aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ztgevc.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ztgevc.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ztgevc.c')
-rw-r--r--contrib/libs/clapack/ztgevc.c972
1 files changed, 972 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ztgevc.c b/contrib/libs/clapack/ztgevc.c
new file mode 100644
index 0000000000..106692cf7a
--- /dev/null
+++ b/contrib/libs/clapack/ztgevc.c
@@ -0,0 +1,972 @@
+/* ztgevc.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static doublecomplex c_b2 = {1.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int ztgevc_(char *side, char *howmny, logical *select,
+ integer *n, doublecomplex *s, integer *lds, doublecomplex *p, integer
+ *ldp, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *
+ ldvr, integer *mm, integer *m, doublecomplex *work, doublereal *rwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1,
+ vr_offset, i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1, d__2, d__3, d__4, d__5, d__6;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ doublecomplex d__;
+ integer i__, j;
+ doublecomplex ca, cb;
+ integer je, im, jr;
+ doublereal big;
+ logical lsa, lsb;
+ doublereal ulp;
+ doublecomplex sum;
+ integer ibeg, ieig, iend;
+ doublereal dmin__;
+ integer isrc;
+ doublereal temp;
+ doublecomplex suma, sumb;
+ doublereal xmax, scale;
+ logical ilall;
+ integer iside;
+ doublereal sbeta;
+ extern logical lsame_(char *, char *);
+ doublereal small;
+ logical compl;
+ doublereal anorm, bnorm;
+ logical compr;
+ extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *),
+ dlabad_(doublereal *, doublereal *);
+ logical ilbbad;
+ doublereal acoefa, bcoefa, acoeff;
+ doublecomplex bcoeff;
+ logical ilback;
+ doublereal ascale, bscale;
+ extern doublereal dlamch_(char *);
+ doublecomplex salpha;
+ doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal bignum;
+ logical ilcomp;
+ extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
+ doublecomplex *);
+ integer ihwmny;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+
+/* Purpose */
+/* ======= */
+
+/* ZTGEVC computes some or all of the right and/or left eigenvectors of */
+/* a pair of complex matrices (S,P), where S and P are upper triangular. */
+/* Matrix pairs of this type are produced by the generalized Schur */
+/* factorization of a complex matrix pair (A,B): */
+
+/* A = Q*S*Z**H, B = Q*P*Z**H */
+
+/* as computed by ZGGHRD + ZHGEQZ. */
+
+/* The right eigenvector x and the left eigenvector y of (S,P) */
+/* corresponding to an eigenvalue w are defined by: */
+
+/* S*x = w*P*x, (y**H)*S = w*(y**H)*P, */
+
+/* where y**H denotes the conjugate tranpose of y. */
+/* The eigenvalues are not input to this routine, but are computed */
+/* directly from the diagonal elements of S and P. */
+
+/* This routine returns the matrices X and/or Y of right and left */
+/* eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
+/* where Z and Q are input matrices. */
+/* If Q and Z are the unitary factors from the generalized Schur */
+/* factorization of a matrix pair (A,B), then Z*X and Q*Y */
+/* are the matrices of right and left eigenvectors of (A,B). */
+
+/* Arguments */
+/* ========= */
+
+/* SIDE (input) CHARACTER*1 */
+/* = 'R': compute right eigenvectors only; */
+/* = 'L': compute left eigenvectors only; */
+/* = 'B': compute both right and left eigenvectors. */
+
+/* HOWMNY (input) CHARACTER*1 */
+/* = 'A': compute all right and/or left eigenvectors; */
