aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/builtins/fp_div_impl.inc
diff options
context:
space:
mode:
authorMaxim Yurchuk <maxim-yurchuk@ydb.tech>2024-10-18 20:31:38 +0300
committerGitHub <noreply@github.com>2024-10-18 20:31:38 +0300
commit2a74bac2d2d3bccb4e10120f1ead805640ec9dd0 (patch)
tree047e4818ced5aaf73f58517629e5260b5291f9f0 /contrib/libs/cxxsupp/builtins/fp_div_impl.inc
parent2d9656823e9521d8c29ea4c9a1d0eab78391abfc (diff)
parent3d834a1923bbf9403cd4a448e7f32b670aa4124f (diff)
downloadydb-2a74bac2d2d3bccb4e10120f1ead805640ec9dd0.tar.gz
Merge pull request #10502 from ydb-platform/mergelibs-241016-1210
Library import 241016-1210
Diffstat (limited to 'contrib/libs/cxxsupp/builtins/fp_div_impl.inc')
-rw-r--r--contrib/libs/cxxsupp/builtins/fp_div_impl.inc419
1 files changed, 419 insertions, 0 deletions
diff --git a/contrib/libs/cxxsupp/builtins/fp_div_impl.inc b/contrib/libs/cxxsupp/builtins/fp_div_impl.inc
new file mode 100644
index 0000000000..29bcd1920e
--- /dev/null
+++ b/contrib/libs/cxxsupp/builtins/fp_div_impl.inc
@@ -0,0 +1,419 @@
+//===-- fp_div_impl.inc - Floating point division -----------------*- C -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements soft-float division with the IEEE-754 default
+// rounding (to nearest, ties to even).
+//
+//===----------------------------------------------------------------------===//
+
+#include "fp_lib.h"
+
+// The __divXf3__ function implements Newton-Raphson floating point division.
+// It uses 3 iterations for float32, 4 for float64 and 5 for float128,
+// respectively. Due to number of significant bits being roughly doubled
+// every iteration, the two modes are supported: N full-width iterations (as
+// it is done for float32 by default) and (N-1) half-width iteration plus one
+// final full-width iteration. It is expected that half-width integer
+// operations (w.r.t rep_t size) can be performed faster for some hardware but
+// they require error estimations to be computed separately due to larger
+// computational errors caused by truncating intermediate results.
+
+// Half the bit-size of rep_t
+#define HW (typeWidth / 2)
+// rep_t-sized bitmask with lower half of bits set to ones
+#define loMask (REP_C(-1) >> HW)
+
+#if NUMBER_OF_FULL_ITERATIONS < 1
+#error At least one full iteration is required
+#endif
+
+static __inline fp_t __divXf3__(fp_t a, fp_t b) {
+
+ const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+ const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+ const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+
+ rep_t aSignificand = toRep(a) & significandMask;
+ rep_t bSignificand = toRep(b) & significandMask;
+ int scale = 0;
+
+ // Detect if a or b is zero, denormal, infinity, or NaN.
+ if (aExponent - 1U >= maxExponent - 1U ||
+ bExponent - 1U >= maxExponent - 1U) {
+
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+
+ // NaN / anything = qNaN
+ if (aAbs > infRep)
+ return fromRep(toRep(a) | quietBit);
+ // anything / NaN = qNaN
+ if (bAbs > infRep)
+ return fromRep(toRep(b) | quietBit);
+
+ if (aAbs == infRep) {
+ // infinity / infinity = NaN
+ if (bAbs == infRep)
+ return fromRep(qnanRep);
+ // infinity / anything else = +/- infinity
+ else
+ return fromRep(aAbs | quotientSign);
+ }
+
+ // anything else / infinity = +/- 0
+ if (bAbs == infRep)
+ return fromRep(quotientSign);
+
+ if (!aAbs) {
+ // zero / zero = NaN
+ if (!bAbs)
+ return fromRep(qnanRep);
+ // zero / anything else = +/- zero
+ else
+ return fromRep(quotientSign);
+ }
+ // anything else / zero = +/- infinity
+ if (!bAbs)
+ return fromRep(infRep | quotientSign);
+
+ // One or both of a or b is denormal. The other (if applicable) is a
+ // normal number. Renormalize one or both of a and b, and set scale to
+ // include the necessary exponent adjustment.
