aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpteqr.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zpteqr.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zpteqr.c')
-rw-r--r--contrib/libs/clapack/zpteqr.c243
1 files changed, 243 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zpteqr.c b/contrib/libs/clapack/zpteqr.c
new file mode 100644
index 0000000000..95584cf95e
--- /dev/null
+++ b/contrib/libs/clapack/zpteqr.c
@@ -0,0 +1,243 @@
+/* zpteqr.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static doublecomplex c_b2 = {1.,0.};
+static integer c__0 = 0;
+static integer c__1 = 1;
+
+/* Subroutine */ int zpteqr_(char *compz, integer *n, doublereal *d__,
+ doublereal *e, doublecomplex *z__, integer *ldz, doublereal *work,
+ integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ doublecomplex c__[1] /* was [1][1] */;
+ integer i__;
+ doublecomplex vt[1] /* was [1][1] */;
+ integer nru;
+ extern logical lsame_(char *, char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ integer icompz;
+ extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, doublecomplex *, integer *), dpttrf_(integer *, doublereal *, doublereal *, integer *)
+ , zbdsqr_(char *, integer *, integer *, integer *, integer *,
+ doublereal *, doublereal *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublereal *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZPTEQR computes all eigenvalues and, optionally, eigenvectors of a */
+/* symmetric positive definite tridiagonal matrix by first factoring the */
+/* matrix using DPTTRF and then calling ZBDSQR to compute the singular */
+/* values of the bidiagonal factor. */
+
+/* This routine computes the eigenvalues of the positive definite */
+/* tridiagonal matrix to high relative accuracy. This means that if the */
+/* eigenvalues range over many orders of magnitude in size, then the */
+/* small eigenvalues and corresponding eigenvectors will be computed */
+/* more accurately than, for example, with the standard QR method. */
+
+/* The eigenvectors of a full or band positive definite Hermitian matrix */
+/* can also be found if ZHETRD, ZHPTRD, or ZHBTRD has been used to */
+/* reduce this matrix to tridiagonal form. (The reduction to */
+/* tridiagonal form, however, may preclude the possibility of obtaining */
+/* high relative accuracy in the small eigenvalues of the original */
+/* matrix, if these eigenvalues range over many orders of magnitude.) */
+
+/* Arguments */
+/* ========= */
+
+/* COMPZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only. */
+/* = 'V': Compute eigenvectors of original Hermitian */
+/* matrix also. Array Z contains the unitary matrix */
+/* used to reduce the original matrix to tridiagonal */
+/* form. */
+/* = 'I': Compute eigenvectors of tridiagonal matrix also. */
+
+/* N (input) INTEGER */
+/* The order of the matrix. N >= 0. */
+
+/* D (input/output) DOUBLE PRECISION array, dimension (N) */
+/* On entry, the n diagonal elements of the tridiagonal matrix. */
+/* On normal exit, D contains the eigenvalues, in descending */
+/* order. */
+
+/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
+/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
+/* matrix. */
+/* On exit, E has been destroyed. */
+
+/* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */
+/* On entry, if COMPZ = 'V', the unitary matrix used in the */
+/* reduction to tridiagonal form. */
+/* On exit, if COMPZ = 'V', the orthonormal eigenvectors of the */
+/* original Hermitian matrix; */
+/* if COMPZ = 'I', the orthonormal eigenvectors of the */
+/* tridiagonal matrix. */
+/* If INFO > 0 on exit, Z contains the eigenvectors associated */
+/* with only the stored eigenvalues. */
+/* If COMPZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* COMPZ = 'V' or 'I', LDZ >= max(1,N). */
+
+/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit. */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, and i is: */
+/* <= N the Cholesky factorization of the matrix could */
+/* not be performed because the i-th principal minor */
+/* was not positive definite. */
+/* > N the SVD algorithm failed to converge; */
+/* if INFO = N+i, i off-diagonal elements of the */
+/* bidiagonal factor did not converge to zero. */
+
+/* ==================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --d__;
+ --e;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+
+ if (lsame_(compz, "N")) {
+ icompz = 0;
+ } else if (lsame_(compz, "V")) {
+ icompz = 1;
+ } else if (lsame_(compz, "I")) {
+ icompz = 2;
+ } else {
+ icompz = -1;
+ }
+ if (icompz < 0) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZPTEQR", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (icompz > 0) {
+ i__1 = z_dim1 + 1;
+ z__[i__1].r = 1., z__[i__1].i = 0.;
+ }
+ return 0;
+ }
+ if (icompz == 2) {
+ zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
+ }
+
+/* Call DPTTRF to factor the matrix. */
+
+ dpttrf_(n, &d__[1], &e[1], info);
+ if (*info != 0) {
+ return 0;
+ }
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] = sqrt(d__[i__]);
+/* L10: */
+ }
+ i__1 = *n - 1;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ e[i__] *= d__[i__];
+/* L20: */
+ }
+
+/* Call ZBDSQR to compute the singular values/vectors of the */
+/* bidiagonal factor. */
+
+ if (icompz > 0) {
+ nru = *n;
+ } else {
+ nru = 0;
+ }
+ zbdsqr_("Lower", n, &c__0, &nru, &c__0, &d__[1], &e[1], vt, &c__1, &z__[
+ z_offset], ldz, c__, &c__1, &work[1], info);
+
+/* Square the singular values. */
+
+ if (*info == 0) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ d__[i__] *= d__[i__];
+/* L30: */
+ }
+ } else {
+ *info = *n + *info;
+ }
+
+ return 0;
+
+/* End of ZPTEQR */
+
+} /* zpteqr_ */