aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztrevc.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztrevc.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztrevc.c')
-rw-r--r--contrib/libs/clapack/ztrevc.c533
1 files changed, 533 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztrevc.c b/contrib/libs/clapack/ztrevc.c
new file mode 100644
index 0000000000..3e4f836ed2
--- /dev/null
+++ b/contrib/libs/clapack/ztrevc.c
@@ -0,0 +1,533 @@
+/* ztrevc.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b2 = {1.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select,
+ integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
+ integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
+ *m, doublecomplex *work, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
+ i__2, i__3, i__4, i__5;
+ doublereal d__1, d__2, d__3;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, k, ii, ki, is;
+ doublereal ulp;
+ logical allv;
+ doublereal unfl, ovfl, smin;
+ logical over;
+ doublereal scale;
+ extern logical lsame_(char *, char *);
+ doublereal remax;
+ logical leftv, bothv;
+ extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *);
+ logical somev;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
+ integer *, doublereal *, doublecomplex *, integer *);
+ extern integer izamax_(integer *, doublecomplex *, integer *);
+ logical rightv;
+ extern doublereal dzasum_(integer *, doublecomplex *, integer *);
+ doublereal smlnum;
+ extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublereal *, doublereal *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTREVC computes some or all of the right and/or left eigenvectors of */
+/* a complex upper triangular matrix T. */
+/* Matrices of this type are produced by the Schur factorization of */
+/* a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */
+
+/* The right eigenvector x and the left eigenvector y of T corresponding */
+/* to an eigenvalue w are defined by: */
+
+/* T*x = w*x, (y**H)*T = w*(y**H) */
+
+/* where y**H denotes the conjugate transpose of the vector y. */
+/* The eigenvalues are not input to this routine, but are read directly */
+/* from the diagonal of T. */
+
+/* This routine returns the matrices X and/or Y of right and left */
+/* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
+/* input matrix. If Q is the unitary factor that reduces a matrix A to */
+/* Schur form T, then Q*X and Q*Y are the matrices of right and left */
+/* eigenvectors of A. */
+
+/* Arguments */
+/* ========= */
+
+/* SIDE (input) CHARACTER*1 */
+/* = 'R': compute right eigenvectors only; */
+/* = 'L': compute left eigenvectors only; */
+/* = 'B': compute both right and left eigenvectors. */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute all right and/or left eigenvectors; */
+/* = 'B': compute all right and/or left eigenvectors, */
+/* backtransformed using the matrices supplied in */
+/* VR and/or VL; */
+/* = 'S': compute selected right and/or left eigenvectors, */
+/* as indicated by the logical array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
+/* computed. */
+/* The eigenvector corresponding to the j-th eigenvalue is */
+/* computed if SELECT(j) = .TRUE.. */
+/* Not referenced if HOWMNY = 'A' or 'B'. */
+
+/* N (input) INTEGER */
+/* The order of the matrix T. N >= 0. */
+
+/* T (input/output) COMPLEX*16 array, dimension (LDT,N) */
+/* The upper triangular matrix T. T is modified, but restored */
+/* on exit. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the array T. LDT >= max(1,N). */
+
+/* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */
+/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
+/* contain an N-by-N matrix Q (usually the unitary matrix Q of */
+/* Schur vectors returned by ZHSEQR). */
+/* On exit, if SIDE = 'L' or 'B', VL contains: */
+/* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
+/* if HOWMNY = 'B', the matrix Q*Y; */
+/* if HOWMNY = 'S', the left eigenvectors of T specified by */
+/* SELECT, stored consecutively in the columns */
+/* of VL, in the same order as their */
+/* eigenvalues. */
+/* Not referenced if SIDE = 'R'. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the array VL. LDVL >= 1, and if */
