aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zptts2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zptts2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zptts2.c')
-rw-r--r--contrib/libs/clapack/zptts2.c315
1 files changed, 315 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zptts2.c b/contrib/libs/clapack/zptts2.c
new file mode 100644
index 0000000000..bcfbedcc48
--- /dev/null
+++ b/contrib/libs/clapack/zptts2.c
@@ -0,0 +1,315 @@
+/* zptts2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int zptts2_(integer *iuplo, integer *n, integer *nrhs,
+ doublereal *d__, doublecomplex *e, doublecomplex *b, integer *ldb)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j;
+ extern /* Subroutine */ int zdscal_(integer *, doublereal *,
+ doublecomplex *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZPTTS2 solves a tridiagonal system of the form */
+/* A * X = B */
+/* using the factorization A = U'*D*U or A = L*D*L' computed by ZPTTRF. */
+/* D is a diagonal matrix specified in the vector D, U (or L) is a unit */
+/* bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */
+/* the vector E, and X and B are N by NRHS matrices. */
+
+/* Arguments */
+/* ========= */
+
+/* IUPLO (input) INTEGER */
+/* Specifies the form of the factorization and whether the */
+/* vector E is the superdiagonal of the upper bidiagonal factor */
+/* U or the subdiagonal of the lower bidiagonal factor L. */
+/* = 1: A = U'*D*U, E is the superdiagonal of U */
+/* = 0: A = L*D*L', E is the subdiagonal of L */
+
+/* N (input) INTEGER */
+/* The order of the tridiagonal matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* D (input) DOUBLE PRECISION array, dimension (N) */
+/* The n diagonal elements of the diagonal matrix D from the */
+/* factorization A = U'*D*U or A = L*D*L'. */
+
+/* E (input) COMPLEX*16 array, dimension (N-1) */
+/* If IUPLO = 1, the (n-1) superdiagonal elements of the unit */
+/* bidiagonal factor U from the factorization A = U'*D*U. */
+/* If IUPLO = 0, the (n-1) subdiagonal elements of the unit */
+/* bidiagonal factor L from the factorization A = L*D*L'. */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* On entry, the right hand side vectors B for the system of */
+/* linear equations. */
+/* On exit, the solution vectors, X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Quick return if possible */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ if (*n <= 1) {
+ if (*n == 1) {
+ d__1 = 1. / d__[1];
+ zdscal_(nrhs, &d__1, &b[b_offset], ldb);
+ }
+ return 0;
+ }
+
+ if (*iuplo == 1) {
+
+/* Solve A * X = B using the factorization A = U'*D*U, */
+/* overwriting each right hand side vector with its solution. */
+
+ if (*nrhs <= 2) {
+ j = 1;
+L10:
+
+/* Solve U' * x = b. */
+
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ - 1 + j * b_dim1;
+ d_cnjg(&z__3, &e[i__ - 1]);
+ z__2.r = b[i__4].r * z__3.r - b[i__4].i * z__3.i, z__2.i = b[
+ i__4].r * z__3.i + b[i__4].i * z__3.r;
+ z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L20: */
+ }
+
+/* Solve D * U * x = b. */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__;
+ z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
+ ;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L30: */
+ }
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ i__1 = i__ + j * b_dim1;
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + 1 + j * b_dim1;
+ i__4 = i__;
+ z__2.r = b[i__3].r * e[i__4].r - b[i__3].i * e[i__4].i,
+ z__2.i = b[i__3].r * e[i__4].i + b[i__3].i * e[i__4]
+ .r;
+ z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
+ b[i__1].r = z__1.r, b[i__1].i = z__1.i;
+/* L40: */
+ }
+ if (j < *nrhs) {
+ ++j;
+ goto L10;
+ }
+ } else {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve U' * x = b. */
+
+ i__2 = *n;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ - 1 + j * b_dim1;
+ d_cnjg(&z__3, &e[i__ - 1]);
+ z__2.r = b[i__5].r * z__3.r - b[i__5].i * z__3.i, z__2.i =
+ b[i__5].r * z__3.i + b[i__5].i * z__3.r;
+ z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L50: */
+ }
+
+/* Solve D * U * x = b. */
+
+ i__2 = *n + j * b_dim1;
+ i__3 = *n + j * b_dim1;
+ i__4 = *n;
+ z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
+ ;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__;
+ z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[
+ i__4];
+ i__5 = i__ + 1 + j * b_dim1;
+ i__6 = i__;
+ z__3.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
+ z__3.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
+ i__6].r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L60: */
+ }
+/* L70: */
+ }
+ }
+ } else {
+
+/* Solve A * X = B using the factorization A = L*D*L', */
+/* overwriting each right hand side vector with its solution. */
+
+ if (*nrhs <= 2) {
+ j = 1;
+L80:
+
+/* Solve L * x = b. */
+
+ i__1 = *n;
+ for (i__ = 2; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ - 1 + j * b_dim1;
+ i__5 = i__ - 1;
+ z__2.r = b[i__4].r * e[i__5].r - b[i__4].i * e[i__5].i,
+ z__2.i = b[i__4].r * e[i__5].i + b[i__4].i * e[i__5]
+ .r;
+ z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L90: */
+ }
+
+/* Solve D * L' * x = b. */
+
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__;
+ z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
+ ;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L100: */
+ }
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ i__1 = i__ + j * b_dim1;
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + 1 + j * b_dim1;
+ d_cnjg(&z__3, &e[i__]);
+ z__2.r = b[i__3].r * z__3.r - b[i__3].i * z__3.i, z__2.i = b[
+ i__3].r * z__3.i + b[i__3].i * z__3.r;
+ z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i;
+ b[i__1].r = z__1.r, b[i__1].i = z__1.i;
+/* L110: */
+ }
+ if (j < *nrhs) {
+ ++j;
+ goto L80;
+ }
+ } else {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Solve L * x = b. */
+
+ i__2 = *n;
+ for (i__ = 2; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__ + j * b_dim1;
+ i__5 = i__ - 1 + j * b_dim1;
+ i__6 = i__ - 1;
+ z__2.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i,
+ z__2.i = b[i__5].r * e[i__6].i + b[i__5].i * e[
+ i__6].r;
+ z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i;
+ b[i__3].r = z__1.r, b[i__3].i = z__1.i;
+/* L120: */
+ }
+
+/* Solve D * L' * x = b. */
+
+ i__2 = *n + j * b_dim1;
+ i__3 = *n + j * b_dim1;
+ i__4 = *n;
+ z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4]
+ ;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ for (i__ = *n - 1; i__ >= 1; --i__) {
+ i__2 = i__ + j * b_dim1;
+ i__3 = i__ + j * b_dim1;
+ i__4 = i__;
+ z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[
+ i__4];
+ i__5 = i__ + 1 + j * b_dim1;
+ d_cnjg(&z__4, &e[i__]);
+ z__3.r = b[i__5].r * z__4.r - b[i__5].i * z__4.i, z__3.i =
+ b[i__5].r * z__4.i + b[i__5].i * z__4.r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L130: */
+ }
+/* L140: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZPTTS2 */
+
+} /* zptts2_ */