diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlaqps.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlaqps.c')
-rw-r--r-- | contrib/libs/clapack/zlaqps.c | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlaqps.c b/contrib/libs/clapack/zlaqps.c new file mode 100644 index 0000000000..3fd88c684d --- /dev/null +++ b/contrib/libs/clapack/zlaqps.c @@ -0,0 +1,364 @@ +/* zlaqps.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {0.,0.}; +static doublecomplex c_b2 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zlaqps_(integer *m, integer *n, integer *offset, integer + *nb, integer *kb, doublecomplex *a, integer *lda, integer *jpvt, + doublecomplex *tau, doublereal *vn1, doublereal *vn2, doublecomplex * + auxv, doublecomplex *f, integer *ldf) +{ + /* System generated locals */ + integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2, i__3; + doublereal d__1, d__2; + doublecomplex z__1; + + /* Builtin functions */ + double sqrt(doublereal); + void d_cnjg(doublecomplex *, doublecomplex *); + double z_abs(doublecomplex *); + integer i_dnnt(doublereal *); + + /* Local variables */ + integer j, k, rk; + doublecomplex akk; + integer pvt; + doublereal temp, temp2, tol3z; + integer itemp; + extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, + integer *, doublecomplex *, doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *), zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *), + zswap_(integer *, doublecomplex *, integer *, doublecomplex *, + integer *); + extern doublereal dznrm2_(integer *, doublecomplex *, integer *), dlamch_( + char *); + extern integer idamax_(integer *, doublereal *, integer *); + integer lsticc; + extern /* Subroutine */ int zlarfp_(integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *); + integer lastrk; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLAQPS computes a step of QR factorization with column pivoting */ +/* of a complex M-by-N matrix A by using Blas-3. It tries to factorize */ +/* NB columns from A starting from the row OFFSET+1, and updates all */ +/* of the matrix with Blas-3 xGEMM. */ + +/* In some cases, due to catastrophic cancellations, it cannot */ +/* factorize NB columns. Hence, the actual number of factorized */ +/* columns is returned in KB. */ + +/* Block A(1:OFFSET,1:N) is accordingly pivoted, but not factorized. */ + +/* Arguments */ +/* ========= */ + +/* M (input) INTEGER */ +/* The number of rows of the matrix A. M >= 0. */ + +/* N (input) INTEGER */ +/* The number of columns of the matrix A. N >= 0 */ + +/* OFFSET (input) INTEGER */ +/* The number of rows of A that have been factorized in */ +/* previous steps. */ + +/* NB (input) INTEGER */ +/* The number of columns to factorize. */ + +/* KB (output) INTEGER */ +/* The number of columns actually factorized. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the M-by-N matrix A. */ +/* On exit, block A(OFFSET+1:M,1:KB) is the triangular */ +/* factor obtained and block A(1:OFFSET,1:N) has been */ +/* accordingly pivoted, but no factorized. */ +/* The rest of the matrix, block A(OFFSET+1:M,KB+1:N) has */ +/* been updated. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,M). */ + +/* JPVT (input/output) INTEGER array, dimension (N) */ +/* JPVT(I) = K <==> Column K of the full matrix A has been */ +/* permuted into position I in AP. */ + +/* TAU (output) COMPLEX*16 array, dimension (KB) */ +/* The scalar factors of the elementary reflectors. */ + +/* VN1 (input/output) DOUBLE PRECISION array, dimension (N) */ +/* The vector with the partial column norms. */ + +/* VN2 (input/output) DOUBLE PRECISION array, dimension (N) */ +/* The vector with the exact column norms. */ + +/* AUXV (input/output) COMPLEX*16 array, dimension (NB) */ +/* Auxiliar vector. */ + +/* F (input/output) COMPLEX*16 array, dimension (LDF,NB) */ +/* Matrix F' = L*Y'*A. */ + +/* LDF (input) INTEGER */ +/* The leading dimension of the array F. LDF >= max(1,N). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain */ +/* X. Sun, Computer Science Dept., Duke University, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --jpvt; + --tau; + --vn1; + --vn2; + --auxv; + f_dim1 = *ldf; + f_offset = 1 + f_dim1; + f -= f_offset; + + /* Function Body */ +/* Computing MIN */ + i__1 = *m, i__2 = *n + *offset; + lastrk = min(i__1,i__2); + lsticc = 0; + k = 0; + tol3z = sqrt(dlamch_("Epsilon")); + +/* Beginning of while loop. */ + +L10: + if (k < *nb && lsticc == 0) { + ++k; + rk = *offset + k; + +/* Determine ith pivot column and swap if necessary */ + + i__1 = *n - k + 1; + pvt = k - 1 + idamax_(&i__1, &vn1[k], &c__1); + if (pvt != k) { + zswap_(m, &a[pvt * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); + i__1 = k - 1; + zswap_(&i__1, &f[pvt + f_dim1], ldf, &f[k + f_dim1], ldf); + itemp = jpvt[pvt]; + jpvt[pvt] = jpvt[k]; + jpvt[k] = itemp; + vn1[pvt] = vn1[k]; + vn2[pvt] = vn2[k]; + } + +/* Apply previous Householder reflectors to column K: */ +/* A(RK:M,K) := A(RK:M,K) - A(RK:M,1:K-1)*F(K,1:K-1)'. */ + + if (k > 1) { + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = k + j * f_dim1; + d_cnjg(&z__1, &f[k + j * f_dim1]); + f[i__2].r = z__1.r, f[i__2].i = z__1.i; +/* L20: */ + } + i__1 = *m - rk + 1; + i__2 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__1, &i__2, &z__1, &a[rk + a_dim1], lda, + &f[k + f_dim1], ldf, &c_b2, &a[rk + k * a_dim1], &c__1); + i__1 = k - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = k + j * f_dim1; + d_cnjg(&z__1, &f[k + j * f_dim1]); + f[i__2].r = z__1.r, f[i__2].i = z__1.i; +/* L30: */ + } + } + +/* Generate elementary reflector H(k). */ + + if (rk < *m) { + i__1 = *m - rk + 1; + zlarfp_(&i__1, &a[rk + k * a_dim1], &a[rk + 1 + k * a_dim1], & + c__1, &tau[k]); + } else { + zlarfp_(&c__1, &a[rk + k * a_dim1], &a[rk + k * a_dim1], &c__1, & + tau[k]); + } + + i__1 = rk + k * a_dim1; + akk.r = a[i__1].r, akk.i = a[i__1].i; + i__1 = rk + k * a_dim1; + a[i__1].r = 1., a[i__1].i = 0.; + +/* Compute Kth column of F: */ + +/* Compute F(K+1:N,K) := tau(K)*A(RK:M,K+1:N)'*A(RK:M,K). */ + + if (k < *n) { + i__1 = *m - rk + 1; + i__2 = *n - k; + zgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[rk + (k + + 1) * a_dim1], lda, &a[rk + k * a_dim1], &c__1, &c_b1, &f[ + k + 1 + k * f_dim1], &c__1); + } + +/* Padding F(1:K,K) with zeros. */ + + i__1 = k; + for (j = 1; j <= i__1; ++j) { + i__2 = j + k * f_dim1; + f[i__2].r = 0., f[i__2].i = 0.; +/* L40: */ + } + +/* Incremental updating of F: */ +/* F(1:N,K) := F(1:N,K) - tau(K)*F(1:N,1:K-1)*A(RK:M,1:K-1)' */ +/* *A(RK:M,K). */ + + if (k > 1) { + i__1 = *m - rk + 1; + i__2 = k - 1; + i__3 = k; + z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; + zgemv_("Conjugate transpose", &i__1, &i__2, &z__1, &a[rk + a_dim1] +, lda, &a[rk + k * a_dim1], &c__1, &c_b1, &auxv[1], &c__1); + + i__1 = k - 1; + zgemv_("No transpose", n, &i__1, &c_b2, &f[f_dim1 + 1], ldf, & + auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1); + } + +/* Update the current row of A: */ +/* A(RK,K+1:N) := A(RK,K+1:N) - A(RK,1:K)*F(K+1:N,1:K)'. */ + + if (k < *n) { + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, & + z__1, &a[rk + a_dim1], lda, &f[k + 1 + f_dim1], ldf, & + c_b2, &a[rk + (k + 1) * a_dim1], lda); + } + +/* Update partial column norms. */ + + if (rk < lastrk) { + i__1 = *n; + for (j = k + 1; j <= i__1; ++j) { + if (vn1[j] != 0.) { + +/* NOTE: The following 4 lines follow from the analysis in */ +/* Lapack Working Note 176. */ + + temp = z_abs(&a[rk + j * a_dim1]) / vn1[j]; +/* Computing MAX */ + d__1 = 0., d__2 = (temp + 1.) * (1. - temp); + temp = max(d__1,d__2); +/* Computing 2nd power */ + d__1 = vn1[j] / vn2[j]; + temp2 = temp * (d__1 * d__1); + if (temp2 <= tol3z) { + vn2[j] = (doublereal) lsticc; + lsticc = j; + } else { + vn1[j] *= sqrt(temp); + } + } +/* L50: */ + } + } + + i__1 = rk + k * a_dim1; + a[i__1].r = akk.r, a[i__1].i = akk.i; + +/* End of while loop. */ + + goto L10; + } + *kb = k; + rk = *offset + *kb; + +/* Apply the block reflector to the rest of the matrix: */ +/* A(OFFSET+KB+1:M,KB+1:N) := A(OFFSET+KB+1:M,KB+1:N) - */ +/* A(OFFSET+KB+1:M,1:KB)*F(KB+1:N,1:KB)'. */ + +/* Computing MIN */ + i__1 = *n, i__2 = *m - *offset; + if (*kb < min(i__1,i__2)) { + i__1 = *m - rk; + i__2 = *n - *kb; + z__1.r = -1., z__1.i = -0.; + zgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &z__1, + &a[rk + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2, & + a[rk + 1 + (*kb + 1) * a_dim1], lda); + } + +/* Recomputation of difficult columns. */ + +L60: + if (lsticc > 0) { + itemp = i_dnnt(&vn2[lsticc]); + i__1 = *m - rk; + vn1[lsticc] = dznrm2_(&i__1, &a[rk + 1 + lsticc * a_dim1], &c__1); + +/* NOTE: The computation of VN1( LSTICC ) relies on the fact that */ +/* SNRM2 does not fail on vectors with norm below the value of */ +/* SQRT(DLAMCH('S')) */ + + vn2[lsticc] = vn1[lsticc]; + lsticc = itemp; + goto L60; + } + + return 0; + +/* End of ZLAQPS */ + +} /* zlaqps_ */ |