diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhptri.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhptri.c')
-rw-r--r-- | contrib/libs/clapack/zhptri.c | 513 |
1 files changed, 513 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhptri.c b/contrib/libs/clapack/zhptri.c new file mode 100644 index 0000000000..f4e4938d9e --- /dev/null +++ b/contrib/libs/clapack/zhptri.c @@ -0,0 +1,513 @@ +/* zhptri.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b2 = {0.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zhptri_(char *uplo, integer *n, doublecomplex *ap, + integer *ipiv, doublecomplex *work, integer *info) +{ + /* System generated locals */ + integer i__1, i__2, i__3; + doublereal d__1; + doublecomplex z__1, z__2; + + /* Builtin functions */ + double z_abs(doublecomplex *); + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + doublereal d__; + integer j, k; + doublereal t, ak; + integer kc, kp, kx, kpc, npp; + doublereal akp1; + doublecomplex temp, akkp1; + extern logical lsame_(char *, char *); + extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *); + integer kstep; + logical upper; + extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *), zhpmv_(char *, integer *, + doublecomplex *, doublecomplex *, doublecomplex *, integer *, + doublecomplex *, doublecomplex *, integer *), zswap_( + integer *, doublecomplex *, integer *, doublecomplex *, integer *) + , xerbla_(char *, integer *); + integer kcnext; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHPTRI computes the inverse of a complex Hermitian indefinite matrix */ +/* A in packed storage using the factorization A = U*D*U**H or */ +/* A = L*D*L**H computed by ZHPTRF. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the details of the factorization are stored */ +/* as an upper or lower triangular matrix. */ +/* = 'U': Upper triangular, form is A = U*D*U**H; */ +/* = 'L': Lower triangular, form is A = L*D*L**H. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ +/* On entry, the block diagonal matrix D and the multipliers */ +/* used to obtain the factor U or L as computed by ZHPTRF, */ +/* stored as a packed triangular matrix. */ + +/* On exit, if INFO = 0, the (Hermitian) inverse of the original */ +/* matrix, stored as a packed triangular matrix. The j-th column */ +/* of inv(A) is stored in the array AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', */ +/* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */ + +/* IPIV (input) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D */ +/* as determined by ZHPTRF. */ + +/* WORK (workspace) COMPLEX*16 array, dimension (N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */ +/* inverse could not be computed. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --work; + --ipiv; + --ap; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZHPTRI", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Check that the diagonal matrix D is nonsingular. */ + + if (upper) { + +/* Upper triangular storage: examine D from bottom to top */ + + kp = *n * (*n + 1) / 2; + for (*info = *n; *info >= 1; --(*info)) { + i__1 = kp; + if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) { + return 0; + } + kp -= *info; +/* L10: */ + } + } else { + +/* Lower triangular storage: examine D from top to bottom. */ + + kp = 1; + i__1 = *n; + for (*info = 1; *info <= i__1; ++(*info)) { + i__2 = kp; + if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) { + return 0; + } + kp = kp + *n - *info + 1; +/* L20: */ + } + } + *info = 0; + + if (upper) { + +/* Compute inv(A) from the factorization A = U*D*U'. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + k = 1; + kc = 1; +L30: + +/* If K > N, exit from loop. */ + + if (k > *n) { + goto L50; + } + + kcnext = kc + k; + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Invert the diagonal block. */ + + i__1 = kc + k - 1; + i__2 = kc + k - 1; + d__1 = 1. / ap[i__2].r; + ap[i__1].r = d__1, ap[i__1].i = 0.; + +/* Compute column K of the inverse. */ + + if (k > 1) { + i__1 = k - 1; + zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & + ap[kc], &c__1); + i__1 = kc + k - 1; + i__2 = kc + k - 1; + i__3 = k - 1; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + } + kstep = 1; + } else { + +/* 2 x 2 diagonal block */ + +/* Invert