aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/builtins/divdf3.c
diff options
context:
space:
mode:
authorAlexander Smirnov <alex@ydb.tech>2024-10-16 12:11:24 +0000
committerAlexander Smirnov <alex@ydb.tech>2024-10-16 12:11:24 +0000
commit40811e93f3fdf9342a9295369994012420fac548 (patch)
treea8d85e094a9c21e10aa250f537c101fc2016a049 /contrib/libs/cxxsupp/builtins/divdf3.c
parent30ebe5357bb143648c6be4d151ecd4944af81ada (diff)
parent28a0c4a9f297064538a018c512cd9bbd00a1a35d (diff)
downloadydb-40811e93f3fdf9342a9295369994012420fac548.tar.gz
Merge branch 'rightlib' into mergelibs-241016-1210
Diffstat (limited to 'contrib/libs/cxxsupp/builtins/divdf3.c')
-rw-r--r--contrib/libs/cxxsupp/builtins/divdf3.c188
1 files changed, 16 insertions, 172 deletions
diff --git a/contrib/libs/cxxsupp/builtins/divdf3.c b/contrib/libs/cxxsupp/builtins/divdf3.c
index ab44c2b25f..4c11759e0c 100644
--- a/contrib/libs/cxxsupp/builtins/divdf3.c
+++ b/contrib/libs/cxxsupp/builtins/divdf3.c
@@ -1,185 +1,29 @@
//===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements double-precision soft-float division
// with the IEEE-754 default rounding (to nearest, ties to even).
//
-// For simplicity, this implementation currently flushes denormals to zero.
-// It should be a fairly straightforward exercise to implement gradual
-// underflow with correct rounding.
-//
//===----------------------------------------------------------------------===//
#define DOUBLE_PRECISION
-#include "fp_lib.h"
-ARM_EABI_FNALIAS(ddiv, divdf3)
+#define NUMBER_OF_HALF_ITERATIONS 3
+#define NUMBER_OF_FULL_ITERATIONS 1
+
+#include "fp_div_impl.inc"
+
+COMPILER_RT_ABI fp_t __divdf3(fp_t a, fp_t b) { return __divXf3__(a, b); }
-COMPILER_RT_ABI fp_t
-__divdf3(fp_t a, fp_t b) {
-
- const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
- const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
- const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
-
- rep_t aSignificand = toRep(a) & significandMask;
- rep_t bSignificand = toRep(b) & significandMask;
- int scale = 0;
-
- // Detect if a or b is zero, denormal, infinity, or NaN.
- if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
-
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
-
- // NaN / anything = qNaN
- if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
- // anything / NaN = qNaN
- if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
-
- if (aAbs == infRep) {
- // infinity / infinity = NaN
- if (bAbs == infRep) return fromRep(qnanRep);
- // infinity / anything else = +/- infinity
- else return fromRep(aAbs | quotientSign);
- }
-
- // anything else / infinity = +/- 0
- if (bAbs == infRep) return fromRep(quotientSign);
-
- if (!aAbs) {
- // zero / zero = NaN
- if (!bAbs) return fromRep(qnanRep);
- // zero / anything else = +/- zero
- else return fromRep(quotientSign);
- }
- // anything else / zero = +/- infinity
- if (!bAbs) return fromRep(infRep | quotientSign);
-
- // one or both of a or b is denormal, the other (if applicable) is a
- // normal number. Renormalize one or both of a and b, and set scale to
- // include the necessary exponent adjustment.
- if (aAbs < implicitBit) scale += normalize(&aSignificand);
- if (bAbs < implicitBit) scale -= normalize(&bSignificand);
- }
-
- // Or in the implicit significand bit. (If we fell through from the
- // denormal path it was already set by normalize( ), but setting it twice
- // won't hurt anything.)
- aSignificand |= implicitBit;
- bSignificand |= implicitBit;
- int quotientExponent = aExponent - bExponent + scale;
-
- // Align the significand of b as a Q31 fixed-point number in the range
- // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
- // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This
- // is accurate to about 3.5 binary digits.
- const uint32_t q31b = bSignificand >> 21;
- uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
-
- // Now refine the reciprocal estimate using a Newton-Raphson iteration:
- //
- // x1 = x0 * (2 - x0 * b)
- //
- // This doubles the number of correct binary digits in the approximation
- // with each iteration, so after three iterations, we have about 28 binary
- // digits of accuracy.
- uint32_t correction32;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
- correction32 = -((uint64_t)recip32 * q31b >> 32);
- recip32 = (uint64_t)recip32 * correction32 >> 31;
-
- // recip32 might have overflowed to exactly zero in the preceding
- // computation if the high word of b is exactly 1.0. This would sabotage
- // the full-width final stage of the computation that follows, so we adjust
- // recip32 downward by one bit.
- recip32--;
-
- // We need to perform one more iteration to get us to 56 binary digits;
- // The last iteration needs to happen with extra precision.
- const uint32_t q63blo = bSignificand << 11;
- uint64_t correction, reciprocal;
- correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
- uint32_t cHi = correction >> 32;
- uint32_t cLo = correction;
- reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
-
- // We already adjusted the 32-bit estimate, now we need to adjust the final
- // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
- // than the infinitely precise exact reciprocal. Because the computation
- // of the Newton-Raphson step is truncating at every step, this adjustment
- // is small; most of the work is already done.
- reciprocal -= 2;
-
- // The numerical reciprocal is accurate to within 2^-56, lies in the
- // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
- // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b
- // in Q53 with the following properties:
- //
- // 1. q < a/b
- // 2. q is in the interval [0.5, 2.0)
- // 3. the error in q is bounded away from 2^-53 (actually, we have a
- // couple of bits to spare, but this is all we need).
-
- // We need a 64 x 64 multiply high to compute q, which isn't a basic
- // operation in C, so we need to be a little bit fussy.
- rep_t quotient, quotientLo;
- wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
-
- // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
- // In either case, we are going to compute a residual of the form
- //
- // r = a - q*b
- //
- // We know from the construction of q that r satisfies:
- //
- // 0 <= r < ulp(q)*b
- //
- // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we
- // already have the correct result. The exact halfway case cannot occur.
- // We also take this time to right shift quotient if it falls in the [1,2)
- // range and adjust the exponent accordingly.
- rep_t residual;
- if (quotient < (implicitBit << 1)) {
- residual = (aSignificand << 53) - quotient * bSignificand;
- quotientExponent--;
- } else {
- quotient >>= 1;
- residual = (aSignificand << 52) - quotient * bSignificand;
- }
-
- const int writtenExponent = quotientExponent + exponentBias;
-
- if (writtenExponent >= maxExponent) {
- // If we have overflowed the exponent, return infinity.
- return fromRep(infRep | quotientSign);
- }
-
- else if (writtenExponent < 1) {
- // Flush denormals to zero. In the future, it would be nice to add
- // code to round them correctly.
- return fromRep(quotientSign);
- }
-
- else {
- const bool round = (residual << 1) > bSignificand;
- // Clear the implicit bit
- rep_t absResult = quotient & significandMask;
- // Insert the exponent
- absResult |= (rep_t)writtenExponent << significandBits;
- // Round
- absResult += round;
- // Insert the sign and return
- const double result = fromRep(absResult | quotientSign);
- return result;
- }
-}
+#if defined(__ARM_EABI__)
+#if defined(COMPILER_RT_ARMHF_TARGET)
+AEABI_RTABI fp_t __aeabi_ddiv(fp_t a, fp_t b) { return __divdf3(a, b); }
+#else
+COMPILER_RT_ALIAS(__divdf3, __aeabi_ddiv)
+#endif
+#endif