aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpprfs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zpprfs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zpprfs.c')
-rw-r--r--contrib/libs/clapack/zpprfs.c457
1 files changed, 457 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zpprfs.c b/contrib/libs/clapack/zpprfs.c
new file mode 100644
index 0000000000..0ad55017f4
--- /dev/null
+++ b/contrib/libs/clapack/zpprfs.c
@@ -0,0 +1,457 @@
+/* zpprfs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {1.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int zpprfs_(char *uplo, integer *n, integer *nrhs,
+ doublecomplex *ap, doublecomplex *afp, doublecomplex *b, integer *ldb,
+ doublecomplex *x, integer *ldx, doublereal *ferr, doublereal *berr,
+ doublecomplex *work, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, x_dim1, x_offset, i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1, d__2, d__3, d__4;
+ doublecomplex z__1;
+
+ /* Builtin functions */
+ double d_imag(doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, k;
+ doublereal s;
+ integer ik, kk;
+ doublereal xk;
+ integer nz;
+ doublereal eps;
+ integer kase;
+ doublereal safe1, safe2;
+ extern logical lsame_(char *, char *);
+ integer isave[3], count;
+ logical upper;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zhpmv_(char *, integer *,
+ doublecomplex *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, doublecomplex *, integer *), zaxpy_(
+ integer *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zlacn2_(integer *, doublecomplex *,
+ doublecomplex *, doublereal *, integer *, integer *);
+ extern doublereal dlamch_(char *);
+ doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublereal lstres;
+ extern /* Subroutine */ int zpptrs_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* Modified to call ZLACN2 in place of ZLACON, 10 Feb 03, SJH. */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZPPRFS improves the computed solution to a system of linear */
+/* equations when the coefficient matrix is Hermitian positive definite */
+/* and packed, and provides error bounds and backward error estimates */
+/* for the solution. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrices B and X. NRHS >= 0. */
+
+/* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
+/* The upper or lower triangle of the Hermitian matrix A, packed */
+/* columnwise in a linear array. The j-th column of A is stored */
+/* in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* AFP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */
+/* The triangular factor U or L from the Cholesky factorization */
+/* A = U**H*U or A = L*L**H, as computed by DPPTRF/ZPPTRF, */
+/* packed columnwise in a linear array in the same format as A */
+/* (see AP). */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* The right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (input/output) COMPLEX*16 array, dimension (LDX,NRHS) */
+/* On entry, the solution matrix X, as computed by ZPPTRS. */
+/* On exit, the improved solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The estimated forward error bound for each solution vector */
+/* X(j) (the j-th column of the solution matrix X). */
+/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
+/* is an estimated upper bound for the magnitude of the largest */
+/* element in (X(j) - XTRUE) divided by the magnitude of the */
+/* largest element in X(j). The estimate is as reliable as */
+/* the estimate for RCOND, and is almost always a slight */
+/* overestimate of the true error. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The componentwise relative backward error of each solution */
+/* vector X(j) (i.e., the smallest relative change in */
+/* any element of A or B that makes X(j) an exact solution). */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* Internal Parameters */
+/* =================== */
+
+/* ITMAX is the maximum number of steps of iterative refinement. */
+
+/* ==================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ap;
+ --afp;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --ferr;
+ --berr;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ } else if (*ldx < max(1,*n)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZPPRFS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ ferr[j] = 0.;
+ berr[j] = 0.;
+/* L10: */
+ }
+ return 0;
+ }
+
+/* NZ = maximum number of nonzero elements in each row of A, plus 1 */
+
+ nz = *n + 1;
+ eps = dlamch_("Epsilon");
+ safmin = dlamch_("Safe minimum");
+ safe1 = nz * safmin;
+ safe2 = safe1 / eps;
+
+/* Do for each right hand side */
+
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+
+ count = 1;
+ lstres = 3.;
+L20:
+
+/* Loop until stopping criterion is satisfied. */
+
+/* Compute residual R = B - A * X */
+
+ zcopy_(n, &b[j * b_dim1 + 1], &c__1, &work[1], &c__1);
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, n, &z__1, &ap[1], &x[j * x_dim1 + 1], &c__1, &c_b1, &
+ work[1], &c__1);
+
+/* Compute componentwise relative backward error from formula */
+
+/* max(i) ( abs(R(i)) / ( abs(A)*abs(X) + abs(B) )(i) ) */
+
