices.size() < 1) { + return; + } + + NFAVertex first = rsi.vertices.front(); + if (depths.at(first).fromStartDotStar.min == depth(1)) { + DEBUG_PRINTF("peeling start front vertex %zu\n", g[first].index); + rsi.vertices.erase(rsi.vertices.begin()); + reprocessSubgraph(g, grey, rsi); + } +} + +static +void buildReachSubgraphs(const NGHolder &g, vector<ReachSubgraph> &rs, + const u32 minNumVertices) { + const ReachFilter<NGHolder> fil(&g); + const RepeatGraph rg(g, fil, fil); + + if (!isCompBigEnough(rg, minNumVertices)) { + DEBUG_PRINTF("component not big enough, bailing\n"); + return; + } + + const auto ug = make_undirected_graph(rg); + + unordered_map<NFAVertex, u32> repeatMap; + + unsigned int num; + num = connected_components(ug, make_assoc_property_map(repeatMap)); + DEBUG_PRINTF("found %u connected repeat components\n", num); + + // Now, we build a set of topo-ordered ReachSubgraphs. + vector<NFAVertex> topoOrder = buildTopoOrder(rg); + + rs.resize(num); + + for (auto v : topoOrder) { + auto rit = repeatMap.find(v); + if (rit == repeatMap.end()) { + continue; /* not part of a repeat */ + } + u32 comp_id = rit->second; + assert(comp_id < num); + rs[comp_id].vertices.push_back(v); + } + +#ifdef DEBUG + for (size_t i = 0; i < rs.size(); i++) { + DEBUG_PRINTF("rs %zu has %zu vertices.\n", i, rs[i].vertices.size()); + } +#endif +} + +static +bool hasSkipEdges(const NGHolder &g, const ReachSubgraph &rsi) { + assert(!rsi.vertices.empty()); + + const NFAVertex first = rsi.vertices.front(); + const NFAVertex last = rsi.vertices.back(); + + // All of the preds of first must have edges to all the successors of last. + for (auto u : inv_adjacent_vertices_range(first, g)) { + for (auto v : adjacent_vertices_range(last, g)) { + if (!edge(u, v, g).second) { + return false; + } + } + } + + return true; +} + +/* depth info is valid as calculated at entry */ +static +bool entered_at_fixed_offset(NFAVertex v, const NGHolder &g, + const unordered_map<NFAVertex, NFAVertexDepth> &depths, + const unordered_set<NFAVertex> &reached_by_fixed_tops) { + DEBUG_PRINTF("|reached_by_fixed_tops| %zu\n", + reached_by_fixed_tops.size()); + if (is_triggered(g) && !contains(reached_by_fixed_tops, v)) { + /* can't do this for infix/suffixes unless we know trigger literals + * can only occur at one offset */ + DEBUG_PRINTF("bad top(s) for %zu\n", g[v].index); + return false; + } + + if (depths.at(v).fromStartDotStar.min.is_reachable()) { + DEBUG_PRINTF("reachable from startDs\n"); + return false; + } + + /* look at preds as v may be cyclic */ + const depth &first = depths.at(v).fromStart.min; + assert(first.is_reachable()); + if (!first.is_finite()) { + DEBUG_PRINTF("first not finite\n"); + return false; + } + DEBUG_PRINTF("first is at least %s from start\n", first.str().c_str()); + + for (auto u : inv_adjacent_vertices_range(v, g)) { + const depth &u_max_depth = depths.at(u).fromStart.max; + DEBUG_PRINTF("pred %zu max depth %s from start\n", g[u].index, + u_max_depth.str().c_str()); + if (u_max_depth != first - depth(1)) { + return false; + } + } + + return true; +} + +static +NFAVertex buildTriggerStates(NGHolder &g, const vector<CharReach> &trigger, + u32 top) { + NFAVertex u = g.start; + for (const auto &cr : trigger) { + NFAVertex v = add_vertex(g); + g[v].char_reach = cr; + add_edge(u, v, g); + if (u == g.start) { + g[edge(u, v, g)].tops.insert(top); + } + u = v; + } + + DEBUG_PRINTF("trigger len=%zu has sink %zu\n", trigger.size(), g[u].index); + return u; +} + +/** + * For triggered graphs, replace the "top" edges from start with the triggers + * they represent, for the purposes of determining sole entry. + */ +static +void addTriggers(NGHolder &g, + const map<u32, vector<vector<CharReach>>> &triggers) { + if (!is_triggered(g)) { + assert(triggers.empty()); + return; + } + + vector<NFAEdge> dead; + map<u32, vector<NFAVertex>> starts_by_top; + + for (const auto &e : out_edges_range(g.start, g)) { + const NFAVertex &v = target(e, g); + if (v == g.startDs) { + continue; + } + + const auto &tops = g[e].tops; + + // The caller may not have given us complete trigger information. If we + // don't have any triggers for a particular top, we should just leave + // it alone. + for (u32 top : tops) { + if (!contains(triggers, top)) { + DEBUG_PRINTF("no triggers for top %u\n", top); + goto next_edge; + } + + starts_by_top[top].push_back(v); + } + dead.push_back(e); + next_edge:; + } + + remove_edges(dead, g); + + for (const auto &m : starts_by_top) { + const auto &top = m.first; + const auto &starts = m.second; + + assert(contains(triggers, top)); + const auto &top_triggers = triggers.at(top); + + for (const auto &trigger : top_triggers) { + NFAVertex u = buildTriggerStates(g, trigger, top); + for (const auto &v : starts) { + add_edge_if_not_present(u, v, g); + } + } + } +} + +static +CharReach predReach(const NGHolder &g, NFAVertex v) { + CharReach cr; + for (auto u : inv_adjacent_vertices_range(v, g)) { + cr |= g[u].char_reach; + } + return cr; +} + +/** + * Filter the given vertex map (which maps from vertices in another graph to + * vertices in subg) so that it only contains vertices that actually exist in + * subg. + */ +static +void filterMap(const NGHolder &subg, + unordered_map<NFAVertex, NFAVertex> &vmap) { + NGHolder::vertex_iterator vi, ve; + tie(vi, ve) = vertices(subg); + const unordered_set<NFAVertex> remaining_verts(vi, ve); + + unordered_map<NFAVertex, NFAVertex> fmap; // filtered map + + for (const auto &m : vmap) { + if (contains(remaining_verts, m.second)) { + fmap.insert(m); + } + } + + vmap.swap(fmap); +} + +/** Construct a