+ if (aAbs < implicitBit)
+ scale += normalize(&aSignificand);
+ if (bAbs < implicitBit)
+ scale -= normalize(&bSignificand);
+ }
+
+ // Set the implicit significand bit. If we fell through from the
+ // denormal path it was already set by normalize( ), but setting it twice
+ // won't hurt anything.
+ aSignificand |= implicitBit;
+ bSignificand |= implicitBit;
+
+ int writtenExponent = (aExponent - bExponent + scale) + exponentBias;
+
+ const rep_t b_UQ1 = bSignificand << (typeWidth - significandBits - 1);
+
+ // Align the significand of b as a UQ1.(n-1) fixed-point number in the range
+ // [1.0, 2.0) and get a UQ0.n approximate reciprocal using a small minimax
+ // polynomial approximation: x0 = 3/4 + 1/sqrt(2) - b/2.
+ // The max error for this approximation is achieved at endpoints, so
+ // abs(x0(b) - 1/b) <= abs(x0(1) - 1/1) = 3/4 - 1/sqrt(2) = 0.04289...,
+ // which is about 4.5 bits.
+ // The initial approximation is between x0(1.0) = 0.9571... and x0(2.0) = 0.4571...
+
+ // Then, refine the reciprocal estimate using a quadratically converging
+ // Newton-Raphson iteration:
+ // x_{n+1} = x_n * (2 - x_n * b)
+ //
+ // Let b be the original divisor considered "in infinite precision" and
+ // obtained from IEEE754 representation of function argument (with the
+ // implicit bit set). Corresponds to rep_t-sized b_UQ1 represented in
+ // UQ1.(W-1).
+ //
+ // Let b_hw be an infinitely precise number obtained from the highest (HW-1)
+ // bits of divisor significand (with the implicit bit set). Corresponds to
+ // half_rep_t-sized b_UQ1_hw represented in UQ1.(HW-1) that is a **truncated**
+ // version of b_UQ1.
+ //
+ // Let e_n := x_n - 1/b_hw
+ // E_n := x_n - 1/b
+ // abs(E_n) <= abs(e_n) + (1/b_hw - 1/b)
+ // = abs(e_n) + (b - b_hw) / (b*b_hw)
+ // <= abs(e_n) + 2 * 2^-HW
+
+ // rep_t-sized iterations may be slower than the corresponding half-width
+ // variant depending on the handware and whether single/double/quad precision
+ // is selected.
+ // NB: Using half-width iterations increases computation errors due to
+ // rounding, so error estimations have to be computed taking the selected
+ // mode into account!
+#if NUMBER_OF_HALF_ITERATIONS > 0
+ // Starting with (n-1) half-width iterations
+ const half_rep_t b_UQ1_hw = bSignificand >> (significandBits + 1 - HW);
+
+ // C is (3/4 + 1/sqrt(2)) - 1 truncated to W0 fractional bits as UQ0.HW
+ // with W0 being either 16 or 32 and W0 <= HW.
+ // That is, C is the aforementioned 3/4 + 1/sqrt(2) constant (from which
+ // b/2 is subtracted to obtain x0) wrapped to [0, 1) range.
+#if defined(SINGLE_PRECISION)
+ // Use 16-bit initial estimation in case we are using half-width iterations
+ // for float32 division. This is expected to be useful for some 16-bit
+ // targets. Not used by default as it requires performing more work during
+ // rounding and would hardly help on regular 32- or 64-bit targets.
+ const half_rep_t C_hw = HALF_REP_C(0x7504);
+#else
+ // HW is at least 32. Shifting into the highest bits if needed.
+ const half_rep_t C_hw = HALF_REP_C(0x7504F333) << (HW - 32);
+#endif
+
+ // b >= 1, thus an upper bound for 3/4 + 1/sqrt(2) - b/2 is about 0.9572,
+ // so x0 fits to UQ0.HW without wrapping.
