aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zunmbr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zunmbr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zunmbr.c')
-rw-r--r--contrib/libs/clapack/zunmbr.c371
1 files changed, 371 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zunmbr.c b/contrib/libs/clapack/zunmbr.c
new file mode 100644
index 0000000000..0179f82d3e
--- /dev/null
+++ b/contrib/libs/clapack/zunmbr.c
@@ -0,0 +1,371 @@
+/* zunmbr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__2 = 2;
+
+/* Subroutine */ int zunmbr_(char *vect, char *side, char *trans, integer *m,
+ integer *n, integer *k, doublecomplex *a, integer *lda, doublecomplex
+ *tau, doublecomplex *c__, integer *ldc, doublecomplex *work, integer *
+ lwork, integer *info)
+{
+ /* System generated locals */
+ address a__1[2];
+ integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
+ char ch__1[2];
+
+ /* Builtin functions */
+ /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
+
+ /* Local variables */
+ integer i1, i2, nb, mi, ni, nq, nw;
+ logical left;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ logical notran, applyq;
+ char transt[1];
+ integer lwkopt;
+ logical lquery;
+ extern /* Subroutine */ int zunmlq_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* If VECT = 'Q', ZUNMBR overwrites the general complex M-by-N matrix C */
+/* with */
+/* SIDE = 'L' SIDE = 'R' */
+/* TRANS = 'N': Q * C C * Q */
+/* TRANS = 'C': Q**H * C C * Q**H */
+
+/* If VECT = 'P', ZUNMBR overwrites the general complex M-by-N matrix C */
+/* with */
+/* SIDE = 'L' SIDE = 'R' */
+/* TRANS = 'N': P * C C * P */
+/* TRANS = 'C': P**H * C C * P**H */
+
+/* Here Q and P**H are the unitary matrices determined by ZGEBRD when */
+/* reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q */
+/* and P**H are defined as products of elementary reflectors H(i) and */
+/* G(i) respectively. */
+
+/* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
+/* order of the unitary matrix Q or P**H that is applied. */
+
+/* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
+/* if nq >= k, Q = H(1) H(2) . . . H(k); */
+/* if nq < k, Q = H(1) H(2) . . . H(nq-1). */
+
+/* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
+/* if k < nq, P = G(1) G(2) . . . G(k); */
+/* if k >= nq, P = G(1) G(2) . . . G(nq-1). */
+
+/* Arguments */
+/* ========= */
+
+/* VECT (input) CHARACTER*1 */
+/* = 'Q': apply Q or Q**H; */
+/* = 'P': apply P or P**H. */
+
+/* SIDE (input) CHARACTER*1 */
+/* = 'L': apply Q, Q**H, P or P**H from the Left; */
+/* = 'R': apply Q, Q**H, P or P**H from the Right. */
+
+/* TRANS (input) CHARACTER*1 */
+/* = 'N': No transpose, apply Q or P; */
+/* = 'C': Conjugate transpose, apply Q**H or P**H. */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix C. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix C. N >= 0. */
+
+/* K (input) INTEGER */
+/* If VECT = 'Q', the number of columns in the original */
+/* matrix reduced by ZGEBRD. */
+/* If VECT = 'P', the number of rows in the original */
+/* matrix reduced by ZGEBRD. */
+/* K >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension */
+/* (LDA,min(nq,K)) if VECT = 'Q' */
+/* (LDA,nq) if VECT = 'P' */
+/* The vectors which define the elementary reflectors H(i) and */
+/* G(i), whose products determine the matrices Q and P, as */
+/* returned by ZGEBRD. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. */
+/* If VECT = 'Q', LDA >= max(1,nq); */
+/* if VECT = 'P', LDA >= max(1,min(nq,K)). */
+
+/* TAU (input) COMPLEX*16 array, dimension (min(nq,K)) */
+/* TAU(i) must contain the scalar factor of the elementary */
+/* reflector H(i) or G(i) which determines Q or P, as returned */
+/* by ZGEBRD in the array argument TAUQ or TAUP. */
+
+/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
