diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zsysvx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zsysvx.c')
-rw-r--r-- | contrib/libs/clapack/zsysvx.c | 368 |
1 files changed, 368 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zsysvx.c b/contrib/libs/clapack/zsysvx.c new file mode 100644 index 0000000000..cdcb775a7c --- /dev/null +++ b/contrib/libs/clapack/zsysvx.c @@ -0,0 +1,368 @@ +/* zsysvx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; + +/* Subroutine */ int zsysvx_(char *fact, char *uplo, integer *n, integer * + nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer * + ldaf, integer *ipiv, doublecomplex *b, integer *ldb, doublecomplex *x, + integer *ldx, doublereal *rcond, doublereal *ferr, doublereal *berr, + doublecomplex *work, integer *lwork, doublereal *rwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, + x_offset, i__1, i__2; + + /* Local variables */ + integer nb; + extern logical lsame_(char *, char *); + doublereal anorm; + extern doublereal dlamch_(char *); + logical nofact; + extern /* Subroutine */ int xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *); + integer lwkopt; + logical lquery; + extern doublereal zlansy_(char *, char *, integer *, doublecomplex *, + integer *, doublereal *); + extern /* Subroutine */ int zsycon_(char *, integer *, doublecomplex *, + integer *, integer *, doublereal *, doublereal *, doublecomplex *, + integer *), zsyrfs_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublereal *, doublereal *, doublecomplex *, doublereal *, + integer *), zsytrf_(char *, integer *, doublecomplex *, + integer *, integer *, doublecomplex *, integer *, integer *), zsytrs_(char *, integer *, integer *, doublecomplex *, + integer *, integer *, doublecomplex *, integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZSYSVX uses the diagonal pivoting factorization to compute the */ +/* solution to a complex system of linear equations A * X = B, */ +/* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */ +/* matrices. */ + +/* Error bounds on the solution and a condition estimate are also */ +/* provided. */ + +/* Description */ +/* =========== */ + +/* The following steps are performed: */ + +/* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */ +/* The form of the factorization is */ +/* A = U * D * U**T, if UPLO = 'U', or */ +/* A = L * D * L**T, if UPLO = 'L', */ +/* where U (or L) is a product of permutation and unit upper (lower) */ +/* triangular matrices, and D is symmetric and block diagonal with */ +/* 1-by-1 and 2-by-2 diagonal blocks. */ + +/* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */ +/* returns with INFO = i. Otherwise, the factored form of A is used */ +/* to estimate the condition number of the matrix A. If the */ +/* reciprocal of the condition number is less than machine precision, */ +/* INFO = N+1 is returned as a warning, but the routine still goes on */ +/* to solve for X and compute error bounds as described below. */ + +/* 3. The system of equations is solved for X using the factored form */ +/* of A. */ + +/* 4. Iterative refinement is applied to improve the computed solution */ +/* matrix and calculate error bounds and backward error estimates */ +/* for it. */ + +/* Arguments */ +/* ========= */ + +/* FACT (input) CHARACTER*1 */ +/* Specifies whether or not the factored form of A has been */ +/* supplied on entry. */ +/* = 'F': On entry, AF and IPIV contain the factored form */ +/* of A. A, AF and IPIV will not be modified. */ +/* = 'N': The matrix A will be copied to AF and factored. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The number of linear equations, i.e., the order of the */ +/* matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrices B and X. NRHS >= 0. */ + +/* A (input) COMPLEX*16 array, dimension (LDA,N) */ +/* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */ +/* upper triangular part of A contains the upper triangular part */ +/* of the matrix A, and the strictly lower triangular part of A */ +/* is not referenced. If UPLO = 'L', the leading N-by-N lower */ +/* triangular part of A contains the lower triangular part of */ +/* the matrix A, and the strictly upper triangular part of A is */ +/* not referenced. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* AF (input or output) COMPLEX*16 array, dimension (LDAF,N) */ +/* If FACT = 'F', then AF is an input argument and on entry */ +/* contains the block diagonal matrix D and the multipliers used */ +/* to obtain the factor U or L from the factorization */ +/* A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF. */ + +/* If FACT = 'N', then AF is an output argument and on exit */ +/* returns the block diagonal matrix D and the multipliers used */ +/* to obtain the factor U or L from the factorization */ +/* A = U*D*U**T or A = L*D*L**T. */ + +/* LDAF (input) INTEGER */ +/* The leading dimension of the array AF. LDAF >= max(1,N). */ + +/* IPIV (input or output) INTEGER array, dimension (N) */ +/* If FACT = 'F', then IPIV is an input argument and on entry */ +/* contains details of the interchanges and the block structure */ +/* of D, as determined by ZSYTRF. */ +/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ +/* interchanged and D(k,k) is a 1-by-1 diagonal block. */ +/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ +/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ +/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ +/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ +/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ + +/* If FACT = 'N', then IPIV is an output argument and on exit */ +/* contains details of the interchanges and the block structure */ +/* of D, as determined by ZSYTRF. */ + +/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */ +/* The N-by-NRHS right hand side matrix B. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */ +/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of the array X. LDX >= max(1,N). */ + +/* RCOND (output) DOUBLE PRECISION */ +/* The estimate of the reciprocal condition number of the matrix */ +/* A. If RCOND is less than the machine precision (in */ +/* particular, if RCOND = 0), the matrix is singular to working */ +/* precision. This condition is indicated by a return code of */ +/* INFO > 0. */ + +/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The estimated forward error bound for each solution vector */ +/* X(j) (the j-th column of the solution matrix X). */ +/* If XTRUE is the true solution corresponding to X(j), FERR(j) */ +/* is an estimated upper bound for the magnitude of the largest */ +/* element in (X(j) - XTRUE) divided by the magnitude of the */ +/* largest element in X(j). The estimate is as reliable as */ +/* the estimate for RCOND, and is almost always a slight */ +/* overestimate of the true error. */ + +/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */ +/* The componentwise relative backward error of each solution */ +/* vector X(j) (i.e., the smallest relative change in */ +/* any element of A or B that makes X(j) an exact solution). */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of WORK. LWORK >= max(1,2*N), and for best */ +/* performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where */ +/* NB is the optimal blocksize for ZSYTRF. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, and i is */ +/* <= N: D(i,i) is exactly zero. The factorization */ +/* has been completed but the factor D is exactly */ +/* singular, so the solution and error bounds could */ +/* not be computed. RCOND = 0 is returned. */ +/* = N+1: D is nonsingular, but RCOND is less than machine */ +/* precision, meaning that the matrix is singular */ +/* to working precision. Nevertheless, the */ +/* solution and error bounds are computed because */ +/* there are a number of situations where the */ +/* computed solution can be more accurate than the */ +/* value of RCOND would suggest. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + af_dim1 = *ldaf; + af_offset = 1 + af_dim1; + af -= af_offset; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + --ferr; + --berr; + --work; + --rwork; + + /* Function Body */ + *info = 0; + nofact = lsame_(fact, "N"); + lquery = *lwork == -1; + if (! nofact && ! lsame_(fact, "F")) { + *info = -1; + } else if (! lsame_(uplo, "U") && ! lsame_(uplo, + "L")) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*lda < max(1,*n)) { + *info = -6; + } else if (*ldaf < max(1,*n)) { + *info = -8; + } else if (*ldb < max(1,*n)) { + *info = -11; + } else if (*ldx < max(1,*n)) { + *info = -13; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = 1, i__2 = *n << 1; + if (*lwork < max(i__1,i__2) && ! lquery) { + *info = -18; + } + } + + if (*info == 0) { +/* Computing MAX */ + i__1 = 1, i__2 = *n << 1; + lwkopt = max(i__1,i__2); + if (nofact) { + nb = ilaenv_(&c__1, "ZSYTRF", uplo, n, &c_n1, &c_n1, &c_n1); +/* Computing MAX */ + i__1 = lwkopt, i__2 = *n * nb; + lwkopt = max(i__1,i__2); + } + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZSYSVX", &i__1); + return 0; + } else if (lquery) { + return 0; + } + + if (nofact) { + +/* Compute the factorization A = U*D*U' or A = L*D*L'. */ + + zlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf); + zsytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork, + info); + +/* Return if INFO is non-zero. */ + + if (*info > 0) { + *rcond = 0.; + return 0; + } + } + +/* Compute the norm of the matrix A. */ + + anorm = zlansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]); + +/* Compute the reciprocal of the condition number of A. */ + + zsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1], + info); + +/* Compute the solution vectors X. */ + + zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx); + zsytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx, + info); + +/* Use iterative refinement to improve the computed solutions and */ +/* compute error bounds and backward error estimates for them. */ + + zsyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1], + &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1] +, &rwork[1], info); + +/* Set INFO = N+1 if the matrix is singular to working precision. */ + + if (*rcond < dlamch_("Epsilon")) { + *info = *n + 1; + } + + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + + return 0; + +/* End of ZSYSVX */ + +} /* zsysvx_ */ |