aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zsyrfsx.c
diff options
context:
space:
mode:
authormaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 12:29:46 +0300
committermaxim-yurchuk <maxim-yurchuk@yandex-team.com>2024-10-09 13:14:22 +0300
commit9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80 (patch)
treea8fb3181d5947c0d78cf402aa56e686130179049 /contrib/libs/clapack/zsyrfsx.c
parenta44b779cd359f06c3ebbef4ec98c6b38609d9d85 (diff)
downloadydb-9731d8a4bb7ee2cc8554eaf133bb85498a4c7d80.tar.gz
publishFullContrib: true for ydb
<HIDDEN_URL> commit_hash:c82a80ac4594723cebf2c7387dec9c60217f603e
Diffstat (limited to 'contrib/libs/clapack/zsyrfsx.c')
-rw-r--r--contrib/libs/clapack/zsyrfsx.c631
1 files changed, 631 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zsyrfsx.c b/contrib/libs/clapack/zsyrfsx.c
new file mode 100644
index 0000000000..3dea8828eb
--- /dev/null
+++ b/contrib/libs/clapack/zsyrfsx.c
@@ -0,0 +1,631 @@
+/* zsyrfsx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static logical c_true = TRUE_;
+static logical c_false = FALSE_;
+
+/* Subroutine */ int zsyrfsx_(char *uplo, char *equed, integer *n, integer *
+ nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *
+ ldaf, integer *ipiv, doublereal *s, doublecomplex *b, integer *ldb,
+ doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *berr,
+ integer *n_err_bnds__, doublereal *err_bnds_norm__, doublereal *
+ err_bnds_comp__, integer *nparams, doublereal *params, doublecomplex *
+ work, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
+ x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
+ err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ doublereal illrcond_thresh__, unstable_thresh__, err_lbnd__;
+ integer ref_type__;
+ integer j;
+ doublereal rcond_tmp__;
+ integer prec_type__;
+ doublereal cwise_wrong__;
+ char norm[1];
+ extern /* Subroutine */ int zla_syrfsx_extended__(integer *, char *,
+ integer *, integer *, doublecomplex *, integer *, doublecomplex *,
+ integer *, integer *, logical *, doublereal *, doublecomplex *,
+ integer *, doublecomplex *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, doublecomplex *, doublereal *,
+ doublecomplex *, doublecomplex *, doublereal *, integer *,
+ doublereal *, doublereal *, logical *, integer *, ftnlen);
+ logical ignore_cwise__;
+ extern logical lsame_(char *, char *);
+ doublereal anorm;
+ logical rcequ;
+ extern doublereal zla_syrcond_c__(char *, integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *, integer *, doublereal *,
+ logical *, integer *, doublecomplex *, doublereal *, ftnlen),
+ zla_syrcond_x__(char *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, integer *, doublecomplex *, integer *,
+ doublecomplex *, doublereal *, ftnlen), dlamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern doublereal zlansy_(char *, char *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ extern /* Subroutine */ int zsycon_(char *, integer *, doublecomplex *,
+ integer *, integer *, doublereal *, doublereal *, doublecomplex *,
+ integer *);
+ extern integer ilaprec_(char *);
+ integer ithresh, n_norms__;
+ doublereal rthresh;
+
+
+/* -- LAPACK routine (version 3.2.1) -- */
+/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
+/* -- Jason Riedy of Univ. of California Berkeley. -- */
+/* -- April 2009 -- */
+
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley and NAG Ltd. -- */
+
+/* .. */
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZSYRFSX improves the computed solution to a system of linear */
+/* equations when the coefficient matrix is symmetric indefinite, and */
+/* provides error bounds and backward error estimates for the */
+/* solution. In addition to normwise error bound, the code provides */
+/* maximum componentwise error bound if possible. See comments for */
+/* ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds. */
+
+/* The original system of linear equations may have been equilibrated */
+/* before calling this routine, as described by arguments EQUED and S */
+/* below. In this case, the solution and error bounds returned are */
+/* for the original unequilibrated system. */
+
+/* Arguments */
+/* ========= */
+
+/* Some optional parameters are bundled in the PARAMS array. These */
+/* settings determine how refinement is performed, but often the */
+/* defaults are acceptable. If the defaults are acceptable, users */
+/* can pass NPARAMS = 0 which prevents the source code from accessing */
+/* the PARAMS argument. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* EQUED (input) CHARACTER*1 */
+/* Specifies the form of equilibration that was done to A */
+/* before calling this routine. This is needed to compute */
+/* the solution and error bounds correctly. */
+/* = 'N': No equilibration */
+/* = 'Y': Both row and column equilibration, i.e., A has been */
+/* replaced by diag(S) * A * diag(S). */
+/* The right hand side B has been changed accordingly. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension (LDA,N) */
+/* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