+ half_rep_t x_UQ0_hw = C_hw - (b_UQ1_hw /* exact b_hw/2 as UQ0.HW */);
+ // An e_0 error is comprised of errors due to
+ // * x0 being an inherently imprecise first approximation of 1/b_hw
+ // * C_hw being some (irrational) number **truncated** to W0 bits
+ // Please note that e_0 is calculated against the infinitely precise
+ // reciprocal of b_hw (that is, **truncated** version of b).
+ //
+ // e_0 <= 3/4 - 1/sqrt(2) + 2^-W0
+
+ // By construction, 1 <= b < 2
+ // f(x) = x * (2 - b*x) = 2*x - b*x^2
+ // f'(x) = 2 * (1 - b*x)
+ //
+ // On the [0, 1] interval, f(0) = 0,
+ // then it increses until f(1/b) = 1 / b, maximum on (0, 1),
+ // then it decreses to f(1) = 2 - b
+ //
+ // Let g(x) = x - f(x) = b*x^2 - x.
+ // On (0, 1/b), g(x) < 0 <=> f(x) > x
+ // On (1/b, 1], g(x) > 0 <=> f(x) < x
+ //
+ // For half-width iterations, b_hw is used instead of b.
+ REPEAT_N_TIMES(NUMBER_OF_HALF_ITERATIONS, {
+ // corr_UQ1_hw can be **larger** than 2 - b_hw*x by at most 1*Ulp
+ // of corr_UQ1_hw.
+ // "0.0 - (...)" is equivalent to "2.0 - (...)" in UQ1.(HW-1).
+ // On the other hand, corr_UQ1_hw should not overflow from 2.0 to 0.0 provided
+ // no overflow occurred earlier: ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW) is
+ // expected to be strictly positive because b_UQ1_hw has its highest bit set
+ // and x_UQ0_hw should be rather large (it converges to 1/2 < 1/b_hw <= 1).
+ half_rep_t corr_UQ1_hw = 0 - ((rep_t)x_UQ0_hw * b_UQ1_hw >> HW);
+
+ // Now, we should multiply UQ0.HW and UQ1.(HW-1) numbers, naturally
+ // obtaining an UQ1.(HW-1) number and proving its highest bit could be
+ // considered to be 0 to be able to represent it in UQ0.HW.
+ // From the above analysis of f(x), if corr_UQ1_hw would be represented
+ // without any intermediate loss of precision (that is, in twice_rep_t)
+ // x_UQ0_hw could be at most [1.]000... if b_hw is exactly 1.0 and strictly
+ // less otherwise. On the other hand, to obtain [1.]000..., one have to pass
+ // 1/b_hw == 1.0 to f(x), so this cannot occur at all without overflow (due
+ // to 1.0 being not representable as UQ0.HW).
+ // The fact corr_UQ1_hw was virtually round up (due to result of
+ // multiplication being **first** truncated, then negated - to improve
+ // error estimations) can increase x_UQ0_hw by up to 2*Ulp of x_UQ0_hw.
+ x_UQ0_hw = (rep_t)x_UQ0_hw * corr_UQ1_hw >> (HW - 1);
+ // Now, either no overflow occurred or x_UQ0_hw is 0 or 1 in its half_rep_t
+ // representation. In the latter case, x_UQ0_hw will be either 0 or 1 after
+ // any number of iterations, so just subtract 2 from the reciprocal
+ // approximation after last iteration.
