aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/double-conversion/bignum-dtoa.cc
diff options
context:
space:
mode:
authorAnton Samokhvalov <pg83@yandex.ru>2022-02-10 16:45:15 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:15 +0300
commit72cb13b4aff9bc9cf22e49251bc8fd143f82538f (patch)
treeda2c34829458c7d4e74bdfbdf85dff449e9e7fb8 /contrib/libs/double-conversion/bignum-dtoa.cc
parent778e51ba091dc39e7b7fcab2b9cf4dbedfb6f2b5 (diff)
downloadydb-72cb13b4aff9bc9cf22e49251bc8fd143f82538f.tar.gz
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/double-conversion/bignum-dtoa.cc')
-rw-r--r--contrib/libs/double-conversion/bignum-dtoa.cc1280
1 files changed, 640 insertions, 640 deletions
diff --git a/contrib/libs/double-conversion/bignum-dtoa.cc b/contrib/libs/double-conversion/bignum-dtoa.cc
index d99ac2aaf9..e6b43a5d6f 100644
--- a/contrib/libs/double-conversion/bignum-dtoa.cc
+++ b/contrib/libs/double-conversion/bignum-dtoa.cc
@@ -1,641 +1,641 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
#include <cmath>
-
-#include "bignum-dtoa.h"
-
-#include "bignum.h"
-#include "ieee.h"
-
-namespace double_conversion {
-
-static int NormalizedExponent(uint64_t significand, int exponent) {
- ASSERT(significand != 0);
- while ((significand & Double::kHiddenBit) == 0) {
- significand = significand << 1;
- exponent = exponent - 1;
- }
- return exponent;
-}
-
-
-// Forward declarations:
-// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
-static int EstimatePower(int exponent);
-// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
-// and denominator.
-static void InitialScaledStartValues(uint64_t significand,
- int exponent,
- bool lower_boundary_is_closer,
- int estimated_power,
- bool need_boundary_deltas,
- Bignum* numerator,
- Bignum* denominator,
- Bignum* delta_minus,
- Bignum* delta_plus);
-// Multiplies numerator/denominator so that its values lies in the range 1-10.
-// Returns decimal_point s.t.
-// v = numerator'/denominator' * 10^(decimal_point-1)
-// where numerator' and denominator' are the values of numerator and
-// denominator after the call to this function.
-static void FixupMultiply10(int estimated_power, bool is_even,
- int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus);
-// Generates digits from the left to the right and stops when the generated
-// digits yield the shortest decimal representation of v.
-static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus,
- bool is_even,
- Vector<char> buffer, int* length);
-// Generates 'requested_digits' after the decimal point.
-static void BignumToFixed(int requested_digits, int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length);
-// Generates 'count' digits of numerator/denominator.
-// Once 'count' digits have been produced rounds the result depending on the
-// remainder (remainders of exactly .5 round upwards). Might update the
-// decimal_point when rounding up (for example for 0.9999).
-static void GenerateCountedDigits(int count, int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length);
-
-
-void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
- Vector<char> buffer, int* length, int* decimal_point) {
- ASSERT(v > 0);
- ASSERT(!Double(v).IsSpecial());
- uint64_t significand;
- int exponent;
- bool lower_boundary_is_closer;
- if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
- float f = static_cast<float>(v);
- ASSERT(f == v);
- significand = Single(f).Significand();
- exponent = Single(f).Exponent();
- lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
- } else {
- significand = Double(v).Significand();
- exponent = Double(v).Exponent();
- lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
- }
- bool need_boundary_deltas =
- (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
-
- bool is_even = (significand & 1) == 0;
- int normalized_exponent = NormalizedExponent(significand, exponent);
- // estimated_power might be too low by 1.
- int estimated_power = EstimatePower(normalized_exponent);
-
- // Shortcut for Fixed.
- // The requested digits correspond to the digits after the point. If the
- // number is much too small, then there is no need in trying to get any
- // digits.
- if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
- buffer[0] = '\0';
- *length = 0;
- // Set decimal-point to -requested_digits. This is what Gay does.
- // Note that it should not have any effect anyways since the string is
- // empty.
- *decimal_point = -requested_digits;
- return;
- }
-
- Bignum numerator;
- Bignum denominator;
- Bignum delta_minus;
- Bignum delta_plus;
- // Make sure the bignum can grow large enough. The smallest double equals
- // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
- // The maximum double is 1.7976931348623157e308 which needs fewer than
- // 308*4 binary digits.
- ASSERT(Bignum::kMaxSignificantBits >= 324*4);
- InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
- estimated_power, need_boundary_deltas,
- &numerator, &denominator,
- &delta_minus, &delta_plus);
- // We now have v = (numerator / denominator) * 10^estimated_power.
- FixupMultiply10(estimated_power, is_even, decimal_point,
- &numerator, &denominator,
- &delta_minus, &delta_plus);
- // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
- // 1 <= (numerator + delta_plus) / denominator < 10
- switch (mode) {
- case BIGNUM_DTOA_SHORTEST:
- case BIGNUM_DTOA_SHORTEST_SINGLE:
- GenerateShortestDigits(&numerator, &denominator,
- &delta_minus, &delta_plus,
- is_even, buffer, length);
- break;
- case BIGNUM_DTOA_FIXED:
- BignumToFixed(requested_digits, decimal_point,
- &numerator, &denominator,
- buffer, length);
- break;
- case BIGNUM_DTOA_PRECISION:
- GenerateCountedDigits(requested_digits, decimal_point,
- &numerator, &denominator,
- buffer, length);
- break;
- default:
- UNREACHABLE();
- }
- buffer[*length] = '\0';
-}
-
-
-// The procedure starts generating digits from the left to the right and stops
-// when the generated digits yield the shortest decimal representation of v. A
-// decimal representation of v is a number lying closer to v than to any other
-// double, so it converts to v when read.
