aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zlarnv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlarnv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlarnv.c')
-rw-r--r--contrib/libs/clapack/zlarnv.c190
1 files changed, 190 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlarnv.c b/contrib/libs/clapack/zlarnv.c
new file mode 100644
index 0000000000..2e4e257a88
--- /dev/null
+++ b/contrib/libs/clapack/zlarnv.c
@@ -0,0 +1,190 @@
+/* zlarnv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int zlarnv_(integer *idist, integer *iseed, integer *n,
+ doublecomplex *x)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1, d__2;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ double log(doublereal), sqrt(doublereal);
+ void z_exp(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__;
+ doublereal u[128];
+ integer il, iv;
+ extern /* Subroutine */ int dlaruv_(integer *, integer *, doublereal *);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZLARNV returns a vector of n random complex numbers from a uniform or */
+/* normal distribution. */
+
+/* Arguments */
+/* ========= */
+
+/* IDIST (input) INTEGER */
+/* Specifies the distribution of the random numbers: */
+/* = 1: real and imaginary parts each uniform (0,1) */
+/* = 2: real and imaginary parts each uniform (-1,1) */
+/* = 3: real and imaginary parts each normal (0,1) */
+/* = 4: uniformly distributed on the disc abs(z) < 1 */
+/* = 5: uniformly distributed on the circle abs(z) = 1 */
+
+/* ISEED (input/output) INTEGER array, dimension (4) */
+/* On entry, the seed of the random number generator; the array */
+/* elements must be between 0 and 4095, and ISEED(4) must be */
+/* odd. */
+/* On exit, the seed is updated. */
+
+/* N (input) INTEGER */
+/* The number of random numbers to be generated. */
+
+/* X (output) COMPLEX*16 array, dimension (N) */
+/* The generated random numbers. */
+
+/* Further Details */
+/* =============== */
+
+/* This routine calls the auxiliary routine DLARUV to generate random */
+/* real numbers from a uniform (0,1) distribution, in batches of up to */
+/* 128 using vectorisable code. The Box-Muller method is used to */
+/* transform numbers from a uniform to a normal distribution. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ --x;
+ --iseed;
+
+ /* Function Body */
+ i__1 = *n;
+ for (iv = 1; iv <= i__1; iv += 64) {
+/* Computing MIN */
+ i__2 = 64, i__3 = *n - iv + 1;
+ il = min(i__2,i__3);
+
+/* Call DLARUV to generate 2*IL real numbers from a uniform (0,1) */
+/* distribution (2*IL <= LV) */
+
+ i__2 = il << 1;
+ dlaruv_(&iseed[1], &i__2, u);
+
+ if (*idist == 1) {
+
+/* Copy generated numbers */
+
+ i__2 = il;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iv + i__ - 1;
+ i__4 = (i__ << 1) - 2;
+ i__5 = (i__ << 1) - 1;
+ z__1.r = u[i__4], z__1.i = u[i__5];
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L10: */
+ }
+ } else if (*idist == 2) {
+
+/* Convert generated numbers to uniform (-1,1) distribution */
+
+ i__2 = il;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iv + i__ - 1;
+ d__1 = u[(i__ << 1) - 2] * 2. - 1.;
+ d__2 = u[(i__ << 1) - 1] * 2. - 1.;
+ z__1.r = d__1, z__1.i = d__2;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L20: */
+ }
+ } else if (*idist == 3) {
+
+/* Convert generated numbers to normal (0,1) distribution */
+
+ i__2 = il;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iv + i__ - 1;
+ d__1 = sqrt(log(u[(i__ << 1) - 2]) * -2.);
+ d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663;
+ z__3.r = 0., z__3.i = d__2;
+ z_exp(&z__2, &z__3);
+ z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L30: */
+ }
+ } else if (*idist == 4) {
+
+/* Convert generated numbers to complex numbers uniformly */
+/* distributed on the unit disk */
+
+ i__2 = il;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iv + i__ - 1;
+ d__1 = sqrt(u[(i__ << 1) - 2]);
+ d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663;
+ z__3.r = 0., z__3.i = d__2;
+ z_exp(&z__2, &z__3);
+ z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L40: */
+ }
+ } else if (*idist == 5) {
+
+/* Convert generated numbers to complex numbers uniformly */
+/* distributed on the unit circle */
+
+ i__2 = il;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = iv + i__ - 1;
+ d__1 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663;
+ z__2.r = 0., z__2.i = d__1;
+ z_exp(&z__1, &z__2);
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+/* L50: */
+ }
+ }
+/* L60: */
+ }
+ return 0;
+
+/* End of ZLARNV */
+
+} /* zlarnv_ */