+
+ // In infinite precision, with 0 <= eps1, eps2 <= U = 2^-HW:
+ // corr_UQ1_hw = 2 - (1/b_hw + e_n) * b_hw + 2*eps1
+ // = 1 - e_n * b_hw + 2*eps1
+ // x_UQ0_hw = (1/b_hw + e_n) * (1 - e_n*b_hw + 2*eps1) - eps2
+ // = 1/b_hw - e_n + 2*eps1/b_hw + e_n - e_n^2*b_hw + 2*e_n*eps1 - eps2
+ // = 1/b_hw + 2*eps1/b_hw - e_n^2*b_hw + 2*e_n*eps1 - eps2
+ // e_{n+1} = -e_n^2*b_hw + 2*eps1/b_hw + 2*e_n*eps1 - eps2
+ // = 2*e_n*eps1 - (e_n^2*b_hw + eps2) + 2*eps1/b_hw
+ // \------ >0 -------/ \-- >0 ---/
+ // abs(e_{n+1}) <= 2*abs(e_n)*U + max(2*e_n^2 + U, 2 * U)
+ })
+ // For initial half-width iterations, U = 2^-HW
+ // Let abs(e_n) <= u_n * U,
+ // then abs(e_{n+1}) <= 2 * u_n * U^2 + max(2 * u_n^2 * U^2 + U, 2 * U)
+ // u_{n+1} <= 2 * u_n * U + max(2 * u_n^2 * U + 1, 2)
+
+ // Account for possible overflow (see above). For an overflow to occur for the
+ // first time, for "ideal" corr_UQ1_hw (that is, without intermediate
+ // truncation), the result of x_UQ0_hw * corr_UQ1_hw should be either maximum
+ // value representable in UQ0.HW or less by 1. This means that 1/b_hw have to
+ // be not below that value (see g(x) above), so it is safe to decrement just
+ // once after the final iteration. On the other hand, an effective value of
+ // divisor changes after this point (from b_hw to b), so adjust here.
+ x_UQ0_hw -= 1U;
+ rep_t x_UQ0 = (rep_t)x_UQ0_hw << HW;
+ x_UQ0 -= 1U;
+
+#else
+ // C is (3/4 + 1/sqrt(2)) - 1 truncated to 32 fractional bits as UQ0.n
+ const rep_t C = REP_C(0x7504F333) << (typeWidth - 32);
+ rep_t x_UQ0 = C - b_UQ1;
+ // E_0 <= 3/4 - 1/sqrt(2) + 2 * 2^-32
+#endif
+
+ // Error estimations for full-precision iterations are calculated just
+ // as above, but with U := 2^-W and taking extra decrementing into account.
+ // We need at least one such iteration.
+
+#ifdef USE_NATIVE_FULL_ITERATIONS
+ REPEAT_N_TIMES(NUMBER_OF_FULL_ITERATIONS, {
+ rep_t corr_UQ1 = 0 - ((twice_rep_t)x_UQ0 * b_UQ1 >> typeWidth);
+ x_UQ0 = (twice_rep_t)x_UQ0 * corr_UQ1 >> (typeWidth - 1);
+ })
+#else
+#if NUMBER_OF_FULL_ITERATIONS != 1
+#error Only a single emulated full iteration is supported
+#endif
+#if !(NUMBER_OF_HALF_ITERATIONS > 0)
+ // Cannot normally reach here: only one full-width iteration is requested and
+ // the total number of iterations should be at least 3 even for float32.
+#error Check NUMBER_OF_HALF_ITERATIONS, NUMBER_OF_FULL_ITERATIONS and USE_NATIVE_FULL_ITERATIONS.
+#endif
+ // Simulating operations on a twice_rep_t to perform a single final full-width
+ // iteration. Using ad-hoc multiplication implementations to take advantage
+ // of particular structure of operands.
+ rep_t blo = b_UQ1 & loMask;
+ // x_UQ0 = x_UQ0_hw * 2^HW - 1
+ // x_UQ0 * b_UQ1 = (x_UQ0_hw * 2^HW) * (b_UQ1_hw * 2^HW + blo) - b_UQ1
+ //
+ // <--- higher half ---><--- lower half --->
+ // [x_UQ0_hw * b_UQ1_hw]
+ // + [ x_UQ0_hw * blo ]
+ // - [ b_UQ1 ]
+ // = [ result ][.... discarded ...]
