aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zsysvx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zsysvx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zsysvx.c')
-rw-r--r--contrib/libs/clapack/zsysvx.c368
1 files changed, 368 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zsysvx.c b/contrib/libs/clapack/zsysvx.c
new file mode 100644
index 0000000000..cdcb775a7c
--- /dev/null
+++ b/contrib/libs/clapack/zsysvx.c
@@ -0,0 +1,368 @@
+/* zsysvx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int zsysvx_(char *fact, char *uplo, integer *n, integer *
+ nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *
+ ldaf, integer *ipiv, doublecomplex *b, integer *ldb, doublecomplex *x,
+ integer *ldx, doublereal *rcond, doublereal *ferr, doublereal *berr,
+ doublecomplex *work, integer *lwork, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
+ x_offset, i__1, i__2;
+
+ /* Local variables */
+ integer nb;
+ extern logical lsame_(char *, char *);
+ doublereal anorm;
+ extern doublereal dlamch_(char *);
+ logical nofact;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *);
+ integer lwkopt;
+ logical lquery;
+ extern doublereal zlansy_(char *, char *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ extern /* Subroutine */ int zsycon_(char *, integer *, doublecomplex *,
+ integer *, integer *, doublereal *, doublereal *, doublecomplex *,
+ integer *), zsyrfs_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublereal *, doublereal *, doublecomplex *, doublereal *,
+ integer *), zsytrf_(char *, integer *, doublecomplex *,
+ integer *, integer *, doublecomplex *, integer *, integer *), zsytrs_(char *, integer *, integer *, doublecomplex *,
+ integer *, integer *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZSYSVX uses the diagonal pivoting factorization to compute the */
+/* solution to a complex system of linear equations A * X = B, */
+/* where A is an N-by-N symmetric matrix and X and B are N-by-NRHS */
+/* matrices. */
+
+/* Error bounds on the solution and a condition estimate are also */
+/* provided. */
+
+/* Description */
+/* =========== */
+
+/* The following steps are performed: */
+
+/* 1. If FACT = 'N', the diagonal pivoting method is used to factor A. */
+/* The form of the factorization is */
+/* A = U * D * U**T, if UPLO = 'U', or */
+/* A = L * D * L**T, if UPLO = 'L', */
+/* where U (or L) is a product of permutation and unit upper (lower) */
+/* triangular matrices, and D is symmetric and block diagonal with */
+/* 1-by-1 and 2-by-2 diagonal blocks. */
+
+/* 2. If some D(i,i)=0, so that D is exactly singular, then the routine */
+/* returns with INFO = i. Otherwise, the factored form of A is used */
+/* to estimate the condition number of the matrix A. If the */
+/* reciprocal of the condition number is less than machine precision, */
+/* INFO = N+1 is returned as a warning, but the routine still goes on */
+/* to solve for X and compute error bounds as described below. */
+
+/* 3. The system of equations is solved for X using the factored form */
+/* of A. */
+
+/* 4. Iterative refinement is applied to improve the computed solution */
+/* matrix and calculate error bounds and backward error estimates */
+/* for it. */
+
+/* Arguments */
+/* ========= */
+
+/* FACT (input) CHARACTER*1 */
+/* Specifies whether or not the factored form of A has been */
+/* supplied on entry. */
+/* = 'F': On entry, AF and IPIV contain the factored form */
+/* of A. A, AF and IPIV will not be modified. */
+/* = 'N': The matrix A will be copied to AF and factored. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The number of linear equations, i.e., the order of the */
+/* matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension (LDA,N) */
+/* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
+/* upper triangular part of A contains the upper triangular part */
+/* of the matrix A, and the strictly lower triangular part of A */
+/* is not referenced. If UPLO = 'L', the leading N-by-N lower */
+/* triangular part of A contains the lower triangular part of */
+/* the matrix A, and the strictly upper triangular part of A is */
+/* not referenced. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* AF (input or output) COMPLEX*16 array, dimension (LDAF,N) */
+/* If FACT = 'F', then AF is an input argument and on entry */
+/* contains the block diagonal matrix D and the multipliers used */
+/* to obtain the factor U or L from the factorization */
+/* A = U*D*U**T or A = L*D*L**T as computed by ZSYTRF. */
+
+/* If FACT = 'N', then AF is an output argument and on exit */
+/* returns the block diagonal matrix D and the multipliers used */
+/* to obtain the factor U or L from the factorization */
+/* A = U*D*U**T or A = L*D*L**T. */
+
+/* LDAF (input) INTEGER */
+/* The leading dimension of the array AF. LDAF >= max(1,N). */
+
+/* IPIV (input or output) INTEGER array, dimension (N) */
+/* If FACT = 'F', then IPIV is an input argument and on entry */
+/* contains details of the interchanges and the block structure */
