aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztrsyl.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztrsyl.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztrsyl.c')
-rw-r--r--contrib/libs/clapack/ztrsyl.c547
1 files changed, 547 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztrsyl.c b/contrib/libs/clapack/ztrsyl.c
new file mode 100644
index 0000000000..3ab1c31fa5
--- /dev/null
+++ b/contrib/libs/clapack/ztrsyl.c
@@ -0,0 +1,547 @@
+/* ztrsyl.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int ztrsyl_(char *trana, char *tranb, integer *isgn, integer
+ *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b,
+ integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
+ i__3, i__4;
+ doublereal d__1, d__2;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer j, k, l;
+ doublecomplex a11;
+ doublereal db;
+ doublecomplex x11;
+ doublereal da11;
+ doublecomplex vec;
+ doublereal dum[1], eps, sgn, smin;
+ doublecomplex suml, sumr;
+ extern logical lsame_(char *, char *);
+ extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *), zdotu_(
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *);
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ doublereal scaloc;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ doublereal bignum;
+ extern /* Subroutine */ int zdscal_(integer *, doublereal *,
+ doublecomplex *, integer *);
+ extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
+ doublecomplex *);
+ logical notrna, notrnb;
+ doublereal smlnum;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTRSYL solves the complex Sylvester matrix equation: */
+
+/* op(A)*X + X*op(B) = scale*C or */
+/* op(A)*X - X*op(B) = scale*C, */
+
+/* where op(A) = A or A**H, and A and B are both upper triangular. A is */
+/* M-by-M and B is N-by-N; the right hand side C and the solution X are */
+/* M-by-N; and scale is an output scale factor, set <= 1 to avoid */
+/* overflow in X. */
+
+/* Arguments */
+/* ========= */
+
+/* TRANA (input) CHARACTER*1 */
+/* Specifies the option op(A): */
+/* = 'N': op(A) = A (No transpose) */
+/* = 'C': op(A) = A**H (Conjugate transpose) */
+
+/* TRANB (input) CHARACTER*1 */
+/* Specifies the option op(B): */
+/* = 'N': op(B) = B (No transpose) */
+/* = 'C': op(B) = B**H (Conjugate transpose) */
+
+/* ISGN (input) INTEGER */
+/* Specifies the sign in the equation: */
+/* = +1: solve op(A)*X + X*op(B) = scale*C */
+/* = -1: solve op(A)*X - X*op(B) = scale*C */
+
+/* M (input) INTEGER */
+/* The order of the matrix A, and the number of rows in the */
+/* matrices X and C. M >= 0. */
+
+/* N (input) INTEGER */
+/* The order of the matrix B, and the number of columns in the */
+/* matrices X and C. N >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension (LDA,M) */
+/* The upper triangular matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,N) */
+/* The upper triangular matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */
+/* On entry, the M-by-N right hand side matrix C. */
+/* On exit, C is overwritten by the solution matrix X. */
+
+/* LDC (input) INTEGER */
+/* The leading dimension of the array C. LDC >= max(1,M) */
+
+/* SCALE (output) DOUBLE PRECISION */
+/* The scale factor, scale, set <= 1 to avoid overflow in X. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* = 1: A and B have common or very close eigenvalues; perturbed */
+/* values were used to solve the equation (but the matrices */
+/* A and B are unchanged). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and Test input parameters */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ c_dim1 = *ldc;
+ c_offset = 1 + c_dim1;
+ c__ -= c_offset;
+
+ /* Function Body */
+ notrna = lsame_(trana, "N");
+ notrnb = lsame_(tranb, "N");
+
+ *info = 0;
+ if (! notrna && ! lsame_(trana, "C")) {
+ *info = -1;
+ } else if (! notrnb && ! lsame_(tranb, "C")) {
+ *info = -2;
+ } else if (*isgn != 1 && *isgn != -1) {
+ *info = -3;
+ } else if (*m < 0) {
+ *info = -4;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*m)) {
+ *info = -7;
+ } else if (*ldb < max(1,*n)) {
+ *info = -9;
+ } else if (*ldc < max(1,*m)) {
+ *info = -11;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZTRSYL", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *scale = 1.;
