aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfa/dfa_min.cpp
diff options
context:
space:
mode:
authorIvan Blinkov <ivan@blinkov.ru>2022-02-10 16:47:10 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:47:10 +0300
commit1aeb9a455974457866f78722ad98114bafc84e8a (patch)
treee4340eaf1668684d83a0a58c36947c5def5350ad /contrib/libs/hyperscan/src/nfa/dfa_min.cpp
parentbd5ef432f5cfb1e18851381329d94665a4c22470 (diff)
downloadydb-1aeb9a455974457866f78722ad98114bafc84e8a.tar.gz
Restoring authorship annotation for Ivan Blinkov <ivan@blinkov.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/hyperscan/src/nfa/dfa_min.cpp')
-rw-r--r--contrib/libs/hyperscan/src/nfa/dfa_min.cpp230
1 files changed, 115 insertions, 115 deletions
diff --git a/contrib/libs/hyperscan/src/nfa/dfa_min.cpp b/contrib/libs/hyperscan/src/nfa/dfa_min.cpp
index 1a07e8a7d3..68b7680b78 100644
--- a/contrib/libs/hyperscan/src/nfa/dfa_min.cpp
+++ b/contrib/libs/hyperscan/src/nfa/dfa_min.cpp
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2015-2017, Intel Corporation
+ * Copyright (c) 2015-2017, Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
@@ -26,14 +26,14 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
-/**
- * \file
- * \brief Build code for DFA minimization.
- */
+/**
+ * \file
+ * \brief Build code for DFA minimization.
+ */
/**
- * /Summary of the Hopcroft minimisation algorithm/
- *
+ * /Summary of the Hopcroft minimisation algorithm/
+ *
* partition := {F, Q \ F};
* work_queue := {F};
* while (work_queue is not empty) do
@@ -59,19 +59,19 @@
#include "dfa_min.h"
#include "grey.h"
-#include "mcclellancompile_util.h"
-#include "rdfa.h"
+#include "mcclellancompile_util.h"
+#include "rdfa.h"
#include "ue2common.h"
-#include "util/container.h"
-#include "util/flat_containers.h"
-#include "util/noncopyable.h"
+#include "util/container.h"
+#include "util/flat_containers.h"
+#include "util/noncopyable.h"
#include "util/partitioned_set.h"
#include <algorithm>
#include <functional>
-#include <iterator>
+#include <iterator>
#include <map>
-#include <queue>
+#include <queue>
#include <set>
#include <vector>
@@ -82,77 +82,77 @@ namespace ue2 {
namespace {
struct hopcroft_state_info {
- explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
-
- /** \brief Mapping from symbol to a list of predecessors that transition to
- * this state on that symbol. */
- vector<vector<dstate_id_t>> prev;
+ explicit hopcroft_state_info(size_t alpha_size) : prev(alpha_size) {}
+
+ /** \brief Mapping from symbol to a list of predecessors that transition to
+ * this state on that symbol. */
+ vector<vector<dstate_id_t>> prev;
};
-struct HopcroftInfo : noncopyable {
- size_t alpha_size; //!< Size of DFA alphabet.
- queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
- partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
- vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
+struct HopcroftInfo : noncopyable {
+ size_t alpha_size; //!< Size of DFA alphabet.
+ queue<size_t> work_queue; //!< Hopcroft work queue of partition indices.
+ partitioned_set<dstate_id_t> partition; //!< Partition set of DFA states.
+ vector<hopcroft_state_info> states; //!< Pre-calculated state info (preds)
- explicit HopcroftInfo(const raw_dfa &rdfa);
+ explicit HopcroftInfo(const raw_dfa &rdfa);
};
-} // namespace
+} // namespace
/**
- * \brief Create an initial partitioning and work_queue.
+ * \brief Create an initial partitioning and work_queue.
*
- * Initial partition contains {accepting states..., Non-accepting states}
- * Initial work_queue contains accepting state subsets
+ * Initial partition contains {accepting states..., Non-accepting states}
+ * Initial work_queue contains accepting state subsets
*
- * The initial partitioning needs to distinguish between the different
- * reporting behaviours (unlike standard Hopcroft) --> more than one subset
- * possible for the accepting states.
- *
- * Look for accepting states in both reports and reports_eod.
- * Creates a map with a key(reports, reports_eod) and an id.
- * Reports of each state are searched against the map and
- * added to the corresponding id -> partition[id] and work_queue[id].
- * Non Accept states are added to partition[id+1].
+ * The initial partitioning needs to distinguish between the different
+ * reporting behaviours (unlike standard Hopcroft) --> more than one subset
+ * possible for the accepting states.
+ *
+ * Look for accepting states in both reports and reports_eod.
+ * Creates a map with a key(reports, reports_eod) and an id.
+ * Reports of each state are searched against the map and
+ * added to the corresponding id -> partition[id] and work_queue[id].