+/* of D, as determined by ZSYTRF. */
+/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
+/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
+/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
+/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
+/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
+/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
+/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
+
+/* If FACT = 'N', then IPIV is an output argument and on exit */
+/* contains details of the interchanges and the block structure */
+/* of D, as determined by ZSYTRF. */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* The N-by-NRHS right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */
+/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* RCOND (output) DOUBLE PRECISION */
+/* The estimate of the reciprocal condition number of the matrix */
+/* A. If RCOND is less than the machine precision (in */
+/* particular, if RCOND = 0), the matrix is singular to working */
+/* precision. This condition is indicated by a return code of */
+/* INFO > 0. */
+
+/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The estimated forward error bound for each solution vector */
+/* X(j) (the j-th column of the solution matrix X). */
+/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
+/* is an estimated upper bound for the magnitude of the largest */
+/* element in (X(j) - XTRUE) divided by the magnitude of the */
+/* largest element in X(j). The estimate is as reliable as */
+/* the estimate for RCOND, and is almost always a slight */
+/* overestimate of the true error. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The componentwise relative backward error of each solution */
+/* vector X(j) (i.e., the smallest relative change in */
+/* any element of A or B that makes X(j) an exact solution). */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of WORK. LWORK >= max(1,2*N), and for best */
+/* performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where */
+/* NB is the optimal blocksize for ZSYTRF. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is */
+/* <= N: D(i,i) is exactly zero. The factorization */
+/* has been completed but the factor D is exactly */
+/* singular, so the solution and error bounds could */
+/* not be computed. RCOND = 0 is returned. */
+/* = N+1: D is nonsingular, but RCOND is less than machine */
+/* precision, meaning that the matrix is singular */
+/* to working precision. Nevertheless, the */
+/* solution and error bounds are computed because */
+/* there are a number of situations where the */
+/* computed solution can be more accurate than the */
+/* value of RCOND would suggest. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ af_dim1 = *ldaf;
+ af_offset = 1 + af_dim1;
+ af -= af_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --ferr;
+ --berr;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ nofact = lsame_(fact, "N");
+ lquery = *lwork == -1;
+ if (! nofact && ! lsame_(fact, "F")) {
+ *info = -1;
+ } else if (! lsame_(uplo, "U") && ! lsame_(uplo,
+ "L")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldaf < max(1,*n)) {
+ *info = -8;
+ } else if (*ldb < max(1,*n)) {
+ *info = -11;
+ } else if (*ldx < max(1,*n)) {
+ *info = -13;
+ } else /* if(complicated condition) */ {
+/* Computing MAX */
+ i__1 = 1, i__2 = *n << 1;
+ if (*lwork < max(i__1,i__2) && ! lquery) {
+ *info = -18;
+ }
+ }
+
+ if (*info == 0) {
+/* Computing MAX */
+ i__1 = 1, i__2 = *n << 1;
+ lwkopt = max(i__1,i__2);
+ if (nofact) {
+ nb = ilaenv_(&c__1, "ZSYTRF", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = lwkopt, i__2 = *n * nb;
+ lwkopt = max(i__1,i__2);
+ }
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZSYSVX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+ if (nofact) {
+
+/* Compute the factorization A = U*D*U' or A = L*D*L'. */
+
+ zlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
+ zsytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], lwork,
+ info);
+
+/* Return if INFO is non-zero. */
+
+ if (*info > 0) {
+ *rcond = 0.;
+ return 0;
+ }
+ }
+
+/* Compute the norm of the matrix A. */
+
+ anorm = zlansy_("I", uplo, n, &a[a_offset], lda, &rwork[1]);
+
+/* Compute the reciprocal of the condition number of A. */
+
+ zsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1],
+ info);
+
+/* Compute the solution vectors X. */
+
+ zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
+ zsytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
+ info);
+
+/* Use iterative refinement to improve the computed solutions and */
+/* compute error bounds and backward error estimates for them. */
+
+ zsyrfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1],
+ &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1]
+, &rwork[1], info);
+
+/* Set INFO = N+1 if the matrix is singular to working precision. */
+
+ if (*rcond < dlamch_("Epsilon")) {
+ *info = *n + 1;
+ }
+
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+
+ return 0;
+
+/* End of ZSYSVX */
+
+} /* zsysvx_ */