aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztrrfs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztrrfs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztrrfs.c')
-rw-r--r--contrib/libs/clapack/ztrrfs.c565
1 files changed, 565 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztrrfs.c b/contrib/libs/clapack/ztrrfs.c
new file mode 100644
index 0000000000..c18131c539
--- /dev/null
+++ b/contrib/libs/clapack/ztrrfs.c
@@ -0,0 +1,565 @@
+/* ztrrfs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int ztrrfs_(char *uplo, char *trans, char *diag, integer *n,
+ integer *nrhs, doublecomplex *a, integer *lda, doublecomplex *b,
+ integer *ldb, doublecomplex *x, integer *ldx, doublereal *ferr,
+ doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
+ info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset, i__1, i__2,
+ i__3, i__4, i__5;
+ doublereal d__1, d__2, d__3, d__4;
+ doublecomplex z__1;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, k;
+ doublereal s, xk;
+ integer nz;
+ doublereal eps;
+ integer kase;
+ doublereal safe1, safe2;
+ extern logical lsame_(char *, char *);
+ integer isave[3];
+ logical upper;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zaxpy_(integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *), ztrmv_(
+ char *, char *, char *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), ztrsv_(char *
+, char *, char *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zlacn2_(
+ integer *, doublecomplex *, doublecomplex *, doublereal *,
+ integer *, integer *);
+ extern doublereal dlamch_(char *);
+ doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ logical notran;
+ char transn[1], transt[1];
+ logical nounit;
+ doublereal lstres;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTRRFS provides error bounds and backward error estimates for the */
+/* solution to a system of linear equations with a triangular */
+/* coefficient matrix. */
+
+/* The solution matrix X must be computed by ZTRTRS or some other */
+/* means before entering this routine. ZTRRFS does not do iterative */
+/* refinement because doing so cannot improve the backward error. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': A is upper triangular; */
+/* = 'L': A is lower triangular. */
+
+/* TRANS (input) CHARACTER*1 */
+/* Specifies the form of the system of equations: */
+/* = 'N': A * X = B (No transpose) */
+/* = 'T': A**T * X = B (Transpose) */
+/* = 'C': A**H * X = B (Conjugate transpose) */
+
+/* DIAG (input) CHARACTER*1 */
+/* = 'N': A is non-unit triangular; */
+/* = 'U': A is unit triangular. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension (LDA,N) */
+/* The triangular matrix A. If UPLO = 'U', the leading N-by-N */
+/* upper triangular part of the array A contains the upper */
+/* triangular matrix, and the strictly lower triangular part of */
+/* A is not referenced. If UPLO = 'L', the leading N-by-N lower */
+/* triangular part of the array A contains the lower triangular */
+/* matrix, and the strictly upper triangular part of A is not */
+/* referenced. If DIAG = 'U', the diagonal elements of A are */
+/* also not referenced and are assumed to be 1. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* The right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (input) COMPLEX*16 array, dimension (LDX,NRHS) */
+/* The solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The estimated forward error bound for each solution vector */
+/* X(j) (the j-th column of the solution matrix X). */
+/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
+/* is an estimated upper bound for the magnitude of the largest */
+/* element in (X(j) - XTRUE) divided by the magnitude of the */
+/* largest element in X(j). The estimate is as reliable as */
+/* the estimate for RCOND, and is almost always a slight */
+/* overestimate of the true error. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The componentwise relative backward error of each solution */
+/* vector X(j) (i.e., the smallest relative change in */
+/* any element of A or B that makes X(j) an exact solution). */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --ferr;
+ --berr;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ notran = lsame_(trans, "N");
+ nounit = lsame_(diag, "N");
+
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (! notran && ! lsame_(trans, "T") && !
+ lsame_(trans, "C")) {
+ *info = -2;
+ } else if (! nounit && ! lsame_(diag, "U")) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*nrhs < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldb < max(1,*n)) {
+ *info = -9;
+ } else if (*ldx < max(1,*n)) {
+ *info = -11;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZTRRFS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ ferr[j] = 0.;
+ berr[j] = 0.;
+/* L10: */
+ }
+ return 0;
+ }
+
+ if (notran) {
+ *(unsigned char *)transn = 'N';
+ *(unsigned char *)transt = 'C';
+ } else {
+ *(unsigned char *)transn = 'C';
+ *(unsigned char *)transt = 'N';
+ }
+
+/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
+
+ nz = *n + 1;
+ eps = dlamch_("Epsilon");
+ safmin = dlamch_("Safe minimum");
+ safe1 = nz * safmin;
+ safe2 = safe1 / eps;
+
+/* Do for each right hand side */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute residual R = B - op(A) * X, */
+/* where op(A) = A, A**T, or A**H, depending on TRANS. */
+
+ zcopy_(n, &x[j * x_dim1 + 1], &c__1, &work[1], &c__1);
+ ztrmv_(uplo, trans, diag, n, &a[a_offset], lda, &work[1], &c__1);
+ z__1.r = -1., z__1.i = -0.;
+ zaxpy_(n, &z__1, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
+
+/* Compute componentwise relative backward error from formula */
+
+/* max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) ) */
+
+/* where abs(Z) is the componentwise absolute value of the matrix */