-//
-// This is true if d, the decimal representation, is between m- and m+, the
-// upper and lower boundaries. d must be strictly between them if !is_even.
-// m- := (numerator - delta_minus) / denominator
-// m+ := (numerator + delta_plus) / denominator
-//
-// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
-// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
-// will be produced. This should be the standard precondition.
-static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus,
- bool is_even,
- Vector<char> buffer, int* length) {
- // Small optimization: if delta_minus and delta_plus are the same just reuse
- // one of the two bignums.
- if (Bignum::Equal(*delta_minus, *delta_plus)) {
- delta_plus = delta_minus;
- }
- *length = 0;
- for (;;) {
- uint16_t digit;
- digit = numerator->DivideModuloIntBignum(*denominator);
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
- // digit = numerator / denominator (integer division).
- // numerator = numerator % denominator.
- buffer[(*length)++] = static_cast<char>(digit + '0');
-
- // Can we stop already?
- // If the remainder of the division is less than the distance to the lower
- // boundary we can stop. In this case we simply round down (discarding the
- // remainder).
- // Similarly we test if we can round up (using the upper boundary).
- bool in_delta_room_minus;
- bool in_delta_room_plus;
- if (is_even) {
- in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
- } else {
- in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
- }
- if (is_even) {
- in_delta_room_plus =
- Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
- } else {
- in_delta_room_plus =
- Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
- }
- if (!in_delta_room_minus && !in_delta_room_plus) {
- // Prepare for next iteration.
- numerator->Times10();
- delta_minus->Times10();
- // We optimized delta_plus to be equal to delta_minus (if they share the
- // same value). So don't multiply delta_plus if they point to the same
- // object.
- if (delta_minus != delta_plus) {
- delta_plus->Times10();
- }
- } else if (in_delta_room_minus && in_delta_room_plus) {
- // Let's see if 2*numerator < denominator.
- // If yes, then the next digit would be < 5 and we can round down.
- int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
- if (compare < 0) {
- // Remaining digits are less than .5. -> Round down (== do nothing).
- } else if (compare > 0) {
- // Remaining digits are more than .5 of denominator. -> Round up.
- // Note that the last digit could not be a '9' as otherwise the whole
- // loop would have stopped earlier.
- // We still have an assert here in case the preconditions were not
- // satisfied.
- ASSERT(buffer[(*length) - 1] != '9');
- buffer[(*length) - 1]++;
- } else {
- // Halfway case.
- // TODO(floitsch): need a way to solve half-way cases.
- // For now let's round towards even (since this is what Gay seems to
- // do).
-
- if ((buffer[(*length) - 1] - '0') % 2 == 0) {
- // Round down => Do nothing.
- } else {
- ASSERT(buffer[(*length) - 1] != '9');
- buffer[(*length) - 1]++;
- }
- }
- return;
- } else if (in_delta_room_minus) {
- // Round down (== do nothing).
- return;
- } else { // in_delta_room_plus
- // Round up.
- // Note again that the last digit could not be '9' since this would have
- // stopped the loop earlier.
- // We still have an ASSERT here, in case the preconditions were not
- // satisfied.
- ASSERT(buffer[(*length) -1] != '9');
- buffer[(*length) - 1]++;
- return;
- }
- }
-}
-
-
-// Let v = numerator / denominator < 10.
-// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
-// from left to right. Once 'count' digits have been produced we decide wether
-// to round up or down. Remainders of exactly .5 round upwards. Numbers such
-// as 9.999999 propagate a carry all the way, and change the
-// exponent (decimal_point), when rounding upwards.
-static void GenerateCountedDigits(int count, int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Vector<char> buffer, int* length) {
- ASSERT(count >= 0);
- for (int i = 0; i < count - 1; ++i) {
- uint16_t digit;
- digit = numerator->DivideModuloIntBignum(*denominator);
- ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
- // digit = numerator / denominator (integer division).
- // numerator = numerator % denominator.
- buffer[i] = static_cast<char>(digit + '0');
- // Prepare for next iteration.
- numerator->Times10();
- }
- // Generate the last digit.
- uint16_t digit;
- digit = numerator->DivideModuloIntBignum(*denominator);
- if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
- digit++;
- }
- ASSERT(digit <= 10);
- buffer[count - 1] = static_cast<char>(digit + '0');
- // Correct bad digits (in case we had a sequence of '9's). Propagate the
- // carry until we hat a non-'9' or til we reach the first digit.
- for (int i = count - 1; i > 0; --i) {
- if (buffer[i] != '0' + 10) break;
- buffer[i] = '0';
- buffer[i - 1]++;
- }
- if (buffer[0] == '0' + 10) {
- // Propagate a carry past the top place.
- buffer[0] = '1';
- (*decimal_point)++;
- }
- *length = count;
-}
-
-
-// Generates 'requested_digits' after the decimal point. It might omit
-// trailing '0's. If the input number is too small then no digits at all are
-// generated (ex.: 2 fixed digits for 0.00001).
-//
-// Input verifies: 1 <= (numerator + delta) / denominator < 10.
