diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhptrs.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhptrs.c')
-rw-r--r-- | contrib/libs/clapack/zhptrs.c | 532 |
1 files changed, 532 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhptrs.c b/contrib/libs/clapack/zhptrs.c new file mode 100644 index 0000000000..0c35c7900d --- /dev/null +++ b/contrib/libs/clapack/zhptrs.c @@ -0,0 +1,532 @@ +/* zhptrs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zhptrs_(char *uplo, integer *n, integer *nrhs, + doublecomplex *ap, integer *ipiv, doublecomplex *b, integer *ldb, + integer *info) +{ + /* System generated locals */ + integer b_dim1, b_offset, i__1, i__2; + doublecomplex z__1, z__2, z__3; + + /* Builtin functions */ + void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg( + doublecomplex *, doublecomplex *); + + /* Local variables */ + integer j, k; + doublereal s; + doublecomplex ak, bk; + integer kc, kp; + doublecomplex akm1, bkm1, akm1k; + extern logical lsame_(char *, char *); + doublecomplex denom; + extern /* Subroutine */ int zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *); + logical upper; + extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *), zswap_(integer *, doublecomplex *, + integer *, doublecomplex *, integer *), xerbla_(char *, integer *), zdscal_(integer *, doublereal *, doublecomplex *, + integer *), zlacgv_(integer *, doublecomplex *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHPTRS solves a system of linear equations A*X = B with a complex */ +/* Hermitian matrix A stored in packed format using the factorization */ +/* A = U*D*U**H or A = L*D*L**H computed by ZHPTRF. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the details of the factorization are stored */ +/* as an upper or lower triangular matrix. */ +/* = 'U': Upper triangular, form is A = U*D*U**H; */ +/* = 'L': Lower triangular, form is A = L*D*L**H. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2) */ +/* The block diagonal matrix D and the multipliers used to */ +/* obtain the factor U or L as computed by ZHPTRF, stored as a */ +/* packed triangular matrix. */ + +/* IPIV (input) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D */ +/* as determined by ZHPTRF. */ + +/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */ +/* On entry, the right hand side matrix B. */ +/* On exit, the solution matrix X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --ap; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*nrhs < 0) { + *info = -3; + } else if (*ldb < max(1,*n)) { + *info = -7; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZHPTRS", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0 || *nrhs == 0) { + return 0; + } + + if (upper) { + +/* Solve A*X = B, where A = U*D*U'. */ + +/* First solve U*D*X = B, overwriting B with X. */ + +/* K is the main loop index, decreasing from N to 1 in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = *n; + kc = *n * (*n + 1) / 2 + 1; +L10: + +/* If K < 1, exit from loop. */ + + if (k < 1) { + goto L30; + } + + kc -= k; + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Interchange rows K and IPIV(K). */ + + kp = ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + +/* Multiply by inv(U(K)), where U(K) is the transformation */ +/* stored in column K of A. */ + + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & + b[b_dim1 + 1], ldb); + +/* Multiply by the inverse of the diagonal block. */ + + i__1 = kc + k - 1; + s = 1. / ap[i__1].r; + zdscal_(nrhs, &s, &b[k + b_dim1], ldb); + --k; + } else { + +/* 2 x 2 diagonal block */ + +/* Interchange rows K-1 and -IPIV(K). */ + + kp = -ipiv[k]; + if (kp != k - 1) { + zswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + +/* Multiply by inv(U(K)), where U(K) is the transformation */ +/* stored in columns K-1 and K of A. */ + + i__1 = k - 2; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc], &c__1, &b[k + b_dim1], ldb, & + b[b_dim1 + 1], ldb); + i__1 = k - 2; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc - (k - 1)], &c__1, &b[k - 1 + + b_dim1], ldb, &b[b_dim1 + 1], ldb); + +/* Multiply by the inverse of the diagonal block. */ + + i__1 = kc + k - 2; + akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i; + z_div(&z__1, &ap[kc - 1], &akm1k); + akm1.r = z__1.r, akm1.i = z__1.i; + d_cnjg(&z__2, &akm1k); + z_div(&z__1, &ap[kc + k - 1], &z__2); + ak.r = z__1.r, ak.i = z__1.i; + z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i + + akm1.i * ak.r; + z__1.r = z__2.r - 1., z__1.i = z__2.i - 0.; + denom.r = z__1.r, denom.i = z__1.i; + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + z_div(&z__1, &b[k - 1 + j * b_dim1], &akm1k); + bkm1.r = z__1.r, bkm1.i = z__1.i; + d_cnjg(&z__2, &akm1k); + z_div(&z__1, &b[k + j * b_dim1], &z__2); + bk.r = z__1.r, bk.i = z__1.i; + i__2 = k - 1 + j * b_dim1; + z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r * + bkm1.i + ak.i * bkm1.r; + z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i; + z_div(&z__1, &z__2, &denom); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + i__2 = k + j * b_dim1; + z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r * + bk.i + akm1.i * bk.r; + z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i; + z_div(&z__1, &z__2, &denom); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L20: */ + } + kc = kc - k + 1; + k += -2; + } + + goto L10; +L30: + +/* Next solve U'*X = B, overwriting B with X. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = 1; + kc = 1; +L40: + +/* If K > N, exit from loop. */ + + if (k > *n) { + goto L50; + } + + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Multiply by inv(U'(K)), where U(K) is the transformation */ +/* stored in column K of A. */ + + if (k > 1) { + zlacgv_(nrhs, &b[k + b_dim1], ldb); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset] +, ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb); + zlacgv_(nrhs, &b[k + b_dim1], ldb); + } + +/* Interchange rows K and IPIV(K). */ + + kp = ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + kc += k; + ++k; + } else { + +/* 2 x 2 diagonal block */ + +/* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */ +/* stored in columns K and K+1 of A. */ + + if (k > 1) { + zlacgv_(nrhs, &b[k + b_dim1], ldb); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset] +, ldb, &ap[kc], &c__1, &c_b1, &b[k + b_dim1], ldb); + zlacgv_(nrhs, &b[k + b_dim1], ldb); + + zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset] +, ldb, &ap[kc + k], &c__1, &c_b1, &b[k + 1 + b_dim1], + ldb); + zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb); + } + +/* Interchange rows K and -IPIV(K). */ + + kp = -ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + kc = kc + (k << 1) + 1; + k += 2; + } + + goto L40; +L50: + + ; + } else { + +/* Solve A*X = B, where A = L*D*L'. */ + +/* First solve L*D*X = B, overwriting B with X. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = 1; + kc = 1; +L60: + +/* If K > N, exit from loop. */ + + if (k > *n) { + goto L80; + } + + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Interchange rows K and IPIV(K). */ + + kp = ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + +/* Multiply by inv(L(K)), where L(K) is the transformation */ +/* stored in column K of A. */ + + if (k < *n) { + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc + 1], &c__1, &b[k + b_dim1], + ldb, &b[k + 1 + b_dim1], ldb); + } + +/* Multiply by the inverse of the diagonal block. */ + + i__1 = kc; + s = 1. / ap[i__1].r; + zdscal_(nrhs, &s, &b[k + b_dim1], ldb); + kc = kc + *n - k + 1; + ++k; + } else { + +/* 2 x 2 diagonal block */ + +/* Interchange rows K+1 and -IPIV(K). */ + + kp = -ipiv[k]; + if (kp != k + 1) { + zswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + +/* Multiply by inv(L(K)), where L(K) is the transformation */ +/* stored in columns K and K+1 of A. */ + + if (k < *n - 1) { + i__1 = *n - k - 1; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc + 2], &c__1, &b[k + b_dim1], + ldb, &b[k + 2 + b_dim1], ldb); + i__1 = *n - k - 1; + z__1.r = -1., z__1.i = -0.; + zgeru_(&i__1, nrhs, &z__1, &ap[kc + *n - k + 2], &c__1, &b[k + + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb); + } + +/* Multiply by the inverse of the diagonal block. */ + + i__1 = kc + 1; + akm1k.r = ap[i__1].r, akm1k.i = ap[i__1].i; + d_cnjg(&z__2, &akm1k); + z_div(&z__1, &ap[kc], &z__2); + akm1.r = z__1.r, akm1.i = z__1.i; + z_div(&z__1, &ap[kc + *n - k + 1], &akm1k); + ak.r = z__1.r, ak.i = z__1.i; + z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i + + akm1.i * ak.r; + z__1.r = z__2.r - 1., z__1.i = z__2.i - 0.; + denom.r = z__1.r, denom.i = z__1.i; + i__1 = *nrhs; + for (j = 1; j <= i__1; ++j) { + d_cnjg(&z__2, &akm1k); + z_div(&z__1, &b[k + j * b_dim1], &z__2); + bkm1.r = z__1.r, bkm1.i = z__1.i; + z_div(&z__1, &b[k + 1 + j * b_dim1], &akm1k); + bk.r = z__1.r, bk.i = z__1.i; + i__2 = k + j * b_dim1; + z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r * + bkm1.i + ak.i * bkm1.r; + z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i; + z_div(&z__1, &z__2, &denom); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; + i__2 = k + 1 + j * b_dim1; + z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r * + bk.i + akm1.i * bk.r; + z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i; + z_div(&z__1, &z__2, &denom); + b[i__2].r = z__1.r, b[i__2].i = z__1.i; +/* L70: */ + } + kc = kc + (*n - k << 1) + 1; + k += 2; + } + + goto L60; +L80: + +/* Next solve L'*X = B, overwriting B with X. */ + +/* K is the main loop index, decreasing from N to 1 in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = *n; + kc = *n * (*n + 1) / 2 + 1; +L90: + +/* If K < 1, exit from loop. */ + + if (k < 1) { + goto L100; + } + + kc -= *n - k + 1; + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Multiply by inv(L'(K)), where L(K) is the transformation */ +/* stored in column K of A. */ + + if (k < *n) { + zlacgv_(nrhs, &b[k + b_dim1], ldb); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 + + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + + b_dim1], ldb); + zlacgv_(nrhs, &b[k + b_dim1], ldb); + } + +/* Interchange rows K and IPIV(K). */ + + kp = ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + --k; + } else { + +/* 2 x 2 diagonal block */ + +/* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */ +/* stored in columns K-1 and K of A. */ + + if (k < *n) { + zlacgv_(nrhs, &b[k + b_dim1], ldb); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 + + b_dim1], ldb, &ap[kc + 1], &c__1, &c_b1, &b[k + + b_dim1], ldb); + zlacgv_(nrhs, &b[k + b_dim1], ldb); + + zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 + + b_dim1], ldb, &ap[kc - (*n - k)], &c__1, &c_b1, &b[k + - 1 + b_dim1], ldb); + zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb); + } + +/* Interchange rows K and -IPIV(K). */ + + kp = -ipiv[k]; + if (kp != k) { + zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); + } + kc -= *n - k + 2; + k += -2; + } + + goto L90; +L100: + ; + } + + return 0; + +/* End of ZHPTRS */ + +} /* zhptrs_ */ |