+ if (*m == 0 || *n == 0) {
+ return 0;
+ }
+
+/* Set constants to control overflow */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S");
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+ smlnum = smlnum * (doublereal) (*m * *n) / eps;
+ bignum = 1. / smlnum;
+/* Computing MAX */
+ d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = max(d__1,d__2), d__2 = eps * zlange_("M", n, n,
+ &b[b_offset], ldb, dum);
+ smin = max(d__1,d__2);
+ sgn = (doublereal) (*isgn);
+
+ if (notrna && notrnb) {
+
+/* Solve A*X + ISGN*X*B = scale*C. */
+
+/* The (K,L)th block of X is determined starting from */
+/* bottom-left corner column by column by */
+
+/* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
+
+/* Where */
+/* M L-1 */
+/* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
+/* I=K+1 J=1 */
+
+ i__1 = *n;
+ for (l = 1; l <= i__1; ++l) {
+ for (k = *m; k >= 1; --k) {
+
+ i__2 = *m - k;
+/* Computing MIN */
+ i__3 = k + 1;
+/* Computing MIN */
+ i__4 = k + 1;
+ zdotu_(&z__1, &i__2, &a[k + min(i__3, *m)* a_dim1], lda, &c__[
+ min(i__4, *m)+ l * c_dim1], &c__1);
+ suml.r = z__1.r, suml.i = z__1.i;
+ i__2 = l - 1;
+ zdotu_(&z__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
+, &c__1);
+ sumr.r = z__1.r, sumr.i = z__1.i;
+ i__2 = k + l * c_dim1;
+ z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
+ z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
+ z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
+ vec.r = z__1.r, vec.i = z__1.i;
+
+ scaloc = 1.;
+ i__2 = k + k * a_dim1;
+ i__3 = l + l * b_dim1;
+ z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i;
+ z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i;
+ a11.r = z__1.r, a11.i = z__1.i;
+ da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
+ d__2));
+ if (da11 <= smin) {
+ a11.r = smin, a11.i = 0.;
+ da11 = smin;
+ *info = 1;
+ }
+ db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
+ d__2));
+ if (da11 < 1. && db > 1.) {
+ if (db > bignum * da11) {
+ scaloc = 1. / db;
+ }
+ }
+ z__3.r = scaloc, z__3.i = 0.;
+ z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
+ z__3.i + vec.i * z__3.r;
+ zladiv_(&z__1, &z__2, &a11);
+ x11.r = z__1.r, x11.i = z__1.i;
+
+ if (scaloc != 1.) {
+ i__2 = *n;
+ for (j = 1; j <= i__2; ++j) {
+ zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
+/* L10: */
+ }
+ *scale *= scaloc;
+ }
+ i__2 = k + l * c_dim1;
+ c__[i__2].r = x11.r, c__[i__2].i = x11.i;
+
+/* L20: */
+ }
+/* L30: */
+ }
+
+ } else if (! notrna && notrnb) {
+
+/* Solve A' *X + ISGN*X*B = scale*C. */
+
+/* The (K,L)th block of X is determined starting from */
+/* upper-left corner column by column by */
+
+/* A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
+
+/* Where */
+/* K-1 L-1 */
+/* R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
+/* I=1 J=1 */
+
+ i__1 = *n;
+ for (l = 1; l <= i__1; ++l) {
+ i__2 = *m;
+ for (k = 1; k <= i__2; ++k) {
+
+ i__3 = k - 1;
+ zdotc_(&z__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
+ c_dim1 + 1], &c__1);
+ suml.r = z__1.r, suml.i = z__1.i;
+ i__3 = l - 1;
+ zdotu_(&z__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
+, &c__1);
+ sumr.r = z__1.r, sumr.i = z__1.i;
+ i__3 = k + l * c_dim1;
+ z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i;
+ z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
+ z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i;
+ vec.r = z__1.r, vec.i = z__1.i;
+
+ scaloc = 1.;
+ d_cnjg(&z__2, &a[k + k * a_dim1]);
+ i__3 = l + l * b_dim1;
+ z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ a11.r = z__1.r, a11.i = z__1.i;
+ da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
+ d__2));
+ if (da11 <= smin) {
+ a11.r = smin, a11.i = 0.;
+ da11 = smin;
+ *info = 1;
+ }
+ db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
+ d__2));
+ if (da11 < 1. && db > 1.) {
+ if (db > bignum * da11) {
+ scaloc = 1. / db;
+ }
+ }
+
+ z__3.r = scaloc, z__3.i = 0.;
+ z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
+ z__3.i + vec.i * z__3.r;
+ zladiv_(&z__1, &z__2, &a11);
+ x11.r = z__1.r, x11.i = z__1.i;
+
+ if (scaloc != 1.) {
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
+/* L40: */
+ }
+ *scale *= scaloc;
+ }
+ i__3 = k + l * c_dim1;
+ c__[i__3].r = x11.r, c__[i__3].i = x11.i;