-static void BignumToFixed(int requested_digits, int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Vector<char>(buffer), int* length) {
- // Note that we have to look at more than just the requested_digits, since
- // a number could be rounded up. Example: v=0.5 with requested_digits=0.
- // Even though the power of v equals 0 we can't just stop here.
- if (-(*decimal_point) > requested_digits) {
- // The number is definitively too small.
- // Ex: 0.001 with requested_digits == 1.
- // Set decimal-point to -requested_digits. This is what Gay does.
- // Note that it should not have any effect anyways since the string is
- // empty.
- *decimal_point = -requested_digits;
- *length = 0;
- return;
- } else if (-(*decimal_point) == requested_digits) {
- // We only need to verify if the number rounds down or up.
- // Ex: 0.04 and 0.06 with requested_digits == 1.
- ASSERT(*decimal_point == -requested_digits);
- // Initially the fraction lies in range (1, 10]. Multiply the denominator
- // by 10 so that we can compare more easily.
- denominator->Times10();
- if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
- // If the fraction is >= 0.5 then we have to include the rounded
- // digit.
- buffer[0] = '1';
- *length = 1;
- (*decimal_point)++;
- } else {
- // Note that we caught most of similar cases earlier.
- *length = 0;
- }
- return;
- } else {
- // The requested digits correspond to the digits after the point.
- // The variable 'needed_digits' includes the digits before the point.
- int needed_digits = (*decimal_point) + requested_digits;
- GenerateCountedDigits(needed_digits, decimal_point,
- numerator, denominator,
- buffer, length);
- }
-}
-
-
-// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
-// v = f * 2^exponent and 2^52 <= f < 2^53.
-// v is hence a normalized double with the given exponent. The output is an
-// approximation for the exponent of the decimal approimation .digits * 10^k.
-//
-// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
-// Note: this property holds for v's upper boundary m+ too.
-// 10^k <= m+ < 10^k+1.
-// (see explanation below).
-//
-// Examples:
-// EstimatePower(0) => 16
-// EstimatePower(-52) => 0
-//
-// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
-static int EstimatePower(int exponent) {
- // This function estimates log10 of v where v = f*2^e (with e == exponent).
- // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
- // Note that f is bounded by its container size. Let p = 53 (the double's
- // significand size). Then 2^(p-1) <= f < 2^p.
- //
- // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
- // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
- // The computed number undershoots by less than 0.631 (when we compute log3
- // and not log10).
- //
- // Optimization: since we only need an approximated result this computation
- // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
- // not really measurable, though.
- //
- // Since we want to avoid overshooting we decrement by 1e10 so that
- // floating-point imprecisions don't affect us.
- //
- // Explanation for v's boundary m+: the computation takes advantage of
- // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
- // (even for denormals where the delta can be much more important).
-
- const double k1Log10 = 0.30102999566398114; // 1/lg(10)
-
- // For doubles len(f) == 53 (don't forget the hidden bit).
- const int kSignificandSize = Double::kSignificandSize;
- double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
- return static_cast<int>(estimate);
-}
-
-
-// See comments for InitialScaledStartValues.
-static void InitialScaledStartValuesPositiveExponent(
- uint64_t significand, int exponent,
- int estimated_power, bool need_boundary_deltas,
- Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus) {
- // A positive exponent implies a positive power.
- ASSERT(estimated_power >= 0);
- // Since the estimated_power is positive we simply multiply the denominator
- // by 10^estimated_power.
-
- // numerator = v.
- numerator->AssignUInt64(significand);
- numerator->ShiftLeft(exponent);
- // denominator = 10^estimated_power.
- denominator->AssignPowerUInt16(10, estimated_power);
-
- if (need_boundary_deltas) {
- // Introduce a common denominator so that the deltas to the boundaries are
- // integers.
- denominator->ShiftLeft(1);
- numerator->ShiftLeft(1);
- // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
- // denominator (of 2) delta_plus equals 2^e.
- delta_plus->AssignUInt16(1);
- delta_plus->ShiftLeft(exponent);
- // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
- delta_minus->AssignUInt16(1);
- delta_minus->ShiftLeft(exponent);
- }
-}
-
-
-// See comments for InitialScaledStartValues
-static void InitialScaledStartValuesNegativeExponentPositivePower(
- uint64_t significand, int exponent,
- int estimated_power, bool need_boundary_deltas,
- Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus) {
- // v = f * 2^e with e < 0, and with estimated_power >= 0.
- // This means that e is close to 0 (have a look at how estimated_power is
- // computed).
-
- // numerator = significand
- // since v = significand * 2^exponent this is equivalent to
- // numerator = v * / 2^-exponent
- numerator->AssignUInt64(significand);
- // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
- denominator->AssignPowerUInt16(10, estimated_power);
- denominator->ShiftLeft(-exponent);
-
- if (need_boundary_deltas) {
- // Introduce a common denominator so that the deltas to the boundaries are
- // integers.
- denominator->ShiftLeft(1);
- numerator->ShiftLeft(1);
- // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
- // denominator (of 2) delta_plus equals 2^e.
- // Given that the denominator already includes v's exponent the distance
- // to the boundaries is simply 1.
- delta_plus->AssignUInt16(1);
- // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
- delta_minus->AssignUInt16(1);
- }
-}
-
-
-// See comments for InitialScaledStartValues
-static void InitialScaledStartValuesNegativeExponentNegativePower(
- uint64_t significand, int exponent,
- int estimated_power, bool need_boundary_deltas,
- Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus) {
- // Instead of multiplying the denominator with 10^estimated_power we
- // multiply all values (numerator and deltas) by 10^-estimated_power.
