diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zlahef.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zlahef.c')
-rw-r--r-- | contrib/libs/clapack/zlahef.c | 938 |
1 files changed, 938 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zlahef.c b/contrib/libs/clapack/zlahef.c new file mode 100644 index 0000000000..048db906be --- /dev/null +++ b/contrib/libs/clapack/zlahef.c @@ -0,0 +1,938 @@ +/* zlahef.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zlahef_(char *uplo, integer *n, integer *nb, integer *kb, + doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *w, + integer *ldw, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5; + doublereal d__1, d__2, d__3, d__4; + doublecomplex z__1, z__2, z__3, z__4; + + /* Builtin functions */ + double sqrt(doublereal), d_imag(doublecomplex *); + void d_cnjg(doublecomplex *, doublecomplex *), z_div(doublecomplex *, + doublecomplex *, doublecomplex *); + + /* Local variables */ + integer j, k; + doublereal t, r1; + doublecomplex d11, d21, d22; + integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax; + doublereal alpha; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *, + integer *, doublecomplex *, doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *); + integer kstep; + extern /* Subroutine */ int zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *), + zcopy_(integer *, doublecomplex *, integer *, doublecomplex *, + integer *), zswap_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *); + doublereal absakk; + extern /* Subroutine */ int zdscal_(integer *, doublereal *, + doublecomplex *, integer *); + doublereal colmax; + extern /* Subroutine */ int zlacgv_(integer *, doublecomplex *, integer *) + ; + extern integer izamax_(integer *, doublecomplex *, integer *); + doublereal rowmax; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZLAHEF computes a partial factorization of a complex Hermitian */ +/* matrix A using the Bunch-Kaufman diagonal pivoting method. The */ +/* partial factorization has the form: */ + +/* A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */ +/* ( 0 U22 ) ( 0 D ) ( U12' U22' ) */ + +/* A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L' */ +/* ( L21 I ) ( 0 A22 ) ( 0 I ) */ + +/* where the order of D is at most NB. The actual order is returned in */ +/* the argument KB, and is either NB or NB-1, or N if N <= NB. */ +/* Note that U' denotes the conjugate transpose of U. */ + +/* ZLAHEF is an auxiliary routine called by ZHETRF. It uses blocked code */ +/* (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */ +/* A22 (if UPLO = 'L'). */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the upper or lower triangular part of the */ +/* Hermitian matrix A is stored: */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NB (input) INTEGER */ +/* The maximum number of columns of the matrix A that should be */ +/* factored. NB should be at least 2 to allow for 2-by-2 pivot */ +/* blocks. */ + +/* KB (output) INTEGER */ +/* The number of columns of A that were actually factored. */ +/* KB is either NB-1 or NB, or N if N <= NB. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ +/* n-by-n upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading n-by-n lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ +/* On exit, A contains details of the partial factorization. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* IPIV (output) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D. */ +/* If UPLO = 'U', only the last KB elements of IPIV are set; */ +/* if UPLO = 'L', only the first KB elements are set. */ + +/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ +/* interchanged and D(k,k) is a 1-by-1 diagonal block. */ +/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ +/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ +/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ +/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ +/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ + +/* W (workspace) COMPLEX*16 array, dimension (LDW,NB) */ + +/* LDW (input) INTEGER */ +/* The leading dimension of the array W. LDW >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */ +/* has been completed, but the block diagonal matrix D is */ +/* exactly singular. