aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zlatrz.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlatrz.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlatrz.c')
-rw-r--r--contrib/libs/clapack/zlatrz.c181
1 files changed, 181 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlatrz.c b/contrib/libs/clapack/zlatrz.c
new file mode 100644
index 0000000000..21b55c15bd
--- /dev/null
+++ b/contrib/libs/clapack/zlatrz.c
@@ -0,0 +1,181 @@
+/* zlatrz.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int zlatrz_(integer *m, integer *n, integer *l,
+ doublecomplex *a, integer *lda, doublecomplex *tau, doublecomplex *
+ work)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+ doublecomplex z__1;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__;
+ doublecomplex alpha;
+ extern /* Subroutine */ int zlarz_(char *, integer *, integer *, integer *
+, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *, doublecomplex *), zlacgv_(integer *,
+ doublecomplex *, integer *), zlarfp_(integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix */
+/* [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R 0 ) * Z by means */
+/* of unitary transformations, where Z is an (M+L)-by-(M+L) unitary */
+/* matrix and, R and A1 are M-by-M upper triangular matrices. */
+
+/* Arguments */
+/* ========= */
+
+/* M (input) INTEGER */
+/* The number of rows of the matrix A. M >= 0. */
+
+/* N (input) INTEGER */
+/* The number of columns of the matrix A. N >= 0. */
+
+/* L (input) INTEGER */
+/* The number of columns of the matrix A containing the */
+/* meaningful part of the Householder vectors. N-M >= L >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the leading M-by-N upper trapezoidal part of the */
+/* array A must contain the matrix to be factorized. */
+/* On exit, the leading M-by-M upper triangular part of A */
+/* contains the upper triangular matrix R, and elements N-L+1 to */
+/* N of the first M rows of A, with the array TAU, represent the */
+/* unitary matrix Z as a product of M elementary reflectors. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,M). */
+
+/* TAU (output) COMPLEX*16 array, dimension (M) */
+/* The scalar factors of the elementary reflectors. */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (M) */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
+
+/* The factorization is obtained by Householder's method. The kth */
+/* transformation matrix, Z( k ), which is used to introduce zeros into */
+/* the ( m - k + 1 )th row of A, is given in the form */
+
+/* Z( k ) = ( I 0 ), */
+/* ( 0 T( k ) ) */
+
+/* where */
+
+/* T( k ) = I - tau*u( k )*u( k )', u( k ) = ( 1 ), */
+/* ( 0 ) */
+/* ( z( k ) ) */
+
+/* tau is a scalar and z( k ) is an l element vector. tau and z( k ) */
+/* are chosen to annihilate the elements of the kth row of A2. */
+
+/* The scalar tau is returned in the kth element of TAU and the vector */
+/* u( k ) in the kth row of A2, such that the elements of z( k ) are */
+/* in a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in */
+/* the upper triangular part of A1. */
+
+/* Z is given by */
+
+/* Z = Z( 1 ) * Z( 2 ) * ... * Z( m ). */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Quick return if possible */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --tau;
+ --work;
+
+ /* Function Body */
+ if (*m == 0) {
+ return 0;
+ } else if (*m == *n) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ tau[i__2].r = 0., tau[i__2].i = 0.;
+/* L10: */
+ }
+ return 0;
+ }
+
+ for (i__ = *m; i__ >= 1; --i__) {
+
+/* Generate elementary reflector H(i) to annihilate */
+/* [ A(i,i) A(i,n-l+1:n) ] */
+
+ zlacgv_(l, &a[i__ + (*n - *l + 1) * a_dim1], lda);
+ d_cnjg(&z__1, &a[i__ + i__ * a_dim1]);
+ alpha.r = z__1.r, alpha.i = z__1.i;
+ i__1 = *l + 1;
+ zlarfp_(&i__1, &alpha, &a[i__ + (*n - *l + 1) * a_dim1], lda, &tau[
+ i__]);
+ i__1 = i__;
+ d_cnjg(&z__1, &tau[i__]);
+ tau[i__1].r = z__1.r, tau[i__1].i = z__1.i;
+
+/* Apply H(i) to A(1:i-1,i:n) from the right */
+
+ i__1 = i__ - 1;
+ i__2 = *n - i__ + 1;
+ d_cnjg(&z__1, &tau[i__]);
+ zlarz_("Right", &i__1, &i__2, l, &a[i__ + (*n - *l + 1) * a_dim1],
+ lda, &z__1, &a[i__ * a_dim1 + 1], lda, &work[1]);
+ i__1 = i__ + i__ * a_dim1;
+ d_cnjg(&z__1, &alpha);
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+
+/* L20: */
+ }
+
+ return 0;
+
+/* End of ZLATRZ */
+
+} /* zlatrz_ */