-
- // Use numerator as temporary container for power_ten.
- Bignum* power_ten = numerator;
- power_ten->AssignPowerUInt16(10, -estimated_power);
-
- if (need_boundary_deltas) {
- // Since power_ten == numerator we must make a copy of 10^estimated_power
- // before we complete the computation of the numerator.
- // delta_plus = delta_minus = 10^estimated_power
- delta_plus->AssignBignum(*power_ten);
- delta_minus->AssignBignum(*power_ten);
- }
-
- // numerator = significand * 2 * 10^-estimated_power
- // since v = significand * 2^exponent this is equivalent to
- // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
- // Remember: numerator has been abused as power_ten. So no need to assign it
- // to itself.
- ASSERT(numerator == power_ten);
- numerator->MultiplyByUInt64(significand);
-
- // denominator = 2 * 2^-exponent with exponent < 0.
- denominator->AssignUInt16(1);
- denominator->ShiftLeft(-exponent);
-
- if (need_boundary_deltas) {
- // Introduce a common denominator so that the deltas to the boundaries are
- // integers.
- numerator->ShiftLeft(1);
- denominator->ShiftLeft(1);
- // With this shift the boundaries have their correct value, since
- // delta_plus = 10^-estimated_power, and
- // delta_minus = 10^-estimated_power.
- // These assignments have been done earlier.
- // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
- }
-}
-
-
-// Let v = significand * 2^exponent.
-// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
-// and denominator. The functions GenerateShortestDigits and
-// GenerateCountedDigits will then convert this ratio to its decimal
-// representation d, with the required accuracy.
-// Then d * 10^estimated_power is the representation of v.
-// (Note: the fraction and the estimated_power might get adjusted before
-// generating the decimal representation.)
-//
-// The initial start values consist of:
-// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
-// - a scaled (common) denominator.
-// optionally (used by GenerateShortestDigits to decide if it has the shortest
-// decimal converting back to v):
-// - v - m-: the distance to the lower boundary.
-// - m+ - v: the distance to the upper boundary.
-//
-// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
-//
-// Let ep == estimated_power, then the returned values will satisfy:
-// v / 10^ep = numerator / denominator.
-// v's boundarys m- and m+:
-// m- / 10^ep == v / 10^ep - delta_minus / denominator
-// m+ / 10^ep == v / 10^ep + delta_plus / denominator
-// Or in other words:
-// m- == v - delta_minus * 10^ep / denominator;
-// m+ == v + delta_plus * 10^ep / denominator;
-//
-// Since 10^(k-1) <= v < 10^k (with k == estimated_power)
-// or 10^k <= v < 10^(k+1)
-// we then have 0.1 <= numerator/denominator < 1
-// or 1 <= numerator/denominator < 10
-//
-// It is then easy to kickstart the digit-generation routine.
-//
-// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
-// or BIGNUM_DTOA_SHORTEST_SINGLE.
-
-static void InitialScaledStartValues(uint64_t significand,
- int exponent,
- bool lower_boundary_is_closer,
- int estimated_power,
- bool need_boundary_deltas,
- Bignum* numerator,
- Bignum* denominator,
- Bignum* delta_minus,
- Bignum* delta_plus) {
- if (exponent >= 0) {
- InitialScaledStartValuesPositiveExponent(
- significand, exponent, estimated_power, need_boundary_deltas,
- numerator, denominator, delta_minus, delta_plus);
- } else if (estimated_power >= 0) {
- InitialScaledStartValuesNegativeExponentPositivePower(
- significand, exponent, estimated_power, need_boundary_deltas,
- numerator, denominator, delta_minus, delta_plus);
- } else {
- InitialScaledStartValuesNegativeExponentNegativePower(
- significand, exponent, estimated_power, need_boundary_deltas,
- numerator, denominator, delta_minus, delta_plus);
- }
-
- if (need_boundary_deltas && lower_boundary_is_closer) {
- // The lower boundary is closer at half the distance of "normal" numbers.
- // Increase the common denominator and adapt all but the delta_minus.
- denominator->ShiftLeft(1); // *2
- numerator->ShiftLeft(1); // *2
- delta_plus->ShiftLeft(1); // *2
- }
-}
-
-
-// This routine multiplies numerator/denominator so that its values lies in the
-// range 1-10. That is after a call to this function we have:
-// 1 <= (numerator + delta_plus) /denominator < 10.
-// Let numerator the input before modification and numerator' the argument
-// after modification, then the output-parameter decimal_point is such that
-// numerator / denominator * 10^estimated_power ==
-// numerator' / denominator' * 10^(decimal_point - 1)
-// In some cases estimated_power was too low, and this is already the case. We
-// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
-// estimated_power) but do not touch the numerator or denominator.
-// Otherwise the routine multiplies the numerator and the deltas by 10.
-static void FixupMultiply10(int estimated_power, bool is_even,
- int* decimal_point,
- Bignum* numerator, Bignum* denominator,
- Bignum* delta_minus, Bignum* delta_plus) {
- bool in_range;
- if (is_even) {
- // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
- // are rounded to the closest floating-point number with even significand.
- in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
- } else {
- in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
- }
- if (in_range) {
- // Since numerator + delta_plus >= denominator we already have
- // 1 <= numerator/denominator < 10. Simply update the estimated_power.
