diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztgevc.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztgevc.c')
-rw-r--r-- | contrib/libs/clapack/ztgevc.c | 972 |
1 files changed, 972 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztgevc.c b/contrib/libs/clapack/ztgevc.c new file mode 100644 index 0000000000..106692cf7a --- /dev/null +++ b/contrib/libs/clapack/ztgevc.c @@ -0,0 +1,972 @@ +/* ztgevc.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {0.,0.}; +static doublecomplex c_b2 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int ztgevc_(char *side, char *howmny, logical *select, + integer *n, doublecomplex *s, integer *lds, doublecomplex *p, integer + *ldp, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer * + ldvr, integer *mm, integer *m, doublecomplex *work, doublereal *rwork, + integer *info) +{ + /* System generated locals */ + integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, + vr_offset, i__1, i__2, i__3, i__4, i__5; + doublereal d__1, d__2, d__3, d__4, d__5, d__6; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + double d_imag(doublecomplex *); + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + doublecomplex d__; + integer i__, j; + doublecomplex ca, cb; + integer je, im, jr; + doublereal big; + logical lsa, lsb; + doublereal ulp; + doublecomplex sum; + integer ibeg, ieig, iend; + doublereal dmin__; + integer isrc; + doublereal temp; + doublecomplex suma, sumb; + doublereal xmax, scale; + logical ilall; + integer iside; + doublereal sbeta; + extern logical lsame_(char *, char *); + doublereal small; + logical compl; + doublereal anorm, bnorm; + logical compr; + extern /* Subroutine */ int zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *), + dlabad_(doublereal *, doublereal *); + logical ilbbad; + doublereal acoefa, bcoefa, acoeff; + doublecomplex bcoeff; + logical ilback; + doublereal ascale, bscale; + extern doublereal dlamch_(char *); + doublecomplex salpha; + doublereal safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal bignum; + logical ilcomp; + extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *, + doublecomplex *); + integer ihwmny; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + + +/* Purpose */ +/* ======= */ + +/* ZTGEVC computes some or all of the right and/or left eigenvectors of */ +/* a pair of complex matrices (S,P), where S and P are upper triangular. */ +/* Matrix pairs of this type are produced by the generalized Schur */ +/* factorization of a complex matrix pair (A,B): */ + +/* A = Q*S*Z**H, B = Q*P*Z**H */ + +/* as computed by ZGGHRD + ZHGEQZ. */ + +/* The right eigenvector x and the left eigenvector y of (S,P) */ +/* corresponding to an eigenvalue w are defined by: */ + +/* S*x = w*P*x, (y**H)*S = w*(y**H)*P, */ + +/* where y**H denotes the conjugate tranpose of y. */ +/* The eigenvalues are not input to this routine, but are computed */ +/* directly from the diagonal elements of S and P. */ + +/* This routine returns the matrices X and/or Y of right and left */ +/* eigenvectors of (S,P), or the products Z*X and/or Q*Y, */ +/* where Z and Q are input matrices. */ +/* If Q and Z are the unitary factors from the generalized Schur */ +/* factorization of a matrix pair (A,B), then Z*X and Q*Y */ +/* are the matrices of right and left eigenvectors of (A,B). */ + +/* Arguments */ +/* ========= */ + +/* SIDE (input) CHARACTER*1 */ +/* = 'R': compute right eigenvectors only; */ +/* = 'L': compute left eigenvectors only; */ +/* = 'B': compute both right and left