+ * Non Accept states are added to partition[id+1].
*/
static
-vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
+vector<size_t> create_map(const raw_dfa &rdfa, queue<size_t> &work_queue) {
using ReportKey = pair<flat_set<ReportID>, flat_set<ReportID>>;
map<ReportKey, size_t> subset_map;
vector<size_t> state_to_subset(rdfa.states.size(), INVALID_SUBSET);
for (size_t i = 0; i < rdfa.states.size(); i++) {
- const auto &ds = rdfa.states[i];
- if (!ds.reports.empty() || !ds.reports_eod.empty()) {
- ReportKey key(ds.reports, ds.reports_eod);
+ const auto &ds = rdfa.states[i];
+ if (!ds.reports.empty() || !ds.reports_eod.empty()) {
+ ReportKey key(ds.reports, ds.reports_eod);
if (contains(subset_map, key)) {
state_to_subset[i] = subset_map[key];
} else {
size_t sub = subset_map.size();
- subset_map.emplace(std::move(key), sub);
+ subset_map.emplace(std::move(key), sub);
state_to_subset[i] = sub;
- work_queue.push(sub);
+ work_queue.push(sub);
}
}
}
- /* Give non-accept states their own subset. */
+ /* Give non-accept states their own subset. */
size_t non_accept_sub = subset_map.size();
- replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
- non_accept_sub);
+ replace(state_to_subset.begin(), state_to_subset.end(), INVALID_SUBSET,
+ non_accept_sub);
return state_to_subset;
}
-HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
- : alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
- states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
- /* Construct predecessor lists for each state, indexed by symbol. */
- for (size_t i = 0; i < states.size(); i++) { // i is the previous state
- for (size_t sym = 0; sym < alpha_size; sym++) {
- dstate_id_t present_state = rdfa.states[i].next[sym];
- states[present_state].prev[sym].push_back(i);
+HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
+ : alpha_size(rdfa.alpha_size), partition(create_map(rdfa, work_queue)),
+ states(rdfa.states.size(), hopcroft_state_info(alpha_size)) {
+ /* Construct predecessor lists for each state, indexed by symbol. */
+ for (size_t i = 0; i < states.size(); i++) { // i is the previous state
+ for (size_t sym = 0; sym < alpha_size; sym++) {
+ dstate_id_t present_state = rdfa.states[i].next[sym];
+ states[present_state].prev[sym].push_back(i);
}
}
}
@@ -170,14 +170,14 @@ HopcroftInfo::HopcroftInfo(const raw_dfa &rdfa)
* - replace S in work_queue by the smaller of the two sets.
*/
static
-void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
- const flat_set<dstate_id_t> &splitter) {
+void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
+ const flat_set<dstate_id_t> &splitter) {
/* singleton sets cannot be split */
- if (info.partition[part_index].size() == 1) {
+ if (info.partition[part_index].size() == 1) {
return;
}
- size_t small_index = info.partition.split(part_index, splitter);
+ size_t small_index = info.partition.split(part_index, splitter);
if (small_index == INVALID_SUBSET) {
/* the set could not be split */
@@ -187,56 +187,56 @@ void split_and_replace_set(const size_t part_index, HopcroftInfo &info,
/* larger subset remains at the input subset index, if the input subset was
* already in the work queue then the larger subset will remain there. */
- info.work_queue.push(small_index);
+ info.work_queue.push(small_index);
}
/**
- * \brief Core of the Hopcroft minimisation algorithm.
+ * \brief Core of the Hopcroft minimisation algorithm.
*/
static
-void dfa_min(HopcroftInfo &info) {
- flat_set<dstate_id_t> curr, sym_preds;
+void dfa_min(HopcroftInfo &info) {
+ flat_set<dstate_id_t> curr, sym_preds;
vector<size_t> cand_subsets;
- while (!info.work_queue.empty()) {
- /* Choose and remove a set of states (curr, or A in the description
- * above) from the work queue. Note that we copy the set because the
- * partition may be split by the loop below. */
- curr.clear();
- insert(&curr, info.partition[info.work_queue.front()]);
- info.work_queue.pop();
-
- for (size_t sym = 0; sym < info.alpha_size; sym++) {
- /* Find the set of states sym_preds for which a transition on the
- * given symbol leads to a state in curr. */
- sym_preds.clear();
- for (dstate_id_t s : curr) {
- insert(&sym_preds, info.states[s].prev[sym]);
- }
-
- if (sym_preds.empty()) {
+ while (!info.work_queue.empty()) {
+ /* Choose and remove a set of states (curr, or A in the description
+ * above) from the work queue. Note that we copy the set because the
+ * partition may be split by the loop below. */
+ curr.clear();
+ insert(&curr, info.partition[info.work_queue.front()]);
+ info.work_queue.pop();
+
+ for (size_t sym = 0; sym < info.alpha_size; sym++) {
+ /* Find the set of states sym_preds for which a transition on the
+ * given symbol leads to a state in curr. */
+ sym_preds.clear();
+ for (dstate_id_t s : curr) {
+ insert(&sym_preds, info.states[s].prev[sym]);
+ }
+
+ if (sym_preds.empty()) {
continue;
}
- /* we only need to consider subsets with at least one member in
- * sym_preds for splitting */
+ /* we only need to consider subsets with at least one member in
+ * sym_preds for splitting */
cand_subsets.clear();
- info.partition.find_overlapping(sym_preds, &cand_subsets);
+ info.partition.find_overlapping(sym_preds, &cand_subsets);
for (size_t sub : cand_subsets) {
- split_and_replace_set(sub, info, sym_preds);
+ split_and_replace_set(sub, info, sym_preds);
}
}
}
}
/**
- * \brief Build the new DFA state table.