- *decimal_point = estimated_power + 1;
- } else {
- *decimal_point = estimated_power;
- numerator->Times10();
- if (Bignum::Equal(*delta_minus, *delta_plus)) {
- delta_minus->Times10();
- delta_plus->AssignBignum(*delta_minus);
- } else {
- delta_minus->Times10();
- delta_plus->Times10();
- }
- }
-}
-
-} // namespace double_conversion
+
+#include "bignum-dtoa.h"
+
+#include "bignum.h"
+#include "ieee.h"
+
+namespace double_conversion {
+
+static int NormalizedExponent(uint64_t significand, int exponent) {
+ ASSERT(significand != 0);
+ while ((significand & Double::kHiddenBit) == 0) {
+ significand = significand << 1;
+ exponent = exponent - 1;
+ }
+ return exponent;
+}
+
+
+// Forward declarations:
+// Returns an estimation of k such that 10^(k-1) <= v < 10^k.
+static int EstimatePower(int exponent);
+// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
+// and denominator.
+static void InitialScaledStartValues(uint64_t significand,
+ int exponent,
+ bool lower_boundary_is_closer,
+ int estimated_power,
+ bool need_boundary_deltas,
+ Bignum* numerator,
+ Bignum* denominator,
+ Bignum* delta_minus,
+ Bignum* delta_plus);
+// Multiplies numerator/denominator so that its values lies in the range 1-10.
+// Returns decimal_point s.t.
+// v = numerator'/denominator' * 10^(decimal_point-1)
+// where numerator' and denominator' are the values of numerator and
+// denominator after the call to this function.
+static void FixupMultiply10(int estimated_power, bool is_even,
+ int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus);
+// Generates digits from the left to the right and stops when the generated
+// digits yield the shortest decimal representation of v.
+static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus,
+ bool is_even,
+ Vector<char> buffer, int* length);
+// Generates 'requested_digits' after the decimal point.
+static void BignumToFixed(int requested_digits, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length);
+// Generates 'count' digits of numerator/denominator.
+// Once 'count' digits have been produced rounds the result depending on the
+// remainder (remainders of exactly .5 round upwards). Might update the
+// decimal_point when rounding up (for example for 0.9999).
+static void GenerateCountedDigits(int count, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length);
+
+
+void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
+ Vector<char> buffer, int* length, int* decimal_point) {
+ ASSERT(v > 0);
+ ASSERT(!Double(v).IsSpecial());
+ uint64_t significand;
+ int exponent;
+ bool lower_boundary_is_closer;
+ if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) {
+ float f = static_cast<float>(v);
+ ASSERT(f == v);
+ significand = Single(f).Significand();
+ exponent = Single(f).Exponent();
+ lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser();
+ } else {
+ significand = Double(v).Significand();
+ exponent = Double(v).Exponent();
+ lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser();
+ }
+ bool need_boundary_deltas =
+ (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE);
+
+ bool is_even = (significand & 1) == 0;
+ int normalized_exponent = NormalizedExponent(significand, exponent);
+ // estimated_power might be too low by 1.
+ int estimated_power = EstimatePower(normalized_exponent);
+
+ // Shortcut for Fixed.
+ // The requested digits correspond to the digits after the point. If the
+ // number is much too small, then there is no need in trying to get any
+ // digits.
+ if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
+ buffer[0] = '\0';
+ *length = 0;
+ // Set decimal-point to -requested_digits. This is what Gay does.
+ // Note that it should not have any effect anyways since the string is
+ // empty.
+ *decimal_point = -requested_digits;
+ return;
+ }
+
+ Bignum numerator;
+ Bignum denominator;
+ Bignum delta_minus;
+ Bignum delta_plus;
+ // Make sure the bignum can grow large enough. The smallest double equals
+ // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
+ // The maximum double is 1.7976931348623157e308 which needs fewer than
+ // 308*4 binary digits.
+ ASSERT(Bignum::kMaxSignificantBits >= 324*4);
+ InitialScaledStartValues(significand, exponent, lower_boundary_is_closer,
+ estimated_power, need_boundary_deltas,
+ &numerator, &denominator,
+ &delta_minus, &delta_plus);
+ // We now have v = (numerator / denominator) * 10^estimated_power.
+ FixupMultiply10(estimated_power, is_even, decimal_point,
+ &numerator, &denominator,
+ &delta_minus, &delta_plus);
+ // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
+ // 1 <= (numerator + delta_plus) / denominator < 10
+ switch (mode) {
+ case BIGNUM_DTOA_SHORTEST:
+ case BIGNUM_DTOA_SHORTEST_SINGLE:
+ GenerateShortestDigits(&numerator, &denominator,
+ &delta_minus, &delta_plus,
+ is_even, buffer, length);
+ break;
+ case BIGNUM_DTOA_FIXED:
+ BignumToFixed(requested_digits, decimal_point,
+ &numerator, &denominator,
+ buffer, length);
+ break;
+ case BIGNUM_DTOA_PRECISION:
+ GenerateCountedDigits(requested_digits, decimal_point,
+ &numerator, &denominator,
+ buffer, length);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ buffer[*length] = '\0';
+}
+
+
+// The procedure starts generating digits from the left to the right and stops
+// when the generated digits yield the shortest decimal representation of v. A
+// decimal representation of v is a number lying closer to v than to any other
+// double, so it converts to v when read.