+/* = 'B': compute all right and/or left eigenvectors, */
+/* backtransformed by the matrices in VR and/or VL; */
+/* = 'S': compute selected right and/or left eigenvectors, */
+/* specified by the logical array SELECT. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* If HOWMNY='S', SELECT specifies the eigenvectors to be */
+/* computed. The eigenvector corresponding to the j-th */
+/* eigenvalue is computed if SELECT(j) = .TRUE.. */
+/* Not referenced if HOWMNY = 'A' or 'B'. */
+
+/* N (input) INTEGER */
+/* The order of the matrices S and P. N >= 0. */
+
+/* S (input) COMPLEX*16 array, dimension (LDS,N) */
+/* The upper triangular matrix S from a generalized Schur */
+/* factorization, as computed by ZHGEQZ. */
+
+/* LDS (input) INTEGER */
+/* The leading dimension of array S. LDS >= max(1,N). */
+
+/* P (input) COMPLEX*16 array, dimension (LDP,N) */
+/* The upper triangular matrix P from a generalized Schur */
+/* factorization, as computed by ZHGEQZ. P must have real */
+/* diagonal elements. */
+
+/* LDP (input) INTEGER */
+/* The leading dimension of array P. LDP >= max(1,N). */
+
+/* VL (input/output) COMPLEX*16 array, dimension (LDVL,MM) */
+/* On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
+/* contain an N-by-N matrix Q (usually the unitary matrix Q */
+/* of left Schur vectors returned by ZHGEQZ). */
+/* On exit, if SIDE = 'L' or 'B', VL contains: */
+/* if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
+/* if HOWMNY = 'B', the matrix Q*Y; */
+/* if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
+/* SELECT, stored consecutively in the columns of */
+/* VL, in the same order as their eigenvalues. */
+/* Not referenced if SIDE = 'R'. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of array VL. LDVL >= 1, and if */
+/* SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. */
+
+/* VR (input/output) COMPLEX*16 array, dimension (LDVR,MM) */
+/* On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
+/* contain an N-by-N matrix Q (usually the unitary matrix Z */
+/* of right Schur vectors returned by ZHGEQZ). */
+/* On exit, if SIDE = 'R' or 'B', VR contains: */
+/* if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
+/* if HOWMNY = 'B', the matrix Z*X; */
+/* if HOWMNY = 'S', the right eigenvectors of (S,P) specified by */
+/* SELECT, stored consecutively in the columns of */
+/* VR, in the same order as their eigenvalues. */
+/* Not referenced if SIDE = 'L'. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the array VR. LDVR >= 1, and if */
+/* SIDE = 'R' or 'B', LDVR >= N. */
+
+/* MM (input) INTEGER */
+/* The number of columns in the arrays VL and/or VR. MM >= M. */
+
+/* M (output) INTEGER */
+/* The number of columns in the arrays VL and/or VR actually */
+/* used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
+/* is set to N. Each selected eigenvector occupies one column. */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and Test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ s_dim1 = *lds;
+ s_offset = 1 + s_dim1;
+ s -= s_offset;
+ p_dim1 = *ldp;
+ p_offset = 1 + p_dim1;
+ p -= p_offset;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ if (lsame_(howmny, "A")) {
+ ihwmny = 1;
+ ilall = TRUE_;
+ ilback = FALSE_;
+ } else if (lsame_(howmny, "S")) {
+ ihwmny = 2;
+ ilall = FALSE_;
+ ilback = FALSE_;
+ } else if (lsame_(howmny, "B")) {
+ ihwmny = 3;
+ ilall = TRUE_;
+ ilback = TRUE_;
+ } else {
+ ihwmny = -1;
+ }
+
+ if (lsame_(side, "R")) {
+ iside = 1;