+/* SIDE = 'L' or 'B', LDVL >= N. */
+
+/* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */
+/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
+/* contain an N-by-N matrix Q (usually the unitary matrix Q of */
+/* Schur vectors returned by ZHSEQR). */
+/* On exit, if SIDE = 'R' or 'B', VR contains: */
+/* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
+/* if HOWMNY = 'B', the matrix Q*X; */
+/* if HOWMNY = 'S', the right eigenvectors of T specified by */
+/* SELECT, stored consecutively in the columns */
+/* of VR, in the same order as their */
+/* eigenvalues. */
+/* Not referenced if SIDE = 'L'. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1, and if */
+/* SIDE = 'R' or 'B'; LDVR >= N. */
+
+/* MM (input) INTEGER */
+/* The number of columns in the arrays VL and/or VR. MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of columns in the arrays VL and/or VR actually */
+/* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
+/* is set to N. Each selected eigenvector occupies one */
+/* column. */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Further Details */
+/* =============== */
+
+/* The algorithm used in this program is basically backward (forward) */
+/* substitution, with scaling to make the the code robust against */
+/* possible overflow. */
+
+/* Each eigenvector is normalized so that the element of largest */
+/* magnitude has magnitude 1; here the magnitude of a complex number */
+/* (x,y) is taken to be |x| + |y|. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ bothv = lsame_(side, "B");
+ rightv = lsame_(side, "R") || bothv;
+ leftv = lsame_(side, "L") || bothv;
+
+ allv = lsame_(howmny, "A");
+ over = lsame_(howmny, "B");
+ somev = lsame_(howmny, "S");
+
+/* Set M to the number of columns required to store the selected */
+/* eigenvectors. */
+
+ if (somev) {
+ *m = 0;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (select[j]) {
+ ++(*m);
+ }
+/* L10: */
+ }
+ } else {
+ *m = *n;
+ }
+
+ *info = 0;
+ if (! rightv && ! leftv) {
+ *info = -1;
+ } else if (! allv && ! over && ! somev) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldt < max(1,*n)) {
+ *info = -6;
+ } else if (*ldvl < 1 || leftv && *ldvl < *n) {
+ *info = -8;
+ } else if (*ldvr < 1 || rightv && *ldvr < *n) {
+ *info = -10;
+ } else if (*mm < *m) {
+ *info = -11;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZTREVC", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Set the constants to control overflow. */
+
+ unfl = dlamch_("Safe minimum");
+ ovfl = 1. / unfl;
+ dlabad_(&unfl, &ovfl);
+ ulp = dlamch_("Precision");
+ smlnum = unfl * (*n / ulp);
+
+/* Store the diagonal elements of T in working array WORK. */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + *n;
+ i__3 = i__ + i__ * t_dim1;
+ work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
+/* L20: */
+ }
+
+/* Compute 1-norm of each column of strictly upper triangular */
+/* part of T to control overflow in triangular solver. */
+
+ rwork[1] = 0.;
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ i__2 = j - 1;
+ rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
+/* L30: */
+ }
+
+ if (rightv) {
+
+/* Compute right eigenvectors. */
+
+ is = *m;
+ for (ki = *n; ki >= 1; --ki) {
+
+ if (somev) {
+ if (! select[ki]) {
+ goto L80;
+ }
+ }
+/* Computing MAX */
+ i__1 = ki + ki * t_dim1;
+ d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[
+ ki + ki * t_dim1]), abs(d__2)));
+ smin = max(d__3,smlnum);
+
+ work[1].r = 1., work[1].i = 0.;
+
+/* Form right-hand side. */
+
+ i__1 = ki - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k;
+ i__3 = k + ki * t_dim1;
+ z__1.r = -t[i__3].r, z__1.i = -t[i__3].i;
+ work[i__2].r = z__1.r, work[i__2].i = z__1.i;
+/* L40: */
+ }
+
+/* Solve the triangular system: */
+/* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */
+
+ i__1 = ki - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k + k * t_dim1;
+ i__3 = k + k * t_dim1;
+ i__4 = ki + ki * t_dim1;
+ z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4]
+ .i;
+ t[i__2].r = z__1.r, t[i__2].i = z__1.i;
+ i__2 = k + k * t_dim1;
+ if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
+ t_dim1]), abs(d__2)) < smin) {
+ i__3 = k + k * t_dim1;