+ * \brief Build the new DFA state table.
*/
static
-void mapping_new_states(const HopcroftInfo &info,
- vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
- const size_t num_partitions = info.partition.size();
+void mapping_new_states(const HopcroftInfo &info,
+ vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
+ const size_t num_partitions = info.partition.size();
// Mapping from equiv class's first state to equiv class index.
map<dstate_id_t, size_t> ordering;
@@ -245,7 +245,7 @@ void mapping_new_states(const HopcroftInfo &info,
vector<dstate_id_t> eq_state(num_partitions);
for (size_t i = 0; i < num_partitions; i++) {
- ordering[*info.partition[i].begin()] = i;
+ ordering[*info.partition[i].begin()] = i;
}
dstate_id_t new_id = 0;
@@ -253,28 +253,28 @@ void mapping_new_states(const HopcroftInfo &info,
eq_state[m.second] = new_id++;
}
- for (size_t t = 0; t < info.partition.size(); t++) {
- for (dstate_id_t id : info.partition[t]) {
+ for (size_t t = 0; t < info.partition.size(); t++) {
+ for (dstate_id_t id : info.partition[t]) {
old_to_new[id] = eq_state[t];
}
}
vector<dstate> new_states;
new_states.reserve(num_partitions);
-
- for (const auto &m : ordering) {
- new_states.push_back(rdfa.states[m.first]);
+
+ for (const auto &m : ordering) {
+ new_states.push_back(rdfa.states[m.first]);
}
- rdfa.states = std::move(new_states);
+ rdfa.states = std::move(new_states);
}
static
-void renumber_new_states(const HopcroftInfo &info,
- const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
- for (size_t i = 0; i < info.partition.size(); i++) {
- for (size_t sym = 0; sym < info.alpha_size; sym++) {
- dstate_id_t output = rdfa.states[i].next[sym];
- rdfa.states[i].next[sym] = old_to_new[output];
+void renumber_new_states(const HopcroftInfo &info,
+ const vector<dstate_id_t> &old_to_new, raw_dfa &rdfa) {
+ for (size_t i = 0; i < info.partition.size(); i++) {
+ for (size_t sym = 0; sym < info.alpha_size; sym++) {
+ dstate_id_t output = rdfa.states[i].next[sym];
+ rdfa.states[i].next[sym] = old_to_new[output];
}
dstate_id_t dad = rdfa.states[i].daddy;
rdfa.states[i].daddy = old_to_new[dad];
@@ -285,14 +285,14 @@ void renumber_new_states(const HopcroftInfo &info,
}
static
-void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
- if (info.partition.size() == info.states.size()) {
- return;
+void new_dfa(raw_dfa &rdfa, const HopcroftInfo &info) {
+ if (info.partition.size() == info.states.size()) {
+ return;
}
-
- vector<dstate_id_t> old_to_new(info.states.size());
- mapping_new_states(info, old_to_new, rdfa);
- renumber_new_states(info, old_to_new, rdfa);
+
+ vector<dstate_id_t> old_to_new(info.states.size());
+ mapping_new_states(info, old_to_new, rdfa);
+ renumber_new_states(info, old_to_new, rdfa);
}
void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
@@ -300,16 +300,16 @@ void minimize_hopcroft(raw_dfa &rdfa, const Grey &grey) {
return;
}
- if (is_dead(rdfa)) {
- DEBUG_PRINTF("dfa is empty\n");
- }
-
+ if (is_dead(rdfa)) {
+ DEBUG_PRINTF("dfa is empty\n");
+ }
+
UNUSED const size_t states_before = rdfa.states.size();
- HopcroftInfo info(rdfa);
+ HopcroftInfo info(rdfa);
- dfa_min(info);
- new_dfa(rdfa, info);
+ dfa_min(info);
+ new_dfa(rdfa, info);
DEBUG_PRINTF("reduced from %zu to %zu states\n", states_before,
rdfa.states.size());