diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztrsyl.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztrsyl.c')
-rw-r--r-- | contrib/libs/clapack/ztrsyl.c | 547 |
1 files changed, 547 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztrsyl.c b/contrib/libs/clapack/ztrsyl.c new file mode 100644 index 0000000000..3ab1c31fa5 --- /dev/null +++ b/contrib/libs/clapack/ztrsyl.c @@ -0,0 +1,547 @@ +/* ztrsyl.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int ztrsyl_(char *trana, char *tranb, integer *isgn, integer + *m, integer *n, doublecomplex *a, integer *lda, doublecomplex *b, + integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2, + i__3, i__4; + doublereal d__1, d__2; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + double d_imag(doublecomplex *); + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer j, k, l; + doublecomplex a11; + doublereal db; + doublecomplex x11; + doublereal da11; + doublecomplex vec; + doublereal dum[1], eps, sgn, smin; + doublecomplex suml, sumr; + extern logical lsame_(char *, char *); + extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *), zdotu_( + doublecomplex *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *); + extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); + extern doublereal dlamch_(char *); + doublereal scaloc; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, + integer *, doublereal *); + doublereal bignum; + extern /* Subroutine */ int zdscal_(integer *, doublereal *, + doublecomplex *, integer *); + extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *, + doublecomplex *); + logical notrna, notrnb; + doublereal smlnum; + + +/* -- LAPACK routine (version 3.2) -- */ +/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ +/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZTRSYL solves the complex Sylvester matrix equation: */ + +/* op(A)*X + X*op(B) = scale*C or */ +/* op(A)*X - X*op(B) = scale*C, */ + +/* where op(A) = A or A**H, and A and B are both upper triangular. A is */ +/* M-by-M and B is N-by-N; the right hand side C and the solution X are */ +/* M-by-N; and scale is an output scale factor, set <= 1 to avoid */ +/* overflow in X. */ + +/* Arguments */ +/* ========= */ + +/* TRANA (input) CHARACTER*1 */ +/* Specifies the option op(A): */ +/* = 'N': op(A) = A (No transpose) */ +/* = 'C': op(A) = A**H (Conjugate transpose) */ + +/* TRANB (input) CHARACTER*1 */ +/* Specifies the option op(B): */ +/* = 'N': op(B) = B (No transpose) */ +/* = 'C': op(B) = B**H (Conjugate transpose) */ + +/* ISGN (input) INTEGER */ +/* Specifies the sign in the equation: */ +/* = +1: solve op(A)*X + X*op(B) = scale*C */ +/* = -1: solve op(A)*X - X*op(B) = scale*C */ + +/* M (input) INTEGER */ +/* The order of the matrix A, and the number of rows in the */ +/* matrices X and C. M >= 0. */ + +/* N (input) INTEGER */ +/* The order of the matrix B, and the number of columns in the */ +/* matrices X and C. N >= 0. */ + +/* A (input) COMPLEX*16 array, dimension (LDA,M) */ +/* The upper triangular matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* B (input) COMPLEX*16 array, dimension (LDB,N) */ +/* The upper triangular matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* C (input/output) COMPLEX*16 array, dimension (LDC,N) */ +/* On entry, the M-by-N right hand side matrix C. */ +/* On exit, C is overwritten by the solution matrix X. */ + +/* LDC (input) INTEGER */ +/* The leading dimension of the array C. LDC >= max(1,M) */ + +/* SCALE (output) DOUBLE PRECISION */ +/* The scale factor, scale, set <= 1 to avoid overflow in X. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* = 1: A and B have common or very close eigenvalues; perturbed */ +/* values were used to solve the equation (but the matrices */ +/* A and B are unchanged). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and Test input parameters */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + c_dim1 = *ldc; + c_offset = 1 + c_dim1; + c__ -= c_offset; + + /* Function Body */ + notrna = lsame_(trana, "N"); + notrnb = lsame_(tranb, "N"); + + *info = 0; + if (! notrna && ! lsame_(trana, "C")) { + *info = -1; + } else if (! notrnb && ! lsame_(tranb, "C")) { + *info = -2; + } else if (*isgn != 1 && *isgn != -1) { + *info = -3; + } else if (*m < 0) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*m)) { + *info = -7; + } else if (*ldb < max(1,*n)) { + *info = -9; + } else if (*ldc < max(1,*m)) { + *info = -11; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZTRSYL", &i__1); + return 0; + } + +/* Quick return if possible */ + + *scale = 1.; + if (*m == 0 || *n == 0) { + return 0; + } + +/* Set constants to control overflow */ + + eps = dlamch_("P"); + smlnum = dlamch_("S"); + bignum = 1. / smlnum; + dlabad_(&smlnum, &bignum); + smlnum = smlnum * (doublereal) (*m * *n) / eps; + bignum = 1. / smlnum; +/* Computing MAX */ + d__1 = smlnum, d__2 = eps * zlange_("M", m, m, &a[a_offset], lda, dum), d__1 = max(d__1,d__2), d__2 = eps * zlange_("M", n, n, + &b[b_offset], ldb, dum); + smin = max(d__1,d__2); + sgn = (doublereal) (*isgn); + + if (notrna && notrnb) { + +/* Solve A*X + ISGN*X*B = scale*C. */ + +/* The (K,L)th block of X is determined starting from */ +/* bottom-left corner column by column by */ + +/* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */ + +/* Where */ +/* M L-1 */ +/* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */ +/* I=K+1 J=1 */ + + i__1 = *n; + for (l = 1; l <= i__1; ++l) { + for (k = *m; k >= 1; --k) { + + i__2 = *m - k; +/* Computing MIN */ + i__3 = k + 1; +/* Computing MIN */ + i__4 = k + 1; + zdotu_(&z__1, &i__2, &a[k + min(i__3, *m)* a_dim1], lda, &c__[ + min(i__4, *m)+ l * c_dim1], &c__1); + suml.r = z__1.r, suml.i = z__1.i; + i__2 = l - 1; + zdotu_(&z__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1] +, &c__1); + sumr.r = z__1.r, sumr.i = z__1.i; + i__2 = k + l * c_dim1; + z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i; + z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; + z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i; + vec.r = z__1.r, vec.i = z__1.i; + + scaloc = 1.; + i__2 = k + k * a_dim1; + i__3 = l + l * b_dim1; + z__2.r = sgn * b[i__3].r, z__2.i = sgn * b[i__3].i; + z__1.r = a[i__2].r + z__2.r, z__1.i = a[i__2].i + z__2.i; + a11.r = z__1.r, a11.i = z__1.i; + da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( + d__2)); + if (da11 <= smin) { + a11.r = smin, a11.i = 0.; + da11 = smin; + *info = 1; + } + db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( + d__2)); + if (da11 < 1. && db > 1.) { + if (db > bignum * da11) { + scaloc = 1. / db; + } + } + z__3.r = scaloc, z__3.i = 