+/* upper triangular part of A contains the upper triangular */
+/* part of the matrix A, and the strictly lower triangular */
+/* part of A is not referenced. If UPLO = 'L', the leading */
+/* N-by-N lower triangular part of A contains the lower */
+/* triangular part of the matrix A, and the strictly upper */
+/* triangular part of A is not referenced. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* AF (input) COMPLEX*16 array, dimension (LDAF,N) */
+/* The factored form of the matrix A. AF contains the block */
+/* diagonal matrix D and the multipliers used to obtain the */
+/* factor U or L from the factorization A = U*D*U**T or A = */
+/* L*D*L**T as computed by DSYTRF. */
+
+/* LDAF (input) INTEGER */
+/* The leading dimension of the array AF. LDAF >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by DSYTRF. */
+
+/* S (input or output) DOUBLE PRECISION array, dimension (N) */
+/* The scale factors for A. If EQUED = 'Y', A is multiplied on */
+/* the left and right by diag(S). S is an input argument if FACT = */
+/* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */
+/* = 'Y', each element of S must be positive. If S is output, each */
+/* element of S is a power of the radix. If S is input, each element */
+/* of S should be a power of the radix to ensure a reliable solution */
+/* and error estimates. Scaling by powers of the radix does not cause */
+/* rounding errors unless the result underflows or overflows. */
+/* Rounding errors during scaling lead to refining with a matrix that */
+/* is not equivalent to the input matrix, producing error estimates */
+/* that may not be reliable. */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* The right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
+/* On entry, the solution matrix X, as computed by DGETRS. */
+/* On exit, the improved solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* RCOND (output) DOUBLE PRECISION */
+/* Reciprocal scaled condition number. This is an estimate of the */
+/* reciprocal Skeel condition number of the matrix A after */
+/* equilibration (if done). If this is less than the machine */
+/* precision (in particular, if it is zero), the matrix is singular */
+/* to working precision. Note that the error may still be small even */
+/* if this number is very small and the matrix appears ill- */
+/* conditioned. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* Componentwise relative backward error. This is the */
+/* componentwise relative backward error of each solution vector X(j) */
+/* (i.e., the smallest relative change in any element of A or B that */
+/* makes X(j) an exact solution). */
+
+/* N_ERR_BNDS (input) INTEGER */
+/* Number of error bounds to return for each right hand side */
+/* and each type (normwise or componentwise). See ERR_BNDS_NORM and */
+/* ERR_BNDS_COMP below. */
+
+/* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* normwise relative error, which is defined as follows: */
+
+/* Normwise relative error in the ith solution vector: */
+/* max_j (abs(XTRUE(j,i) - X(j,i))) */
+/* ------------------------------ */
+/* max_j abs(X(j,i)) */
+
+/* The array is indexed by the type of error information as described */
+/* below. There currently are up to three pieces of information */
+/* returned. */
+
+/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_NORM(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated normwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * dlamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*A, where S scales each row by a power of the */
+/* radix so all absolute row sums of Z are approximately 1. */
+
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
+/* For each right-hand side, this array contains information about */
+/* various error bounds and condition numbers corresponding to the */
+/* componentwise relative error, which is defined as follows: */
+
+/* Componentwise relative error in the ith solution vector: */
+/* abs(XTRUE(j,i) - X(j,i)) */
+/* max_j ---------------------- */
+/* abs(X(j,i)) */
+
+/* The array is indexed by the right-hand side i (on which the */
+/* componentwise relative error depends), and the type of error */
+/* information as described below. There currently are up to three */
+/* pieces of information returned for each right-hand side. If */
+/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
+/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
+/* the first (:,N_ERR_BNDS) entries are returned. */
+
+/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
+/* right-hand side. */
+
+/* The second index in ERR_BNDS_COMP(:,err) contains the following */
+/* three fields: */
+/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
+/* reciprocal condition number is less than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). */
+
+/* err = 2 "Guaranteed" error bound: The estimated forward error, */
+/* almost certainly within a factor of 10 of the true error */
+/* so long as the next entry is greater than the threshold */
