diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlarnv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlarnv.c')
-rw-r--r-- | contrib/libs/clapack/zlarnv.c | 190 |
1 files changed, 190 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlarnv.c b/contrib/libs/clapack/zlarnv.c new file mode 100644 index 0000000000..2e4e257a88 --- /dev/null +++ b/contrib/libs/clapack/zlarnv.c @@ -0,0 +1,190 @@ +/* zlarnv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int zlarnv_(integer *idist, integer *iseed, integer *n, + doublecomplex *x) +{ + /* System generated locals */ + integer i__1, i__2, i__3, i__4, i__5; + doublereal d__1, d__2; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + double log(doublereal), sqrt(doublereal); + void z_exp(doublecomplex *, doublecomplex *); + + /* Local variables */ + integer i__; + doublereal u[128]; + integer il, iv; + extern /* Subroutine */ int dlaruv_(integer *, integer *, doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLARNV returns a vector of n random complex numbers from a uniform or */ +/* normal distribution. */ + +/* Arguments */ +/* ========= */ + +/* IDIST (input) INTEGER */ +/* Specifies the distribution of the random numbers: */ +/* = 1: real and imaginary parts each uniform (0,1) */ +/* = 2: real and imaginary parts each uniform (-1,1) */ +/* = 3: real and imaginary parts each normal (0,1) */ +/* = 4: uniformly distributed on the disc abs(z) < 1 */ +/* = 5: uniformly distributed on the circle abs(z) = 1 */ + +/* ISEED (input/output) INTEGER array, dimension (4) */ +/* On entry, the seed of the random number generator; the array */ +/* elements must be between 0 and 4095, and ISEED(4) must be */ +/* odd. */ +/* On exit, the seed is updated. */ + +/* N (input) INTEGER */ +/* The number of random numbers to be generated. */ + +/* X (output) COMPLEX*16 array, dimension (N) */ +/* The generated random numbers. */ + +/* Further Details */ +/* =============== */ + +/* This routine calls the auxiliary routine DLARUV to generate random */ +/* real numbers from a uniform (0,1) distribution, in batches of up to */ +/* 128 using vectorisable code. The Box-Muller method is used to */ +/* transform numbers from a uniform to a normal distribution. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --x; + --iseed; + + /* Function Body */ + i__1 = *n; + for (iv = 1; iv <= i__1; iv += 64) { +/* Computing MIN */ + i__2 = 64, i__3 = *n - iv + 1; + il = min(i__2,i__3); + +/* Call DLARUV to generate 2*IL real numbers from a uniform (0,1) */ +/* distribution (2*IL <= LV) */ + + i__2 = il << 1; + dlaruv_(&iseed[1], &i__2, u); + + if (*idist == 1) { + +/* Copy generated numbers */ + + i__2 = il; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iv + i__ - 1; + i__4 = (i__ << 1) - 2; + i__5 = (i__ << 1) - 1; + z__1.r = u[i__4], z__1.i = u[i__5]; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L10: */ + } + } else if (*idist == 2) { + +/* Convert generated numbers to uniform (-1,1) distribution */ + + i__2 = il; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iv + i__ - 1; + d__1 = u[(i__ << 1) - 2] * 2. - 1.; + d__2 = u[(i__ << 1) - 1] * 2. - 1.; + z__1.r = d__1, z__1.i = d__2; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L20: */ + } + } else if (*idist == 3) { + +/* Convert generated numbers to normal (0,1) distribution */ + + i__2 = il; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iv + i__ - 1; + d__1 = sqrt(log(u[(i__ << 1) - 2]) * -2.); + d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; + z__3.r = 0., z__3.i = d__2; + z_exp(&z__2, &z__3); + z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L30: */ + } + } else if (*idist == 4) { + +/* Convert generated numbers to complex numbers uniformly */ +/* distributed on the unit disk */ + + i__2 = il; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iv + i__ - 1; + d__1 = sqrt(u[(i__ << 1) - 2]); + d__2 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; + z__3.r = 0., z__3.i = d__2; + z_exp(&z__2, &z__3); + z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i; + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L40: */ + } + } else if (*idist == 5) { + +/* Convert generated numbers to complex numbers uniformly */ +/* distributed on the unit circle */ + + i__2 = il; + for (i__ = 1; i__ <= i__2; ++i__) { + i__3 = iv + i__ - 1; + d__1 = u[(i__ << 1) - 1] * 6.2831853071795864769252867663; + z__2.r = 0., z__2.i = d__1; + z_exp(&z__1, &z__2); + x[i__3].r = z__1.r, x[i__3].i = z__1.i; +/* L50: */ + } + } +/* L60: */ + } + return 0; + +/* End of ZLARNV */ + +} /* zlarnv_ */ |