graph for sole entry analysis that only considers paths through + * the bounded repeat. */ +static +void buildRepeatGraph(NGHolder &rg, + unordered_map<NFAVertex, NFAVertex> &rg_map, + const NGHolder &g, const ReachSubgraph &rsi, + const map<u32, vector<vector<CharReach>>> &triggers) { + cloneHolder(rg, g, &rg_map); + assert(rg.kind == g.kind); + + clear_in_edges(rg.accept, rg); + clear_in_edges(rg.acceptEod, rg); + add_edge(rg.accept, rg.acceptEod, rg); + + // Find the set of vertices in rg involved in the repeat. + unordered_set<NFAVertex> rg_involved; + for (const auto &v : rsi.vertices) { + assert(contains(rg_map, v)); + rg_involved.insert(rg_map.at(v)); + } + + // Remove all out-edges from repeat vertices that aren't to other repeat + // vertices, then connect terminal repeat vertices to accept. + for (const auto &v : rsi.vertices) { + NFAVertex rv = rg_map.at(v); + remove_out_edge_if(rv, [&](const NFAEdge &e) { + return !contains(rg_involved, target(e, rg)); + }, rg); + if (!has_successor(rv, rg)) { // no interior out-edges + add_edge(rv, rg.accept, rg); + } + } + + pruneUseless(rg); + + if (is_triggered(rg)) { + // Add vertices for all our triggers + addTriggers(rg, triggers); + renumber_vertices(rg); + + // We don't know anything about how often this graph is triggered, so we + // make the start vertex cyclic for the purposes of this analysis ONLY. + add_edge(rg.start, rg.start, rg); + } + + filterMap(rg, rg_map); + + // All of our repeat vertices should have vertices in rg. + assert(all_of(begin(rsi.vertices), end(rsi.vertices), + [&](const NFAVertex &v) { return contains(rg_map, v); })); +} + +/** + * Construct an input DAG which accepts on all entries to the repeat. + */ +static +void buildInputGraph(NGHolder &lhs, + unordered_map<NFAVertex, NFAVertex> &lhs_map, + const NGHolder &g, const NFAVertex first, + const map<u32, vector<vector<CharReach>>> &triggers) { + DEBUG_PRINTF("building lhs with first=%zu\n", g[first].index); + cloneHolder(lhs, g, &lhs_map); + assert(g.kind == lhs.kind); + addTriggers(lhs, triggers); + renumber_vertices(lhs); + + // Replace each back-edge (u,v) with an edge (startDs,v), which will + // generate entries at at least the rate of the loop created by that + // back-edge. + set<NFAEdge> dead; + BackEdges<set<NFAEdge> > backEdgeVisitor(dead); + depth_first_search(lhs, visitor(backEdgeVisitor).root_vertex(lhs.start)); + for (const auto &e : dead) { + const NFAVertex u = source(e, lhs), v = target(e, lhs); + if (u == v) { + continue; // Self-loops are OK. + } + + DEBUG_PRINTF("replacing back-edge (%zu,%zu) with edge (startDs,%zu)\n", + lhs[u].index, lhs[v].index, lhs[v].index); + + add_edge_if_not_present(lhs.startDs, v, lhs); + remove_edge(e, lhs); + } + + clear_in_edges(lhs.accept, lhs); + clear_in_edges(lhs.acceptEod, lhs); + add_edge(lhs.accept, lhs.acceptEod, lhs); + + // Wire the predecessors of the first repeat vertex to accept, then prune. + NFAVertex lhs_first = lhs_map.at(first); + for (auto u : inv_adjacent_vertices_range(lhs_first, lhs)) { + add_edge_if_not_present(u, lhs.accept, lhs); + } + + pruneUseless(lhs); + filterMap(lhs, lhs_map); +} + +/** + * Maximum number of vertices in the input DAG to actually allow sole entry + * calculation (as very large cases make sentClearsTail take a long, long time + * to complete.) + */ +static const size_t MAX_SOLE_ENTRY_VERTICES = 10000; + +/** True if (1) fixed offset or (2) reentries to this subgraph must involve a + * character which escapes the repeat, meaning that we only need to store a + * single offset at runtime. See UE-1361. */ +static +bool hasSoleEntry(const NGHolder &g, const ReachSubgraph &rsi, + const unordered_map<NFAVertex, NFAVertexDepth> &depths, + const unordered_set<NFAVertex> &reached_by_fixed_tops, + const map<u32, vector<vector<CharReach>>> &triggers) { + DEBUG_PRINTF("checking repeat {%s,%s}\n", rsi.repeatMin.str().c_str(), + rsi.repeatMax.str().c_str()); + NFAVertex first = rsi.vertices.front(); + const CharReach &repeatReach = g[first].char_reach; + + /* trivial case first is at a fixed depth */ + if (entered_at_fixed_offset(first, g, depths, reached_by_fixed_tops)) { + DEBUG_PRINTF("fixed depth\n"); + return true; + } + + DEBUG_PRINTF("repeat reach is %s\n", describeClass(repeatReach).c_str()); + + // Nothing can escape a dot repeat. + if (repeatReach.all()) { + DEBUG_PRINTF("dot repeat cannot be escaped\n"); + return false; + } + + // Another easy case: if the union of the reach of all entries to the + // repeat will always escape the repeat, we have sole entry. + if (predReach(g, first).isSubsetOf(~repeatReach)) { + DEBUG_PRINTF("pred reach %s, which is subset of repeat escape\n", + describeClass(predReach(g, first)).c_str()); + return true; + } + + NGHolder rg; + unordered_map<NFAVertex, NFAVertex> rg_map; + buildRepeatGraph(rg, rg_map, g, rsi, triggers); + assert(rg.kind == g.kind); + + NGHolder lhs; + unordered_map<NFAVertex, NFAVertex> lhs_map; + buildInputGraph(lhs, lhs_map, g, first, triggers); + assert(lhs.kind == g.kind); + + if (num_vertices(lhs) > MAX_SOLE_ENTRY_VERTICES) { + DEBUG_PRINTF("too many vertices (%zu) for sole entry test.