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + w_dim1 = *ldw; + w_offset = 1 + w_dim1; + w -= w_offset; + + /* Function Body */ + *info = 0; + +/* Initialize ALPHA for use in choosing pivot block size. */ + + alpha = (sqrt(17.) + 1.) / 8.; + + if (lsame_(uplo, "U")) { + +/* Factorize the trailing columns of A using the upper triangle */ +/* of A and working backwards, and compute the matrix W = U12*D */ +/* for use in updating A11 (note that conjg(W) is actually stored) */ + +/* K is the main loop index, decreasing from N in steps of 1 or 2 */ + +/* KW is the column of W which corresponds to column K of A */ + + k = *n; +L10: + kw = *nb + k - *n; + +/* Exit from loop */ + + if (k <= *n - *nb + 1 && *nb < *n || k < 1) { + goto L30; + } + +/* Copy column K of A to column KW of W and update it */ + + i__1 = k - 1; + zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1); + i__1 = k + kw * w_dim1; + i__2 = k + k * a_dim1; + d__1 = a[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + if (k < *n) { + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * a_dim1 + 1], + lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b1, &w[kw * + w_dim1 + 1], &c__1); + i__1 = k + kw * w_dim1; + i__2 = k + kw * w_dim1; + d__1 = w[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + } + + kstep = 1; + +/* Determine rows and columns to be interchanged and whether */ +/* a 1-by-1 or 2-by-2 pivot block will be used */ + + i__1 = k + kw * w_dim1; + absakk = (d__1 = w[i__1].r, abs(d__1)); + +/* IMAX is the row-index of the largest off-diagonal element in */ +/* column K, and COLMAX is its absolute value */ + + if (k > 1) { + i__1 = k - 1; + imax = izamax_(&i__1, &w[kw * w_dim1 + 1], &c__1); + i__1 = imax + kw * w_dim1; + colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax + + kw * w_dim1]), abs(d__2)); + } else { + colmax = 0.; + } + + if (max(absakk,colmax) == 0.) { + +/* Column K is zero: set INFO and continue */ + + if (*info == 0) { + *info = k; + } + kp = k; + i__1 = k + k * a_dim1; + i__2 = k + k * a_dim1; + d__1 = a[i__2].r; + a[i__1].r = d__1, a[i__1].i = 0.; + } else { + if (absakk >= alpha * colmax) { + +/* no interchange, use 1-by-1 pivot block */ + + kp = k; + } else { + +/* Copy column IMAX to column KW-1 of W and update it */ + + i__1 = imax - 1; + zcopy_(&i__1, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * + w_dim1 + 1], &c__1); + i__1 = imax + (kw - 1) * w_dim1; + i__2 = imax + imax * a_dim1; + d__1 = a[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + i__1 = k - imax; + zcopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + + 1 + (kw - 1) * w_dim1], &c__1); + i__1 = k - imax; + zlacgv_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], &c__1); + if (k < *n) { + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &k, &i__1, &z__1, &a[(k + 1) * + a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], + ldw, &c_b1, &w[(kw - 1) * w_dim1 + 1], &c__1); + i__1 = imax + (kw - 1) * w_dim1; + i__2 = imax + (kw - 1) * w_dim1; + d__1 = w[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + } + +/* JMAX is the column-index of the largest off-diagonal */ +/* element in row IMAX, and ROWMAX is its absolute value */ + + i__1 = k - imax; + jmax = imax + izamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1], + &c__1); + i__1 = jmax + (kw - 1) * w_dim1; + rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[ + jmax + (kw - 1) * w_dim1]), abs(d__2)); + if (imax > 1) { + i__1 = imax - 1; + jmax = izamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1); +/* Computing MAX */ + i__1 = jmax + (kw - 1) * w_dim1; + d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + ( + d__2 = d_imag(&w[jmax + (kw - 1) * w_dim1]), abs( + d__2)); + rowmax = max(d__3,d__4); + } + + if (absakk >= alpha * colmax * (colmax / rowmax)) { + +/* no interchange, use 1-by-1 pivot block */ + + kp = k; + } else /* if(complicated condition) */ { + i__1 = imax + (kw - 1) * w_dim1; + if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) { + +/* interchange rows and columns K and IMAX, use 1-by-1 */ +/* pivot block */ + + kp = imax; + +/* copy column KW-1 of W to column KW */ + + zcopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * + w_dim1 + 1], &c__1); + } else { + +/* interchange rows and columns K-1 and IMAX, use 2-by-2 */ +/* pivot block */ + + kp = imax; + kstep = 2; + } + } + } + + kk = k - kstep + 1; + kkw = *nb + kk - *n; + +/* Updated column KP is already stored in column KKW of W */ + + if (kp != kk) { + +/* Copy non-updated column KK to column KP */ + + i__1 = kp + kp * a_dim1; + i__2 = kk + kk * a_dim1; + d__1 = a[i__2].r; + a[i__1].r = d__1, a[i__1].i = 0.; + i__1 = kk - 1 - kp; + zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + + 1) * a_dim1], lda); + i__1 = kk - 1 - kp; + zlacgv_(&i__1, &a[kp + (kp + 1) * a_dim1], lda); + i__1 = kp - 1; + zcopy_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], + &c__1); + +/* Interchange rows KK and KP in last KK columns of A and W */ + + if (kk < *n) { + i__1 = *n - kk; + zswap_(&i__1, &a[kk + (kk + 1) * a_dim1], lda, &a[kp + ( + kk + 1) * a_dim1], lda); + } + i__1 = *n - kk + 1; + zswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * + w_dim1], ldw); + } + + if (kstep == 1) { + +/* 1-by-1 pivot block D(k): column KW of W now holds */ + +/* W(k) = U(k)*D(k) */ + +/* where U(k) is the k-th column of U */ + +/* Store U(k) in column k of A */ + + zcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], & + c__1); + i__1 = k + k * a_dim1; + r1 = 1. / a[i__1].r; + i__1 = k - 1; + zdscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1); + +/* Conjugate W(k) */ + + i__1 = k - 1; + zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1); + } else { + +/* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */ +/* hold */ + +/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */ + +/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */ +/* of U */ + + if (k > 2) { + +/* Store U(k) and U(k-1) in columns k and k-1 of A */ + + i__1 = k - 1 + kw * w_dim1; + d21.r = w[i__1].r, d21.i = w[i__1].i; + d_cnjg(&z__2, &d21); + z_div(&z__1, &w[k + kw * w_dim1], &z__2); + d11.r = z__1.r, d11.i = z__1.i; + z_div(&z__1, &w[k - 1 + (kw - 1) * w_dim1], &d21); + d22.r = z__1.r, d22.i = z__1.i; + z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r * + d22.i + d11.i * d22.r; + t = 1. / (z__1.r - 1.); + z__2.r = t, z__2.i = 0.; + z_div(&z__1, &z__2, &d21); + d21.r = z__1.r, d21.i = z__1.i; + i__1 = k - 2; + for (j = 1; j <= i__1; ++j) { + i__2 = j + (k - 1) * a_dim1; + i__3 = j + (kw - 1) * w_dim1; + z__3.r = d11.r * w[i__3].r - d11.i * w[i__3].i, + z__3.i = d11.r * w[i__3].i + d11.i * w[i__3] + .r; + i__4 = j + kw * w_dim1; + z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4] + .i; + z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = + d21.r * z__2.i + d21.i * z__2.r; + a[i__2].r = z__1.r, a[i__2].i = z__1.i; + i__2 = j + k * a_dim1; + d_cnjg(&z__2, &d21); + i__3 = j + kw * w_dim1; + z__4.r = d22.r * w[i__3].r - d22.i * w[i__3].i, + z__4.i = d22.r * w[i__3].i + d22.i * w[i__3] + .r; + i__4 = j + (kw - 1) * w_dim1; + z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4] + .i; + z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = + z__2.r * z__3.i + z__2.i * z__3.r; + a[i__2].r = z__1.r, a[i__2].i = z__1.i; +/* L20: */ + } + } + +/* Copy D(k) to A */ + + i__1 = k - 1 + (k - 1) * a_dim1; + i__2 = k - 1 + (kw - 1) * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + i__1 = k - 1 + k * a_dim1; + i__2 = k - 1 + kw * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + i__1 = k + k * a_dim1; + i__2 = k + kw * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + +/* Conjugate W(k) and W(k-1) */ + + i__1 = k - 1; + zlacgv_(&i__1, &w[kw * w_dim1 + 1], &c__1); + i__1 = k - 2; + zlacgv_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1); + } + } + +/* Store details of the interchanges in IPIV */ + + if (kstep == 1) { + ipiv[k] = kp; + } else { + ipiv[k] = -kp; + ipiv[k - 1] = -kp; + } + +/* Decrease K and return to the start of the main loop */ + + k -= kstep; + goto L10; + +L30: + +/* Update the upper triangle of A11 (= A(1:k,1:k)) as */ + +/* A11 := A11 - U12*D*U12' = A11 - U12*W' */ + +/* computing blocks of NB columns at a time (note that conjg(W) is */ +/* actually stored) */ + + i__1 = -(*nb); + for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += + i__1) { +/* Computing MIN */ + i__2 = *nb, i__3 = k - j + 1; + jb = min(i__2,i__3); + +/* Update the upper triangle of the diagonal block */ + + i__2 = j + jb - 1; + for (jj = j; jj <= i__2; ++jj) { + i__3 = jj + jj * a_dim1; + i__4 = jj + jj * a_dim1; + d__1 = a[i__4].r; + a[i__3].r = d__1, a[i__3].i = 0.; + i__3 = jj - j + 1; + i__4 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__3, &i__4, &z__1, &a[j + (k + 1) * + a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b1, + &a[j + jj * a_dim1], &c__1); + i__3 = jj + jj * a_dim1; + i__4 = jj + jj * a_dim1; + d__1 = a[i__4].r; + a[i__3].r = d__1, a[i__3].i = 0.; +/* L40: */ + } + +/* Update the rectangular superdiagonal block */ + + i__2 = j - 1; + i__3 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &z__1, &a[( + k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * w_dim1], ldw, + &c_b1, &a[j * a_dim1 + 1], lda); +/* L50: */ + } + +/* Put U12 in standard form by partially undoing the interchanges */ +/* in columns k+1:n */ + + j = k + 1; +L60: + jj = j; + jp = ipiv[j]; + if (jp < 0) { + jp = -jp; + ++j; + } + ++j; + if (jp != jj && j <= *n) { + i__1 = *n - j + 1; + zswap_(&i__1, &a[jp + j * a_dim1], lda, &a[jj + j * a_dim1], lda); + } + if (j <= *n) { + goto L60; + } + +/* Set KB to the number of columns factorized */ + + *kb = *n - k; + + } else { + +/* Factorize the leading columns of A using the lower triangle */ +/* of A and working forwards, and compute the matrix W = L21*D */ +/* for use in updating A22 (note that conjg(W) is actually stored) */ + +/* K is the main loop index, increasing from 1 in steps of 1 or 2 */ + + k = 1; +L70: + +/* Exit from loop */ + + if (k >= *nb && *nb < *n || k > *n) { + goto L90; + } + +/* Copy column K of A to column K of W and update it */ + + i__1 = k + k * w_dim1; + i__2 = k + k * a_dim1; + d__1 = a[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + if (k < *n) { + i__1 = *n - k; + zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &w[k + 1 + k * + w_dim1], &c__1); + } + i__1 = *n - k + 1; + i__2 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], lda, &w[k + + w_dim1], ldw, &c_b1, &w[k + k * w_dim1], &c__1); + i__1 = k + k * w_dim1; + i__2 = k + k * w_dim1; + d__1 = w[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + + kstep = 1; + +/* Determine rows and columns to be interchanged and whether */ +/* a 1-by-1 or 2-by-2 pivot block will be used */ + + i__1 = k + k * w_dim1; + absakk = (d__1 = w[i__1].r, abs(d__1)); + +/* IMAX is the row-index of the largest off-diagonal element in */ +/* column K, and COLMAX is its absolute value */ + + if (k < *n) { + i__1 = *n - k; + imax = k + izamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1); + i__1 = imax + k * w_dim1; + colmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[imax + + k * w_dim1]), abs(d__2)); + } else { + colmax = 0.; + } + + if (max(absakk,colmax) == 