diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztrevc.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztrevc.c')
-rw-r--r-- | contrib/libs/clapack/ztrevc.c | 533 |
1 files changed, 533 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztrevc.c b/contrib/libs/clapack/ztrevc.c new file mode 100644 index 0000000000..3e4f836ed2 --- /dev/null +++ b/contrib/libs/clapack/ztrevc.c @@ -0,0 +1,533 @@ +/* ztrevc.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b2 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int ztrevc_(char *side, char *howmny, logical *select, + integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl, + integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer + *m, doublecomplex *work, doublereal *rwork, integer *info) +{ + /* System generated locals */ + integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1, + i__2, i__3, i__4, i__5; + doublereal d__1, d__2, d__3; + doublecomplex z__1, z__2; + + /* Builtin functions */ + double d_imag(doublecomplex *); + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__, j, k, ii, ki, is; + doublereal ulp; + logical allv; + doublereal unfl, ovfl, smin; + logical over; + doublereal scale; + extern logical lsame_(char *, char *); + doublereal remax; + logical leftv, bothv; + extern /* Subroutine */ int zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *); + logical somev; + extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); + extern doublereal dlamch_(char *); + extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( + integer *, doublereal *, doublecomplex *, integer *); + extern integer izamax_(integer *, doublecomplex *, integer *); + logical rightv; + extern doublereal dzasum_(integer *, doublecomplex *, integer *); + doublereal smlnum; + extern /* Subroutine */ int zlatrs_(char *, char *, char *, char *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublereal *, doublereal *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZTREVC computes some or all of the right and/or left eigenvectors of */ +/* a complex upper triangular matrix T. */ +/* Matrices of this type are produced by the Schur factorization of */ +/* a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */ + +/* The right eigenvector x and the left eigenvector y of T corresponding */ +/* to an eigenvalue w are defined by: */ + +/* T*x = w*x, (y**H)*T = w*(y**H) */ + +/* where y**H denotes the conjugate transpose of the vector y. */ +/* The eigenvalues are not input to this routine, but are read directly */ +/* from the diagonal of T. */ + +/* This routine returns the matrices X and/or Y of right and left */ +/* eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */ +/* input matrix. If Q is the unitary factor that reduces a matrix A to */ +/* Schur form T, then Q*X and Q*Y are the matrices of right and left */ +/* eigenvectors of A. */ + +/* Arguments */ +/* ========= */ + +/* SIDE (input) CHARACTER*1 */ +/* = 'R': compute right eigenvectors only; */ +/* = 'L': compute left eigenvectors only; */ +/* = 'B': compute both right and left eigenvectors. */ + +/* HOWMNY (input) CHARACTER*1 */ +/* = 'A': compute all right and/or left eigenvectors; */ +/* = 'B': compute all right and/or left eigenvectors, */ +/* backtransformed using the matrices supplied in */ +/* VR and/or VL; */ +/* = 'S': compute selected right and/or left eigenvectors, */ +/* as indicated by the logical array SELECT. */ + +/* SELECT (input) LOGICAL array, dimension (N) */ +/* If HOWMNY = 'S', SELECT specifies the eigenvectors to be */ +/* computed. */ +/* The eigenvector corresponding to the j-th eigenvalue is */ +/* computed if SELECT(j) = .TRUE.. */ +/* Not referenced if HOWMNY = 'A' or 'B'. */ + +/* N (input) INTEGER */ +/* The order of the matrix T. N >= 0. */ + +/* T (input/output) COMPLEX*16 array, dimension (LDT,N) */ +/* The upper triangular matrix T. T is modified, but restored */ +/* on exit. */ + +/* LDT (input) INTEGER */ +/* The leading dimension of the array T. LDT >= max(1,N). */ + +/* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */ +/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */ +/* contain an N-by-N matrix Q (usually the unitary matrix Q of */ +/* Schur vectors returned by ZHSEQR). */ +/* On exit, if SIDE = 'L' or 'B', VL contains: */ +/* if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */ +/* if HOWMNY = 'B', the matrix Q*Y; */ +/* if HOWMNY = 'S', the left eigenvectors of T specified by */ +/* SELECT, stored consecutively in the columns */ +/* of VL, in the same order as their */ +/* eigenvalues. */ +/* Not referenced if SIDE = 'R'. */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of the array VL. LDVL >= 1, and if */ +/* SIDE = 'L' or 'B', LDVL >= N. */ + +/* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */ +/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */ +/* contain an N-by-N matrix Q (usually the unitary matrix Q of */ +/* Schur vectors returned by ZHSEQR). */ +/* On exit, if SIDE = 'R' or 'B', VR contains: */ +/* if HOWMNY = 'A', the matrix X of right eigenvectors of T; */ +/* if HOWMNY = 'B', the matrix Q*X; */ +/* if HOWMNY = 'S', the right eigenvectors of T specified by */ +/* SELECT, stored consecutively in the columns */ +/* of VR, in the same order as their */ +/* eigenvalues. */ +/* Not referenced if SIDE = 'L'. */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the array VR. LDVR >= 1, and if */ +/* SIDE = 'R' or 'B'; LDVR >= N. */ + +/* MM (input) INTEGER */ +/* The number of columns in the arrays VL and/or VR. MM >= M. */ + +/* M (output) INTEGER */ +/* The number of columns in the arrays VL and/or VR actually */ +/* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */ +/* is set to N. Each selected eigenvector occupies one */ +/* column. */ + +/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* Further Details */ +/* =============== */ + +/* The algorithm used in this program is basically backward (forward) */ +/* substitution, with scaling to make the the code robust against */ +/* possible overflow. */ + +/* Each eigenvector is normalized so that the element of largest */ +/* magnitude has magnitude 1; here the magnitude of a complex number */ +/* (x,y) is taken to be |x| + |y|. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and test the input parameters */ + + /* Parameter adjustments */ + --select; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + --rwork; + + /* Function Body */ + bothv = lsame_(side, "B"); + rightv = lsame_(side, "R") || bothv; + leftv = lsame_(side, "L") || bothv; + + allv = lsame_(howmny, "A"); + over = lsame_(howmny, "B"); + somev = lsame_(howmny, "S"); + +/* Set M to the number of columns required to store the selected */ +/* eigenvectors. */ + + if (somev) { + *m = 0; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (select[j]) { + ++(*m); + } +/* L10: */ + } + } else { + *m = *n; + } + + *info = 0; + if (! rightv && ! leftv) { + *info = -1; + } else if (! allv && ! over && ! somev) { + *info = -2; + } else if (*n < 0) { + *info = -4; + } else if (*ldt < max(1,*n)) { + *info = -6; + } else if (*ldvl < 1 || leftv && *ldvl < *n) { + *info = -8; + } else if (*ldvr < 1 || rightv && *ldvr < *n) { + *info = -10; + } else if (*mm < *m) { + *info = -11; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZTREVC", &i__1); + return 0; + } + +/* Quick return if possible. */ + + if (*n == 0) { + return 0; + } + +/* Set the constants to control overflow. */ + + unfl = dlamch_("Safe minimum"); + ovfl = 1. / unfl; + dlabad_(&unfl, &ovfl); + ulp = dlamch_("Precision"); + smlnum = unfl * (*n / ulp); + +/* Store the diagonal elements of T in working array WORK. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + *n; + i__3 = i__ + i__ * t_dim1; + work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i; +/* L20: */ + } + +/* Compute 1-norm of each column of strictly upper triangular */ +/* part of T to control overflow in triangular solver. */ + + rwork[1] = 0.; + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + i__2 = j - 1; + rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1); +/* L30: */ + } + + if (rightv) { + +/* Compute right eigenvectors. */ + + is = *m; + for (ki = *n; ki >= 1; --ki) { + + if (somev) { + if (! select[ki]) { + goto L80; + } + } +/* Computing MAX */ + i__1 = ki + ki * t_dim1; + d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[ + ki + ki * t_dim1]), abs(d__2))); + smin = max(d__3,smlnum); + + work[1].r = 1., work[1].i = 0.; + +/* Form right-hand side. */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k; + i__3 = k + ki * t_dim1; + z__1.r = -t[i__3].r, z__1.i = -t[i__3].i; + work[i__2].r = z__1.r, work[i__2].i = z__1.i; +/* L40: */ + } + +/* Solve the triangular system: */ +/* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + k * t_dim1; + i__3 = k + k * t_dim1; + i__4 = ki + ki * t_dim1; + z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4] + .i; + t[i__2].r = z__1.r, t[i__2].i = z__1.i; + i__2 = k + k * t_dim1; + if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k * + t_dim1]), abs(d__2)) < smin) { + i__3 = k + k * t_dim1; + t[i__3].r = smin, t[i__3].i = 0.; + } +/* L50: */ + } + + if (ki > 1) { + i__1 = ki - 1; + zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[ + t_offset], ldt, &work[1], &scale, &rwork[1], info); + i__1 = ki; + work[i__1].r = scale, work[i__1].i = 0.; + } + +/* Copy the vector x or Q*x to VR and normalize. */ + + if (! over) { + zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1); + + ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1); + i__1 = ii + is * vr_dim1; + remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( + &vr[ii + is * vr_dim1]), abs(d__2))); + zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1); + + i__1 = *n; + for (k = ki + 1; k <= i__1; ++k) { + i__2 = k + is * vr_dim1; + vr[i__2].r = 0., vr[i__2].i = 0.; +/* L60: */ + } + } else { + if (ki > 1) { + i__1 = ki - 1; + z__1.r = scale, z__1.i = 0.; + zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[ + 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1); + } + + ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1); + i__1 = ii + ki * vr_dim1; + remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag( + &vr[ii + ki * vr_dim1]), abs(d__2))); + zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1); + } + +/* Set back the original diagonal elements of T. */ + + i__1 = ki - 1; + for (k = 1; k <= i__1; ++k) { + i__2 = k + k * t_dim1; + i__3 = k + *n; + t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i; +/* L70: */ + } + + --is; +L80: + ; + } + } + + if (leftv) { + +/* Compute left eigenvectors. */ + + is = 1; + i__1 = *n; + for (ki = 1; ki <= i__1; ++ki) { + + if (somev) { + if (! select[ki]) { + goto L130; + } + } +/* Computing MAX */ + i__2 = ki + ki * t_dim1; + d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[ + ki + ki * t_dim1]), abs(d__2))); + smin = max(d__3,smlnum); + + i__2 = *n; + work[i__2].r = 1., work[i__2].i = 0.; + +/* Form right-hand side. */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k; + d_cnjg(&z__2, &t[ki + k * t_dim1]); + z__1.r = -z__2.r, z__1.i = -z__2.i; + work[i__3].r = z__1.r, work[i__3].i = z__1.i; +/* L90: */ + } + +/* Solve the triangular system: */ +/* (T(KI+1:N,KI+1:N) - T(KI,KI))'*X = SCALE*WORK. */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k + k * t_dim1; + i__4 = k + k * t_dim1; + i__5 = ki + ki * t_dim1; + z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5] + .i; + t[i__3].r = z__1.r, t[i__3].i = z__1.i; + i__3 = k + k * t_dim1; + if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k * + t_dim1]), abs(d__2)) < smin) { + i__4 = k + k * t_dim1; + t[i__4].r = smin, t[i__4].i = 0.; + } +/* L100: */ + } + + if (ki < *n) { + i__2 = *n - ki; + zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", & + i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki + + 1], &scale, &rwork[1], info); + i__2 = ki; + work[i__2].r = scale, work[i__2].i = 0.; + } + +/* Copy the vector x or Q*x to VL and normalize. */ + + if (! over) { + i__2 = *n - ki + 1; + zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1) + ; + + i__2 = *n - ki + 1; + ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1; + i__2 = ii + is * vl_dim1; + remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( + &vl[ii + is * vl_dim1]), abs(d__2))); + i__2 = *n - ki + 1; + zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1); + + i__2 = ki - 1; + for (k = 1; k <= i__2; ++k) { + i__3 = k + is * vl_dim1; + vl[i__3].r = 0., vl[i__3].i = 0.; +/* L110: */ + } + } else { + if (ki < *n) { + i__2 = *n - ki; + z__1.r = scale, z__1.i = 0.; + zgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1], + ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki * + vl_dim1 + 1], &c__1); + } + + ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1); + i__2 = ii + ki * vl_dim1; + remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag( + &vl[ii + ki * vl_dim1]), abs(d__2))); + zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1); + } + +/* Set back the original diagonal elements of T. */ + + i__2 = *n; + for (k = ki + 1; k <= i__2; ++k) { + i__3 = k + k * t_dim1; + i__4 = k + *n; + t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i; +/* L120: */ + } + + ++is; +L130: + ; + } + } + + return 0; + +/* End of ZTREVC */ + +} /* ztrevc_ */ |