eigenvectors. */ + +/* HOWMNY (input) CHARACTER*1 */ +/* = 'A': compute all right and/or left eigenvectors; */ +/* = 'B': compute all right and/or left eigenvectors, */ +/* backtransformed by the matrices in VR and/or VL; */ +/* = 'S': compute selected right and/or left eigenvectors, */ +/* specified by the logical array SELECT. */ + +/* SELECT (input) LOGICAL array, dimension (N) */ +/* If HOWMNY='S', SELECT specifies the eigenvectors to be */ +/* computed. The eigenvector corresponding to the j-th */ +/* eigenvalue is computed if SELECT(j) = .TRUE.. */ +/* Not referenced if HOWMNY = 'A' or 'B'. */ + +/* N (input) INTEGER */ +/* The order of the matrices S and P. N >= 0. */ + +/* S (input) COMPLEX*16 array, dimension (LDS,N) */ +/* The upper triangular matrix S from a generalized Schur */ +/* factorization, as computed by ZHGEQZ. */ + +/* LDS (input) INTEGER */ +/* The leading dimension of array S. LDS >= max(1,N). */ + +/* P (input) COMPLEX*16 array, dimension (LDP,N) */ +/* The upper triangular matrix P from a generalized Schur */ +/* factorization, as computed by ZHGEQZ. P must have real */ +/* diagonal elements. */ + +/* LDP (input) INTEGER */ +/* The leading dimension of array P. LDP >= max(1,N). */ + +/* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */ +/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */ +/* contain an N-by-N matrix Q (usually the unitary matrix Q */ +/* of left Schur vectors returned by ZHGEQZ). */ +/* On exit, if SIDE = 'L' or 'B', VL contains: */ +/* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */ +/* if HOWMNY = 'B', the matrix Q*Y; */ +/* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */ +/* SELECT, stored consecutively in the columns of */ +/* VL, in the same order as their eigenvalues. */ +/* Not referenced if SIDE = 'R'. */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of array VL. LDVL >= 1, and if */ +/* SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. */ + +/* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */ +/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */ +/* contain an N-by-N matrix Q (usually the unitary matrix Z */ +/* of right Schur vectors returned by ZHGEQZ). */ +/* On exit, if SIDE = 'R' or 'B', VR contains: */ +/* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */ +/* if HOWMNY = 'B', the matrix Z*X; */ +/* if HOWMNY = 'S', the right eigenvectors of (S,P) specified by */ +/* SELECT, stored consecutively in the columns of */ +/* VR, in the same order as their eigenvalues. */ +/* Not referenced if SIDE = 'L'. */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the array VR. LDVR >= 1, and if */ +/* SIDE = 'R' or 'B', LDVR >= N. */ + +/* MM (input) INTEGER */ +/* The number of columns in the arrays VL and/or VR. MM >= M. */ + +/* M (output) INTEGER */ +/* The number of columns in the arrays VL and/or VR actually */ +/* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */ +/* is set to N. Each selected eigenvector occupies one column. */ + +/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode and Test the input parameters */ + + /* Parameter adjustments */ + --select; + s_dim1 = *lds; + s_offset = 1 + s_dim1; + s -= s_offset; + p_dim1 = *ldp; + p_offset = 1 + p_dim1; + p -= p_offset; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + --rwork; + + /* Function Body */ + if (lsame_(howmny, "A")) { + ihwmny = 1; + ilall = TRUE_; + ilback = FALSE_; + } else if (lsame_(howmny, "S")) { + ihwmny = 2; + ilall = FALSE_; + ilback = FALSE_; + } else if (lsame_(howmny, "B")) { + ihwmny = 3; + ilall = TRUE_; + ilback = TRUE_; + } else { + ihwmny = -1; + } + + if (lsame_(side, "R")) { + iside = 1; + compl = FALSE_; + compr = TRUE_; + } else if (lsame_(side, "L")) { + iside = 2; + compl = TRUE_; + compr = FALSE_; + } else if (lsame_(side, "B")) { + iside = 3; + compl = TRUE_; + compr = TRUE_; + } else { + iside = -1; + } + + *info = 0; + if (iside < 0) { + *info = -1; + } else if (ihwmny < 0) { + *info = -2; + } else if (*n < 0) { + *info = -4; + } else if (*lds < max(1,*n)) { + *info = -6; + } else if (*ldp < max(1,*n)) { + *info = -8; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZTGEVC", &i__1); + return 0; + } + +/* Count the number of eigenvectors */ + + if (! ilall) { + im = 0; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (select[j]) { + ++im; + } +/* L10: */ + } + } else { + im = *n; + } + +/* Check diagonal of B */ + + ilbbad = FALSE_; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (d_imag(&p[j + j * p_dim1]) != 0.) { + ilbbad = TRUE_; + } +/* L20: */ + } + + if (ilbbad) { + *info = -7; + } else if (compl && *ldvl < *n || *ldvl < 1) { + *info = -10; + } else if (compr && *ldvr < *n || *ldvr < 1) { + *info = -12; + } else if (*mm < im) { + *info = -13; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZTGEVC", &i__1); + return 0; + } + +/* Quick return if possible */ + + *m = im; + if (*n == 0) { + return 0; + } + +/* Machine Constants */ + + safmin = dlamch_("Safe minimum"); + big = 1. / safmin; + dlabad_(&safmin, &big); + ulp = dlamch_("Epsilon") * dlamch_("Base"); + small = safmin * *n / ulp; + big = 1. / small; + bignum = 1. / (safmin * *n); + +/* Compute the 1-norm of each column of the strictly upper triangular */ +/* part of A and B to check for possible overflow in the triangular */ +/* solver. */ + + i__1 = s_dim1 + 1; + anorm = (d__1 = s[i__1].r, abs(d__1)) + (d__2 = d_imag(&s[s_dim1 + 1]), + abs(d__2)); + i__1 = p_dim1 + 1; + bnorm = (d__1 = p[i__1].r, abs(d__1)) + (d__2 = d_imag(&p[p_dim1 + 1]), + abs(d__2)); + rwork[1] = 0.; + rwork[*n + 1] = 0.; + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + rwork[j] = 0.; + rwork[*n + j] = 0.; + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * s_dim1; + rwork[j] += (d__1 = s[i__3].r, abs(d__1)) + (d__2 = d_imag(&s[i__ + + j * s_dim1]), abs(d__2)); + i__3 = i__ + j * p_dim1; + rwork[*n + j] += (d__1 = p[i__3].r, abs(d__1)) + (d__2 = d_imag(& + p[i__ + j * p_dim1]), abs(d__2)); +/* L30: */ + } +/* Computing MAX */ + i__2 = j + j * s_dim1; + d__3 = anorm, d__4 = rwork[j] + ((d__1 = s[i__2].r, abs(d__1)) + ( + d__2 = d_imag(&s[j + j * s_dim1]), abs(d__2))); + anorm = max(d__3,d__4); +/* Computing MAX */ + i__2 = j + j * p_dim1; + d__3 = bnorm, d__4 = rwork[*n + j] + ((d__1 = p[i__2].r, abs(d__1)) + + (d__2 = d_imag(&p[j + j * p_dim1]), abs(d__2))); + bnorm = max(d__3,d__4); +/* L40: */ + } + + ascale = 1. / max(anorm,safmin); + bscale = 1. / max(bnorm,safmin); + +/* Left eigenvectors */ + + if (compl) { + ieig = 0; + +/* Main loop over eigenvalues */ + + i__1 = *n; + for (je = 1; je <= i__1; ++je) { + if (ilall) { + ilcomp = TRUE_; + } else { + ilcomp = select[je]; + } + if (ilcomp) { + ++ieig; + + i__2 = je + je * s_dim1; + i__3 = je + je * p_dim1; + if ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je + je + * s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__3].r, + abs(d__1)) <= safmin) { + +/* Singular matrix pencil -- return unit eigenvector */ + + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { + i__3 = jr + ieig * vl_dim1; + vl[i__3].r = 0., vl[i__3].i = 0.; +/* L50: */ + } + i__2 = ieig + ieig * vl_dim1; + vl[i__2].r = 1., vl[i__2].i = 0.; + goto L140; + } + +/* Non-singular eigenvalue: */ +/* Compute coefficients a and b in */ +/* H */ +/* y ( a A - b B ) = 0 */ + +/* Computing MAX */ + i__2 = je + je * s_dim1; + i__3 = je + je * p_dim1; + d__4 = ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je + + je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 = + p[i__3].r, abs(d__1)) * bscale, d__4 = max(d__4,d__5); + temp = 1. / max(d__4,safmin); + i__2 = je + je * s_dim1; + z__2.r = temp * s[i__2].r, z__2.i = temp * s[i__2].i; + z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i; + salpha.r = z__1.r, salpha.i = z__1.i; + i__2 = je + je * p_dim1; + sbeta = temp * p[i__2].r * bscale; + acoeff = sbeta * ascale; + z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + +/* Scale to avoid underflow */ + + lsa = abs(sbeta) >= safmin && abs(acoeff) < small; + lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha), + abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3)) + + (d__4 = d_imag(&bcoeff), abs(d__4)) < small; + + scale = 1.; + if (lsa) { + scale = small / abs(sbeta) * min(anorm,big); + } + if (lsb) { +/* Computing MAX */ + d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1)) + + (d__2 = d_imag(&salpha), abs(d__2))) * min( + bnorm,big); + scale = max(d__3,d__4); + } + if (lsa || lsb) { +/* Computing MIN */ +/* Computing MAX */ + d__5 = 1., d__6 = abs(acoeff), d__5 = max(d__5,d__6), + d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = + d_imag(&bcoeff), abs(d__2)); + d__3 = scale, d__4 = 1. / (safmin * max(d__5,d__6)); + scale = min(d__3,d__4); + if (lsa) { + acoeff = ascale * (scale * sbeta); + } else { + acoeff = scale * acoeff; + } + if (lsb) { + z__2.r = scale * salpha.r, z__2.i = scale * salpha.i; + z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + } else { + z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + } + } + + acoefa = abs(acoeff); + bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(& + bcoeff), abs(d__2)); + xmax = 1.; + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { + i__3 = jr; + work[i__3].r = 0., work[i__3].i = 0.; +/* L60: */ + } + i__2 = je; + work[i__2].r = 1., work[i__2].i = 0.; +/* Computing MAX */ + d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, + d__1 = max(d__1,d__2); + dmin__ = max(d__1,safmin); + +/* H */ +/* Triangular solve of (a A - b B) y = 0 */ + +/* H */ +/* (rowwise in (a A - b B) , or columnwise in a A - b B) */ + + i__2 = *n; + for (j = je + 1; j <= i__2; ++j) { + +/* Compute */ +/* j-1 */ +/* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k) */ +/* k=je */ +/* (Scale if necessary) */ + + temp = 1. / xmax; + if (acoefa * rwork[j] + bcoefa * rwork[*n + j] > bignum * + temp) { + i__3 = j - 1; + for (jr = je; jr <= i__3; ++jr) { + i__4 = jr; + i__5 = jr; + z__1.r = temp * work[i__5].r, z__1.i = temp * + work[i__5].i; + work[i__4].r = z__1.r, work[i__4].i = z__1.i; +/* L70: */ + } + xmax = 1.; + } + suma.r = 0., suma.i = 0.; + sumb.r = 0., sumb.i = 0.; + + i__3 = j - 1; + for (jr = je; jr <= i__3; ++jr) { + d_cnjg(&z__3, &s[jr + j * s_dim1]); + i__4 = jr; + z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4] + .i, z__2.i = z__3.r * work[i__4].i + z__3.i * + work[i__4].r; + z__1.r = suma.r + z__2.r, z__1.i = suma.i + z__2.i; + suma.r = z__1.r, suma.i = z__1.i; + d_cnjg(&z__3, &p[jr + j * p_dim1]); + i__4 = jr; + z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4] + .i, z__2.i = z__3.r * work[i__4].i + z__3.i * + work[i__4].r; + z__1.r = sumb.r + z__2.r, z__1.i = sumb.i + z__2.i; + sumb.r = z__1.r, sumb.i = z__1.i; +/* L80: */ + } + z__2.r = acoeff * suma.r, z__2.i = acoeff * suma.i; + d_cnjg(&z__4, &bcoeff); + z__3.r = z__4.r * sumb.r - z__4.i * sumb.i, z__3.i = + z__4.r * sumb.i + z__4.i * sumb.r; + z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; + sum.r = z__1.r, sum.i = z__1.i; + +/* Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) ) */ + +/* with scaling and perturbation of the denominator */ + + i__3 = j + j * s_dim1; + z__3.r = acoeff * s[i__3].r, z__3.i = acoeff * s[i__3].i; + i__4 = j + j * p_dim1; + z__4.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, + z__4.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4] + .r; + z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i; + d_cnjg(&z__1, &z__2); + d__.r = z__1.r, d__.i = z__1.i; + if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs( + d__2)) <= dmin__) { + z__1.r = dmin__, z__1.i = 0.; + d__.r = z__1.r, d__.i = z__1.i; + } + + if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs( + d__2)) < 1.) { + if ((d__1 = sum.r, abs(d__1)) + (d__2 = d_imag(&sum), + abs(d__2)) >= bignum * ((d__3 = d__.r, abs( + d__3)) + (d__4 = d_imag(&d__), abs(d__4)))) { + temp = 1. / ((d__1 = sum.r, abs(d__1)) + (d__2 = + d_imag(&sum), abs(d__2))); + i__3 = j - 1; + for (jr = je; jr <= i__3; ++jr) { + i__4 = jr; + i__5 = jr; + z__1.r = temp * work[i__5].r, z__1.i = temp * + work[i__5].i; + work[i__4].r = z__1.r, work[i__4].i = z__1.i; +/* L90: */ + } + xmax = temp * xmax; + z__1.r = temp * sum.r, z__1.i = temp * sum.i; + sum.r = z__1.r, sum.i = z__1.i; + } + } + i__3 = j; + z__2.r = -sum.r, z__2.i = -sum.i; + zladiv_(&z__1, &z__2, &d__); + work[i__3].r = z__1.r, work[i__3].i = z__1.i; +/* Computing MAX */ + i__3 = j; + d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + ( + d__2 = d_imag(&work[j]), abs(d__2)); + xmax = max(d__3,d__4); +/* L100: */ + } + +/* Back transform eigenvector if HOWMNY='B'. */ + + if (ilback) { + i__2 = *n + 1 - je; + zgemv_("N", n, &i__2, &c_b2, &vl[je * vl_dim1 + 1], ldvl, + &work[je], &c__1, &c_b1, &work[*n + 1], &c__1); + isrc = 2; + ibeg = 1; + } else { + isrc = 1; + ibeg = je; + } + +/* Copy and scale eigenvector into column of VL */ + + xmax = 0.; + i__2 = *n; + for (jr = ibeg; jr <= i__2; ++jr) { +/* Computing MAX */ + i__3 = (isrc - 1) * *n + jr; + d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + ( + d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs( + d__2)); + xmax = max(d__3,d__4); +/* L110: */ + } + + if (xmax > safmin) { + temp = 1. / xmax; + i__2 = *n; + for (jr = ibeg; jr <= i__2; ++jr) { + i__3 = jr + ieig * vl_dim1; + i__4 = (isrc - 1) * *n + jr; + z__1.r = temp * work[i__4].r, z__1.i = temp * work[ + i__4].i; + vl[i__3].r = z__1.r, vl[i__3].i = z__1.i; +/* L120: */ + } + } else { + ibeg = *n + 1; + } + + i__2 = ibeg - 1; + for (jr = 1; jr <= i__2; ++jr) { + i__3 = jr + ieig * vl_dim1; + vl[i__3].r = 0., vl[i__3].i = 0.; +/* L130: */ + } + + } +L140: + ; + } + } + +/* Right eigenvectors */ + + if (compr) { + ieig = im + 1; + +/* Main loop over eigenvalues */ + + for (je = *n; je >= 1; --je) { + if (ilall) { + ilcomp = TRUE_; + } else { + ilcomp = select[je]; + } + if (ilcomp) { + --ieig; + + i__1 = je + je * s_dim1; + i__2 = je + je * p_dim1; + if ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je + je + * s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__2].r, + abs(d__1)) <= safmin) { + +/* Singular matrix pencil -- return unit eigenvector */ + + i__1 = *n; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr + ieig * vr_dim1; + vr[i__2].r = 0., vr[i__2].i = 0.; +/* L150: */ + } + i__1 = ieig + ieig * vr_dim1; + vr[i__1].r = 1., vr[i__1].i = 0.; + goto L250; + } + +/* Non-singular eigenvalue: */ +/* Compute coefficients a and b in */ + +/* ( a A - b B ) x = 0 */ + +/* Computing MAX */ + i__1 = je + je * s_dim1; + i__2 = je + je * p_dim1; + d__4 = ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je + + je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 = + p[i__2].r, abs(d__1)) * bscale, d__4 = max(d__4,d__5); + temp = 1. / max(d__4,safmin); + i__1 = je + je * s_dim1; + z__2.r = temp * s[i__1].r, z__2.i = temp * s[i__1].i; + z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i; + salpha.r = z__1.r, salpha.i = z__1.i; + i__1 = je + je * p_dim1; + sbeta = temp * p[i__1].r * bscale; + acoeff = sbeta * ascale; + z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + +/* Scale to avoid underflow */ + + lsa = abs(sbeta) >= safmin && abs(acoeff) < small; + lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha), + abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3)) + + (d__4 = d_imag(&bcoeff), abs(d__4)) < small; + + scale = 1.; + if (lsa) { + scale = small / abs(sbeta) * min(anorm,big); + } + if (lsb) { +/* Computing MAX */ + d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1)) + + (d__2 = d_imag(&salpha), abs(d__2))) * min( + bnorm,big); + scale = max(d__3,d__4); + } + if (lsa || lsb) { +/* Computing MIN */ +/* Computing MAX */ + d__5 = 1., d__6 = abs(acoeff), d__5 = max(d__5,d__6), + d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = + d_imag(&bcoeff), abs(d__2)); + d__3 = scale, d__4 = 1. / (safmin * max(d__5,d__6)); + scale = min(d__3,d__4); + if (lsa) { + acoeff = ascale * (scale * sbeta); + } else { + acoeff = scale * acoeff; + } + if (lsb) { + z__2.r = scale * salpha.r, z__2.i = scale * salpha.i; + z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + } else { + z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i; + bcoeff.r = z__1.r, bcoeff.i = z__1.i; + } + } + + acoefa = abs(acoeff); + bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(& + bcoeff), abs(d__2)); + xmax = 1.; + i__1 = *n; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr; + work[i__2].r = 0., work[i__2].i = 0.; +/* L160: */ + } + i__1 = je; + work[i__1].r = 1., work[i__1].i = 0.; +/* Computing MAX */ + d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, + d__1 = max(d__1,d__2); + dmin__ = max(d__1,safmin); + +/* Triangular solve of (a A - b B) x = 0 (columnwise) */ + +/* WORK(1:j-1) contains sums w, */ +/* WORK(j+1:JE) contains x */ + + i__1 = je - 1; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr; + i__3 = jr + je * s_dim1; + z__2.r = acoeff * s[i__3].r, z__2.i = acoeff * s[i__3].i; + i__4 = jr + je * p_dim1; + z__3.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, + z__3.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4] + .r; + z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; + work[i__2].r = z__1.r, work[i__2].i = z__1.i; +/* L170: */ + } + i__1 = je; + work[i__1].r = 1., work[i__1].i = 0.; + + for (j = je - 1; j >= 1; --j) { + +/* Form x(j) := - w(j) / d */ +/* with scaling and perturbation of the denominator */ + + i__1 = j + j * s_dim1; + z__2.r = acoeff * s[i__1].r, z__2.i = acoeff * s[i__1].i; + i__2 = j + j * p_dim1; + z__3.r = bcoeff.r * p[i__2].r - bcoeff.i * p[i__2].i, + z__3.i = bcoeff.r * p[i__2].i + bcoeff.i * p[i__2] + .r; + z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; + d__.r = z__1.r, d__.i = z__1.i; + if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs( + d__2)) <= dmin__) { + z__1.r = dmin__, z__1.i = 0.; + d__.r = z__1.r, d__.i = z__1.i; + } + + if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs( + d__2)) < 1.) { + i__1 = j; + if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag( + &work[j]), abs(d__2)) >= bignum * ((d__3 = + d__.r, abs(d__3)) + (d__4 = d_imag(&d__), abs( + d__4)))) { + i__1 = j; + temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + ( + d__2 = d_imag(&work[j]), abs(d__2))); + i__1 = je; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr; + i__3 = jr; + z__1.r = temp * work[i__3].r, z__1.i = temp * + work[i__3].i; + work[i__2].r = z__1.r, work[i__2].i = z__1.i; +/* L180: */ + } + } + } + + i__1 = j; + i__2 = j; + z__2.r = -work[i__2].r, z__2.i = -work[i__2].i; + zladiv_(&z__1, &z__2, &d__); + work[i__1].r = z__1.r, work[i__1].i = z__1.i; + + if (j > 1) { + +/* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */ + + i__1 = j; + if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag( + &work[j]), abs(d__2)) > 1.) { + i__1 = j; + temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + ( + d__2 = d_imag(&work[j]), abs(d__2))); + if (acoefa * rwork[j] + bcoefa * rwork[*n + j] >= + bignum * temp) { + i__1 = je; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr; + i__3 = jr; + z__1.r = temp * work[i__3].r, z__1.i = + temp * work[i__3].i; + work[i__2].r = z__1.r, work[i__2].i = + z__1.i; +/* L190: */ + } + } + } + + i__1 = j; + z__1.r = acoeff * work[i__1].r, z__1.i = acoeff * + work[i__1].i; + ca.r = z__1.r, ca.i = z__1.i; + i__1 = j; + z__1.r = bcoeff.r * work[i__1].r - bcoeff.i * work[ + i__1].i, z__1.i = bcoeff.r * work[i__1].i + + bcoeff.i * work[i__1].r; + cb.r = z__1.r, cb.i = z__1.i; + i__1 = j - 1; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr; + i__3 = jr; + i__4 = jr + j * s_dim1; + z__3.r = ca.r * s[i__4].r - ca.i * s[i__4].i, + z__3.i = ca.r * s[i__4].i + ca.i * s[i__4] + .r; + z__2.r = work[i__3].r + z__3.r, z__2.i = work[ + i__3].i + z__3.i; + i__5 = jr + j * p_dim1; + z__4.r = cb.r * p[i__5].r - cb.i * p[i__5].i, + z__4.i = cb.r * p[i__5].i + cb.i * p[i__5] + .r; + z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - + z__4.i; + work[i__2].r = z__1.r, work[i__2].i = z__1.i; +/* L200: */ + } + } +/* L210: */ + } + +/* Back transform eigenvector if HOWMNY='B'. */ + + if (ilback) { + zgemv_("N", n, &je, &c_b2, &vr[vr_offset], ldvr, &work[1], + &c__1, &c_b1, &work[*n + 1], &c__1); + isrc = 2; + iend = *n; + } else { + isrc = 1; + iend = je; + } + +/* Copy and scale eigenvector into column of VR */ + + xmax = 0.; + i__1 = iend; + for (jr = 1; jr <= i__1; ++jr) { +/* Computing MAX */ + i__2 = (isrc - 1) * *n + jr; + d__3 = xmax, d__4 = (d__1 = work[i__2].r, abs(d__1)) + ( + d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs( + d__2)); + xmax = max(d__3,d__4); +/* L220: */ + } + + if (xmax > safmin) { + temp = 1. / xmax; + i__1 = iend; + for (jr = 1; jr <= i__1; ++jr) { + i__2 = jr + ieig * vr_dim1; + i__3 = (isrc - 1) * *n + jr; + z__1.r = temp * work[i__3].r, z__1.i = temp * work[ + i__3].i; + vr[i__2].r = z__1.r, vr[i__2].i = z__1.i; +/* L230: */ + } + } else { + iend = 0; + } + + i__1 = *n; + for (jr = iend + 1; jr <= i__1; ++jr) { + i__2 = jr + ieig * vr_dim1; + vr[i__2].r = 0., vr[i__2].i = 0.; +/* L240: */ + } + + } +L250: + ; + } + } + + return 0; + +/* End of ZTGEVC */ + +} /* ztgevc_ */ |