\n", + num_vertices(lhs)); + return false; + } + + // Split the repeat graph into two regions: vertices in the LHS input DAG + // are in one region, vertices in the bounded repeat are in another. + const u32 lhs_region = 1; + const u32 repeat_region = 2; + unordered_map<NFAVertex, u32> region_map; + + for (const auto &v : rsi.vertices) { + assert(!is_special(v, g)); // no specials in repeats + assert(contains(rg_map, v)); + DEBUG_PRINTF("rg vertex %zu in repeat\n", rg[rg_map.at(v)].index); + region_map.emplace(rg_map.at(v), repeat_region); + } + + for (const auto &v : vertices_range(rg)) { + if (!contains(region_map, v)) { + DEBUG_PRINTF("rg vertex %zu in lhs (trigger)\n", rg[v].index); + region_map.emplace(v, lhs_region); + } + } + + u32 bad_region = 0; + if (sentClearsTail(rg, region_map, lhs, lhs_region, &bad_region)) { + DEBUG_PRINTF("input dag clears repeat: sole entry\n"); + return true; + } + + DEBUG_PRINTF("not sole entry\n"); + return false; +} + +namespace { + +template<class Graph> +struct StrawWalker { + StrawWalker(const NGHolder &h_in, const Graph &g_in, + const vector<BoundedRepeatData> &all_repeats) + : h(h_in), g(g_in), repeats(all_repeats) {} + + /** True if v is a cyclic that belongs to a bounded repeat (one without an + * inf max bound). */ + bool isBoundedRepeatCyclic(NFAVertex v) const { + for (const auto &r : repeats) { + if (r.repeatMax.is_finite() && r.cyclic == v) { + return true; + } + } + return false; + } + + NFAVertex step(NFAVertex v) const { + typename Graph::adjacency_iterator ai, ae; + tie(ai, ae) = adjacent_vertices(v, g); + assert(ai != ae); + NFAVertex next = *ai; + if (next == v) { // Ignore self loop. + ++ai; + if (ai == ae) { + return NGHolder::null_vertex(); + } + next = *ai; + } + ++ai; + if (ai != ae && *ai == v) { // Ignore self loop + ++ai; + } + if (ai != ae) { + DEBUG_PRINTF("more than one succ\n"); + set<NFAVertex> succs; + insert(&succs, adjacent_vertices(v, g)); + succs.erase(v); + for (tie(ai, ae) = adjacent_vertices(v, g); ai != ae; ++ai) { + next = *ai; + DEBUG_PRINTF("checking %zu\n", g[next].index); + if (next == v) { + continue; + } + set<NFAVertex> lsuccs; + insert(&lsuccs, adjacent_vertices(next, g)); + + if (lsuccs != succs) { + continue; + } + + // Ensure that if v is in connected to accept, the reports + // on `next` much match. + if (is_match_vertex(v, h) && g[v].reports != g[next].reports) { + DEBUG_PRINTF("report mismatch\n"); + continue; + } + + return next; + } + DEBUG_PRINTF("bailing\n"); + return NGHolder::null_vertex(); + } + return next; + } + + NFAVertex walk(NFAVertex v, vector<NFAVertex> &straw) const { + DEBUG_PRINTF("walk from %zu\n", g[v].index); + unordered_set<NFAVertex> visited; + straw.clear(); + + while (!is_special(v, g)) { + DEBUG_PRINTF("checking %zu\n", g[v].index); + NFAVertex next = step(v); + if (next == NGHolder::null_vertex()) { + break; + } + if (!visited.insert(next).second) { + DEBUG_PRINTF("already visited %zu, bailing\n", g[next].index); + break; /* don't want to get stuck in any complicated loops */ + } + + const CharReach &reach_v = g[v].char_reach; + const CharReach &reach_next = g[next].char_reach; + if (!reach_v.isSubsetOf(reach_next)) { + DEBUG_PRINTF("%zu's reach is not a superset of %zu's\n", + g[next].index, g[v].index); + break; + } + + // If this is cyclic with the right reach, we're done. Note that + // startDs fulfils this requirement. + if (hasSelfLoop(next, g) && !isBoundedRepeatCyclic(next)) { + DEBUG_PRINTF("found cyclic %zu\n", g[next].index); + return next; + } + + v = next; + straw.push_back(v); + } + + straw.clear(); + return NGHolder::null_vertex(); + } + +private: + const NGHolder &h; // underlying graph + const Graph &g; + const vector<BoundedRepeatData> &repeats; +}; + +} // namespace + +static +NFAVertex walkStrawToCyclicRev(const NGHolder &g, NFAVertex v, + const vector<BoundedRepeatData> &all_repeats, + vector<NFAVertex> &straw) { + typedef boost::reverse_graph<NGHolder, const NGHolder &> RevGraph; + const RevGraph revg(g); + + auto cyclic = StrawWalker<RevGraph>(g, revg, all_repeats).walk(v, straw); + reverse(begin(straw), end(straw)); // path comes from cyclic + return cyclic; +} + +static +NFAVertex walkStrawToCyclicFwd(const NGHolder &g, NFAVertex v, + const vector<BoundedRepeatData> &all_repeats, + vector<NFAVertex> &straw) { + return StrawWalker<NGHolder>(g, g, all_repeats).walk(v, straw); +} + +/** True if entries to this subgraph must pass through a cyclic state with + * reachability that is a superset of the reach of the repeat, and + * reachabilities along this path "nest" into the reaches of their + * predecessors. + * + * This is what is called a 'straw' in the region code. */ +static +bool hasCyclicSupersetEntryPath(const NGHolder &g, const ReachSubgraph &rsi, + const vector<BoundedRepeatData> &all_repeats) { + // Cope with peeling by following a chain of single vertices backwards + // until we encounter our cyclic, all of which must have superset reach. + vector<NFAVertex> straw; + return walkStrawToCyclicRev(g, rsi.vertices.front(), all_repeats, straw) != + NGHolder::null_vertex(); +} + +static +bool hasCyclicSupersetExitPath(const NGHolder &g, const ReachSubgraph &rsi, + const vector<BoundedRepeatData> &all_repeats) { + vector<NFAVertex> straw; + return walkStrawToCyclicFwd(g, rsi.vertices.back(), all_repeats, straw) != + NGHolder::null_vertex(); +} + +static +bool leadsOnlyToAccept(const NGHolder &g, const ReachSubgraph &rsi) { + const NFAVertex u = rsi.vertices.back(); + for (auto v : adjacent_vertices_range(u, g)) { + if (v != g.accept) { + return false; + } + } + assert(out_degree(u, g)); + return true; +} + +static +bool allSimpleHighlander(const ReportManager &rm, + const flat_set<ReportID> &reports) { + assert(!reports.empty()); + for (auto report : reports) { + if (!isSimpleExhaustible(rm.getReport(report))) { + return false; + } + } + + return true; +} + +// Finds a single, fairly unrefined trigger for the repeat by walking backwards +// and collecting the unioned reach at each step. +static +vector<CharReach> getUnionedTrigger(const NGHolder &g, const NFAVertex v) { + const size_t MAX_TRIGGER_STEPS = 32; + + vector<CharReach> trigger; + + flat_set<NFAVertex> curr, next; + insert(&curr, inv_adjacent_vertices(v, g)); + + if (contains(curr, g.start)) { + DEBUG_PRINTF("start in repeat's immediate preds\n"); + trigger.push_back(CharReach::dot()); // Trigger could be anything! + return trigger; + } + + for (size_t num_steps = 0; num_steps < MAX_TRIGGER_STEPS; num_steps++) { + next.clear(); + trigger.push_back(CharReach()); + CharReach &cr = trigger.back(); + + for (auto v_c : curr) { + cr |= g[v_c].char_reach; + insert(&next, inv_adjacent_vertices(v_c, g)); + } + + DEBUG_PRINTF("cr[%zu]=%s\n", num_steps, describeClass(cr).c_str()); + + if (next.empty() || contains(next, g.start)) { + break; + } + + curr.swap(next); + } + + reverse(trigger.begin(), trigger.end()); + return trigger; +} + +static +vector<vector<CharReach>> getRepeatTriggers(const NGHolder &g, + const NFAVertex sink) { + const size_t MAX_TRIGGER_STEPS = 32; + const size_t UNIONED_FALLBACK_THRESHOLD = 100; + + using Path = deque<NFAVertex>; + + vector<vector<CharReach>> triggers; + + deque<Path> q; // work queue + deque<Path> done; // finished paths + + size_t max_len = MAX_TRIGGER_STEPS; + + // Find a set of paths leading to vertex v by depth first search. + + for (auto u : inv_adjacent_vertices_range(sink, g)) { + if (is_any_start(u, g)) { + triggers.push_back({}); // empty + return triggers; + } + q.push_back(Path(1, u)); + } + + while (!q.empty()) { + Path &path = q.front(); + NFAVertex v = path.back(); + + if (path.size() >= max_len) { + max_len = min(max_len, path.size()); + done.push_back(path); + goto next_path; + } + + for (auto u : inv_adjacent_vertices_range(v, g)) { + if (is_any_start(u, g)) { + // Found an accept. There's no point expanding this path any + // further, we're done. + max_len = min(max_len, path.size()); + done.push_back(path); + goto next_path; + } + + if (path.size() + 1 >= max_len) { + done.push_back(path); + done.back().push_back(u); + } else { + q.push_back(path); // copy + q.back().push_back(u); + } + } + + next_path: + q.pop_front(); + + // If our queue or our finished trigger list gets too large, fall back + // to generating a single trigger with union reach. + if (q.size() + done.size() > UNIONED_FALLBACK_THRESHOLD) { + DEBUG_PRINTF("search too large, fall back to union trigger\n"); + triggers.clear(); + triggers.push_back(getUnionedTrigger(g, sink)); + return triggers; + } + } + + assert(!done.empty()); + + // Convert our path list into a set of unique triggers. + ue2_unordered_set<vector<CharReach>> unique_triggers; + for (const auto &path : done) { + vector<CharReach> reach_path; + for (auto jt = path.rbegin(), jte = path.rend(); jt != jte; ++jt) { + reach_path.push_back(g[*jt].char_reach); + } + unique_triggers.insert(reach_path); + } + + insert(&triggers, triggers.end(), unique_triggers); + sort(triggers.begin(), triggers.end()); + DEBUG_PRINTF("built %zu unique triggers, max_len=%zu\n", triggers.size(), + max_len); + return triggers; +} + +static +void findMinPeriod(const NGHolder &g, + const map<u32, vector<vector<CharReach>>> &triggers, + ReachSubgraph &rsi) { + const auto v = rsi.vertices.front(); + const CharReach &cr = g[v].char_reach; + + vector<vector<CharReach>> repeat_triggers; + + if (is_triggered(g)) { + // Construct a temporary copy of the graph that also contains its + // triggers, potentially lengthening the repeat's triggers. + NGHolder tg; + unordered_map<NFAVertex, NFAVertex> tg_map; + cloneHolder(tg, g, &tg_map); + addTriggers(tg, triggers); + assert(contains(tg_map, v)); + repeat_triggers = getRepeatTriggers(tg, tg_map.at(v)); + } else { + // Not triggered, no need to mutate the graph. + repeat_triggers = getRepeatTriggers(g, v); + } + + rsi.minPeriod = minPeriod(repeat_triggers, cr, &rsi.is_reset); + DEBUG_PRINTF("%zu triggers, minPeriod=%u, is_reset=%d\n", + repeat_triggers.size(), rsi.minPeriod, (int)rsi.is_reset); +} + +static +void +selectHistoryScheme(const NGHolder &g, const ReportManager *rm, + ReachSubgraph &rsi, + const unordered_map<NFAVertex, NFAVertexDepth> &depths, + const unordered_set<NFAVertex> &reached_by_fixed_tops, + const map<u32, vector<vector<CharReach>>> &triggers, + const vector<BoundedRepeatData> &all_repeats, + const bool simple_model_selection) { + // {N,} cases use the FIRST history mechanism. + if (rsi.repeatMax.is_infinite()) { + DEBUG_PRINTF("selected FIRST history\n"); + rsi.historyType = REPEAT_FIRST; + return; + } + + /* If we have a repeat which only raises a highlander, only the first match + * matters */ + if (rm && leadsOnlyToAccept(g, rsi) + && allSimpleHighlander(*rm, g[rsi.vertices.back()].reports)) { + DEBUG_PRINTF("selected FIRST history (as highlander)\n"); + rsi.historyType = REPEAT_FIRST; + rsi.repeatMax = depth::infinity(); /* for consistency */ + return; + } + + // {N,M} cases can use the FIRST mechanism if they follow a cyclic which + // includes their reachability via a "straw" path. (see UE-1589) + if (hasCyclicSupersetEntryPath(g, rsi, all_repeats)) { + DEBUG_PRINTF("selected FIRST history due to cyclic pred with " + "superset of reach\n"); + rsi.historyType = REPEAT_FIRST; + rsi.repeatMax = depth::infinity(); /* will continue to pump out matches */ + return; + } + + // Similarly, {N,M} cases can use the FIRST mechanism if they precede a + // cyclic which includes their reachability via a "straw" path. + if (hasCyclicSupersetExitPath(g, rsi, all_repeats)) { + DEBUG_PRINTF("selected FIRST history due to cyclic succ with " + "superset of