+ compl = FALSE_;
+ compr = TRUE_;
+ } else if (lsame_(side, "L")) {
+ iside = 2;
+ compl = TRUE_;
+ compr = FALSE_;
+ } else if (lsame_(side, "B")) {
+ iside = 3;
+ compl = TRUE_;
+ compr = TRUE_;
+ } else {
+ iside = -1;
+ }
+
+ *info = 0;
+ if (iside < 0) {
+ *info = -1;
+ } else if (ihwmny < 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lds < max(1,*n)) {
+ *info = -6;
+ } else if (*ldp < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZTGEVC", &i__1);
+ return 0;
+ }
+
+/* Count the number of eigenvectors */
+
+ if (! ilall) {
+ im = 0;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (select[j]) {
+ ++im;
+ }
+/* L10: */
+ }
+ } else {
+ im = *n;
+ }
+
+/* Check diagonal of B */
+
+ ilbbad = FALSE_;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (d_imag(&p[j + j * p_dim1]) != 0.) {
+ ilbbad = TRUE_;
+ }
+/* L20: */
+ }
+
+ if (ilbbad) {
+ *info = -7;
+ } else if (compl && *ldvl < *n || *ldvl < 1) {
+ *info = -10;
+ } else if (compr && *ldvr < *n || *ldvr < 1) {
+ *info = -12;
+ } else if (*mm < im) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZTGEVC", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = im;
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Machine Constants */
+
+ safmin = dlamch_("Safe minimum");
+ big = 1. / safmin;
+ dlabad_(&safmin, &big);
+ ulp = dlamch_("Epsilon") * dlamch_("Base");
+ small = safmin * *n / ulp;
+ big = 1. / small;
+ bignum = 1. / (safmin * *n);
+
+/* Compute the 1-norm of each column of the strictly upper triangular */
+/* part of A and B to check for possible overflow in the triangular */
+/* solver. */
+
+ i__1 = s_dim1 + 1;
+ anorm = (d__1 = s[i__1].r, abs(d__1)) + (d__2 = d_imag(&s[s_dim1 + 1]),
+ abs(d__2));
+ i__1 = p_dim1 + 1;
+ bnorm = (d__1 = p[i__1].r, abs(d__1)) + (d__2 = d_imag(&p[p_dim1 + 1]),
+ abs(d__2));
+ rwork[1] = 0.;
+ rwork[*n + 1] = 0.;
+ i__1 = *n;
+ for (j = 2; j <= i__1; ++j) {
+ rwork[j] = 0.;
+ rwork[*n + j] = 0.;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * s_dim1;
+ rwork[j] += (d__1 = s[i__3].r, abs(d__1)) + (d__2 = d_imag(&s[i__
+ + j * s_dim1]), abs(d__2));
+ i__3 = i__ + j * p_dim1;
+ rwork[*n + j] += (d__1 = p[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ p[i__ + j * p_dim1]), abs(d__2));
+/* L30: */
+ }
+/* Computing MAX */
+ i__2 = j + j * s_dim1;
+ d__3 = anorm, d__4 = rwork[j] + ((d__1 = s[i__2].r, abs(d__1)) + (
+ d__2 = d_imag(&s[j + j * s_dim1]), abs(d__2)));
+ anorm = max(d__3,d__4);
+/* Computing MAX */
+ i__2 = j + j * p_dim1;
+ d__3 = bnorm, d__4 = rwork[*n + j] + ((d__1 = p[i__2].r, abs(d__1)) +
+ (d__2 = d_imag(&p[j + j * p_dim1]), abs(d__2)));
+ bnorm = max(d__3,d__4);
+/* L40: */
+ }
+
+ ascale = 1. / max(anorm,safmin);
+ bscale = 1. / max(bnorm,safmin);
+
+/* Left eigenvectors */
+
+ if (compl) {
+ ieig = 0;
+
+/* Main loop over eigenvalues */
+
+ i__1 = *n;
+ for (je = 1; je <= i__1; ++je) {
+ if (ilall) {
+ ilcomp = TRUE_;
+ } else {
+ ilcomp = select[je];
+ }
+ if (ilcomp) {
+ ++ieig;
+
+ i__2 = je + je * s_dim1;
+ i__3 = je + je * p_dim1;
+ if ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je + je
+ * s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__3].r,
+ abs(d__1)) <= safmin) {
+
+/* Singular matrix pencil -- return unit eigenvector */
+
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+ i__3 = jr + ieig * vl_dim1;
+ vl[i__3].r = 0., vl[i__3].i = 0.;
+/* L50: */
+ }
+ i__2 = ieig + ieig * vl_dim1;
+ vl[i__2].r = 1., vl[i__2].i = 0.;
+ goto L140;
+ }
+
