diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlanht.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlanht.c')
-rw-r--r-- | contrib/libs/clapack/zlanht.c | 167 |
1 files changed, 167 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlanht.c b/contrib/libs/clapack/zlanht.c new file mode 100644 index 0000000000..6eac013402 --- /dev/null +++ b/contrib/libs/clapack/zlanht.c @@ -0,0 +1,167 @@ +/* zlanht.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +doublereal zlanht_(char *norm, integer *n, doublereal *d__, doublecomplex *e) +{ + /* System generated locals */ + integer i__1; + doublereal ret_val, d__1, d__2, d__3; + + /* Builtin functions */ + double z_abs(doublecomplex *), sqrt(doublereal); + + /* Local variables */ + integer i__; + doublereal sum, scale; + extern logical lsame_(char *, char *); + doublereal anorm; + extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, + doublereal *, doublereal *), zlassq_(integer *, doublecomplex *, + integer *, doublereal *, doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLANHT returns the value of the one norm, or the Frobenius norm, or */ +/* the infinity norm, or the element of largest absolute value of a */ +/* complex Hermitian tridiagonal matrix A. */ + +/* Description */ +/* =========== */ + +/* ZLANHT returns the value */ + +/* ZLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ +/* ( */ +/* ( norm1(A), NORM = '1', 'O' or 'o' */ +/* ( */ +/* ( normI(A), NORM = 'I' or 'i' */ +/* ( */ +/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ + +/* where norm1 denotes the one norm of a matrix (maximum column sum), */ +/* normI denotes the infinity norm of a matrix (maximum row sum) and */ +/* normF denotes the Frobenius norm of a matrix (square root of sum of */ +/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ + +/* Arguments */ +/* ========= */ + +/* NORM (input) CHARACTER*1 */ +/* Specifies the value to be returned in ZLANHT as described */ +/* above. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. When N = 0, ZLANHT is */ +/* set to zero. */ + +/* D (input) DOUBLE PRECISION array, dimension (N) */ +/* The diagonal elements of A. */ + +/* E (input) COMPLEX*16 array, dimension (N-1) */ +/* The (n-1) sub-diagonal or super-diagonal elements of A. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --e; + --d__; + + /* Function Body */ + if (*n <= 0) { + anorm = 0.; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + anorm = (d__1 = d__[*n], abs(d__1)); + i__1 = *n - 1; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)); + anorm = max(d__2,d__3); +/* Computing MAX */ + d__1 = anorm, d__2 = z_abs(&e[i__]); + anorm = max(d__1,d__2); +/* L10: */ + } + } else if (lsame_(norm, "O") || *(unsigned char *) + norm == '1' || lsame_(norm, "I")) { + +/* Find norm1(A). */ + + if (*n == 1) { + anorm = abs(d__[1]); + } else { +/* Computing MAX */ + d__2 = abs(d__[1]) + z_abs(&e[1]), d__3 = z_abs(&e[*n - 1]) + ( + d__1 = d__[*n], abs(d__1)); + anorm = max(d__2,d__3); + i__1 = *n - 1; + for (i__ = 2; i__ <= i__1; ++i__) { +/* Computing MAX */ + d__2 = anorm, d__3 = (d__1 = d__[i__], abs(d__1)) + z_abs(&e[ + i__]) + z_abs(&e[i__ - 1]); + anorm = max(d__2,d__3); +/* L20: */ + } + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + scale = 0.; + sum = 1.; + if (*n > 1) { + i__1 = *n - 1; + zlassq_(&i__1, &e[1], &c__1, &scale, &sum); + sum *= 2; + } + dlassq_(n, &d__[1], &c__1, &scale, &sum); + anorm = scale * sqrt(sum); + } + + ret_val = anorm; + return ret_val; + +/* End of ZLANHT */ + +} /* zlanht_ */ |