+/* On entry, the M-by-N matrix C. */
+/* On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q */
+/* or P*C or P**H*C or C*P or C*P**H. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. LDC >= max(1,M). */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If SIDE = 'L', LWORK >= max(1,N); */
+/* if SIDE = 'R', LWORK >= max(1,M); */
+/* if N = 0 or M = 0, LWORK >= 1. */
+/* For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', */
+/* and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the */
+/* optimal blocksize. (NB = 0 if M = 0 or N = 0.) */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --tau;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ applyq = lsame_(vect, "Q");
+ left = lsame_(side, "L");
+ notran = lsame_(trans, "N");
+ lquery = *lwork == -1;
+
+/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
+
+ if (left) {
+ nq = *m;
+ nw = *n;
+ } else {
+ nq = *n;
+ nw = *m;
+ }
+ if (*m == 0 || *n == 0) {
+ nw = 0;
+ }
+ if (! applyq && ! lsame_(vect, "P")) {
+ *info = -1;
+ } else if (! left && ! lsame_(side, "R")) {
+ *info = -2;
+ } else if (! notran && ! lsame_(trans, "C")) {
+ *info = -3;
+ } else if (*m < 0) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*k < 0) {
+ *info = -6;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = 1, i__2 = min(nq,*k);
+ if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
+ *info = -8;
+ } else if (*ldc < max(1,*m)) {
+ *info = -11;
+ } else if (*lwork < max(1,nw) && ! lquery) {
+ *info = -13;
+ }
+ }
+
+ if (*info == 0) {
+ if (nw > 0) {
+ if (applyq) {
+ if (left) {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ nb = ilaenv_(&c__1, "ZUNMQR", ch__1, &i__1, n, &i__2, &
+ c_n1);
+ } else {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ nb = ilaenv_(&c__1, "ZUNMQR", ch__1, m, &i__1, &i__2, &
+ c_n1);
+ }
+ } else {
+ if (left) {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *m - 1;
+ i__2 = *m - 1;
+ nb = ilaenv_(&c__1, "ZUNMLQ", ch__1, &i__1, n, &i__2, &
+ c_n1);
+ } else {
+/* Writing concatenation */
+ i__3[0] = 1, a__1[0] = side;
+ i__3[1] = 1, a__1[1] = trans;
+ s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
+ i__1 = *n - 1;
+ i__2 = *n - 1;
+ nb = ilaenv_(&c__1, "ZUNMLQ", ch__1, m, &i__1, &i__2, &
+ c_n1);
+ }
+ }
+/* Computing MAX */
+ i__1 = 1, i__2 = nw * nb;
+ lwkopt = max(i__1,i__2);
+ } else {
+ lwkopt = 1;
+ }
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZUNMBR", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+ if (applyq) {
+
+/* Apply Q */
+
+ if (nq >= *k) {
+
+/* Q was determined by a call to ZGEBRD with nq >= k */
+
+ zunmqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], lwork, &iinfo);
+ } else if (nq > 1) {
+
+/* Q was determined by a call to ZGEBRD with nq < k */
+
+ if (left) {
+ mi = *m - 1;
+ ni = *n;
+ i1 = 2;
+ i2 = 1;
+ } else {
+ mi = *m;
+ ni = *n - 1;
+ i1 = 1;
+ i2 = 2;
+ }
+ i__1 = nq - 1;
+ zunmqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
+, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
+ }
+ } else {
+
+/* Apply P */
+
+ if (notran) {
+ *(unsigned char *)transt = 'C';
+ } else {
+ *(unsigned char *)transt = 'N';
+ }
+ if (nq > *k) {
+
+/* P was determined by a call to ZGEBRD with nq > k */
+
+ zunmlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
+ c_offset], ldc, &work[1], lwork, &iinfo);
+ } else if (nq > 1) {
+
+/* P was determined by a call to ZGEBRD with nq <= k */
+
+ if (left) {
+ mi = *m - 1;
+ ni = *n;
+ i1 = 2;
+ i2 = 1;
+ } else {
+ mi = *m;
+ ni = *n - 1;
+ i1 = 1;
+ i2 = 2;
+ }
+ i__1 = nq - 1;
+ zunmlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda,
+ &tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
+ iinfo);
+ }
+ }
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ return 0;
+
+/* End of ZUNMBR */
+
+} /* zunmbr_ */