+/* Non-singular eigenvalue: */
+/* Compute coefficients a and b in */
+/* H */
+/* y ( a A - b B ) = 0 */
+
+/* Computing MAX */
+ i__2 = je + je * s_dim1;
+ i__3 = je + je * p_dim1;
+ d__4 = ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je
+ + je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 =
+ p[i__3].r, abs(d__1)) * bscale, d__4 = max(d__4,d__5);
+ temp = 1. / max(d__4,safmin);
+ i__2 = je + je * s_dim1;
+ z__2.r = temp * s[i__2].r, z__2.i = temp * s[i__2].i;
+ z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i;
+ salpha.r = z__1.r, salpha.i = z__1.i;
+ i__2 = je + je * p_dim1;
+ sbeta = temp * p[i__2].r * bscale;
+ acoeff = sbeta * ascale;
+ z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+
+/* Scale to avoid underflow */
+
+ lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
+ lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha),
+ abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3))
+ + (d__4 = d_imag(&bcoeff), abs(d__4)) < small;
+
+ scale = 1.;
+ if (lsa) {
+ scale = small / abs(sbeta) * min(anorm,big);
+ }
+ if (lsb) {
+/* Computing MAX */
+ d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1))
+ + (d__2 = d_imag(&salpha), abs(d__2))) * min(
+ bnorm,big);
+ scale = max(d__3,d__4);
+ }
+ if (lsa || lsb) {
+/* Computing MIN */
+/* Computing MAX */
+ d__5 = 1., d__6 = abs(acoeff), d__5 = max(d__5,d__6),
+ d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 =
+ d_imag(&bcoeff), abs(d__2));
+ d__3 = scale, d__4 = 1. / (safmin * max(d__5,d__6));
+ scale = min(d__3,d__4);
+ if (lsa) {
+ acoeff = ascale * (scale * sbeta);
+ } else {
+ acoeff = scale * acoeff;
+ }
+ if (lsb) {
+ z__2.r = scale * salpha.r, z__2.i = scale * salpha.i;
+ z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+ } else {
+ z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+ }
+ }
+
+ acoefa = abs(acoeff);
+ bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(&
+ bcoeff), abs(d__2));
+ xmax = 1.;
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+ i__3 = jr;
+ work[i__3].r = 0., work[i__3].i = 0.;
+/* L60: */
+ }
+ i__2 = je;
+ work[i__2].r = 1., work[i__2].i = 0.;
+/* Computing MAX */
+ d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm,
+ d__1 = max(d__1,d__2);
+ dmin__ = max(d__1,safmin);
+
+/* H */
+/* Triangular solve of (a A - b B) y = 0 */
+
+/* H */
+/* (rowwise in (a A - b B) , or columnwise in a A - b B) */
+
+ i__2 = *n;
+ for (j = je + 1; j <= i__2; ++j) {
+
+/* Compute */
+/* j-1 */
+/* SUM = sum conjg( a*S(k,j) - b*P(k,j) )*x(k) */
+/* k=je */
+/* (Scale if necessary) */
+
+ temp = 1. / xmax;
+ if (acoefa * rwork[j] + bcoefa * rwork[*n + j] > bignum *
+ temp) {
+ i__3 = j - 1;
+ for (jr = je; jr <= i__3; ++jr) {
+ i__4 = jr;
+ i__5 = jr;
+ z__1.r = temp * work[i__5].r, z__1.i = temp *
+ work[i__5].i;
+ work[i__4].r = z__1.r, work[i__4].i = z__1.i;
+/* L70: */
+ }
+ xmax = 1.;
+ }
+ suma.r = 0., suma.i = 0.;
+ sumb.r = 0., sumb.i = 0.;
+
+ i__3 = j - 1;
+ for (jr = je; jr <= i__3; ++jr) {
+ d_cnjg(&z__3, &s[jr + j * s_dim1]);
+ i__4 = jr;
+ z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4]
+ .i, z__2.i = z__3.r * work[i__4].i + z__3.i *
+ work[i__4].r;
+ z__1.r = suma.r + z__2.r, z__1.i = suma.i + z__2.i;
+ suma.r = z__1.r, suma.i = z__1.i;
+ d_cnjg(&z__3, &p[jr + j * p_dim1]);
+ i__4 = jr;
+ z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4]
+ .i, z__2.i = z__3.r * work[i__4].i + z__3.i *
+ work[i__4].r;
+ z__1.r = sumb.r + z__2.r, z__1.i = sumb.i + z__2.i;
