diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zptts2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zptts2.c')
-rw-r--r-- | contrib/libs/clapack/zptts2.c | 315 |
1 files changed, 315 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zptts2.c b/contrib/libs/clapack/zptts2.c new file mode 100644 index 0000000000..bcfbedcc48 --- /dev/null +++ b/contrib/libs/clapack/zptts2.c @@ -0,0 +1,315 @@ +/* zptts2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int zptts2_(integer *iuplo, integer *n, integer *nrhs, + doublereal *d__, doublecomplex *e, doublecomplex *b, integer *ldb) +{ + /* System generated locals */ + integer b_dim1, b_offset, i__1, i__2, i__3, i__4, i__5, i__6; + doublereal d__1; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__, j; + extern /* Subroutine */ int zdscal_(integer *, doublereal *, + doublecomplex *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZPTTS2 solves a tridiagonal system of the form */ +/* A * X = B */ +/* using the factorization A = U'*D*U or A = L*D*L' computed by ZPTTRF. */ +/* D is a diagonal matrix specified in the vector D, U (or L) is a unit */ +/* bidiagonal matrix whose superdiagonal (subdiagonal) is specified in */ +/* the vector E, and X and B are N by NRHS matrices. */ + +/* Arguments */ +/* ========= */ + +/* IUPLO (input) INTEGER */ +/* Specifies the form of the factorization and whether the */ +/* vector E is the superdiagonal of the upper bidiagonal factor */ +/* U or the subdiagonal of the lower bidiagonal factor L. */ +/* = 1: A = U'*D*U, E is the superdiagonal of U */ +/* = 0: A = L*D*L', E is the subdiagonal of L */ + +/* N (input) INTEGER */ +/* The order of the tridiagonal matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* D (input) DOUBLE PRECISION array, dimension (N) */ +/* The n diagonal elements of the diagonal matrix D from the */ +/* factorization A = U'*D*U or A = L*D*L'. */ + +/* E (input) COMPLEX*16 array, dimension (N-1) */ +/* If IUPLO = 1, the (n-1) superdiagonal elements of the unit */ +/* bidiagonal factor U from the factorization A = U'*D*U. */ +/* If IUPLO = 0, the (n-1) subdiagonal elements of the unit */ +/* bidiagonal factor L from the factorization A = L*D*L'. */ + +/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ +/* On entry, the right hand side vectors B for the system of */ +/* linear equations. */ +/* On exit, the solution vectors, X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Quick return if possible */ + + /* Parameter adjustments */ + --d__; + --e; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + if (*n <= 1) { + if (*n == 1) { + d__1 = 1. / d__[1]; + zdscal_(nrhs, &d__1, &b[b_offset], ldb); + } + return 0; + } + + if (*iuplo == 1) { + +/* Solve A * X = B using the factorization A = U'*D*U, */ +/* overwriting each right hand side vector with its solution. */ + + if (*nrhs <= 2) { + j = 1; +L10: + +/* Solve U' * x = b. */ + + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__ - 1 + j * b_dim1; + d_cnjg(&z__3, &e[i__ - 1]); + z__2.r = b[i__4].r * z__3.r - b[i__4].i * z__3.i, z__2.i = b[ + i__4].r * z__3.i + b[i__4].i * z__3.r; + z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L20: */ + } + +/* Solve D * U * x = b. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__; + z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4] + ; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L30: */ + } + for (i__ = *n - 1; i__ >= 1; --i__) { + i__1 = i__ + j * b_dim1; + i__2 = i__ + j * b_dim1; + i__3 = i__ + 1 + j * b_dim1; + i__4 = i__; + z__2.r = b[i__3].r * e[i__4].r - b[i__3].i * e[i__4].i, + z__2.i = b[i__3].r * e[i__4].i + b[i__3].i * e[i__4] + .r; + z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i; + b[i__1].r = z__1.r, b[i__1].i = z__1.i; +/* L40: */ + } + if (j < *nrhs) { + ++j; + goto L10; + } + } else { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + +/* Solve U' * x = b. */ + + i__2 = *n; + for (i__ = 2; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ - 1 + j * b_dim1; + d_cnjg(&z__3, &e[i__ - 1]); + z__2.r = b[i__5].r * z__3.r - b[i__5].i * z__3.i, z__2.i = + b[i__5].r * z__3.i + b[i__5].i * z__3.r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L50: */ + } + +/* Solve D * U * x = b. */ + + i__2 = *n + j * b_dim1; + i__3 = *n + j * b_dim1; + i__4 = *n; + z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4] + ; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + for (i__ = *n - 1; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__; + z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[ + i__4]; + i__5 = i__ + 1 + j * b_dim1; + i__6 = i__; + z__3.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i, + z__3.i = b[i__5].r * e[i__6].i + b[i__5].i * e[ + i__6].r; + z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L60: */ + } +/* L70: */ + } + } + } else { + +/* Solve A * X = B using the factorization A = L*D*L', */ +/* overwriting each right hand side vector with its solution. */ + + if (*nrhs <= 2) { + j = 1; +L80: + +/* Solve L * x = b. */ + + i__1 = *n; + for (i__ = 2; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__ - 1 + j * b_dim1; + i__5 = i__ - 1; + z__2.r = b[i__4].r * e[i__5].r - b[i__4].i * e[i__5].i, + z__2.i = b[i__4].r * e[i__5].i + b[i__4].i * e[i__5] + .r; + z__1.r = b[i__3].r - z__2.r, z__1.i = b[i__3].i - z__2.i; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L90: */ + } + +/* Solve D * L' * x = b. */ + + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__; + z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4] + ; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L100: */ + } + for (i__ = *n - 1; i__ >= 1; --i__) { + i__1 = i__ + j * b_dim1; + i__2 = i__ + j * b_dim1; + i__3 = i__ + 1 + j * b_dim1; + d_cnjg(&z__3, &e[i__]); + z__2.r = b[i__3].r * z__3.r - b[i__3].i * z__3.i, z__2.i = b[ + i__3].r * z__3.i + b[i__3].i * z__3.r; + z__1.r = b[i__2].r - z__2.r, z__1.i = b[i__2].i - z__2.i; + b[i__1].r = z__1.r, b[i__1].i = z__1.i; +/* L110: */ + } + if (j < *nrhs) { + ++j; + goto L80; + } + } else { + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + +/* Solve L * x = b. */ + + i__2 = *n; + for (i__ = 2; i__ <= i__2; ++i__) { + i__3 = i__ + j * b_dim1; + i__4 = i__ + j * b_dim1; + i__5 = i__ - 1 + j * b_dim1; + i__6 = i__ - 1; + z__2.r = b[i__5].r * e[i__6].r - b[i__5].i * e[i__6].i, + z__2.i = b[i__5].r * e[i__6].i + b[i__5].i * e[ + i__6].r; + z__1.r = b[i__4].r - z__2.r, z__1.i = b[i__4].i - z__2.i; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L120: */ + } + +/* Solve D * L' * x = b. */ + + i__2 = *n + j * b_dim1; + i__3 = *n + j * b_dim1; + i__4 = *n; + z__1.r = b[i__3].r / d__[i__4], z__1.i = b[i__3].i / d__[i__4] + ; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + for (i__ = *n - 1; i__ >= 1; --i__) { + i__2 = i__ + j * b_dim1; + i__3 = i__ + j * b_dim1; + i__4 = i__; + z__2.r = b[i__3].r / d__[i__4], z__2.i = b[i__3].i / d__[ + i__4]; + i__5 = i__ + 1 + j * b_dim1; + d_cnjg(&z__4, &e[i__]); + z__3.r = b[i__5].r * z__4.r - b[i__5].i * z__4.i, z__3.i = + b[i__5].r * z__4.i + b[i__5].i * z__4.r; + z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i; + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L130: */ + } +/* L140: */ + } + } + } + + return 0; + +/* End of ZPTTS2 */ + +} /* zptts2_ */ |