reach\n"); + rsi.historyType = REPEAT_FIRST; + rsi.repeatMax = depth::infinity(); /* will continue to pump out matches */ + return; + } + + // Could have skip edges and therefore be a {0,N} repeat. + if (rsi.repeatMin == depth(1) && hasSkipEdges(g, rsi)) { + DEBUG_PRINTF("selected LAST history\n"); + rsi.historyType = REPEAT_LAST; + return; + } + + // Fill minPeriod, is_reset flags + findMinPeriod(g, triggers, rsi); + + // If we can't re-enter this cyclic state, we have a reset case. + // This check can be very expensive, so we don't do it if we've been asked + // for simple model selection. + if (!simple_model_selection && !rsi.is_reset && + hasSoleEntry(g, rsi, depths, reached_by_fixed_tops, triggers)) { + DEBUG_PRINTF("repeat is sole entry -> reset\n"); + rsi.is_reset = true; + } + + // We can lean on the common selection code for the remainder of our repeat + // models. + rsi.historyType = chooseRepeatType(rsi.repeatMin, rsi.repeatMax, + rsi.minPeriod, rsi.is_reset); +} + +static +void buildFeeder(NGHolder &g, const BoundedRepeatData &rd, + unordered_set<NFAVertex> &created, + const vector<NFAVertex> &straw) { + if (!g[rd.cyclic].char_reach.all()) { + // Create another cyclic feeder state with flipped reach. It has an + // edge from the repeat's cyclic state and pos_trigger, an edge to the + // straw, and edges from every vertex along the straw. + NFAVertex feeder = clone_vertex(g, rd.cyclic); + created.insert(feeder); + g[feeder].char_reach.flip(); + add_edge(feeder, feeder, g); + add_edge(rd.pos_trigger, feeder, g); + add_edge(rd.cyclic, feeder, g); + add_edge(feeder, straw.front(), g); + + // An edge from every vertex in the straw. + for (auto v : straw) { + add_edge(v, feeder, g); + } + + // An edge to the feeder from the first vertex in the straw and all of + // its predecessors (other than the feeder itself, we've already + // created that edge!) + for (auto u : inv_adjacent_vertices_range(straw.front(), g)) { + if (u == feeder) { + continue; + } + add_edge(u, feeder, g); + } + + DEBUG_PRINTF("added feeder %zu\n", g[feeder].index); + } else { + // No neg trigger means feeder is empty, and unnecessary. + assert(g[rd.pos_trigger].char_reach.all()); + } +} + +/** + * If we have a leading first repeat, we can split startDs so that it is not + * cyclic so that the repeat is only triggered once, rather than every byte. If we + * perform this transform we must create another cyclic state to retrigger the + * repeat after we see an escape for the repeat. + * + * We do not use the anchored start state to allow us to restart the NFA at a deep + * offset. + */ +static +bool improveLeadingRepeat(NGHolder &g, BoundedRepeatData &rd, + unordered_set<NFAVertex> &created, + const vector<BoundedRepeatData> &all_repeats) { + assert(edge(g.startDs, g.startDs, g).second); + + // UE-1617: can rewire FIRST history cases that are preceded by + // startDs. + if (rd.type != REPEAT_FIRST) { + return false; + } + + const CharReach &cyc_cr = g[rd.cyclic].char_reach; + + // This transformation is only worth doing if this would allow us to + // accelerate the cyclic state (UE-2055). + if ((~cyc_cr).count() > ACCEL_MAX_STOP_CHAR) { + DEBUG_PRINTF("we wouldn't be able to accel this case\n"); + return false; + } + + vector<NFAVertex> straw; + NFAVertex pred = + walkStrawToCyclicRev(g, rd.pos_trigger, all_repeats, straw); + if (pred != g.startDs) { + DEBUG_PRINTF("straw walk doesn't lead to startDs\n"); + return false; + } + + // This transformation is only safe if the straw path from startDs that + // we've discovered can *only* lead to this repeat, since we're going to + // remove the self-loop on startDs. + if (proper_out_degree(g.startDs, g) > 1) { + DEBUG_PRINTF("startDs has other successors\n"); + return false; + } + for (const auto &v : straw) { + if (proper_out_degree(v, g) != 1) { + DEBUG_PRINTF("branch between startDs and repeat, from vertex %zu\n", + g[v].index); + return false; + } + } + + if (g[rd.pos_trigger].char_reach.count() < ACCEL_MAX_STOP_CHAR) { + DEBUG_PRINTF("entry is narrow, could be accelerable\n"); + return false; + } + + assert(!straw.empty()); + + /* If there is overlap between the feeder and the first vertex in the straw + * fun things happen. TODO: handle fun things happening (requires more + * edges and more vertices). */ + if (!g[straw.front()].char_reach.isSubsetOf(cyc_cr)) { + DEBUG_PRINTF("straw has `interesting' reach\n"); + return false; + } + + DEBUG_PRINTF("repeat can be improved by removing startDs loop!\n"); + + // Remove the self-loop on startDs! What a blast! + remove_edge(g.startDs, g.startDs, g); + + // Wire up feeder state to straw. + buildFeeder(g, rd, created, straw); + + return true; +} + +static +vector<NFAVertex> makeOwnStraw(NGHolder &g, BoundedRepeatData &rd, + const vector<NFAVertex> &straw) { + // Straw runs from startDs to our pos trigger. + assert(!straw.empty()); + assert(edge(g.startDs, straw.front(), g).second); + assert(edge(straw.back(), rd.pos_trigger, g).second); + + vector<NFAVertex> own_straw; + for (const auto &v : straw) { + NFAVertex v2 = clone_vertex(g, v); + if (hasSelfLoop(v, g)) { + add_edge(v2, v2, g); + } + if (!own_straw.empty()) { + add_edge(own_straw.back(), v2, g); + } + own_straw.push_back(v2); + } + + // Wire our straw to start, not startDs. + add_edge(g.start, own_straw.front(), g); + + // Swap over to using our own straw to get to the POS trigger. + remove_edge(straw.back(), rd.pos_trigger, g); + add_edge(own_straw.back(), rd.pos_trigger, g); + + return own_straw; +} + +/** + * Specialized version of improveLeadingRepeat for outfixes, in which we can + * rewire