+ sumb.r = z__1.r, sumb.i = z__1.i;
+/* L80: */
+ }
+ z__2.r = acoeff * suma.r, z__2.i = acoeff * suma.i;
+ d_cnjg(&z__4, &bcoeff);
+ z__3.r = z__4.r * sumb.r - z__4.i * sumb.i, z__3.i =
+ z__4.r * sumb.i + z__4.i * sumb.r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ sum.r = z__1.r, sum.i = z__1.i;
+
+/* Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) ) */
+
+/* with scaling and perturbation of the denominator */
+
+ i__3 = j + j * s_dim1;
+ z__3.r = acoeff * s[i__3].r, z__3.i = acoeff * s[i__3].i;
+ i__4 = j + j * p_dim1;
+ z__4.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i,
+ z__4.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
+ .r;
+ z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
+ d_cnjg(&z__1, &z__2);
+ d__.r = z__1.r, d__.i = z__1.i;
+ if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
+ d__2)) <= dmin__) {
+ z__1.r = dmin__, z__1.i = 0.;
+ d__.r = z__1.r, d__.i = z__1.i;
+ }
+
+ if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
+ d__2)) < 1.) {
+ if ((d__1 = sum.r, abs(d__1)) + (d__2 = d_imag(&sum),
+ abs(d__2)) >= bignum * ((d__3 = d__.r, abs(
+ d__3)) + (d__4 = d_imag(&d__), abs(d__4)))) {
+ temp = 1. / ((d__1 = sum.r, abs(d__1)) + (d__2 =
+ d_imag(&sum), abs(d__2)));
+ i__3 = j - 1;
+ for (jr = je; jr <= i__3; ++jr) {
+ i__4 = jr;
+ i__5 = jr;
+ z__1.r = temp * work[i__5].r, z__1.i = temp *
+ work[i__5].i;
+ work[i__4].r = z__1.r, work[i__4].i = z__1.i;
+/* L90: */
+ }
+ xmax = temp * xmax;
+ z__1.r = temp * sum.r, z__1.i = temp * sum.i;
+ sum.r = z__1.r, sum.i = z__1.i;
+ }
+ }
+ i__3 = j;
+ z__2.r = -sum.r, z__2.i = -sum.i;
+ zladiv_(&z__1, &z__2, &d__);
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* Computing MAX */
+ i__3 = j;
+ d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + (
+ d__2 = d_imag(&work[j]), abs(d__2));
+ xmax = max(d__3,d__4);
+/* L100: */
+ }
+
+/* Back transform eigenvector if HOWMNY='B'. */
+
+ if (ilback) {
+ i__2 = *n + 1 - je;
+ zgemv_("N", n, &i__2, &c_b2, &vl[je * vl_dim1 + 1], ldvl,
+ &work[je], &c__1, &c_b1, &work[*n + 1], &c__1);
+ isrc = 2;
+ ibeg = 1;
+ } else {
+ isrc = 1;
+ ibeg = je;
+ }
+
+/* Copy and scale eigenvector into column of VL */
+
+ xmax = 0.;
+ i__2 = *n;
+ for (jr = ibeg; jr <= i__2; ++jr) {
+/* Computing MAX */
+ i__3 = (isrc - 1) * *n + jr;
+ d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + (
+ d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs(
+ d__2));
+ xmax = max(d__3,d__4);
+/* L110: */
+ }
+
+ if (xmax > safmin) {
+ temp = 1. / xmax;
+ i__2 = *n;
+ for (jr = ibeg; jr <= i__2; ++jr) {
+ i__3 = jr + ieig * vl_dim1;
+ i__4 = (isrc - 1) * *n + jr;
+ z__1.r = temp * work[i__4].r, z__1.i = temp * work[
+ i__4].i;
+ vl[i__3].r = z__1.r, vl[i__3].i = z__1.i;
+/* L120: */
+ }
+ } else {
+ ibeg = *n + 1;
+ }
+
+ i__2 = ibeg - 1;
+ for (jr = 1; jr <= i__2; ++jr) {
+ i__3 = jr + ieig * vl_dim1;
+ vl[i__3].r = 0., vl[i__3].i = 0.;
+/* L130: */
+ }
+
+ }
+L140:
+ ;
+ }
+ }
+
+/* Right eigenvectors */
+
+ if (compr) {
+ ieig = im + 1;
+
+/* Main loop over eigenvalues */
+
+ for (je = *n; je >= 1; --je) {
+ if (ilall) {
+ ilcomp = TRUE_;
+ } else {
+ ilcomp = select[je];
+ }
+ if (ilcomp) {
+ --ieig;
+
+ i__1 = je + je * s_dim1;
+ i__2 = je + je * p_dim1;
+ if ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je + je
+ * s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__2].r,
+ abs(d__1)) <= safmin) {
+
+/* Singular matrix pencil -- return unit eigenvector */
+