0.; + z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * + z__3.i + vec.i * z__3.r; + zladiv_(&z__1, &z__2, &a11); + x11.r = z__1.r, x11.i = z__1.i; + + if (scaloc != 1.) { + i__2 = *n; + for (j = 1; j <= i__2; ++j) { + zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); +/* L10: */ + } + *scale *= scaloc; + } + i__2 = k + l * c_dim1; + c__[i__2].r = x11.r, c__[i__2].i = x11.i; + +/* L20: */ + } +/* L30: */ + } + + } else if (! notrna && notrnb) { + +/* Solve A' *X + ISGN*X*B = scale*C. */ + +/* The (K,L)th block of X is determined starting from */ +/* upper-left corner column by column by */ + +/* A'(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */ + +/* Where */ +/* K-1 L-1 */ +/* R(K,L) = SUM [A'(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */ +/* I=1 J=1 */ + + i__1 = *n; + for (l = 1; l <= i__1; ++l) { + i__2 = *m; + for (k = 1; k <= i__2; ++k) { + + i__3 = k - 1; + zdotc_(&z__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l * + c_dim1 + 1], &c__1); + suml.r = z__1.r, suml.i = z__1.i; + i__3 = l - 1; + zdotu_(&z__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1] +, &c__1); + sumr.r = z__1.r, sumr.i = z__1.i; + i__3 = k + l * c_dim1; + z__3.r = sgn * sumr.r, z__3.i = sgn * sumr.i; + z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; + z__1.r = c__[i__3].r - z__2.r, z__1.i = c__[i__3].i - z__2.i; + vec.r = z__1.r, vec.i = z__1.i; + + scaloc = 1.; + d_cnjg(&z__2, &a[k + k * a_dim1]); + i__3 = l + l * b_dim1; + z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i; + z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i; + a11.r = z__1.r, a11.i = z__1.i; + da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( + d__2)); + if (da11 <= smin) { + a11.r = smin, a11.i = 0.; + da11 = smin; + *info = 1; + } + db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( + d__2)); + if (da11 < 1. && db > 1.) { + if (db > bignum * da11) { + scaloc = 1. / db; + } + } + + z__3.r = scaloc, z__3.i = 0.; + z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * + z__3.i + vec.i * z__3.r; + zladiv_(&z__1, &z__2, &a11); + x11.r = z__1.r, x11.i = z__1.i; + + if (scaloc != 1.) { + i__3 = *n; + for (j = 1; j <= i__3; ++j) { + zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); +/* L40: */ + } + *scale *= scaloc; + } + i__3 = k + l * c_dim1; + c__[i__3].r = x11.r, c__[i__3].i = x11.i; + +/* L50: */ + } +/* L60: */ + } + + } else if (! notrna && ! notrnb) { + +/* Solve A'*X + ISGN*X*B' = C. */ + +/* The (K,L)th block of X is determined starting from */ +/* upper-right corner column by column by */ + +/* A'(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */ + +/* Where */ +/* K-1 */ +/* R(K,L) = SUM [A'(I,K)*X(I,L)] + */ +/* I=1 */ +/* N */ +/* ISGN*SUM [X(K,J)*B'(L,J)]. */ +/* J=L+1 */ + + for (l = *n; l >= 1; --l) { + i__1 = *m; + for (k = 1; k <= i__1; ++k) { + + i__2 = k - 1; + zdotc_(&z__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l * + c_dim1 + 1], &c__1); + suml.r = z__1.r, suml.i = z__1.i; + i__2 = *n - l; +/* Computing MIN */ + i__3 = l + 1; +/* Computing MIN */ + i__4 = l + 1; + zdotc_(&z__1, &i__2, &c__[k + min(i__3, *n)* c_dim1], ldc, &b[ + l + min(i__4, *n)* b_dim1], ldb); + sumr.r = z__1.r, sumr.i = z__1.i; + i__2 = k + l * c_dim1; + d_cnjg(&z__4, &sumr); + z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i; + z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; + z__1.r = c__[i__2].r - z__2.r, z__1.i = c__[i__2].i - z__2.i; + vec.r = z__1.r, vec.i = z__1.i; + + scaloc = 1.; + i__2 = k + k * a_dim1; + i__3 = l + l * b_dim1; + z__3.r = sgn * b[i__3].r, z__3.i = sgn * b[i__3].i; + z__2.r = a[i__2].r + z__3.r, z__2.i = a[i__2].i + z__3.i; + d_cnjg(&z__1, &z__2); + a11.r = z__1.r, a11.i = z__1.i; + da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( + d__2)); + if (da11 <= smin) { + a11.r = smin, a11.i = 0.; + da11 = smin; + *info = 1; + } + db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( + d__2)); + if (da11 < 1. && db > 1.) { + if (db > bignum * da11) { + scaloc = 1. / db; + } + } + + z__3.r = scaloc, z__3.i = 0.; + z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * + z__3.i + vec.i * z__3.r; + zladiv_(&z__1, &z__2, &a11); + x11.r = z__1.r, x11.i = z__1.i; + + if (scaloc != 1.) { + i__2 = *n; + for (j = 1; j <= i__2; ++j) { + zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); +/* L70: */ + } + *scale *= scaloc; + } + i__2 = k + l * c_dim1; + c__[i__2].r = x11.r, c__[i__2].i = x11.i; + +/* L80: */ + } +/* L90: */ + } + + } else if (notrna && ! notrnb) { + +/* Solve A*X + ISGN*X*B' = C. */ + +/* The (K,L)th block of X is determined starting from */ +/* bottom-left corner column by column by */ + +/* A(K,K)*X(K,L) + ISGN*X(K,L)*B'(L,L) = C(K,L) - R(K,L) */ + +/* Where */ +/* M N */ +/* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B'(L,J)] */ +/* I=K+1 J=L+1 */ + + for (l = *n; l >= 1; --l) { + for (k = *m; k >= 1; --k) { + + i__1 = *m - k; +/* Computing MIN */ + i__2 = k + 1; +/* Computing MIN */ + i__3 = k + 1; + zdotu_(&z__1, &i__1, &a[k + min(i__2, *m)* a_dim1], lda, &c__[ + min(i__3, *m)+ l * c_dim1], &c__1); + suml.r = z__1.r, suml.i = z__1.i; + i__1 = *n - l; +/* Computing MIN */ + i__2 = l + 1; +/* Computing MIN */ + i__3 = l + 1; + zdotc_(&z__1, &i__1, &c__[k + min(i__2, *n)* c_dim1], ldc, &b[ + l + min(i__3, *n)* b_dim1], ldb); + sumr.r = z__1.r, sumr.i = z__1.i; + i__1 = k + l * c_dim1; + d_cnjg(&z__4, &sumr); + z__3.r = sgn * z__4.r, z__3.i = sgn * z__4.i; + z__2.r = suml.r + z__3.r, z__2.i = suml.i + z__3.i; + z__1.r = c__[i__1].r - z__2.r, z__1.i = c__[i__1].i - z__2.i; + vec.r = z__1.r, vec.i = z__1.i; + + scaloc = 1.; + i__1 = k + k * a_dim1; + d_cnjg(&z__3, &b[l + l * b_dim1]); + z__2.r = sgn * z__3.r, z__2.i = sgn * z__3.i; + z__1.r = a[i__1].r + z__2.r, z__1.i = a[i__1].i + z__2.i; + a11.r = z__1.r, a11.i = z__1.i; + da11 = (d__1 = a11.r, abs(d__1)) + (d__2 = d_imag(&a11), abs( + d__2)); + if (da11 <= smin) { + a11.r = smin, a11.i = 0.; + da11 = smin; + *info = 1; + } + db = (d__1 = vec.r, abs(d__1)) + (d__2 = d_imag(&vec), abs( + d__2)); + if (da11 < 1. && db > 1.) { + if (db > bignum * da11) { + scaloc = 1. / db; + } + } + + z__3.r = scaloc, z__3.i = 0.; + z__2.r = vec.r * z__3.r - vec.i * z__3.i, z__2.i = vec.r * + z__3.i + vec.i * z__3.r; + zladiv_(&z__1, &z__2, &a11); + x11.r = z__1.r, x11.i = z__1.i; + + if (scaloc != 1.) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + zdscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1); +/* L100: */ + } + *scale *= scaloc; + } + i__1 = k + l * c_dim1; + c__[i__1].r = x11.r, c__[i__1].i = x11.i; + +/* L110: */ + } +/* L120: */ + } + + } + + return 0; + +/* End of ZTRSYL */ + +} /* ztrsyl_ */ |