aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpbstf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zpbstf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zpbstf.c')
-rw-r--r--contrib/libs/clapack/zpbstf.c334
1 files changed, 334 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zpbstf.c b/contrib/libs/clapack/zpbstf.c
new file mode 100644
index 0000000000..93481ac9a9
--- /dev/null
+++ b/contrib/libs/clapack/zpbstf.c
@@ -0,0 +1,334 @@
+/* zpbstf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static doublereal c_b9 = -1.;
+
+/* Subroutine */ int zpbstf_(char *uplo, integer *n, integer *kd,
+ doublecomplex *ab, integer *ldab, integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, i__1, i__2, i__3;
+ doublereal d__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer j, m, km;
+ doublereal ajj;
+ integer kld;
+ extern /* Subroutine */ int zher_(char *, integer *, doublereal *,
+ doublecomplex *, integer *, doublecomplex *, integer *);
+ extern logical lsame_(char *, char *);
+ logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
+ integer *, doublereal *, doublecomplex *, integer *), zlacgv_(
+ integer *, doublecomplex *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZPBSTF computes a split Cholesky factorization of a complex */
+/* Hermitian positive definite band matrix A. */
+
+/* This routine is designed to be used in conjunction with ZHBGST. */
+
+/* The factorization has the form A = S**H*S where S is a band matrix */
+/* of the same bandwidth as A and the following structure: */
+
+/* S = ( U ) */
+/* ( M L ) */
+
+/* where U is upper triangular of order m = (n+kd)/2, and L is lower */
+/* triangular of order n-m. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* KD (input) INTEGER */
+/* The number of superdiagonals of the matrix A if UPLO = 'U', */
+/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
+
+/* AB (input/output) COMPLEX*16 array, dimension (LDAB,N) */
+/* On entry, the upper or lower triangle of the Hermitian band */
+/* matrix A, stored in the first kd+1 rows of the array. The */
+/* j-th column of A is stored in the j-th column of the array AB */
+/* as follows: */
+/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
+/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
+
+/* On exit, if INFO = 0, the factor S from the split Cholesky */
+/* factorization A = S**H*S. See Further Details. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= KD+1. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, the factorization could not be completed, */
+/* because the updated element a(i,i) was negative; the */
+/* matrix A is not positive definite. */
+
+/* Further Details */
+/* =============== */
+
+/* The band storage scheme is illustrated by the following example, when */
+/* N = 7, KD = 2: */
+
+/* S = ( s11 s12 s13 ) */
+/* ( s22 s23 s24 ) */
+/* ( s33 s34 ) */
+/* ( s44 ) */
+/* ( s53 s54 s55 ) */
+/* ( s64 s65 s66 ) */
+/* ( s75 s76 s77 ) */
+
+/* If UPLO = 'U', the array AB holds: */
+
+/* on entry: on exit: */
+
+/* * * a13 a24 a35 a46 a57 * * s13 s24 s53' s64' s75' */
+/* * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54' s65' s76' */
+/* a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 */
+
+/* If UPLO = 'L', the array AB holds: */
+
+/* on entry: on exit: */
+
+/* a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77 */
+/* a21 a32 a43 a54 a65 a76 * s12' s23' s34' s54 s65 s76 * */
+/* a31 a42 a53 a64 a64 * * s13' s24' s53 s64 s75 * * */
+
+/* Array elements marked * are not used by the routine; s12' denotes */
+/* conjg(s12); the diagonal elements of S are real. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*kd < 0) {
+ *info = -3;
+ } else if (*ldab < *kd + 1) {