+ i__1 = *n;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr + ieig * vr_dim1;
+ vr[i__2].r = 0., vr[i__2].i = 0.;
+/* L150: */
+ }
+ i__1 = ieig + ieig * vr_dim1;
+ vr[i__1].r = 1., vr[i__1].i = 0.;
+ goto L250;
+ }
+
+/* Non-singular eigenvalue: */
+/* Compute coefficients a and b in */
+
+/* ( a A - b B ) x = 0 */
+
+/* Computing MAX */
+ i__1 = je + je * s_dim1;
+ i__2 = je + je * p_dim1;
+ d__4 = ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je
+ + je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 =
+ p[i__2].r, abs(d__1)) * bscale, d__4 = max(d__4,d__5);
+ temp = 1. / max(d__4,safmin);
+ i__1 = je + je * s_dim1;
+ z__2.r = temp * s[i__1].r, z__2.i = temp * s[i__1].i;
+ z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i;
+ salpha.r = z__1.r, salpha.i = z__1.i;
+ i__1 = je + je * p_dim1;
+ sbeta = temp * p[i__1].r * bscale;
+ acoeff = sbeta * ascale;
+ z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+
+/* Scale to avoid underflow */
+
+ lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
+ lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha),
+ abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3))
+ + (d__4 = d_imag(&bcoeff), abs(d__4)) < small;
+
+ scale = 1.;
+ if (lsa) {
+ scale = small / abs(sbeta) * min(anorm,big);
+ }
+ if (lsb) {
+/* Computing MAX */
+ d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1))
+ + (d__2 = d_imag(&salpha), abs(d__2))) * min(
+ bnorm,big);
+ scale = max(d__3,d__4);
+ }
+ if (lsa || lsb) {
+/* Computing MIN */
+/* Computing MAX */
+ d__5 = 1., d__6 = abs(acoeff), d__5 = max(d__5,d__6),
+ d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 =
+ d_imag(&bcoeff), abs(d__2));
+ d__3 = scale, d__4 = 1. / (safmin * max(d__5,d__6));
+ scale = min(d__3,d__4);
+ if (lsa) {
+ acoeff = ascale * (scale * sbeta);
+ } else {
+ acoeff = scale * acoeff;
+ }
+ if (lsb) {
+ z__2.r = scale * salpha.r, z__2.i = scale * salpha.i;
+ z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+ } else {
+ z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i;
+ bcoeff.r = z__1.r, bcoeff.i = z__1.i;
+ }
+ }
+
+ acoefa = abs(acoeff);
+ bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(&
+ bcoeff), abs(d__2));
+ xmax = 1.;
+ i__1 = *n;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr;
+ work[i__2].r = 0., work[i__2].i = 0.;
+/* L160: */
+ }
+ i__1 = je;
+ work[i__1].r = 1., work[i__1].i = 0.;
+/* Computing MAX */
+ d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm,
+ d__1 = max(d__1,d__2);
+ dmin__ = max(d__1,safmin);
+
+/* Triangular solve of (a A - b B) x = 0 (columnwise) */
+
+/* WORK(1:j-1) contains sums w, */
+/* WORK(j+1:JE) contains x */
+
+ i__1 = je - 1;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr;
+ i__3 = jr + je * s_dim1;
+ z__2.r = acoeff * s[i__3].r, z__2.i = acoeff * s[i__3].i;
+ i__4 = jr + je * p_dim1;
+ z__3.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i,
+ z__3.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
+ .r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ work[i__2].r = z__1.r, work[i__2].i = z__1.i;
+/* L170: */
+ }
+ i__1 = je;
+ work[i__1].r = 1., work[i__1].i = 0.;
+
+ for (j = je - 1; j >= 1; --j) {
+
+/* Form x(j) := - w(j) / d */
+/* with scaling and perturbation of the denominator */
+
+ i__1 = j + j * s_dim1;
+ z__2.r = acoeff * s[i__1].r, z__2.i = acoeff * s[i__1].i;
+ i__2 = j + j * p_dim1;
+ z__3.r = bcoeff.r * p[i__2].r - bcoeff.i * p[i__2].i,
+ z__3.i = bcoeff.r * p[i__2].i + bcoeff.i * p[i__2]