+//
+// This is true if d, the decimal representation, is between m- and m+, the
+// upper and lower boundaries. d must be strictly between them if !is_even.
+// m- := (numerator - delta_minus) / denominator
+// m+ := (numerator + delta_plus) / denominator
+//
+// Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
+// If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
+// will be produced. This should be the standard precondition.
+static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus,
+ bool is_even,
+ Vector<char> buffer, int* length) {
+ // Small optimization: if delta_minus and delta_plus are the same just reuse
+ // one of the two bignums.
+ if (Bignum::Equal(*delta_minus, *delta_plus)) {
+ delta_plus = delta_minus;
+ }
+ *length = 0;
+ for (;;) {
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ // digit = numerator / denominator (integer division).
+ // numerator = numerator % denominator.
+ buffer[(*length)++] = static_cast<char>(digit + '0');
+
+ // Can we stop already?
+ // If the remainder of the division is less than the distance to the lower
+ // boundary we can stop. In this case we simply round down (discarding the
+ // remainder).
+ // Similarly we test if we can round up (using the upper boundary).
+ bool in_delta_room_minus;
+ bool in_delta_room_plus;
+ if (is_even) {
+ in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
+ } else {
+ in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
+ }
+ if (is_even) {
+ in_delta_room_plus =
+ Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
+ } else {
+ in_delta_room_plus =
+ Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
+ }
+ if (!in_delta_room_minus && !in_delta_room_plus) {
+ // Prepare for next iteration.
+ numerator->Times10();
+ delta_minus->Times10();
+ // We optimized delta_plus to be equal to delta_minus (if they share the
+ // same value). So don't multiply delta_plus if they point to the same
+ // object.
+ if (delta_minus != delta_plus) {
+ delta_plus->Times10();
+ }
+ } else if (in_delta_room_minus && in_delta_room_plus) {
+ // Let's see if 2*numerator < denominator.
+ // If yes, then the next digit would be < 5 and we can round down.
+ int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
+ if (compare < 0) {
+ // Remaining digits are less than .5. -> Round down (== do nothing).
+ } else if (compare > 0) {
+ // Remaining digits are more than .5 of denominator. -> Round up.
+ // Note that the last digit could not be a '9' as otherwise the whole
+ // loop would have stopped earlier.
+ // We still have an assert here in case the preconditions were not
+ // satisfied.
+ ASSERT(buffer[(*length) - 1] != '9');
+ buffer[(*length) - 1]++;
+ } else {
+ // Halfway case.
+ // TODO(floitsch): need a way to solve half-way cases.
+ // For now let's round towards even (since this is what Gay seems to
+ // do).
+
+ if ((buffer[(*length) - 1] - '0') % 2 == 0) {
+ // Round down => Do nothing.
+ } else {
+ ASSERT(buffer[(*length) - 1] != '9');
+ buffer[(*length) - 1]++;
+ }
+ }
+ return;
+ } else if (in_delta_room_minus) {
+ // Round down (== do nothing).
+ return;
+ } else { // in_delta_room_plus
+ // Round up.
+ // Note again that the last digit could not be '9' since this would have
+ // stopped the loop earlier.
+ // We still have an ASSERT here, in case the preconditions were not
+ // satisfied.
+ ASSERT(buffer[(*length) -1] != '9');
+ buffer[(*length) - 1]++;
+ return;
+ }
+ }
+}
+
+
+// Let v = numerator / denominator < 10.
+// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
+// from left to right. Once 'count' digits have been produced we decide wether
+// to round up or down. Remainders of exactly .5 round upwards. Numbers such
+// as 9.999999 propagate a carry all the way, and change the
+// exponent (decimal_point), when rounding upwards.
+static void GenerateCountedDigits(int count, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char> buffer, int* length) {
+ ASSERT(count >= 0);
+ for (int i = 0; i < count - 1; ++i) {
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
+ // digit = numerator / denominator (integer division).
+ // numerator = numerator % denominator.
+ buffer[i] = static_cast<char>(digit + '0');
+ // Prepare for next iteration.
+ numerator->Times10();
+ }
+ // Generate the last digit.
+ uint16_t digit;
+ digit = numerator->DivideModuloIntBignum(*denominator);
+ if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
+ digit++;
+ }
+ ASSERT(digit <= 10);
+ buffer[count - 1] = static_cast<char>(digit + '0');
+ // Correct bad digits (in case we had a sequence of '9's). Propagate the
+ // carry until we hat a non-'9' or til we reach the first digit.
+ for (int i = count - 1; i > 0; --i) {
+ if (buffer[i] != '0' + 10) break;
+ buffer[i] = '0';
+ buffer[i - 1]++;
+ }
+ if (buffer[0] == '0' + 10) {
+ // Propagate a carry past the top place.
+ buffer[0] = '1';
+ (*decimal_point)++;
+ }
+ *length = count;
+}
+
+
+// Generates 'requested_digits' after the decimal point. It might omit
+// trailing '0's. If the input number is too small then no digits at all are
+// generated (ex.: 2 fixed digits for 0.00001).
+//
+// Input verifies: 1 <= (numerator + delta) / denominator < 10.
+static void BignumToFixed(int requested_digits, int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Vector<char>(buffer), int* length) {
+ // Note that we have to look at more than just the requested_digits, since
+ // a number could be rounded up. Example: v=0.5 with requested_digits=0.
+ // Even though the power of v equals 0 we can't just stop here.
+ if (-(*decimal_point) > requested_digits) {
+ // The number is definitively too small.