the straw to start instead of removing the startDs self-loop. + */ +static +bool improveLeadingRepeatOutfix(NGHolder &g, BoundedRepeatData &rd, + unordered_set<NFAVertex> &created, + const vector<BoundedRepeatData> &all_repeats) { + assert(g.kind == NFA_OUTFIX); + + // UE-1617: can rewire FIRST history cases that are preceded by + // startDs. + if (rd.type != REPEAT_FIRST) { + return false; + } + + const CharReach &cyc_cr = g[rd.cyclic].char_reach; + + // This transformation is only worth doing if this would allow us to + // accelerate the cyclic state (UE-2055). + if ((~cyc_cr).count() > ACCEL_MAX_STOP_CHAR) { + DEBUG_PRINTF("we wouldn't be able to accel this case\n"); + return false; + } + + vector<NFAVertex> straw; + NFAVertex pred = + walkStrawToCyclicRev(g, rd.pos_trigger, all_repeats, straw); + if (pred != g.startDs) { + DEBUG_PRINTF("straw walk doesn't lead to startDs\n"); + return false; + } + + if (g[rd.pos_trigger].char_reach.count() < ACCEL_MAX_STOP_CHAR) { + DEBUG_PRINTF("entry is narrow, could be accelerable\n"); + return false; + } + + assert(!straw.empty()); + + /* If there is overlap between the feeder and the first vertex in the straw + * fun things happen. TODO: handle fun things happening (requires more + * edges and more vertices). */ + if (!g[straw.front()].char_reach.isSubsetOf(cyc_cr)) { + DEBUG_PRINTF("straw has `interesting' reach\n"); + return false; + } + + DEBUG_PRINTF("repeat can be improved by rebuilding its entry\n"); + + const auto own_straw = makeOwnStraw(g, rd, straw); + insert(&created, own_straw); + + // Wire up feeder state to our new straw. + buildFeeder(g, rd, created, own_straw); + + // We may no longer need the original straw. + pruneUseless(g); + + return true; +} + +/** Returns true if doing the bounded repeat transformation on this case + * results in a smaller NFA model. */ +static +bool givesBetterModel(const NGHolder &g, const vector<ReachSubgraph> &rs) { + static const u32 MAX_FAST_STATES = 128; // bigger NFAs are fat and slow. + + // We use vertex count as an upper bound for the number of states. + u32 curr_states = num_vertices(g) - 2; // accepts don't have states + + if (curr_states <= MAX_FAST_STATES) { + return false; + } + if (curr_states > NFA_MAX_STATES) { + return true; + } + + u32 expected_states = curr_states; + for (const auto &rsi : rs) { + /* may be off as unpeeling not done yet */ + expected_states += 2; /* cyclic and pos */ + expected_states -= rsi.vertices.size(); + } + + return ROUNDUP_N(curr_states, 128) != ROUNDUP_N(expected_states, 128); +} + +/** True if this repeat terminates with a vertex that leads only to accept. */ +static +bool endsInAccept(const NGHolder &g, const ReachSubgraph &rsi) { + NFAVertex last = rsi.vertices.back(); + return getSoleDestVertex(g, last) == g.accept; +} + +static +bool endsInAcceptEod(const NGHolder &g, const ReachSubgraph &rsi) { + NFAVertex last = rsi.vertices.back(); + return getSoleDestVertex(g, last) == g.acceptEod; +} + +namespace { +class pfti_visitor : public boost::default_dfs_visitor { +public: + pfti_visitor(unordered_map<NFAVertex, depth> &top_depths_in, + const depth &our_depth_in) + : top_depths(top_depths_in), our_depth(our_depth_in) {} + + void discover_vertex(NFAVertex v, UNUSED const NGHolder &g) { + DEBUG_PRINTF("discovered %zu (depth %s)\n", g[v].index, + our_depth.str().c_str()); + + auto it = top_depths.find(v); + if (it != top_depths.end() && it->second != our_depth) { + // already seen at a different depth, remove from consideration. + it->second = depth::infinity(); + } else { + top_depths[v] = our_depth; + } + } + unordered_map<NFAVertex, depth> &top_depths; + const depth &our_depth; +}; +} // namespace + +static +void populateFixedTopInfo(const map<u32, u32> &fixed_depth_tops, + const NGHolder &g, + unordered_set<NFAVertex> *reached_by_fixed_tops) { + if (fixed_depth_tops.empty()) { + return; /* we will never find anything */ + } + + assert(!proper_out_degree(g.startDs, g)); + unordered_map<NFAVertex, depth> top_depths; + auto colours = make_small_color_map(g); + + for (const auto &e : out_edges_range(g.start, g)) { + NFAVertex v = target(e, g); + if (v == g.startDs) { + continue; + } + + depth td = depth::infinity(); + for (u32 top : g[e].tops) { + if (!contains(fixed_depth_tops, top)) { + td = depth::infinity(); + break; + } + depth td_t(fixed_depth_tops.at(top)); + if (td == td_t) { + continue; + } else if (td == depth::infinity()) { + td = td_t; + } else { + td = depth::infinity(); + break; + } + } + + DEBUG_PRINTF("scanning from %zu depth=%s\n", g[v].index, + td.str().c_str()); + /* for each vertex reachable from v update its map to reflect that it is + * reachable from a top of depth td. */ + + depth_first_visit(g, v, pfti_visitor(top_depths, td), colours); + } + + for (const auto &v_depth : top_depths) { + const NFAVertex v = v_depth.first; + const depth &d = v_depth.second; + if (d.is_finite()) { + DEBUG_PRINTF("%zu reached by fixed tops at depth %s\n", + g[v].index, d.str().c_str()); + reached_by_fixed_tops->insert(v); + } + } +} + +#ifndef NDEBUG +/** Assertion use only. Returns true if the given bounded repeats share any + * vertices, which we don't allow. */ +static +bool hasOverlappingRepeats(UNUSED const NGHolder &g, + const vector<BoundedRepeatData> &repeats) { + unordered_set<NFAVertex> involved; + + for (const auto &br : repeats) { + if (contains(involved, br.cyclic)) { + DEBUG_PRINTF("already seen cyclic %zu\n", g[br.cyclic].index); + return true; + } + if (contains(involved, br.pos_trigger)) { + DEBUG_PRINTF("already seen pos %zu\n", g[br.pos_trigger].index); + return