0.) { + +/* Column K is zero: set INFO and continue */ + + if (*info == 0) { + *info = k; + } + kp = k; + i__1 = k + k * a_dim1; + i__2 = k + k * a_dim1; + d__1 = a[i__2].r; + a[i__1].r = d__1, a[i__1].i = 0.; + } else { + if (absakk >= alpha * colmax) { + +/* no interchange, use 1-by-1 pivot block */ + + kp = k; + } else { + +/* Copy column IMAX to column K+1 of W and update it */ + + i__1 = imax - k; + zcopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * + w_dim1], &c__1); + i__1 = imax - k; + zlacgv_(&i__1, &w[k + (k + 1) * w_dim1], &c__1); + i__1 = imax + (k + 1) * w_dim1; + i__2 = imax + imax * a_dim1; + d__1 = a[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + if (imax < *n) { + i__1 = *n - imax; + zcopy_(&i__1, &a[imax + 1 + imax * a_dim1], &c__1, &w[ + imax + 1 + (k + 1) * w_dim1], &c__1); + } + i__1 = *n - k + 1; + i__2 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__1, &i__2, &z__1, &a[k + a_dim1], + lda, &w[imax + w_dim1], ldw, &c_b1, &w[k + (k + 1) * + w_dim1], &c__1); + i__1 = imax + (k + 1) * w_dim1; + i__2 = imax + (k + 1) * w_dim1; + d__1 = w[i__2].r; + w[i__1].r = d__1, w[i__1].i = 0.; + +/* JMAX is the column-index of the largest off-diagonal */ +/* element in row IMAX, and ROWMAX is its absolute value */ + + i__1 = imax - k; + jmax = k - 1 + izamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1) + ; + i__1 = jmax + (k + 1) * w_dim1; + rowmax = (d__1 = w[i__1].r, abs(d__1)) + (d__2 = d_imag(&w[ + jmax + (k + 1) * w_dim1]), abs(d__2)); + if (imax < *n) { + i__1 = *n - imax; + jmax = imax + izamax_(&i__1, &w[imax + 1 + (k + 1) * + w_dim1], &c__1); +/* Computing MAX */ + i__1 = jmax + (k + 1) * w_dim1; + d__3 = rowmax, d__4 = (d__1 = w[i__1].r, abs(d__1)) + ( + d__2 = d_imag(&w[jmax + (k + 1) * w_dim1]), abs( + d__2)); + rowmax = max(d__3,d__4); + } + + if (absakk >= alpha * colmax * (colmax / rowmax)) { + +/* no interchange, use 1-by-1 pivot block */ + + kp = k; + } else /* if(complicated condition) */ { + i__1 = imax + (k + 1) * w_dim1; + if ((d__1 = w[i__1].r, abs(d__1)) >= alpha * rowmax) { + +/* interchange rows and columns K and IMAX, use 1-by-1 */ +/* pivot block */ + + kp = imax; + +/* copy column K+1 of W to column K */ + + i__1 = *n - k + 1; + zcopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + + k * w_dim1], &c__1); + } else { + +/* interchange rows and columns K+1 and IMAX, use 2-by-2 */ +/* pivot block */ + + kp = imax; + kstep = 2; + } + } + } + + kk = k + kstep - 1; + +/* Updated column KP is already stored in column KK of W */ + + if (kp != kk) { + +/* Copy non-updated column KK to column KP */ + + i__1 = kp + kp * a_dim1; + i__2 = kk + kk * a_dim1; + d__1 = a[i__2].r; + a[i__1].r = d__1, a[i__1].i = 0.; + i__1 = kp - kk - 1; + zcopy_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + + 1) * a_dim1], lda); + i__1 = kp - kk - 1; + zlacgv_(&i__1, &a[kp + (kk + 1) * a_dim1], lda); + if (kp < *n) { + i__1 = *n - kp; + zcopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 + + kp * a_dim1], &c__1); + } + +/* Interchange rows KK and KP in first KK columns of A and W */ + + i__1 = kk - 1; + zswap_(&i__1, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda); + zswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw); + } + + if (kstep == 1) { + +/* 1-by-1 pivot block D(k): column k of W now holds */ + +/* W(k) = L(k)*D(k) */ + +/* where L(k) is the k-th column of L */ + +/* Store L(k) in column k of A */ + + i__1 = *n - k + 1; + zcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], & + c__1); + if (k < *n) { + i__1 = k + k * a_dim1; + r1 = 1. / a[i__1].r; + i__1 = *n - k; + zdscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1); + +/* Conjugate W(k) */ + + i__1 = *n - k; + zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1); + } + } else { + +/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */ + +/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */ + +/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */ +/* of L */ + + if (k < *n - 1) { + +/* Store L(k) and L(k+1) in columns k and k+1 of A */ + + i__1 = k + 1 + k * w_dim1; + d21.r = w[i__1].r, d21.i = w[i__1].i; + z_div(&z__1, &w[k + 1 + (k + 1) * w_dim1], &d21); + d11.r = z__1.r, d11.i = z__1.i; + d_cnjg(&z__2, &d21); + z_div(&z__1, &w[k + k * w_dim1], &z__2); + d22.r = z__1.r, d22.i = z__1.i; + z__1.r = d11.r * d22.r - d11.i * d22.i, z__1.i = d11.r * + d22.i + d11.i * d22.r; + t = 1. / (z__1.r - 1.); + z__2.r = t, z__2.i = 0.; + z_div(&z__1, &z__2, &d21); + d21.r = z__1.r, d21.i = z__1.i; + i__1 = *n; + for (j = k + 2; j <= i__1; ++j) { + i__2 = j + k * a_dim1; + d_cnjg(&z__2, &d21); + i__3 = j + k * w_dim1; + z__4.r = d11.r * w[i__3].r - d11.i * w[i__3].i, + z__4.i = d11.r * w[i__3].i + d11.i * w[i__3] + .r; + i__4 = j + (k + 1) * w_dim1; + z__3.r = z__4.r - w[i__4].r, z__3.i = z__4.i - w[i__4] + .i; + z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = + z__2.r * z__3.i + z__2.i * z__3.r; + a[i__2].r = z__1.r, a[i__2].i = z__1.i; + i__2 = j + (k + 1) * a_dim1; + i__3 = j + (k + 1) * w_dim1; + z__3.r = d22.r * w[i__3].r - d22.i * w[i__3].i, + z__3.i = d22.r * w[i__3].i + d22.i * w[i__3] + .r; + i__4 = j + k * w_dim1; + z__2.r = z__3.r - w[i__4].r, z__2.i = z__3.i - w[i__4] + .i; + z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = + d21.r * z__2.i + d21.i * z__2.r; + a[i__2].r = z__1.r, a[i__2].i = z__1.i; +/* L80: */ + } + } + +/* Copy D(k) to A */ + + i__1 = k + k * a_dim1; + i__2 = k + k * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + i__1 = k + 1 + k * a_dim1; + i__2 = k + 1 + k * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + i__1 = k + 1 + (k + 1) * a_dim1; + i__2 = k + 1 + (k + 1) * w_dim1; + a[i__1].r = w[i__2].r, a[i__1].i = w[i__2].i; + +/* Conjugate W(k) and W(k+1) */ + + i__1 = *n - k; + zlacgv_(&i__1, &w[k + 1 + k * w_dim1], &c__1); + i__1 = *n - k - 1; + zlacgv_(&i__1, &w[k + 2 + (k + 1) * w_dim1], &c__1); + } + } + +/* Store details of the interchanges in IPIV */ + + if (kstep == 1) { + ipiv[k] = kp; + } else { + ipiv[k] = -kp; + ipiv[k + 1] = -kp; + } + +/* Increase K and return to the start of the main loop */ + + k += kstep; + goto L70; + +L90: + +/* Update the lower triangle of A22 (= A(k:n,k:n)) as */ + +/* A22 := A22 - L21*D*L21' = A22 - L21*W' */ + +/* computing blocks of NB columns at a time (note that conjg(W) is */ +/* actually stored) */ + + i__1 = *n; + i__2 = *nb; + for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) { +/* Computing MIN */ + i__3 = *nb, i__4 = *n - j + 1; + jb = min(i__3,i__4); + +/* Update the lower triangle of the diagonal block */ + + i__3 = j + jb - 1; + for (jj = j; jj <= i__3; ++jj) { + i__4 = jj + jj * a_dim1; + i__5 = jj + jj * a_dim1; + d__1 = a[i__5].r; + a[i__4].r = d__1, a[i__4].i = 0.; + i__4 = j + jb - jj; + i__5 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__4, &i__5, &z__1, &a[jj + a_dim1], + lda, &w[jj + w_dim1], ldw, &c_b1, &a[jj + jj * a_dim1] +, &c__1); + i__4 = jj + jj * a_dim1; + i__5 = jj + jj * a_dim1; + d__1 = a[i__5].r; + a[i__4].r = d__1, a[i__4].i = 0.; +/* L100: */ + } + +/* Update the rectangular subdiagonal block */ + + if (j + jb <= *n) { + i__3 = *n - j - jb + 1; + i__4 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &z__1, + &a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b1, + &a[j + jb + j * a_dim1], lda); + } +/* L110: */ + } + +/* Put L21 in standard form by partially undoing the interchanges */ +/* in columns 1:k-1 */ + + j = k - 1; +L120: + jj = j; + jp = ipiv[j]; + if (jp < 0) { + jp = -jp; + --j; + } + --j; + if (jp != jj && j >= 1) { + zswap_(&j, &a[jp + a_dim1], lda, &a[jj + a_dim1], lda); + } + if (j >= 1) { + goto L120; + } + +/* Set KB to the number of columns factorized */ + + *kb = k - 1; + + } + return 0; + +/* End of ZLAHEF */ + +} /* zlahef_ */ |