+ // Ex: 0.001 with requested_digits == 1.
+ // Set decimal-point to -requested_digits. This is what Gay does.
+ // Note that it should not have any effect anyways since the string is
+ // empty.
+ *decimal_point = -requested_digits;
+ *length = 0;
+ return;
+ } else if (-(*decimal_point) == requested_digits) {
+ // We only need to verify if the number rounds down or up.
+ // Ex: 0.04 and 0.06 with requested_digits == 1.
+ ASSERT(*decimal_point == -requested_digits);
+ // Initially the fraction lies in range (1, 10]. Multiply the denominator
+ // by 10 so that we can compare more easily.
+ denominator->Times10();
+ if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
+ // If the fraction is >= 0.5 then we have to include the rounded
+ // digit.
+ buffer[0] = '1';
+ *length = 1;
+ (*decimal_point)++;
+ } else {
+ // Note that we caught most of similar cases earlier.
+ *length = 0;
+ }
+ return;
+ } else {
+ // The requested digits correspond to the digits after the point.
+ // The variable 'needed_digits' includes the digits before the point.
+ int needed_digits = (*decimal_point) + requested_digits;
+ GenerateCountedDigits(needed_digits, decimal_point,
+ numerator, denominator,
+ buffer, length);
+ }
+}
+
+
+// Returns an estimation of k such that 10^(k-1) <= v < 10^k where
+// v = f * 2^exponent and 2^52 <= f < 2^53.
+// v is hence a normalized double with the given exponent. The output is an
+// approximation for the exponent of the decimal approimation .digits * 10^k.
+//
+// The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
+// Note: this property holds for v's upper boundary m+ too.
+// 10^k <= m+ < 10^k+1.
+// (see explanation below).
+//
+// Examples:
+// EstimatePower(0) => 16
+// EstimatePower(-52) => 0
+//
+// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
+static int EstimatePower(int exponent) {
+ // This function estimates log10 of v where v = f*2^e (with e == exponent).
+ // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
+ // Note that f is bounded by its container size. Let p = 53 (the double's
+ // significand size). Then 2^(p-1) <= f < 2^p.
+ //
+ // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
+ // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
+ // The computed number undershoots by less than 0.631 (when we compute log3
+ // and not log10).
+ //
+ // Optimization: since we only need an approximated result this computation
+ // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
+ // not really measurable, though.
+ //
+ // Since we want to avoid overshooting we decrement by 1e10 so that
+ // floating-point imprecisions don't affect us.
+ //
+ // Explanation for v's boundary m+: the computation takes advantage of
+ // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
+ // (even for denormals where the delta can be much more important).
+
+ const double k1Log10 = 0.30102999566398114; // 1/lg(10)
+
+ // For doubles len(f) == 53 (don't forget the hidden bit).
+ const int kSignificandSize = Double::kSignificandSize;
+ double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
+ return static_cast<int>(estimate);
+}
+
+
+// See comments for InitialScaledStartValues.
+static void InitialScaledStartValuesPositiveExponent(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // A positive exponent implies a positive power.
+ ASSERT(estimated_power >= 0);
+ // Since the estimated_power is positive we simply multiply the denominator
+ // by 10^estimated_power.
+
+ // numerator = v.
+ numerator->AssignUInt64(significand);
+ numerator->ShiftLeft(exponent);
+ // denominator = 10^estimated_power.
+ denominator->AssignPowerUInt16(10, estimated_power);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ denominator->ShiftLeft(1);
+ numerator->ShiftLeft(1);
+ // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
+ // denominator (of 2) delta_plus equals 2^e.
+ delta_plus->AssignUInt16(1);
+ delta_plus->ShiftLeft(exponent);
+ // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
+ delta_minus->AssignUInt16(1);
+ delta_minus->ShiftLeft(exponent);
+ }
+}
+
+
+// See comments for InitialScaledStartValues
+static void InitialScaledStartValuesNegativeExponentPositivePower(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // v = f * 2^e with e < 0, and with estimated_power >= 0.
+ // This means that e is close to 0 (have a look at how estimated_power is
+ // computed).
+
+ // numerator = significand
+ // since v = significand * 2^exponent this is equivalent to
+ // numerator = v * / 2^-exponent
+ numerator->AssignUInt64(significand);
+ // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
+ denominator->AssignPowerUInt16(10, estimated_power);
+ denominator->ShiftLeft(-exponent);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ denominator->ShiftLeft(1);
+ numerator->ShiftLeft(1);
+ // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
+ // denominator (of 2) delta_plus equals 2^e.
+ // Given that the denominator already includes v's exponent the distance
+ // to the boundaries is simply 1.
+ delta_plus->AssignUInt16(1);
+ // Same for delta_minus. The adjustments if f == 2^p-1 are done later.
+ delta_minus->AssignUInt16(1);
+ }
+}
+
+
+// See comments for InitialScaledStartValues
+static void InitialScaledStartValuesNegativeExponentNegativePower(
+ uint64_t significand, int exponent,
+ int estimated_power, bool need_boundary_deltas,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ // Instead of multiplying the denominator with 10^estimated_power we
+ // multiply all values (numerator and deltas) by 10^-estimated_power.
+
+ // Use numerator as temporary container for power_ten.
+ Bignum* power_ten = numerator;
+ power_ten->AssignPowerUInt16(10, -estimated_power);
+
+ if (need_boundary_deltas) {
+ // Since power_ten == numerator we must make a copy of 10^estimated_power
+ // before we complete the computation of the numerator.