+/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
+/* be trusted if the previous boolean is true. */
+
+/* err = 3 Reciprocal condition number: Estimated componentwise */
+/* reciprocal condition number. Compared with the threshold */
+/* sqrt(n) * dlamch('Epsilon') to determine if the error */
+/* estimate is "guaranteed". These reciprocal condition */
+/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
+/* appropriately scaled matrix Z. */
+/* Let Z = S*(A*diag(x)), where x is the solution for the */
+/* current right-hand side and S scales each row of */
+/* A*diag(x) by a power of the radix so all absolute row */
+/* sums of Z are approximately 1. */
+
+/* See Lapack Working Note 165 for further details and extra */
+/* cautions. */
+
+/* NPARAMS (input) INTEGER */
+/* Specifies the number of parameters set in PARAMS. If .LE. 0, the */
+/* PARAMS array is never referenced and default values are used. */
+
+/* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */
+/* Specifies algorithm parameters. If an entry is .LT. 0.0, then */
+/* that entry will be filled with default value used for that */
+/* parameter. Only positions up to NPARAMS are accessed; defaults */
+/* are used for higher-numbered parameters. */
+
+/* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
+/* refinement or not. */
+/* Default: 1.0D+0 */
+/* = 0.0 : No refinement is performed, and no error bounds are */
+/* computed. */
+/* = 1.0 : Use the double-precision refinement algorithm, */
+/* possibly with doubled-single computations if the */
+/* compilation environment does not support DOUBLE */
+/* PRECISION. */
+/* (other values are reserved for future use) */
+
+/* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
+/* computations allowed for refinement. */
+/* Default: 10 */
+/* Aggressive: Set to 100 to permit convergence using approximate */
+/* factorizations or factorizations other than LU. If */
+/* the factorization uses a technique other than */
+/* Gaussian elimination, the guarantees in */
+/* err_bnds_norm and err_bnds_comp may no longer be */
+/* trustworthy. */
+
+/* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
+/* will attempt to find a solution with small componentwise */
+/* relative error in the double-precision algorithm. Positive */
+/* is true, 0.0 is false. */
+/* Default: 1.0 (attempt componentwise convergence) */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: Successful exit. The solution to every right-hand side is */
+/* guaranteed. */
+/* < 0: If INFO = -i, the i-th argument had an illegal value */
+/* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
+/* has been completed, but the factor U is exactly singular, so */
+/* the solution and error bounds could not be computed. RCOND = 0 */
+/* is returned. */
+/* = N+J: The solution corresponding to the Jth right-hand side is */
+/* not guaranteed. The solutions corresponding to other right- */
+/* hand sides K with K > J may not be guaranteed as well, but */
+/* only the first such right-hand side is reported. If a small */
+/* componentwise error is not requested (PARAMS(3) = 0.0) then */
+/* the Jth right-hand side is the first with a normwise error */
+/* bound that is not guaranteed (the smallest J such */
+/* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
+/* the Jth right-hand side is the first with either a normwise or */
+/* componentwise error bound that is not guaranteed (the smallest */
+/* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
+/* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
+/* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
+/* about all of the right-hand sides check ERR_BNDS_NORM or */
+/* ERR_BNDS_COMP. */
+
+/* ================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Check the input parameters. */
+
+ /* Parameter adjustments */
+ err_bnds_comp_dim1 = *nrhs;
+ err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
+ err_bnds_comp__ -= err_bnds_comp_offset;
+ err_bnds_norm_dim1 = *nrhs;
+ err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
+ err_bnds_norm__ -= err_bnds_norm_offset;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ af_dim1 = *ldaf;
+ af_offset = 1 + af_dim1;
+ af -= af_offset;
+ --ipiv;
+ --s;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --berr;
+ --params;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ ref_type__ = 1;
+ if (*nparams >= 1) {
+ if (params[1] < 0.) {
+ params[1] = 1.;
+ } else {
+ ref_type__ = (integer) params[1];
+ }
+ }
+
+/* Set default parameters. */
+
+ illrcond_thresh__ = (doublereal) (*n) * dlamch_("Epsilon");
+ ithresh = 10;
+ rthresh = .5;
+ unstable_thresh__ = .25;
+ ignore_cwise__ = FALSE_;
+
+ if (*nparams >= 2) {
+ if (params[2] < 0.) {
+ params[2] = (doublereal) ithresh;
+ } else {
+ ithresh = (integer) params[2];
+ }
+ }
+ if (*nparams >= 3) {
+ if (params[3] < 0.) {
+ if (ignore_cwise__) {
+ params[3] = 0.;
+ } else {
+ params[3] = 1.;
+ }
+ } else {
+ ignore_cwise__ = params[3] == 0.;
+ }
+ }
+ if (ref_type__ == 0 || *n_err_bnds__ == 0) {
+ n_norms__ = 0;
