aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztgex2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztgex2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztgex2.c')
-rw-r--r--contrib/libs/clapack/ztgex2.c376
1 files changed, 376 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztgex2.c b/contrib/libs/clapack/ztgex2.c
new file mode 100644
index 0000000000..d85191c51d
--- /dev/null
+++ b/contrib/libs/clapack/ztgex2.c
@@ -0,0 +1,376 @@
+/* ztgex2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__2 = 2;
+static integer c__1 = 1;
+
+/* Subroutine */ int ztgex2_(logical *wantq, logical *wantz, integer *n,
+ doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
+ doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz,
+ integer *j1, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
+ z_offset, i__1, i__2, i__3;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ double sqrt(doublereal), z_abs(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ doublecomplex f, g;
+ integer i__, m;
+ doublecomplex s[4] /* was [2][2] */, t[4] /* was [2][2] */;
+ doublereal cq, sa, sb, cz;
+ doublecomplex sq;
+ doublereal ss, ws;
+ doublecomplex sz;
+ doublereal eps, sum;
+ logical weak;
+ doublecomplex cdum, work[8];
+ extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublereal *, doublecomplex *);
+ doublereal scale;
+ extern doublereal dlamch_(char *);
+ logical dtrong;
+ doublereal thresh;
+ extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *),
+ zlartg_(doublecomplex *, doublecomplex *, doublereal *,
+ doublecomplex *, doublecomplex *);
+ doublereal smlnum;
+ extern /* Subroutine */ int zlassq_(integer *, doublecomplex *, integer *,
+ doublereal *, doublereal *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
+/* in an upper triangular matrix pair (A, B) by an unitary equivalence */
+/* transformation. */
+
+/* (A, B) must be in generalized Schur canonical form, that is, A and */
+/* B are both upper triangular. */
+
+/* Optionally, the matrices Q and Z of generalized Schur vectors are */
+/* updated. */
+
+/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
+/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
+
+
+/* Arguments */
+/* ========= */
+
+/* WANTQ (input) LOGICAL */
+/* .TRUE. : update the left transformation matrix Q; */
+/* .FALSE.: do not update Q. */
+
+/* WANTZ (input) LOGICAL */
+/* .TRUE. : update the right transformation matrix Z; */
+/* .FALSE.: do not update Z. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) COMPLEX*16 arrays, dimensions (LDA,N) */
+/* On entry, the matrix A in the pair (A, B). */
+/* On exit, the updated matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) COMPLEX*16 arrays, dimensions (LDB,N) */
+/* On entry, the matrix B in the pair (A, B). */
+/* On exit, the updated matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* Q (input/output) COMPLEX*16 array, dimension (LDZ,N) */
+/* If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
+/* the updated matrix Q. */
+/* Not referenced if WANTQ = .FALSE.. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= 1; */
+/* If WANTQ = .TRUE., LDQ >= N. */
+
+/* Z (input/output) COMPLEX*16 array, dimension (LDZ,N) */
+/* If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
+/* the updated matrix Z. */
+/* Not referenced if WANTZ = .FALSE.. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1; */
+/* If WANTZ = .TRUE., LDZ >= N. */
+
+/* J1 (input) INTEGER */
+/* The index to the first block (A11, B11). */
+
+/* INFO (output) INTEGER */
+/* =0: Successful exit. */
+/* =1: The transformed matrix pair (A, B) would be too far */
+/* from generalized Schur form; the problem is ill- */
+/* conditioned. */
+
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* In the current code both weak and strong stability tests are */
+/* performed. The user can omit the strong stability test by changing */
+/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
+/* details. */
+
+/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
+/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
+/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
+/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
+
+/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
+/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
+/* Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
+/* Department of Computing Science, Umea University, S-901 87 Umea, */
+/* Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
+/* Numerical Algorithms, 1996. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+
+ /* Function Body */
+ *info = 0;
+
+/* Quick return if possible */
+
+ if (*n <= 1) {
+ return 0;
+ }
+
+ m = 2;
+ weak = FALSE_;
+ dtrong = FALSE_;
+
+/* Make a local copy of selected block in (A, B) */
+
+ zlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2);
+ zlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2);
+
+/* Compute the threshold for testing the acceptance of swapping. */
+
+ eps = dlamch_("P");
+ smlnum = dlamch_("S") / eps;
+ scale = 0.;
+ sum = 1.;
+ zlacpy_("Full", &m, &m, s, &c__2, work, &m);
+ zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
+ i__1 = (m << 1) * m;
+ zlassq_(&i__1, work, &c__1, &scale, &sum);
+ sa = scale * sqrt(sum);
+/* Computing MAX */
+ d__1 = eps * 10. * sa;
+ thresh = max(d__1,smlnum);
+
+/* Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
+/* using Givens rotations and perform the swap tentatively. */
+
+ z__2.r = s[3].r * t[0].r - s[3].i * t[0].i, z__2.i = s[3].r * t[0].i + s[
+ 3].i * t[0].r;
+ z__3.r = t[3].r * s[0].r - t[3].i * s[0].i, z__3.i = t[3].r * s[0].i + t[
+ 3].i * s[0].r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ f.r = z__1.r, f.i = z__1.i;
+ z__2.r = s[3].r * t[2].r - s[3].i * t[2].i, z__2.i = s[3].r * t[2].i + s[
+ 3].i * t[2].r;
+ z__3.r = t[3].r * s[2].r - t[3].i * s[2].i, z__3.i = t[3].r * s[2].i + t[
+ 3].i * s[2].r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ g.r = z__1.r, g.i = z__1.i;
+ sa = z_abs(&s[3]);
+ sb = z_abs(&t[3]);
+ zlartg_(&g, &f, &cz, &sz, &cdum);
+ z__1.r = -sz.r, z__1.i = -sz.i;
+ sz.r = z__1.r, sz.i = z__1.i;
+ d_cnjg(&z__1, &sz);
+ zrot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &z__1);
+ d_cnjg(&z__1, &sz);
+ zrot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &z__1);
+ if (sa >= sb) {
+ zlartg_(s, &s[1], &cq, &sq, &cdum);
+ } else {
+ zlartg_(t, &t[1], &cq, &sq, &cdum);
+ }
+ zrot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
+ zrot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
+
+/* Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
+
+ ws = z_abs(&s[1]) + z_abs(&t[1]);
+ weak = ws <= thresh;
+ if (! weak) {
+ goto L20;
+ }
+
+ if (TRUE_) {
+
+/* Strong stability test: */
+/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A, B))) */
+
+ zlacpy_("Full", &m, &m, s, &c__2, work, &m);
+ zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
+ d_cnjg(&z__2, &sz);
+ z__1.r = -z__2.r, z__1.i = -z__2.i;
+ zrot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &z__1);
+ d_cnjg(&z__2, &sz);
+ z__1.r = -z__2.r, z__1.i = -z__2.i;
+ zrot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &z__1);
+ z__1.r = -sq.r, z__1.i = -sq.i;
+ zrot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &z__1);
+ z__1.r = -sq.r, z__1.i = -sq.i;
+ zrot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &z__1);
+ for (i__ = 1; i__ <= 2; ++i__) {
+ i__1 = i__ - 1;
+ i__2 = i__ - 1;
+ i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
+ z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
+ .i;
+ work[i__1].r = z__1.r, work[i__1].i = z__1.i;
+ i__1 = i__ + 1;
+ i__2 = i__ + 1;
+ i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
+ z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
+ .i;
+ work[i__1].r = z__1.r, work[i__1].i = z__1.i;
+ i__1 = i__ + 3;
+ i__2 = i__ + 3;
+ i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
+ z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
+ .i;
+ work[i__1].r = z__1.r, work[i__1].i = z__1.i;
+ i__1 = i__ + 5;
+ i__2 = i__ + 5;
+ i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
+ z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
+ .i;
+ work[i__1].r = z__1.r, work[i__1].i = z__1.i;
+/* L10: */
+ }
+ scale = 0.;
+ sum = 1.;
+ i__1 = (m << 1) * m;
+ zlassq_(&i__1, work, &c__1, &scale, &sum);
+ ss = scale * sqrt(sum);
+ dtrong = ss <= thresh;
+ if (! dtrong) {
+ goto L20;
+ }
+ }
+
+/* If the swap is accepted ("weakly" and "strongly"), apply the */
+/* equivalence transformations to the original matrix pair (A,B) */
+
+ i__1 = *j1 + 1;
+ d_cnjg(&z__1, &sz);
+ zrot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
+ c__1, &cz, &z__1);
+ i__1 = *j1 + 1;
+ d_cnjg(&z__1, &sz);
+ zrot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
+ c__1, &cz, &z__1);
+ i__1 = *n - *j1 + 1;
+ zrot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
+ &cq, &sq);
+ i__1 = *n - *j1 + 1;
+ zrot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
+ &cq, &sq);
+
+/* Set N1 by N2 (2,1) blocks to 0 */
+
+ i__1 = *j1 + 1 + *j1 * a_dim1;
+ a[i__1].r = 0., a[i__1].i = 0.;
+ i__1 = *j1 + 1 + *j1 * b_dim1;
+ b[i__1].r = 0., b[i__1].i = 0.;
+
+/* Accumulate transformations into Q and Z if requested. */
+
+ if (*wantz) {
+ d_cnjg(&z__1, &sz);
+ zrot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1],
+ &c__1, &cz, &z__1);
+ }
+ if (*wantq) {
+ d_cnjg(&z__1, &sq);
+ zrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
+ c__1, &cq, &z__1);
+ }
+
+/* Exit with INFO = 0 if swap was successfully performed. */
+
+ return 0;
+
+/* Exit with INFO = 1 if swap was rejected. */
+
+L20:
+ *info = 1;
+ return 0;
+
+/* End of ZTGEX2 */
+
+} /* ztgex2_ */