true; + } + for (auto v : br.tug_triggers) { + if (contains(involved, v)) { + DEBUG_PRINTF("already seen tug %zu\n", g[v].index); + return true; + } + } + + involved.insert(br.cyclic); + involved.insert(br.pos_trigger); + involved.insert(br.tug_triggers.begin(), br.tug_triggers.end()); + } + + return false; +} + +#endif // NDEBUG + +/** + * Identifies so-called "nasty" repeats, in which the reachability of both the + * repeat itself and its tugs are wide, which means that executing the NFA will + * likely be bogged down in exception processing. + */ +static +bool repeatIsNasty(const NGHolder &g, const ReachSubgraph &rsi, + const unordered_map<NFAVertex, NFAVertexDepth> &depths) { + if (num_vertices(g) > NFA_MAX_STATES) { + // We may have no choice but to implement this repeat to get the graph + // down to a tractable number of vertices. + return false; + } + + if (!generates_callbacks(g) && endsInAccept(g, rsi)) { + DEBUG_PRINTF("would generate a lazy tug, repeat is OK\n"); + return false; + } + + const NFAVertex first = rsi.vertices.front(); + DEBUG_PRINTF("min depth from startds = %s\n", + depths.at(first).fromStartDotStar.min.str().c_str()); + if (depths.at(first).fromStartDotStar.min > depth(2)) { + return false; + } + + NFAVertex last = rsi.vertices.back(); + const CharReach &cyclicreach = g[last].char_reach; + CharReach tugreach; + for (auto v : adjacent_vertices_range(last, g)) { + if (v == last || is_special(v, g)) { + continue; + } + tugreach |= g[v].char_reach; + } + // Deal with unpeeled cases. + if (tugreach.none()) { + tugreach = cyclicreach; + } + DEBUG_PRINTF("tugreach.count=%zu, cyclicreach.count=%zu\n", + tugreach.count(), cyclicreach.count()); + return (tugreach.count() > 200) && (cyclicreach.count() > 200); +} + +void analyseRepeats(NGHolder &g, const ReportManager *rm, + const map<u32, u32> &fixed_depth_tops, + const map<u32, vector<vector<CharReach>>> &triggers, + vector<BoundedRepeatData> *repeats, bool streaming, + bool simple_model_selection, const Grey &grey, + bool *reformed_start_ds) { + if (!grey.allowExtendedNFA || !grey.allowLimExNFA) { + return; + } + + // Quick sanity test. + assert(allMatchStatesHaveReports(g)); + +#ifndef NDEBUG + // So we can assert that the number of tops hasn't changed at the end of + // this analysis. + const flat_set<u32> allTops = getTops(g); +#endif + + // Later on, we're (a little bit) dependent on depth information for + // unpeeling and so forth. Note that these depths MUST be maintained when + // new vertices are added. + unordered_map<NFAVertex, NFAVertexDepth> depths; + findInitDepths(g, depths); + + // Construct our list of subgraphs with the same reach using BGL magic. + vector<ReachSubgraph> rs; + buildReachSubgraphs(g, rs, grey.minExtBoundedRepeatSize); + + // Validate and split subgraphs. + checkReachSubgraphs(g, rs, grey.minExtBoundedRepeatSize); + + // Identify which subgraphs represent bounded repeats in forms ("cliches") + // that we accept, and mark the others as bad. + for (auto &rsi: rs) { + if (!processSubgraph(g, rsi, grey.minExtBoundedRepeatSize)) { + rsi.bad = true; + continue; + } + + DEBUG_PRINTF("rsi min %s=max=%s\n", rsi.repeatMin.str().c_str(), + rsi.repeatMax.str().c_str()); + + // Identify repeats with wide cyclic and tug reach which will produce + // low-performance implementations and avoid doing them. + if (repeatIsNasty(g, rsi, depths)) { + DEBUG_PRINTF("marking nasty repeat as bad\n"); + rsi.bad = true; + } + } + + // Remove bad cases, then sort remaining subgraphs in descending size + // order. + rs.erase(remove_if(rs.begin(), rs.end(), + [](const ReachSubgraph &r) { return r.bad; }), + rs.end()); + stable_sort(rs.begin(), rs.end(), + [](const ReachSubgraph &a, const ReachSubgraph &b) { + return a.vertices.size() > b.vertices.size(); + }); + + if (!streaming && !givesBetterModel(g, rs)) { + /* in block mode, there is no state space so we are only looking for + * performance wins */ + DEBUG_PRINTF("repeat would not reduce NFA model size, skipping\n"); + return; + } + + if (rs.empty()) { + /* no good repeats */ + return; + } + + // Store a copy of the original, unmodified graph in case we need to revert + // back: in particular, due to tug cloning it is possible to build a graph + // that was bigger than the original. See UE-2370. FIXME: smarter analysis + // could make this unnecessary? + const unique_ptr<const NGHolder> orig_g(cloneHolder(g)); + + unordered_set<NFAVertex> reached_by_fixed_tops; + if (is_triggered(g)) { + populateFixedTopInfo(fixed_depth_tops, g, &reached_by_fixed_tops); + } + + // Go to town on the remaining acceptable subgraphs. + unordered_set<NFAVertex> created; + for (auto &rsi : rs) { + DEBUG_PRINTF("subgraph (beginning vertex %zu) is a {%s,%s} repeat\n", + g[rsi.vertices.front()].index, + rsi.repeatMin.str().c_str(), rsi.repeatMax.str().c_str()); + + if (!peelSubgraph(g, grey, rsi, created)) { + DEBUG_PRINTF("peel failed, skipping\n"); + continue; + } + + // Attempt to peel a vertex if we're up against startDs, for + // performance reasons. + peelStartDotStar(g, depths, grey, rsi); + + // Our peeling passes may have killed off this repeat. + if (rsi.bad) { + continue; + } + + selectHistoryScheme(g, rm, rsi, depths, reached_by_fixed_tops, triggers, + *repeats, simple_model_selection); + + if (!generates_callbacks(g) && endsInAccept(g, rsi)) { + DEBUG_PRINTF("accepty-rosy graph\n"); + replaceSubgraphWithLazySpecial(g, rsi, repeats, depths, created); + } else if (endsInAcceptEod(g, rsi)) { + DEBUG_PRINTF("accepty-rosy graph\n"); + replaceSubgraphWithLazySpecial(g, rsi, repeats, depths, created); + } else { + replaceSubgraphWithSpecial(g, rsi, repeats, depths, created); + } + + // Some of our analyses require correctly numbered vertices, so we + // renumber after changes. + renumber_vertices(g); + } + + bool modified_start_ds = false; + + // We may be able to make improvements to the graph for performance + // reasons. Note that this may do 'orrible things like remove the startDs + // cycle, this should only happen quite late in the graph lifecycle. + if (repeats->size() == 1) { + if (g.kind == NFA_OUTFIX) { + improveLeadingRepeatOutfix(g, repeats->back(), created, *repeats); + // (Does not modify startDs, so we don't need to set + // reformed_start_ds for this case.) + } else { + modified_start_ds = + improveLeadingRepeat(g, repeats->back(), created, *repeats); + } + } + + if (reformed_start_ds) { + *reformed_start_ds = modified_start_ds; + } + + if (!repeats->empty()) { + if (num_vertices(g) > NFA_MAX_STATES) { + // We've managed to build an unimplementable NFA. Swap back to the + // original. + DEBUG_PRINTF("NFA has %zu vertices; swapping back to the " + "original graph\n", num_vertices(g)); + clear_graph(g); + assert(orig_g); + cloneHolder(g, *orig_g); + repeats->clear(); + } + + // Sanity test: we don't want any repeats that share special vertices + // as our construction code later can't cope with it. + assert(!hasOverlappingRepeats(g, *repeats)); + + // We have modified the graph, so we need to ensure that our edges + // and vertices are correctly numbered. + renumber_vertices(g); + renumber_edges(g); + // Remove stray report IDs. + clearReports(g); + } + + // Quick sanity tests. + assert(allMatchStatesHaveReports(g)); + assert(!is_triggered(g) || getTops(g) == allTops); +} + +/** + * \brief True if the non-special vertices in the given graph all have the same + * character reachability. + */ +static +bool allOneReach(const NGHolder &g) { + const CharReach *cr = nullptr; + for (const auto &v : vertices_range(g)) { + if (is_special(v, g)) { + continue; + } + if (!cr) { + cr = &g[v].char_reach; + } else { + if (*cr != g[v].char_reach) { + return false; + } + } + } + return true; +} + +bool isPureRepeat(const NGHolder &g, PureRepeat &repeat) { + assert(allMatchStatesHaveReports(g)); + + DEBUG_PRINTF("entry\n"); + + // Must be start anchored. + assert(edge(g.startDs, g.startDs, g).second); + if (out_degree(g.startDs, g) > 1) { + DEBUG_PRINTF("Unanchored\n"); + return false; + } + + // Must not be EOD-anchored. + assert(edge(g.accept, g.acceptEod, g).second); + if (in_degree(g.acceptEod, g) > 1) { + DEBUG_PRINTF("EOD anchored\n"); + return false; + } + + // Must have precisely one top. + if (is_triggered(g) && !onlyOneTop(g)) { + DEBUG_PRINTF("Too many tops\n"); + return false; + } + + if (!allOneReach(g)) { + DEBUG_PRINTF("vertices with different reach\n"); + return false; + } + + // We allow this code to report true for any repeat, even for '.*' or '.+' + // cases. + const u32 minNumVertices = 1; + + vector<ReachSubgraph> rs; + buildReachSubgraphs(g, rs, minNumVertices); + checkReachSubgraphs(g, rs, minNumVertices); + if (rs.size() != 1) { + DEBUG_PRINTF("too many subgraphs\n"); + return false; + } + + ReachSubgraph &rsi = *rs.begin(); + if (!processSubgraph(g, rsi, minNumVertices)) { + DEBUG_PRINTF("not a supported repeat\n"); + return false; + } + + if (rsi.vertices.size() + N_SPECIALS != num_vertices(g)) { + DEBUG_PRINTF("repeat doesn't span graph\n"); + return false; + } + + assert(!rsi.bad); + assert(rsi.vertices.size() >= minNumVertices); + + const NFAVertex v = rsi.vertices.back(); + + repeat.reach = g[v].char_reach; + repeat.bounds.min = rsi.repeatMin; + repeat.bounds.max = rsi.repeatMax; + insert(&repeat.reports, g[v].reports); + + if (isVacuous(g)) { + // This graph might be a {0,N} or {0,} repeat. For this to be true, we + // must have found a {1,N} or {1,} repeat and the start vertex must + // have the same report set as the vertices in the repeat. + if (repeat.bounds.min == depth(1) && + g[g.start].reports == g[v].reports) { + repeat.bounds.min = depth(0); + DEBUG_PRINTF("graph is %s repeat\n", repeat.bounds.str().c_str()); + } else { + DEBUG_PRINTF("not a supported repeat\n"); + return false; + } + } + + assert(all_reports(g) == set<ReportID>(begin(g[v].reports), + end(g[v].reports))); + return true; +} + +void findRepeats(const NGHolder &h, u32 minRepeatVertices, + vector<GraphRepeatInfo> *repeats_out) { + // Construct our list of subgraphs with the same reach using BGL magic. + vector<ReachSubgraph> rs; + buildReachSubgraphs(h, rs, minRepeatVertices); + checkReachSubgraphs(h, rs, minRepeatVertices); + + for (auto &rsi : rs) { + if (!processSubgraph(h, rsi, minRepeatVertices)) { + continue; + } + + DEBUG_PRINTF("rsi min=%s max=%s\n", rsi.repeatMin.str().c_str(), + rsi.repeatMax.str().c_str()); + + depth repeatMax = rsi.repeatMax; + + vector<BoundedRepeatData> all_repeats; /* we don't mutate the graph in + * this path */ + if (hasCyclicSupersetEntryPath(h, rsi, all_repeats)) { + DEBUG_PRINTF("selected FIRST history due to cyclic pred with " + "superset of reach\n"); + repeatMax = depth::infinity(); /* will continue to pump out matches */ + } + if (hasCyclicSupersetExitPath(h, rsi, all_repeats)) { + DEBUG_PRINTF("selected FIRST history due to cyclic succ with " + "superset of reach\n"); + repeatMax = depth::infinity(); /* will continue to pump out matches */ + } + + repeats_out->push_back(GraphRepeatInfo()); + GraphRepeatInfo &ri = repeats_out->back(); + ri.vertices.swap(rsi.vertices); + ri.repeatMin = rsi.repeatMin; + ri.repeatMax = repeatMax; + } +} + +} // namespace ue2 |