+
+/* L50: */
+ }
+/* L60: */
+ }
+
+ } else if (! notrna && ! notrnb) {
+
+/* Solve A'*X + ISGN*X*B' = C. */
+
+/* The (K,L)th block of X is determined starting from */
+/* upper-right corner column by column by */
+
+/* A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */
+
+/* Where */
+/* K-1 */
+/* R(K,L) = SUM [A'(I,K)*X(I,L)] + */
+/* I=1 */
+/* N */
+/* ISGN*SUM [X(K,J)*B'(L,J)]. */
+/* J=L+1 */
+
+ for (l = *n; l >= 1; --l) {
+ i__1 = *m;
+ for (k = 1; k <= i__1; ++k) {
+
+ i__2 = k - 1;
+ zdotc_(&z__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
+ c_dim1 + 1], &c__1);
+ suml.r = z__1.r, suml.i = z__1.i;
+ i__2 = *n - l;
+/* Computing MIN */
+ i__3 = l + 1;
+/* Computing MIN */
+ i__4 = l + 1;
+ zdotc_(&z__1, &i__2, &c__[k + min(i__3, *n)* c_dim1], ldc, &b[
+ l + min(i__4, *n)* b_dim1], ldb);
+ sumr.r = z__1.r, sumr.i = z__1.i;
+ i__2 = k + l * c_dim1;
+ d_cnjg(&z__4, &sumr);
+ z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
+ z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
+ z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i;
+ vec.r = z__1.r, vec.i = z__1.i;
+
+ scaloc = 1.;
+ i__2 = k + k * a_dim1;
+ i__3 = l + l * b_dim1;
+ z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i;
+ z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i;
+ d_cnjg(&z__1, &z__2);
+ a11.r = z__1.r, a11.i = z__1.i;
+ da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
+ d__2));
+ if (da11 <= smin) {
+ a11.r = smin, a11.i = 0.;
+ da11 = smin;
+ *info = 1;
+ }
+ db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
+ d__2));
+ if (da11 < 1. && db > 1.) {
+ if (db > bignum * da11) {
+ scaloc = 1. / db;
+ }
+ }
+
+ z__3.r = scaloc, z__3.i = 0.;
+ z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
+ z__3.i + vec.i * z__3.r;
+ zladiv_(&z__1, &z__2, &a11);
+ x11.r = z__1.r, x11.i = z__1.i;
+
+ if (scaloc != 1.) {
+ i__2 = *n;
+ for (j = 1; j <= i__2; ++j) {
+ zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
+/* L70: */
+ }
+ *scale *= scaloc;
+ }
+ i__2 = k + l * c_dim1;
+ c__[i__2].r = x11.r, c__[i__2].i = x11.i;
+
+/* L80: */
+ }
+/* L90: */
+ }
+
+ } else if (notrna && ! notrnb) {
+
+/* Solve A*X + ISGN*X*B' = C. */
+
+/* The (K,L)th block of X is determined starting from */
+/* bottom-left corner column by column by */
+
+/* A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */
+
+/* Where */
+/* M N */
+/* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] */
+/* I=K+1 J=L+1 */
+
+ for (l = *n; l >= 1; --l) {
+ for (k = *m; k >= 1; --k) {
+
+ i__1 = *m - k;
+/* Computing MIN */
+ i__2 = k + 1;
+/* Computing MIN */
+ i__3 = k + 1;
+ zdotu_(&z__1, &i__1, &a[k + min(i__2, *m)* a_dim1], lda, &c__[
+ min(i__3, *m)+ l * c_dim1], &c__1);
+ suml.r = z__1.r, suml.i = z__1.i;
+ i__1 = *n - l;
+/* Computing MIN */
+ i__2 = l + 1;
+/* Computing MIN */
+ i__3 = l + 1;
+ zdotc_(&z__1, &i__1, &c__[k + min(i__2, *n)* c_dim1], ldc, &b[
+ l + min(i__3, *n)* b_dim1], ldb);
+ sumr.r = z__1.r, sumr.i = z__1.i;
+ i__1 = k + l * c_dim1;
+ d_cnjg(&z__4, &sumr);
+ z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i;
+ z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i;
+ z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i;
+ vec.r = z__1.r, vec.i = z__1.i;
+
+ scaloc = 1.;
+ i__1 = k + k * a_dim1;
+ d_cnjg(&z__3, &b[l + l * b_dim1]);
+ z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i;
+ z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i;
+ a11.r = z__1.r, a11.i = z__1.i;
+ da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs(
+ d__2));
+ if (da11 <= smin) {
+ a11.r = smin, a11.i = 0.;
+ da11 = smin;
+ *info = 1;
+ }
+ db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs(
+ d__2));
+ if (da11 < 1. && db > 1.) {
+ if (db > bignum * da11) {
+ scaloc = 1. / db;
+ }
+ }
+
+ z__3.r = scaloc, z__3.i = 0.;
+ z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r *
+ z__3.i + vec.i * z__3.r;
+ zladiv_(&z__1, &z__2, &a11);
+ x11.r = z__1.r, x11.i = z__1.i;
+
+ if (scaloc != 1.) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
+/* L100: */
+ }
+ *scale *= scaloc;
+ }
+ i__1 = k + l * c_dim1;
+ c__[i__1].r = x11.r, c__[i__1].i = x11.i;
+
+/* L110: */
+ }
+/* L120: */
+ }
+
+ }
+
+ return 0;
+
+/* End of ZTRSYL */
+
+} /* ztrsyl_ */