+ *info = -5;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZPBSTF", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Computing MAX */
+ i__1 = 1, i__2 = *ldab - 1;
+ kld = max(i__1,i__2);
+
+/* Set the splitting point m. */
+
+ m = (*n + *kd) / 2;
+
+ if (upper) {
+
+/* Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). */
+
+ i__1 = m + 1;
+ for (j = *n; j >= i__1; --j) {
+
+/* Compute s(j,j) and test for non-positive-definiteness. */
+
+ i__2 = *kd + 1 + j * ab_dim1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.) {
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+ goto L50;
+ }
+ ajj = sqrt(ajj);
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+/* Computing MIN */
+ i__2 = j - 1;
+ km = min(i__2,*kd);
+
+/* Compute elements j-km:j-1 of the j-th column and update the */
+/* the leading submatrix within the band. */
+
+ d__1 = 1. / ajj;
+ zdscal_(&km, &d__1, &ab[*kd + 1 - km + j * ab_dim1], &c__1);
+ zher_("Upper", &km, &c_b9, &ab[*kd + 1 - km + j * ab_dim1], &c__1,
+ &ab[*kd + 1 + (j - km) * ab_dim1], &kld);
+/* L10: */
+ }
+
+/* Factorize the updated submatrix A(1:m,1:m) as U**H*U. */
+
+ i__1 = m;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute s(j,j) and test for non-positive-definiteness. */
+
+ i__2 = *kd + 1 + j * ab_dim1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.) {
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+ goto L50;
+ }
+ ajj = sqrt(ajj);
+ i__2 = *kd + 1 + j * ab_dim1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+/* Computing MIN */
+ i__2 = *kd, i__3 = m - j;
+ km = min(i__2,i__3);
+
+/* Compute elements j+1:j+km of the j-th row and update the */
+/* trailing submatrix within the band. */
+
+ if (km > 0) {
+ d__1 = 1. / ajj;
+ zdscal_(&km, &d__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ zlacgv_(&km, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ zher_("Upper", &km, &c_b9, &ab[*kd + (j + 1) * ab_dim1], &kld,
+ &ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
+ zlacgv_(&km, &ab[*kd + (j + 1) * ab_dim1], &kld);
+ }
+/* L20: */
+ }
+ } else {
+
+/* Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m). */
+
+ i__1 = m + 1;
+ for (j = *n; j >= i__1; --j) {
+
+/* Compute s(j,j) and test for non-positive-definiteness. */
+
+ i__2 = j * ab_dim1 + 1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.) {
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+ goto L50;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+/* Computing MIN */
+ i__2 = j - 1;
+ km = min(i__2,*kd);
+
+/* Compute elements j-km:j-1 of the j-th row and update the */
+/* trailing submatrix within the band. */
+
+ d__1 = 1. / ajj;
+ zdscal_(&km, &d__1, &ab[km + 1 + (j - km) * ab_dim1], &kld);
+ zlacgv_(&km, &ab[km + 1 + (j - km) * ab_dim1], &kld);
+ zher_("Lower", &km, &c_b9, &ab[km + 1 + (j - km) * ab_dim1], &kld,
+ &ab[(j - km) * ab_dim1 + 1], &kld);
+ zlacgv_(&km, &ab[km + 1 + (j - km) * ab_dim1], &kld);
+/* L30: */
+ }
+
+/* Factorize the updated submatrix A(1:m,1:m) as U**H*U. */
+
+ i__1 = m;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute s(j,j) and test for non-positive-definiteness. */
+
+ i__2 = j * ab_dim1 + 1;
+ ajj = ab[i__2].r;
+ if (ajj <= 0.) {
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+ goto L50;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j * ab_dim1 + 1;
+ ab[i__2].r = ajj, ab[i__2].i = 0.;
+/* Computing MIN */
+ i__2 = *kd, i__3 = m - j;
+ km = min(i__2,i__3);
+
+/* Compute elements j+1:j+km of the j-th column and update the */
+/* trailing submatrix within the band. */
+
+ if (km > 0) {
+ d__1 = 1. / ajj;
+ zdscal_(&km, &d__1, &ab[j * ab_dim1 + 2], &c__1);
+ zher_("Lower", &km, &c_b9, &ab[j * ab_dim1 + 2], &c__1, &ab[(
+ j + 1) * ab_dim1 + 1], &kld);
+ }
+/* L40: */
+ }
+ }
+ return 0;
+
+L50:
+ *info = j;
+ return 0;
+
+/* End of ZPBSTF */
+
+} /* zpbstf_ */