+ rep_t corr_UQ1 = 0U - ( (rep_t)x_UQ0_hw * b_UQ1_hw
+ + ((rep_t)x_UQ0_hw * blo >> HW)
+ - REP_C(1)); // account for *possible* carry
+ rep_t lo_corr = corr_UQ1 & loMask;
+ rep_t hi_corr = corr_UQ1 >> HW;
+ // x_UQ0 * corr_UQ1 = (x_UQ0_hw * 2^HW) * (hi_corr * 2^HW + lo_corr) - corr_UQ1
+ x_UQ0 = ((rep_t)x_UQ0_hw * hi_corr << 1)
+ + ((rep_t)x_UQ0_hw * lo_corr >> (HW - 1))
+ - REP_C(2); // 1 to account for the highest bit of corr_UQ1 can be 1
+ // 1 to account for possible carry
+ // Just like the case of half-width iterations but with possibility
+ // of overflowing by one extra Ulp of x_UQ0.
+ x_UQ0 -= 1U;
+ // ... and then traditional fixup by 2 should work
+
+ // On error estimation:
+ // abs(E_{N-1}) <= (u_{N-1} + 2 /* due to conversion e_n -> E_n */) * 2^-HW
+ // + (2^-HW + 2^-W))
+ // abs(E_{N-1}) <= (u_{N-1} + 3.01) * 2^-HW
+
+ // Then like for the half-width iterations:
+ // With 0 <= eps1, eps2 < 2^-W
+ // E_N = 4 * E_{N-1} * eps1 - (E_{N-1}^2 * b + 4 * eps2) + 4 * eps1 / b
+ // abs(E_N) <= 2^-W * [ 4 * abs(E_{N-1}) + max(2 * abs(E_{N-1})^2 * 2^W + 4, 8)) ]
+ // abs(E_N) <= 2^-W * [ 4 * (u_{N-1} + 3.01) * 2^-HW + max(4 + 2 * (u_{N-1} + 3.01)^2, 8) ]
+#endif
+
+ // Finally, account for possible overflow, as explained above.
+ x_UQ0 -= 2U;
+
+ // u_n for different precisions (with N-1 half-width iterations):
+ // W0 is the precision of C
+ // u_0 = (3/4 - 1/sqrt(2) + 2^-W0) * 2^HW
+
+ // Estimated with bc:
+ // define half1(un) { return 2.0 * (un + un^2) / 2.0^hw + 1.0; }
+ // define half2(un) { return 2.0 * un / 2.0^hw + 2.0; }
+ // define full1(un) { return 4.0 * (un + 3.01) / 2.0^hw + 2.0 * (un + 3.01)^2 + 4.0; }
+ // define full2(un) { return 4.0 * (un + 3.01) / 2.0^hw + 8.0; }
+
+ // | f32 (0 + 3) | f32 (2 + 1) | f64 (3 + 1) | f128 (4 + 1)
+ // u_0 | < 184224974 | < 2812.1 | < 184224974 | < 791240234244348797
+ // u_1 | < 15804007 | < 242.7 | < 15804007 | < 67877681371350440
+ // u_2 | < 116308 | < 2.81 | < 116308 | < 499533100252317
+ // u_3 | < 7.31 | | < 7.31 | < 27054456580
+ // u_4 | | | | < 80.4
+ // Final (U_N) | same as u_3 | < 72 | < 218 | < 13920
+
+ // Add 2 to U_N due to final decrement.
+
+#if defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 2 && NUMBER_OF_FULL_ITERATIONS == 1
+#define RECIPROCAL_PRECISION REP_C(74)
+#elif defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 0 && NUMBER_OF_FULL_ITERATIONS == 3
+#define RECIPROCAL_PRECISION REP_C(10)
+#elif defined(DOUBLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 3 && NUMBER_OF_FULL_ITERATIONS == 1
+#define RECIPROCAL_PRECISION REP_C(220)
+#elif defined(QUAD_PRECISION) && NUMBER_OF_HALF_ITERATIONS == 4 && NUMBER_OF_FULL_ITERATIONS == 1
+#define RECIPROCAL_PRECISION REP_C(13922)
+#else
+#error Invalid number of iterations
+#endif
+
+ // Suppose 1/b - P * 2^-W < x < 1/b + P * 2^-W
+ x_UQ0 -= RECIPROCAL_PRECISION;
+ // Now 1/b - (2*P) * 2^-W < x < 1/b
+ // FIXME Is x_UQ0 still >= 0.5?