+ t[i__3].r = smin, t[i__3].i = 0.;
+ }
+/* L50: */
+ }
+
+ if (ki > 1) {
+ i__1 = ki - 1;
+ zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
+ t_offset], ldt, &work[1], &scale, &rwork[1], info);
+ i__1 = ki;
+ work[i__1].r = scale, work[i__1].i = 0.;
+ }
+
+/* Copy the vector x or Q*x to VR and normalize. */
+
+ if (! over) {
+ zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1);
+
+ ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
+ i__1 = ii + is * vr_dim1;
+ remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
+ &vr[ii + is * vr_dim1]), abs(d__2)));
+ zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
+
+ i__1 = *n;
+ for (k = ki + 1; k <= i__1; ++k) {
+ i__2 = k + is * vr_dim1;
+ vr[i__2].r = 0., vr[i__2].i = 0.;
+/* L60: */
+ }
+ } else {
+ if (ki > 1) {
+ i__1 = ki - 1;
+ z__1.r = scale, z__1.i = 0.;
+ zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
+ 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1);
+ }
+
+ ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
+ i__1 = ii + ki * vr_dim1;
+ remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
+ &vr[ii + ki * vr_dim1]), abs(d__2)));
+ zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
+ }
+
+/* Set back the original diagonal elements of T. */
+
+ i__1 = ki - 1;
+ for (k = 1; k <= i__1; ++k) {
+ i__2 = k + k * t_dim1;
+ i__3 = k + *n;
+ t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
+/* L70: */
+ }
+
+ --is;
+L80:
+ ;
+ }
+ }
+
+ if (leftv) {
+
+/* Compute left eigenvectors. */
+
+ is = 1;
+ i__1 = *n;
+ for (ki = 1; ki <= i__1; ++ki) {
+
+ if (somev) {
+ if (! select[ki]) {
+ goto L130;
+ }
+ }
+/* Computing MAX */
+ i__2 = ki + ki * t_dim1;
+ d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[
+ ki + ki * t_dim1]), abs(d__2)));
+ smin = max(d__3,smlnum);
+
+ i__2 = *n;
+ work[i__2].r = 1., work[i__2].i = 0.;
+
+/* Form right-hand side. */
+
+ i__2 = *n;
+ for (k = ki + 1; k <= i__2; ++k) {
+ i__3 = k;
+ d_cnjg(&z__2, &t[ki + k * t_dim1]);
+ z__1.r = -z__2.r, z__1.i = -z__2.i;
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* L90: */
+ }
+
+/* Solve the triangular system: */
+/* (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */
+
+ i__2 = *n;
+ for (k = ki + 1; k <= i__2; ++k) {
+ i__3 = k + k * t_dim1;
+ i__4 = k + k * t_dim1;
+ i__5 = ki + ki * t_dim1;
+ z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
+ .i;
+ t[i__3].r = z__1.r, t[i__3].i = z__1.i;
+ i__3 = k + k * t_dim1;
+ if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
+ t_dim1]), abs(d__2)) < smin) {
+ i__4 = k + k * t_dim1;
+ t[i__4].r = smin, t[i__4].i = 0.;
+ }
+/* L100: */
+ }
+
+ if (ki < *n) {
+ i__2 = *n - ki;
+ zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
+ i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
+ 1], &scale, &rwork[1], info);
+ i__2 = ki;
+ work[i__2].r = scale, work[i__2].i = 0.;
+ }
+
+/* Copy the vector x or Q*x to VL and normalize. */
+
+ if (! over) {
+ i__2 = *n - ki + 1;
+ zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1)
+ ;
+
+ i__2 = *n - ki + 1;
+ ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
+ i__2 = ii + is * vl_dim1;
+ remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
+ &vl[ii + is * vl_dim1]), abs(d__2)));
+ i__2 = *n - ki + 1;
+ zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
+
+ i__2 = ki - 1;
+ for (k = 1; k <= i__2; ++k) {
+ i__3 = k + is * vl_dim1;
+ vl[i__3].r = 0., vl[i__3].i = 0.;
+/* L110: */
+ }
+ } else {
+ if (ki < *n) {
+ i__2 = *n - ki;
+ z__1.r = scale, z__1.i = 0.;
+ zgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
+ ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki *
+ vl_dim1 + 1], &c__1);
+ }
+
+ ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
+ i__2 = ii + ki * vl_dim1;
+ remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
+ &vl[ii + ki * vl_dim1]), abs(d__2)));
+ zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
+ }
+
+/* Set back the original diagonal elements of T. */
+
+ i__2 = *n;
+ for (k = ki + 1; k <= i__2; ++k) {
+ i__3 = k + k * t_dim1;
+ i__4 = k + *n;
+ t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
+/* L120: */
+ }
+
+ ++is;
+L130:
+ ;
+ }
+ }
+
+ return 0;
+
+/* End of ZTREVC */
+
+} /* ztrevc_ */