+ .r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ d__.r = z__1.r, d__.i = z__1.i;
+ if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
+ d__2)) <= dmin__) {
+ z__1.r = dmin__, z__1.i = 0.;
+ d__.r = z__1.r, d__.i = z__1.i;
+ }
+
+ if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
+ d__2)) < 1.) {
+ i__1 = j;
+ if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(
+ &work[j]), abs(d__2)) >= bignum * ((d__3 =
+ d__.r, abs(d__3)) + (d__4 = d_imag(&d__), abs(
+ d__4)))) {
+ i__1 = j;
+ temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + (
+ d__2 = d_imag(&work[j]), abs(d__2)));
+ i__1 = je;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr;
+ i__3 = jr;
+ z__1.r = temp * work[i__3].r, z__1.i = temp *
+ work[i__3].i;
+ work[i__2].r = z__1.r, work[i__2].i = z__1.i;
+/* L180: */
+ }
+ }
+ }
+
+ i__1 = j;
+ i__2 = j;
+ z__2.r = -work[i__2].r, z__2.i = -work[i__2].i;
+ zladiv_(&z__1, &z__2, &d__);
+ work[i__1].r = z__1.r, work[i__1].i = z__1.i;
+
+ if (j > 1) {
+
+/* w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
+
+ i__1 = j;
+ if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(
+ &work[j]), abs(d__2)) > 1.) {
+ i__1 = j;
+ temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + (
+ d__2 = d_imag(&work[j]), abs(d__2)));
+ if (acoefa * rwork[j] + bcoefa * rwork[*n + j] >=
+ bignum * temp) {
+ i__1 = je;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr;
+ i__3 = jr;
+ z__1.r = temp * work[i__3].r, z__1.i =
+ temp * work[i__3].i;
+ work[i__2].r = z__1.r, work[i__2].i =
+ z__1.i;
+/* L190: */
+ }
+ }
+ }
+
+ i__1 = j;
+ z__1.r = acoeff * work[i__1].r, z__1.i = acoeff *
+ work[i__1].i;
+ ca.r = z__1.r, ca.i = z__1.i;
+ i__1 = j;
+ z__1.r = bcoeff.r * work[i__1].r - bcoeff.i * work[
+ i__1].i, z__1.i = bcoeff.r * work[i__1].i +
+ bcoeff.i * work[i__1].r;
+ cb.r = z__1.r, cb.i = z__1.i;
+ i__1 = j - 1;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr;
+ i__3 = jr;
+ i__4 = jr + j * s_dim1;
+ z__3.r = ca.r * s[i__4].r - ca.i * s[i__4].i,
+ z__3.i = ca.r * s[i__4].i + ca.i * s[i__4]
+ .r;
+ z__2.r = work[i__3].r + z__3.r, z__2.i = work[
+ i__3].i + z__3.i;
+ i__5 = jr + j * p_dim1;
+ z__4.r = cb.r * p[i__5].r - cb.i * p[i__5].i,
+ z__4.i = cb.r * p[i__5].i + cb.i * p[i__5]
+ .r;
+ z__1.r = z__2.r - z__4.r, z__1.i = z__2.i -
+ z__4.i;
+ work[i__2].r = z__1.r, work[i__2].i = z__1.i;
+/* L200: */
+ }
+ }
+/* L210: */
+ }
+
+/* Back transform eigenvector if HOWMNY='B'. */
+
+ if (ilback) {
+ zgemv_("N", n, &je, &c_b2, &vr[vr_offset], ldvr, &work[1],
+ &c__1, &c_b1, &work[*n + 1], &c__1);
+ isrc = 2;
+ iend = *n;
+ } else {
+ isrc = 1;
+ iend = je;
+ }
+
+/* Copy and scale eigenvector into column of VR */
+
+ xmax = 0.;
+ i__1 = iend;
+ for (jr = 1; jr <= i__1; ++jr) {
+/* Computing MAX */
+ i__2 = (isrc - 1) * *n + jr;
+ d__3 = xmax, d__4 = (d__1 = work[i__2].r, abs(d__1)) + (
+ d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs(
+ d__2));
+ xmax = max(d__3,d__4);
+/* L220: */
+ }
+
+ if (xmax > safmin) {
+ temp = 1. / xmax;
+ i__1 = iend;
+ for (jr = 1; jr <= i__1; ++jr) {
+ i__2 = jr + ieig * vr_dim1;
+ i__3 = (isrc - 1) * *n + jr;
+ z__1.r = temp * work[i__3].r, z__1.i = temp * work[
+ i__3].i;
+ vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
+/* L230: */
+ }
+ } else {
+ iend = 0;
+ }
+
+ i__1 = *n;
+ for (jr = iend + 1; jr <= i__1; ++jr) {
+ i__2 = jr + ieig * vr_dim1;
+ vr[i__2].r = 0., vr[i__2].i = 0.;
+/* L240: */
+ }
+
+ }
+L250:
+ ;
+ }
+ }
+
+ return 0;
+
+/* End of ZTGEVC */
+
+} /* ztgevc_ */