+
+ rep_t quotient_UQ1, dummy;
+ wideMultiply(x_UQ0, aSignificand << 1, &quotient_UQ1, &dummy);
+ // Now, a/b - 4*P * 2^-W < q < a/b for q=<quotient_UQ1:dummy> in UQ1.(SB+1+W).
+
+ // quotient_UQ1 is in [0.5, 2.0) as UQ1.(SB+1),
+ // adjust it to be in [1.0, 2.0) as UQ1.SB.
+ rep_t residualLo;
+ if (quotient_UQ1 < (implicitBit << 1)) {
+ // Highest bit is 0, so just reinterpret quotient_UQ1 as UQ1.SB,
+ // effectively doubling its value as well as its error estimation.
+ residualLo = (aSignificand << (significandBits + 1)) - quotient_UQ1 * bSignificand;
+ writtenExponent -= 1;
+ aSignificand <<= 1;
+ } else {
+ // Highest bit is 1 (the UQ1.(SB+1) value is in [1, 2)), convert it
+ // to UQ1.SB by right shifting by 1. Least significant bit is omitted.
+ quotient_UQ1 >>= 1;
+ residualLo = (aSignificand << significandBits) - quotient_UQ1 * bSignificand;
+ }
+ // NB: residualLo is calculated above for the normal result case.
+ // It is re-computed on denormal path that is expected to be not so
+ // performance-sensitive.
+
+ // Now, q cannot be greater than a/b and can differ by at most 8*P * 2^-W + 2^-SB
+ // Each NextAfter() increments the floating point value by at least 2^-SB
+ // (more, if exponent was incremented).
+ // Different cases (<---> is of 2^-SB length, * = a/b that is shown as a midpoint):
+ // q
+ // | | * | | | | |
+ // <---> 2^t
+ // | | | | | * | |
+ // q
+ // To require at most one NextAfter(), an error should be less than 1.5 * 2^-SB.
+ // (8*P) * 2^-W + 2^-SB < 1.5 * 2^-SB
+ // (8*P) * 2^-W < 0.5 * 2^-SB
+ // P < 2^(W-4-SB)
+ // Generally, for at most R NextAfter() to be enough,
+ // P < (2*R - 1) * 2^(W-4-SB)
+ // For f32 (0+3): 10 < 32 (OK)
+ // For f32 (2+1): 32 < 74 < 32 * 3, so two NextAfter() are required
+ // For f64: 220 < 256 (OK)
+ // For f128: 4096 * 3 < 13922 < 4096 * 5 (three NextAfter() are required)
+
+ // If we have overflowed the exponent, return infinity
+ if (writtenExponent >= maxExponent)
+ return fromRep(infRep | quotientSign);
+
+ // Now, quotient_UQ1_SB <= the correctly-rounded result
+ // and may need taking NextAfter() up to 3 times (see error estimates above)
+ // r = a - b * q
+ rep_t absResult;
+ if (writtenExponent > 0) {
+ // Clear the implicit bit
+ absResult = quotient_UQ1 & significandMask;
+ // Insert the exponent
+ absResult |= (rep_t)writtenExponent << significandBits;
+ residualLo <<= 1;
+ } else {
+ // Prevent shift amount from being negative
+ if (significandBits + writtenExponent < 0)
+ return fromRep(quotientSign);
+
+ absResult = quotient_UQ1 >> (-writtenExponent + 1);
+
+ // multiplied by two to prevent shift amount to be negative
+ residualLo = (aSignificand << (significandBits + writtenExponent)) - (absResult * bSignificand << 1);
+ }
+
+ // Round
+ residualLo += absResult & 1; // tie to even
+ // The above line conditionally turns the below LT comparison into LTE
+ absResult += residualLo > bSignificand;
+#if defined(QUAD_PRECISION) || (defined(SINGLE_PRECISION) && NUMBER_OF_HALF_ITERATIONS > 0)
+ // Do not round Infinity to NaN
+ absResult += absResult < infRep && residualLo > (2 + 1) * bSignificand;
+#endif
+#if defined(QUAD_PRECISION)
+ absResult += absResult < infRep && residualLo > (4 + 1) * bSignificand;
+#endif
+ return fromRep(absResult | quotientSign);
+}