+/* where abs(Z) is the componentwise absolute value of the matrix */
+/* or vector Z. If the i-th component of the denominator is less */
+/* than SAFE2, then SAFE1 is added to the i-th components of the */
+/* numerator and denominator before dividing. */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__ + j * b_dim1;
+ rwork[i__] = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[
+ i__ + j * b_dim1]), abs(d__2));
+/* L30: */
+ }
+
+/* Compute abs(A)*abs(X) + abs(B). */
+
+ kk = 1;
+ if (upper) {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ s = 0.;
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
+ x_dim1]), abs(d__2));
+ ik = kk;
+ i__3 = k - 1;
+ for (i__ = 1; i__ <= i__3; ++i__) {
+ i__4 = ik;
+ rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&ap[ik]), abs(d__2))) * xk;
+ i__4 = ik;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
+ ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
+ + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
+ ));
+ ++ik;
+/* L40: */
+ }
+ i__3 = kk + k - 1;
+ rwork[k] = rwork[k] + (d__1 = ap[i__3].r, abs(d__1)) * xk + s;
+ kk += k;
+/* L50: */
+ }
+ } else {
+ i__2 = *n;
+ for (k = 1; k <= i__2; ++k) {
+ s = 0.;
+ i__3 = k + j * x_dim1;
+ xk = (d__1 = x[i__3].r, abs(d__1)) + (d__2 = d_imag(&x[k + j *
+ x_dim1]), abs(d__2));
+ i__3 = kk;
+ rwork[k] += (d__1 = ap[i__3].r, abs(d__1)) * xk;
+ ik = kk + 1;
+ i__3 = *n;
+ for (i__ = k + 1; i__ <= i__3; ++i__) {
+ i__4 = ik;
+ rwork[i__] += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 =
+ d_imag(&ap[ik]), abs(d__2))) * xk;
+ i__4 = ik;
+ i__5 = i__ + j * x_dim1;
+ s += ((d__1 = ap[i__4].r, abs(d__1)) + (d__2 = d_imag(&ap[
+ ik]), abs(d__2))) * ((d__3 = x[i__5].r, abs(d__3))
+ + (d__4 = d_imag(&x[i__ + j * x_dim1]), abs(d__4)
+ ));
+ ++ik;
+/* L60: */
+ }
+ rwork[k] += s;
+ kk += *n - k + 1;
+/* L70: */
+ }
+ }
+ s = 0.;
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (rwork[i__] > safe2) {
+/* Computing MAX */
+ i__3 = i__;
+ d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2))) / rwork[i__];
+ s = max(d__3,d__4);
+ } else {
+/* Computing MAX */
+ i__3 = i__;
+ d__3 = s, d__4 = ((d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + safe1) / (rwork[i__]
+ + safe1);
+ s = max(d__3,d__4);
+ }
+/* L80: */
+ }
+ berr[j] = s;
+
+/* Test stopping criterion. Continue iterating if */
+/* 1) The residual BERR(J) is larger than machine epsilon, and */
+/* 2) BERR(J) decreased by at least a factor of 2 during the */
+/* last iteration, and */
+/* 3) At most ITMAX iterations tried. */
+
+ if (berr[j] > eps && berr[j] * 2. <= lstres && count <= 5) {
+
+/* Update solution and try again. */
+
+ zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info);
+ zaxpy_(n, &c_b1, &work[1], &c__1, &x[j * x_dim1 + 1], &c__1);
+ lstres = berr[j];
+ ++count;
+ goto L20;
+ }
+
+/* Bound error from formula */
+
+/* norm(X - XTRUE) / norm(X) .le. FERR = */
+/* norm( abs(inv(A))* */
+/* ( abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) / norm(X) */
+
+/* where */
+/* norm(Z) is the magnitude of the largest component of Z */
+/* inv(A) is the inverse of A */
+/* abs(Z) is the componentwise absolute value of the matrix or */
+/* vector Z */
+/* NZ is the maximum number of nonzeros in any row of A, plus 1 */
+/* EPS is machine epsilon */
+
+/* The i-th component of abs(R)+NZ*EPS*(abs(A)*abs(X)+abs(B)) */
+/* is incremented by SAFE1 if the i-th component of */
+/* abs(A)*abs(X) + abs(B) is less than SAFE2. */
+
+/* Use ZLACN2 to estimate the infinity-norm of the matrix */
+/* inv(A) * diag(W), */
+/* where W = abs(R) + NZ*EPS*( abs(A)*abs(X)+abs(B) ))) */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ if (rwork[i__] > safe2) {
+ i__3 = i__;
+ rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
+ ;
+ } else {
+ i__3 = i__;
+ rwork[i__] = (d__1 = work[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&work[i__]), abs(d__2)) + nz * eps * rwork[i__]
+ + safe1;
+ }
+/* L90: */
+ }
+
+ kase = 0;
+L100:
+ zlacn2_(n, &work[*n + 1], &work[1], &ferr[j], &kase, isave);
+ if (kase != 0) {
+ if (kase == 1) {
+
+/* Multiply by diag(W)*inv(A'). */
+
+ zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
+ ;
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__;
+ z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
+ * work[i__5].i;
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* L110: */
+ }
+ } else if (kase == 2) {
+
+/* Multiply by inv(A)*diag(W). */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = i__;
+ z__1.r = rwork[i__4] * work[i__5].r, z__1.i = rwork[i__4]
+ * work[i__5].i;
+ work[i__3].r = z__1.r, work[i__3].i = z__1.i;
+/* L120: */
+ }
+ zpptrs_(uplo, n, &c__1, &afp[1], &work[1], n, info)
+ ;
+ }
+ goto L100;
+ }
+
+/* Normalize error. */
+
+ lstres = 0.;
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+/* Computing MAX */
+ i__3 = i__ + j * x_dim1;
+ d__3 = lstres, d__4 = (d__1 = x[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&x[i__ + j * x_dim1]), abs(d__2));
+ lstres = max(d__3,d__4);
+/* L130: */
+ }
+ if (lstres != 0.) {
+ ferr[j] /= lstres;
+ }
+
+/* L140: */
+ }
+
+ return 0;
+
+/* End of ZPPRFS */
+
+} /* zpprfs_ */