+ } else if (ignore_cwise__) {
+ n_norms__ = 1;
+ } else {
+ n_norms__ = 2;
+ }
+
+ rcequ = lsame_(equed, "Y");
+
+/* Test input parameters. */
+
+ if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (! rcequ && ! lsame_(equed, "N")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else if (*ldaf < max(1,*n)) {
+ *info = -8;
+ } else if (*ldb < max(1,*n)) {
+ *info = -11;
+ } else if (*ldx < max(1,*n)) {
+ *info = -13;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZSYRFSX", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || *nrhs == 0) {
+ *rcond = 1.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ berr[j] = 0.;
+ if (*n_err_bnds__ >= 1) {
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ } else if (*n_err_bnds__ >= 2) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.;
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.;
+ } else if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.;
+ }
+ }
+ return 0;
+ }
+
+/* Default to failure. */
+
+ *rcond = 0.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ berr[j] = 1.;
+ if (*n_err_bnds__ >= 1) {
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ } else if (*n_err_bnds__ >= 2) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ } else if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.;
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.;
+ }
+ }
+
+/* Compute the norm of A and the reciprocal of the condition */
+/* number of A. */
+
+ *(unsigned char *)norm = 'I';
+ anorm = zlansy_(norm, uplo, n, &a[a_offset], lda, &rwork[1]);
+ zsycon_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &anorm, rcond, &work[1],
+ info);
+
+/* Perform refinement on each right-hand side */
+
+ if (ref_type__ != 0) {
+ prec_type__ = ilaprec_("E");
+ zla_syrfsx_extended__(&prec_type__, uplo, n, nrhs, &a[a_offset], lda,
+ &af[af_offset], ldaf, &ipiv[1], &rcequ, &s[1], &b[b_offset],
+ ldb, &x[x_offset], ldx, &berr[1], &n_norms__, &
+ err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[
+ err_bnds_comp_offset], &work[1], &rwork[1], &work[*n + 1],
+ (doublecomplex *)(&rwork[1]), rcond, &ithresh, &rthresh, &unstable_thresh__, &
+ ignore_cwise__, info, (ftnlen)1);
+ }
+/* Computing MAX */
+ d__1 = 10., d__2 = sqrt((doublereal) (*n));
+ err_lbnd__ = max(d__1,d__2) * dlamch_("Epsilon");
+ if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
+
+/* Compute scaled normwise condition number cond(A*C). */
+
+ if (rcequ) {
+ rcond_tmp__ = zla_syrcond_c__(uplo, n, &a[a_offset], lda, &af[
+ af_offset], ldaf, &ipiv[1], &s[1], &c_true, info, &work[1]
+ , &rwork[1], (ftnlen)1);
+ } else {
+ rcond_tmp__ = zla_syrcond_c__(uplo, n, &a[a_offset], lda, &af[
+ af_offset], ldaf, &ipiv[1], &s[1], &c_false, info, &work[
+ 1], &rwork[1], (ftnlen)1);
+ }
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Cap the error at 1.0. */
+
+ if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1
+ << 1)] > 1.) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ }
+
+/* Threshold the error (see LAWN). */
+
+ if (rcond_tmp__ < illrcond_thresh__) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.;
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 0.;
+ if (*info <= *n) {
+ *info = *n + j;
+ }
+ } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] <
+ err_lbnd__) {
+ err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
+ err_bnds_norm__[j + err_bnds_norm_dim1] = 1.;
+ }
+
+/* Save the condition number. */
+
+ if (*n_err_bnds__ >= 3) {
+ err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
+ }
+ }
+ }
+ if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
+
+/* Compute componentwise condition number cond(A*diag(Y(:,J))) for */
+/* each right-hand side using the current solution as an estimate of */
+/* the true solution. If the componentwise error estimate is too */
+/* large, then the solution is a lousy estimate of truth and the */
+/* estimated RCOND may be too optimistic. To avoid misleading users, */
+/* the inverse condition number is set to 0.0 when the estimated */
+/* cwise error is at least CWISE_WRONG. */
+
+ cwise_wrong__ = sqrt(dlamch_("Epsilon"));
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
+ cwise_wrong__) {
+ rcond_tmp__ = zla_syrcond_x__(uplo, n, &a[a_offset], lda, &af[
+ af_offset], ldaf, &ipiv[1], &x[j * x_dim1 + 1], info,
+ &work[1], &rwork[1], (ftnlen)1);
+ } else {
+ rcond_tmp__ = 0.;
+ }
+
+/* Cap the error at 1.0. */
+
+ if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1
+ << 1)] > 1.) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ }
+
+/* Threshold the error (see LAWN). */
+
+ if (rcond_tmp__ < illrcond_thresh__) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 0.;
+ if (params[3] == 1. && *info < *n + j) {
+ *info = *n + j;
+ }
+ } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] <
+ err_lbnd__) {
+ err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
+ err_bnds_comp__[j + err_bnds_comp_dim1] = 1.;
+ }
+
+/* Save the condition number. */
+
+ if (*n_err_bnds__ >= 3) {
+ err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZSYRFSX */
+
+} /* zsyrfsx_ */