diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlascl.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlascl.c')
-rw-r--r-- | contrib/libs/clapack/zlascl.c | 376 |
1 files changed, 376 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlascl.c b/contrib/libs/clapack/zlascl.c new file mode 100644 index 0000000000..f0023c07b9 --- /dev/null +++ b/contrib/libs/clapack/zlascl.c @@ -0,0 +1,376 @@ +/* zlascl.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int zlascl_(char *type__, integer *kl, integer *ku, + doublereal *cfrom, doublereal *cto, integer *m, integer *n, + doublecomplex *a, integer *lda, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5; + doublecomplex z__1; + + /* Local variables */ + integer i__, j, k1, k2, k3, k4; + doublereal mul, cto1; + logical done; + doublereal ctoc; + extern logical lsame_(char *, char *); + integer itype; + doublereal cfrom1; + extern doublereal dlamch_(char *); + doublereal cfromc; + extern logical disnan_(doublereal *); + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal bignum, smlnum; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLASCL multiplies the M by N complex matrix A by the real scalar */ +/* CTO/CFROM. This is done without over/underflow as long as the final */ +/* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that */ +/* A may be full, upper triangular, lower triangular, upper Hessenberg, */ +/* or banded. */ + +/* Arguments */ +/* ========= */ + +/* TYPE (input) CHARACTER*1 */ +/* TYPE indices the storage type of the input matrix. */ +/* = 'G': A is a full matrix. */ +/* = 'L': A is a lower triangular matrix. */ +/* = 'U': A is an upper triangular matrix. */ +/* = 'H': A is an upper Hessenberg matrix. */ +/* = 'B': A is a symmetric band matrix with lower bandwidth KL */ +/* and upper bandwidth KU and with the only the lower */ +/* half stored. */ +/* = 'Q': A is a symmetric band matrix with lower bandwidth KL */ +/* and upper bandwidth KU and with the only the upper */ +/* half stored. */ +/* = 'Z': A is a band matrix with lower bandwidth KL and upper */ +/* bandwidth KU. */ + +/* KL (input) INTEGER */ +/* The lower bandwidth of A. Referenced only if TYPE = 'B', */ +/* 'Q' or 'Z'. */ + +/* KU (input) INTEGER */ +/* The upper bandwidth of A. Referenced only if TYPE = 'B', */ +/* 'Q' or 'Z'. */ + +/* CFROM (input) DOUBLE PRECISION */ +/* CTO (input) DOUBLE PRECISION */ +/* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed */ +/* without over/underflow if the final result CTO*A(I,J)/CFROM */ +/* can be represented without over/underflow. CFROM must be */ +/* nonzero. */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* The matrix to be multiplied by CTO/CFROM. See TYPE for the */ +/* storage type. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* INFO (output) INTEGER */ +/* 0 - successful exit */ +/* <0 - if INFO = -i, the i-th argument had an illegal value. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + + if (lsame_(type__, "G")) { + itype = 0; + } else if (lsame_(type__, "L")) { + itype = 1; + } else if (lsame_(type__, "U")) { + itype = 2; + } else if (lsame_(type__, "H")) { + itype = 3; + } else if (lsame_(type__, "B")) { + itype = 4; + } else if (lsame_(type__, "Q")) { + itype = 5; + } else if (lsame_(type__, "Z")) { + itype = 6; + } else { + itype = -1; + } + + if (itype == -1) { + *info = -1; + } else if (*cfrom == 0. || disnan_(cfrom)) { + *info = -4; + } else if (disnan_(cto)) { + *info = -5; + } else if (*m < 0) { + *info = -6; + } else if (*n < 0 || itype == 4 && *n != *m || itype == 5 && *n != *m) { + *info = -7; + } else if (itype <= 3 && *lda < max(1,*m)) { + *info = -9; + } else if (itype >= 4) { +/* Computing MAX */ + i__1 = *m - 1; + if (*kl < 0 || *kl > max(i__1,0)) { + *info = -2; + } else /* if(complicated condition) */ { +/* Computing MAX */ + i__1 = *n - 1; + if (*ku < 0 || *ku > max(i__1,0) || (itype == 4 || itype == 5) && + *kl != *ku) { + *info = -3; + } else if (itype == 4 && *lda < *kl + 1 || itype == 5 && *lda < * + ku + 1 || itype == 6 && *lda < (*kl << 1) + *ku + 1) { + *info = -9; + } + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZLASCL", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *m == 0) { + return 0; + } + +/* Get machine parameters */ + + smlnum = dlamch_("S"); + bignum = 1. / smlnum; + + cfromc = *cfrom; + ctoc = *cto; + +L10: + cfrom1 = cfromc * smlnum; + if (cfrom1 == cfromc) { +/* CFROMC is an inf. Multiply by a correctly signed zero for */ +/* finite CTOC, or a NaN if CTOC is infinite. */ + mul = ctoc / cfromc; + done = TRUE_; + cto1 = ctoc; + } else { + cto1 = ctoc / bignum; + if (cto1 == ctoc) { +/* CTOC is either 0 or an inf. In both cases, CTOC itself */ +/* serves as the correct multiplication factor. */ + mul = ctoc; + done = TRUE_; + cfromc = 1.; + } else if (abs(cfrom1) > abs(ctoc) && ctoc != 0.) { + mul = smlnum; + done = FALSE_; + cfromc = cfrom1; + } else if (abs(cto1) > abs(cfromc)) { + mul = bignum; + done = FALSE_; + ctoc = cto1; + } else { + mul = ctoc / cfromc; + done = TRUE_; + } + } + + if (itype == 0) { + +/* Full matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L20: */ + } +/* L30: */ + } + + } else if (itype == 1) { + +/* Lower triangular matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *m; + for (i__ = j; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L40: */ + } +/* L50: */ + } + + } else if (itype == 2) { + +/* Upper triangular matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = min(j,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L60: */ + } +/* L70: */ + } + + } else if (itype == 3) { + +/* Upper Hessenberg matrix */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = j + 1; + i__2 = min(i__3,*m); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L80: */ + } +/* L90: */ + } + + } else if (itype == 4) { + +/* Lower half of a symmetric band matrix */ + + k3 = *kl + 1; + k4 = *n + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MIN */ + i__3 = k3, i__4 = k4 - j; + i__2 = min(i__3,i__4); + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L100: */ + } +/* L110: */ + } + + } else if (itype == 5) { + +/* Upper half of a symmetric band matrix */ + + k1 = *ku + 2; + k3 = *ku + 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__2 = k1 - j; + i__3 = k3; + for (i__ = max(i__2,1); i__ <= i__3; ++i__) { + i__2 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__2].r = z__1.r, a[i__2].i = z__1.i; +/* L120: */ + } +/* L130: */ + } + + } else if (itype == 6) { + +/* Band matrix */ + + k1 = *kl + *ku + 2; + k2 = *kl + 1; + k3 = (*kl << 1) + *ku + 1; + k4 = *kl + *ku + 1 + *m; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { +/* Computing MAX */ + i__3 = k1 - j; +/* Computing MIN */ + i__4 = k3, i__5 = k4 - j; + i__2 = min(i__4,i__5); + for (i__ = max(i__3,k2); i__ <= i__2; ++i__) { + i__3 = i__ + j * a_dim1; + i__4 = i__ + j * a_dim1; + z__1.r = mul * a[i__4].r, z__1.i = mul * a[i__4].i; + a[i__3].r = z__1.r, a[i__3].i = z__1.i; +/* L140: */ + } +/* L150: */ + } + + } + + if (! done) { + goto L10; + } + + return 0; + +/* End of ZLASCL */ + +} /* zlascl_ */ |