+ // delta_plus = delta_minus = 10^estimated_power
+ delta_plus->AssignBignum(*power_ten);
+ delta_minus->AssignBignum(*power_ten);
+ }
+
+ // numerator = significand * 2 * 10^-estimated_power
+ // since v = significand * 2^exponent this is equivalent to
+ // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
+ // Remember: numerator has been abused as power_ten. So no need to assign it
+ // to itself.
+ ASSERT(numerator == power_ten);
+ numerator->MultiplyByUInt64(significand);
+
+ // denominator = 2 * 2^-exponent with exponent < 0.
+ denominator->AssignUInt16(1);
+ denominator->ShiftLeft(-exponent);
+
+ if (need_boundary_deltas) {
+ // Introduce a common denominator so that the deltas to the boundaries are
+ // integers.
+ numerator->ShiftLeft(1);
+ denominator->ShiftLeft(1);
+ // With this shift the boundaries have their correct value, since
+ // delta_plus = 10^-estimated_power, and
+ // delta_minus = 10^-estimated_power.
+ // These assignments have been done earlier.
+ // The adjustments if f == 2^p-1 (lower boundary is closer) are done later.
+ }
+}
+
+
+// Let v = significand * 2^exponent.
+// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
+// and denominator. The functions GenerateShortestDigits and
+// GenerateCountedDigits will then convert this ratio to its decimal
+// representation d, with the required accuracy.
+// Then d * 10^estimated_power is the representation of v.
+// (Note: the fraction and the estimated_power might get adjusted before
+// generating the decimal representation.)
+//
+// The initial start values consist of:
+// - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
+// - a scaled (common) denominator.
+// optionally (used by GenerateShortestDigits to decide if it has the shortest
+// decimal converting back to v):
+// - v - m-: the distance to the lower boundary.
+// - m+ - v: the distance to the upper boundary.
+//
+// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
+//
+// Let ep == estimated_power, then the returned values will satisfy:
+// v / 10^ep = numerator / denominator.
+// v's boundarys m- and m+:
+// m- / 10^ep == v / 10^ep - delta_minus / denominator
+// m+ / 10^ep == v / 10^ep + delta_plus / denominator
+// Or in other words:
+// m- == v - delta_minus * 10^ep / denominator;
+// m+ == v + delta_plus * 10^ep / denominator;
+//
+// Since 10^(k-1) <= v < 10^k (with k == estimated_power)
+// or 10^k <= v < 10^(k+1)
+// we then have 0.1 <= numerator/denominator < 1
+// or 1 <= numerator/denominator < 10
+//
+// It is then easy to kickstart the digit-generation routine.
+//
+// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST
+// or BIGNUM_DTOA_SHORTEST_SINGLE.
+
+static void InitialScaledStartValues(uint64_t significand,
+ int exponent,
+ bool lower_boundary_is_closer,
+ int estimated_power,
+ bool need_boundary_deltas,
+ Bignum* numerator,
+ Bignum* denominator,
+ Bignum* delta_minus,
+ Bignum* delta_plus) {
+ if (exponent >= 0) {
+ InitialScaledStartValuesPositiveExponent(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ } else if (estimated_power >= 0) {
+ InitialScaledStartValuesNegativeExponentPositivePower(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ } else {
+ InitialScaledStartValuesNegativeExponentNegativePower(
+ significand, exponent, estimated_power, need_boundary_deltas,
+ numerator, denominator, delta_minus, delta_plus);
+ }
+
+ if (need_boundary_deltas && lower_boundary_is_closer) {
+ // The lower boundary is closer at half the distance of "normal" numbers.
+ // Increase the common denominator and adapt all but the delta_minus.
+ denominator->ShiftLeft(1); // *2
+ numerator->ShiftLeft(1); // *2
+ delta_plus->ShiftLeft(1); // *2
+ }
+}
+
+
+// This routine multiplies numerator/denominator so that its values lies in the
+// range 1-10. That is after a call to this function we have:
+// 1 <= (numerator + delta_plus) /denominator < 10.
+// Let numerator the input before modification and numerator' the argument
+// after modification, then the output-parameter decimal_point is such that
+// numerator / denominator * 10^estimated_power ==
+// numerator' / denominator' * 10^(decimal_point - 1)
+// In some cases estimated_power was too low, and this is already the case. We
+// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
+// estimated_power) but do not touch the numerator or denominator.
+// Otherwise the routine multiplies the numerator and the deltas by 10.
+static void FixupMultiply10(int estimated_power, bool is_even,
+ int* decimal_point,
+ Bignum* numerator, Bignum* denominator,
+ Bignum* delta_minus, Bignum* delta_plus) {
+ bool in_range;
+ if (is_even) {
+ // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
+ // are rounded to the closest floating-point number with even significand.
+ in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
+ } else {
+ in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
+ }
+ if (in_range) {
+ // Since numerator + delta_plus >= denominator we already have
+ // 1 <= numerator/denominator < 10. Simply update the estimated_power.
+ *decimal_point = estimated_power + 1;
+ } else {
+ *decimal_point = estimated_power;
+ numerator->Times10();
+ if (Bignum::Equal(*delta_minus, *delta_plus)) {
+ delta_minus->Times10();
+ delta_plus->AssignBignum(*delta_minus);
+ } else {
+ delta_minus->Times10();
+ delta_plus->Times10();
+ }
+ }
+}
+
+} // namespace double_conversion