diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlals0.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlals0.c')
-rw-r--r-- | contrib/libs/clapack/zlals0.c | 563 |
1 files changed, 563 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlals0.c b/contrib/libs/clapack/zlals0.c new file mode 100644 index 0000000000..354ed21d14 --- /dev/null +++ b/contrib/libs/clapack/zlals0.c @@ -0,0 +1,563 @@ +/* zlals0.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublereal c_b5 = -1.; +static integer c__1 = 1; +static doublereal c_b13 = 1.; +static doublereal c_b15 = 0.; +static integer c__0 = 0; + +/* Subroutine */ int zlals0_(integer *icompq, integer *nl, integer *nr, + integer *sqre, integer *nrhs, doublecomplex *b, integer *ldb, + doublecomplex *bx, integer *ldbx, integer *perm, integer *givptr, + integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum, + doublereal *poles, doublereal *difl, doublereal *difr, doublereal * + z__, integer *k, doublereal *c__, doublereal *s, doublereal *rwork, + integer *info) +{ + /* System generated locals */ + integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1, + givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset, + bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5; + doublereal d__1; + doublecomplex z__1; + + /* Builtin functions */ + double d_imag(doublecomplex *); + + /* Local variables */ + integer i__, j, m, n; + doublereal dj; + integer nlp1, jcol; + doublereal temp; + integer jrow; + extern doublereal dnrm2_(integer *, doublereal *, integer *); + doublereal diflj, difrj, dsigj; + extern /* Subroutine */ int dgemv_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, doublereal *, integer *, + doublereal *, doublereal *, integer *), zdrot_(integer *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublereal *, doublereal *); + extern doublereal dlamc3_(doublereal *, doublereal *); + extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *), xerbla_(char *, integer *); + doublereal dsigjp; + extern /* Subroutine */ int zdscal_(integer *, doublereal *, + doublecomplex *, integer *), zlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublecomplex * +, integer *, integer *), zlacpy_(char *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLALS0 applies back the multiplying factors of either the left or the */ +/* right singular vector matrix of a diagonal matrix appended by a row */ +/* to the right hand side matrix B in solving the least squares problem */ +/* using the divide-and-conquer SVD approach. */ + +/* For the left singular vector matrix, three types of orthogonal */ +/* matrices are involved: */ + +/* (1L) Givens rotations: the number of such rotations is GIVPTR; the */ +/* pairs of columns/rows they were applied to are stored in GIVCOL; */ +/* and the C- and S-values of these rotations are stored in GIVNUM. */ + +/* (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */ +/* row, and for J=2:N, PERM(J)-th row of B is to be moved to the */ +/* J-th row. */ + +/* (3L) The left singular vector matrix of the remaining matrix. */ + +/* For the right singular vector matrix, four types of orthogonal */ +/* matrices are involved: */ + +/* (1R) The right singular vector matrix of the remaining matrix. */ + +/* (2R) If SQRE = 1, one extra Givens rotation to generate the right */ +/* null space. */ + +/* (3R) The inverse transformation of (2L). */ + +/* (4R) The inverse transformation of (1L). */ + +/* Arguments */ +/* ========= */ + +/* ICOMPQ (input) INTEGER */ +/* Specifies whether singular vectors are to be computed in */ +/* factored form: */ +/* = 0: Left singular vector matrix. */ +/* = 1: Right singular vector matrix. */ + +/* NL (input) INTEGER */ +/* The row dimension of the upper block. NL >= 1. */ + +/* NR (input) INTEGER */ +/* The row dimension of the lower block. NR >= 1. */ + +/* SQRE (input) INTEGER */ +/* = 0: the lower block is an NR-by-NR square matrix. */ +/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ + +/* The bidiagonal matrix has row dimension N = NL + NR + 1, */ +/* and column dimension M = N + SQRE. */ + +/* NRHS (input) INTEGER */ +/* The number of columns of B and BX. NRHS must be at least 1. */ + +/* B (input/output) COMPLEX*16 array, dimension ( LDB, NRHS ) */ +/* On input, B contains the right hand sides of the least */ +/* squares problem in rows 1 through M. On output, B contains */ +/* the solution X in rows 1 through N. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of B. LDB must be at least */ +/* max(1,MAX( M, N ) ). */ + +/* BX (workspace) COMPLEX*16 array, dimension ( LDBX, NRHS ) */ + +/* LDBX (input) INTEGER */ +/* The leading dimension of BX. */ + +/* PERM (input) INTEGER array, dimension ( N ) */ +/* The permutations (from deflation and sorting) applied */ +/* to the two blocks. */ + +/* GIVPTR (input) INTEGER */ +/* The number of Givens rotations which took place in this */ +/* subproblem. */ + +/* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) */ +/* Each pair of numbers indicates a pair of rows/columns */ +/* involved in a Givens rotation. */ + +/* LDGCOL (input) INTEGER */ +/* The leading dimension of GIVCOL, must be at least N. */ + +/* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */ +/* Each number indicates the C or S value used in the */ +/* corresponding Givens rotation. */ + +/* LDGNUM (input) INTEGER */ +/* The leading dimension of arrays DIFR, POLES and */ +/* GIVNUM, must be at least K. */ + +/* POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */ +/* On entry, POLES(1:K, 1) contains the new singular */ +/* values obtained from solving the secular equation, and */ +/* POLES(1:K, 2) is an array containing the poles in the secular */ +/* equation. */ + +/* DIFL (input) DOUBLE PRECISION array, dimension ( K ). */ +/* On entry, DIFL(I) is the distance between I-th updated */ +/* (undeflated) singular value and the I-th (undeflated) old */ +/* singular value. */ + +/* DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */ +/* On entry, DIFR(I, 1) contains the distances between I-th */ +/* updated (undeflated) singular value and the I+1-th */ +/* (undeflated) old singular value. And DIFR(I, 2) is the */ +/* normalizing factor for the I-th right singular vector. */ + +/* Z (input) DOUBLE PRECISION array, dimension ( K ) */ +/* Contain the components of the deflation-adjusted updating row */ +/* vector. */ + +/* K (input) INTEGER */ +/* Contains the dimension of the non-deflated matrix, */ +/* This is the order of the related secular equation. 1 <= K <=N. */ + +/* C (input) DOUBLE PRECISION */ +/* C contains garbage if SQRE =0 and the C-value of a Givens */ +/* rotation related to the right null space if SQRE = 1. */ + +/* S (input) DOUBLE PRECISION */ +/* S contains garbage if SQRE =0 and the S-value of a Givens */ +/* rotation related to the right null space if SQRE = 1. */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension */ +/* ( K*(1+NRHS) + 2*NRHS ) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */ +/* California at Berkeley, USA */ +/* Osni Marques, LBNL/NERSC, USA */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + bx_dim1 = *ldbx; + bx_offset = 1 + bx_dim1; + bx -= bx_offset; + --perm; + givcol_dim1 = *ldgcol; + givcol_offset = 1 + givcol_dim1; + givcol -= givcol_offset; + difr_dim1 = *ldgnum; + difr_offset = 1 + difr_dim1; + difr -= difr_offset; + poles_dim1 = *ldgnum; + poles_offset = 1 + poles_dim1; + poles -= poles_offset; + givnum_dim1 = *ldgnum; + givnum_offset = 1 + givnum_dim1; + givnum -= givnum_offset; + --difl; + --z__; + --rwork; + + /* Function Body */ + *info = 0; + + if (*icompq < 0 || *icompq > 1) { + *info = -1; + } else if (*nl < 1) { + *info = -2; + } else if (*nr < 1) { + *info = -3; + } else if (*sqre < 0 || *sqre > 1) { + *info = -4; + } + + n = *nl + *nr + 1; + + if (*nrhs < 1) { + *info = -5; + } else if (*ldb < n) { + *info = -7; + } else if (*ldbx < n) { + *info = -9; + } else if (*givptr < 0) { + *info = -11; + } else if (*ldgcol < n) { + *info = -13; + } else if (*ldgnum < n) { + *info = -15; + } else if (*k < 1) { + *info = -20; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZLALS0", &i__1); + return 0; + } + + m = n + *sqre; + nlp1 = *nl + 1; + + if (*icompq == 0) { + +/* Apply back orthogonal transformations from the left. */ + +/* Step (1L): apply back the Givens rotations performed. */ + + i__1 = *givptr; + for (i__ = 1; i__ <= i__1; ++i__) { + zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, & + b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + + (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]); +/* L10: */ + } + +/* Step (2L): permute rows of B. */ + + zcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx); + i__1 = n; + for (i__ = 2; i__ <= i__1; ++i__) { + zcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1], + ldbx); +/* L20: */ + } + +/* Step (3L): apply the inverse of the left singular vector */ +/* matrix to BX. */ + + if (*k == 1) { + zcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb); + if (z__[1] < 0.) { + zdscal_(nrhs, &c_b5, &b[b_offset], ldb); + } + } else { + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + diflj = difl[j]; + dj = poles[j + poles_dim1]; + dsigj = -poles[j + (poles_dim1 << 1)]; + if (j < *k) { + difrj = -difr[j + difr_dim1]; + dsigjp = -poles[j + 1 + (poles_dim1 << 1)]; + } + if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) { + rwork[j] = 0.; + } else { + rwork[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj + / (poles[j + (poles_dim1 << 1)] + dj); + } + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == + 0.) { + rwork[i__] = 0.; + } else { + rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] + / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], & + dsigj) - diflj) / (poles[i__ + (poles_dim1 << + 1)] + dj); + } +/* L30: */ + } + i__2 = *k; + for (i__ = j + 1; i__ <= i__2; ++i__) { + if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == + 0.) { + rwork[i__] = 0.; + } else { + rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__] + / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], & + dsigjp) + difrj) / (poles[i__ + (poles_dim1 << + 1)] + dj); + } +/* L40: */ + } + rwork[1] = -1.; + temp = dnrm2_(k, &rwork[1], &c__1); + +/* Since B and BX are complex, the following call to DGEMV */ +/* is performed in two steps (real and imaginary parts). */ + +/* CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, */ +/* $ B( J, 1 ), LDB ) */ + + i__ = *k + (*nrhs << 1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = *k; + for (jrow = 1; jrow <= i__3; ++jrow) { + ++i__; + i__4 = jrow + jcol * bx_dim1; + rwork[i__] = bx[i__4].r; +/* L50: */ + } +/* L60: */ + } + dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k, + &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1); + i__ = *k + (*nrhs << 1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = *k; + for (jrow = 1; jrow <= i__3; ++jrow) { + ++i__; + rwork[i__] = d_imag(&bx[jrow + jcol * bx_dim1]); +/* L70: */ + } +/* L80: */ + } + dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k, + &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], & + c__1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = j + jcol * b_dim1; + i__4 = jcol + *k; + i__5 = jcol + *k + *nrhs; + z__1.r = rwork[i__4], z__1.i = rwork[i__5]; + b[i__3].r = z__1.r, b[i__3].i = z__1.i; +/* L90: */ + } + zlascl_("G", &c__0, &c__0, &temp, &c_b13, &c__1, nrhs, &b[j + + b_dim1], ldb, info); +/* L100: */ + } + } + +/* Move the deflated rows of BX to B also. */ + + if (*k < max(m,n)) { + i__1 = n - *k; + zlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1 + + b_dim1], ldb); + } + } else { + +/* Apply back the right orthogonal transformations. */ + +/* Step (1R): apply back the new right singular vector matrix */ +/* to B. */ + + if (*k == 1) { + zcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx); + } else { + i__1 = *k; + for (j = 1; j <= i__1; ++j) { + dsigj = poles[j + (poles_dim1 << 1)]; + if (z__[j] == 0.) { + rwork[j] = 0.; + } else { + rwork[j] = -z__[j] / difl[j] / (dsigj + poles[j + + poles_dim1]) / difr[j + (difr_dim1 << 1)]; + } + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + if (z__[j] == 0.) { + rwork[i__] = 0.; + } else { + d__1 = -poles[i__ + 1 + (poles_dim1 << 1)]; + rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[ + i__ + difr_dim1]) / (dsigj + poles[i__ + + poles_dim1]) / difr[i__ + (difr_dim1 << 1)]; + } +/* L110: */ + } + i__2 = *k; + for (i__ = j + 1; i__ <= i__2; ++i__) { + if (z__[j] == 0.) { + rwork[i__] = 0.; + } else { + d__1 = -poles[i__ + (poles_dim1 << 1)]; + rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[ + i__]) / (dsigj + poles[i__ + poles_dim1]) / + difr[i__ + (difr_dim1 << 1)]; + } +/* L120: */ + } + +/* Since B and BX are complex, the following call to DGEMV */ +/* is performed in two steps (real and imaginary parts). */ + +/* CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, */ +/* $ BX( J, 1 ), LDBX ) */ + + i__ = *k + (*nrhs << 1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = *k; + for (jrow = 1; jrow <= i__3; ++jrow) { + ++i__; + i__4 = jrow + jcol * b_dim1; + rwork[i__] = b[i__4].r; +/* L130: */ + } +/* L140: */ + } + dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k, + &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1); + i__ = *k + (*nrhs << 1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = *k; + for (jrow = 1; jrow <= i__3; ++jrow) { + ++i__; + rwork[i__] = d_imag(&b[jrow + jcol * b_dim1]); +/* L150: */ + } +/* L160: */ + } + dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k, + &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], & + c__1); + i__2 = *nrhs; + for (jcol = 1; jcol <= i__2; ++jcol) { + i__3 = j + jcol * bx_dim1; + i__4 = jcol + *k; + i__5 = jcol + *k + *nrhs; + z__1.r = rwork[i__4], z__1.i = rwork[i__5]; + bx[i__3].r = z__1.r, bx[i__3].i = z__1.i; +/* L170: */ + } +/* L180: */ + } + } + +/* Step (2R): if SQRE = 1, apply back the rotation that is */ +/* related to the right null space of the subproblem. */ + + if (*sqre == 1) { + zcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx); + zdrot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__, + s); + } + if (*k < max(m,n)) { + i__1 = n - *k; + zlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 + + bx_dim1], ldbx); + } + +/* Step (3R): permute rows of B. */ + + zcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb); + if (*sqre == 1) { + zcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb); + } + i__1 = n; + for (i__ = 2; i__ <= i__1; ++i__) { + zcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1], + ldb); +/* L190: */ + } + +/* Step (4R): apply back the Givens rotations performed. */ + + for (i__ = *givptr; i__ >= 1; --i__) { + d__1 = -givnum[i__ + givnum_dim1]; + zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, & + b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + + (givnum_dim1 << 1)], &d__1); +/* L200: */ + } + } + + return 0; + +/* End of ZLALS0 */ + +} /* zlals0_ */ |