+/* or vector Z. If the i-th component of the denominator is less */
+/* than SAFE2, then SAFE1 is added to the i-th components of the */
+/* numerator and denominator before dividing. */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
+ i__ + j * b_dim1]), abs(d__2));
+/* L20: */
+ }
+
+ if (notran) {
+
+/* Compute abs(A)*abs(X) + abs(B). */
+
+ if (upper) {
+ if (nounit) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ x[k + j * x_dim1]), abs(d__2));
+ i__3 = k;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (
+ d__2 = d_imag(&a[i__ + k * a_dim1]), abs(
+ d__2))) * xk;
+/* L30: */
+ }
+/* L40: */
+ }
+ } else {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ x[k + j * x_dim1]), abs(d__2));
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (
+ d__2 = d_imag(&a[i__ + k * a_dim1]), abs(
+ d__2))) * xk;
+/* L50: */
+ }
+ rwork[k] += xk;
+/* L60: */
+ }
+ }
+ } else {
+ if (nounit) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ x[k + j * x_dim1]), abs(d__2));
+ i__3 = *n;
+ for (i__ = k; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (
+ d__2 = d_imag(&a[i__ + k * a_dim1]), abs(
+ d__2))) * xk;
+/* L70: */
+ }
+/* L80: */
+ }
+ } else {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ x[k + j * x_dim1]), abs(d__2));
+ i__3 = *n;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ rwork[i__] += ((d__1 = a[i__4].r, abs(d__1)) + (
+ d__2 = d_imag(&a[i__ + k * a_dim1]), abs(
+ d__2))) * xk;
+/* L90: */
+ }
+ rwork[k] += xk;
+/* L100: */
+ }
+ }
+ }
+ } else {
+
+/* Compute abs(A**H)*abs(X) + abs(B). */
+
+ if (upper) {
+ if (nounit) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ s = 0.;
+ i__3 = k;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&a[i__ + k * a_dim1]), abs(d__2)))
+ * ((d__3 = x[i__5].r, abs(d__3)) + (d__4 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__4)))
+ ;
+/* L110: */
+ }
+ rwork[k] += s;
+/* L120: */
+ }
+ } else {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ s = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[
+ k + j * x_dim1]), abs(d__2));
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&a[i__ + k * a_dim1]), abs(d__2)))
+ * ((d__3 = x[i__5].r, abs(d__3)) + (d__4 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__4)))
+ ;
+/* L130: */
+ }
+ rwork[k] += s;
+/* L140: */
+ }
+ }
+ } else {
+ if (nounit) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ s = 0.;
+ i__3 = *n;
+ for (i__ = k; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&a[i__ + k * a_dim1]), abs(d__2)))
+ * ((d__3 = x[i__5].r, abs(d__3)) + (d__4 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__4)))
+ ;
+/* L150: */
+ }
+ rwork[k] += s;
+/* L160: */
+ }
+ } else {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + j * x_dim1;
+ s = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[
+ k + j * x_dim1]), abs(d__2));
+ i__3 = *n;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + k * a_dim1;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = a[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&a[i__ + k * a_dim1]), abs(d__2)))
+ * ((d__3 = x[i__5].r, abs(d__3)) + (d__4 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__4)))
+ ;
+/* L170: */
+ }
+ rwork[k] += s;
+/* L180: */
+ }
+ }
+ }
+ }
+ s = 0.;
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (rwork[i__] > safe2) {
+/* Computing MAX */
+ i__3 = i__;
+ d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2))) / rwork[i__];
+ s = max(d__3,d__4);
+ } else {
+/* Computing MAX */
+ i__3 = i__;
+ d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
+ + safe1);
+ s = max(d__3,d__4);
+ }
+/* L190: */
+ }
+ berr[j] = s;
+
+/* Bound error from formula */
+
+/* norm(X - XTRUE) / norm(X) .le. FERR = */
+/* norm( abs(inv(op(A)))* */
+/* ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X) */
+
+/* where */
+/* norm(Z) is the magnitude of the largest component of Z */
+/* inv(op(A)) is the inverse of op(A) */
+/* abs(Z) is the componentwise absolute value of the matrix or */
+/* vector Z */
+/* NZ is the maximum number of nonzeros in any row of A, plus 1 */
+/* EPS is machine epsilon */
+
+/* The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B)) */
+/* is incremented by SAFE1 if the i-th component of */
+/* abs(op(A))*abs(X) + abs(B) is less than SAFE2. */
+
+/* Use ZLACN2 to estimate the infinity-norm of the matrix */
+/* inv(op(A)) * diag(W), */
+/* where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (rwork[i__] > safe2) {
+ i__3 = i__;
+ rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
+ ;
+ } else {
+ i__3 = i__;
+ rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
+ + safe1;
+ }
+/* L200: */
+ }
+
+ kase = 0;
+L210:
+ zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
+ if (kase != 0) {
+ if (kase == 1) {
+
+/* Multiply by diag(W)*inv(op(A)**H). */
+
+ ztrsv_(uplo, transt, diag, n, &a[a_offset], lda, &work[1], &
+ c__1);
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__;
+ z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
+ * work[i__5].i;
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* L220: */
+ }
+ } else {
+
+/* Multiply by inv(op(A))*diag(W). */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__;
+ z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
+ * work[i__5].i;
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* L230: */
+ }
+ ztrsv_(uplo, transn, diag, n, &a[a_offset], lda, &work[1], &
+ c__1);
+ }
+ goto L210;
+ }
+
+/* Normalize error. */
+
+ lstres = 0.;
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * x_dim1;
+ d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__2));
+ lstres = max(d__3,d__4);
+/* L240: */
+ }
+ if (lstres != 0.) {
+ ferr[j] /= lstres;
+ }
+
+/* L250: */
+ }
+
+ return 0;
+
+/* End of ZTRRFS */
+
+} /* ztrrfs_ */