the diagonal block. */ + + t = z_abs(&ap[kcnext + k - 1]); + i__1 = kc + k - 1; + ak = ap[i__1].r / t; + i__1 = kcnext + k; + akp1 = ap[i__1].r / t; + i__1 = kcnext + k - 1; + z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t; + akkp1.r = z__1.r, akkp1.i = z__1.i; + d__ = t * (ak * akp1 - 1.); + i__1 = kc + k - 1; + d__1 = akp1 / d__; + ap[i__1].r = d__1, ap[i__1].i = 0.; + i__1 = kcnext + k; + d__1 = ak / d__; + ap[i__1].r = d__1, ap[i__1].i = 0.; + i__1 = kcnext + k - 1; + z__2.r = -akkp1.r, z__2.i = -akkp1.i; + z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + +/* Compute columns K and K+1 of the inverse. */ + + if (k > 1) { + i__1 = k - 1; + zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & + ap[kc], &c__1); + i__1 = kc + k - 1; + i__2 = kc + k - 1; + i__3 = k - 1; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = kcnext + k - 1; + i__2 = kcnext + k - 1; + i__3 = k - 1; + zdotc_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1); + z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = k - 1; + zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1); + i__1 = k - 1; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, & + ap[kcnext], &c__1); + i__1 = kcnext + k; + i__2 = kcnext + k; + i__3 = k - 1; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + } + kstep = 2; + kcnext = kcnext + k + 1; + } + + kp = (i__1 = ipiv[k], abs(i__1)); + if (kp != k) { + +/* Interchange rows and columns K and KP in the leading */ +/* submatrix A(1:k+1,1:k+1) */ + + kpc = (kp - 1) * kp / 2 + 1; + i__1 = kp - 1; + zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1); + kx = kpc + kp - 1; + i__1 = k - 1; + for (j = kp + 1; j <= i__1; ++j) { + kx = kx + j - 1; + d_cnjg(&z__1, &ap[kc + j - 1]); + temp.r = z__1.r, temp.i = z__1.i; + i__2 = kc + j - 1; + d_cnjg(&z__1, &ap[kx]); + ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; + i__2 = kx; + ap[i__2].r = temp.r, ap[i__2].i = temp.i; +/* L40: */ + } + i__1 = kc + kp - 1; + d_cnjg(&z__1, &ap[kc + kp - 1]); + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = kc + k - 1; + temp.r = ap[i__1].r, temp.i = ap[i__1].i; + i__1 = kc + k - 1; + i__2 = kpc + kp - 1; + ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; + i__1 = kpc + kp - 1; + ap[i__1].r = temp.r, ap[i__1].i = temp.i; + if (kstep == 2) { + i__1 = kc + k + k - 1; + temp.r = ap[i__1].r, temp.i = ap[i__1].i; + i__1 = kc + k + k - 1; + i__2 = kc + k + kp - 1; + ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; + i__1 = kc + k + kp - 1; + ap[i__1].r = temp.r, ap[i__1].i = temp.i; + } + } + + k += kstep; + kc = kcnext; + goto L30; +L50: + + ; + } else { + +/* Compute inv(A) from the factorization A = L*D*L'. */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* 1 or 2, depending on the size of the diagonal blocks. */ + + npp = *n * (*n + 1) / 2; + k = *n; + kc = npp; +L60: + +/* If K < 1, exit from loop. */ + + if (k < 1) { + goto L80; + } + + kcnext = kc - (*n - k + 2); + if (ipiv[k] > 0) { + +/* 1 x 1 diagonal block */ + +/* Invert the diagonal block. */ + + i__1 = kc; + i__2 = kc; + d__1 = 1. / ap[i__2].r; + ap[i__1].r = d__1, ap[i__1].i = 0.; + +/* Compute column K of the inverse. */ + + if (k < *n) { + i__1 = *n - k; + zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], & + c__1, &c_b2, &ap[kc + 1], &c__1); + i__1 = kc; + i__2 = kc; + i__3 = *n - k; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + } + kstep = 1; + } else { + +/* 2 x 2 diagonal block */ + +/* Invert the diagonal block. */ + + t = z_abs(&ap[kcnext + 1]); + i__1 = kcnext; + ak = ap[i__1].r / t; + i__1 = kc; + akp1 = ap[i__1].r / t; + i__1 = kcnext + 1; + z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t; + akkp1.r = z__1.r, akkp1.i = z__1.i; + d__ = t * (ak * akp1 - 1.); + i__1 = kcnext; + d__1 = akp1 / d__; + ap[i__1].r = d__1, ap[i__1].i = 0.; + i__1 = kc; + d__1 = ak / d__; + ap[i__1].r = d__1, ap[i__1].i = 0.; + i__1 = kcnext + 1; + z__2.r = -akkp1.r, z__2.i = -akkp1.i; + z__1.r = z__2.r / d__, z__1.i = z__2.i / d__; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + +/* Compute columns K-1 and K of the inverse. */ + + if (k < *n) { + i__1 = *n - k; + zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], & + c__1, &c_b2, &ap[kc + 1], &c__1); + i__1 = kc; + i__2 = kc; + i__3 = *n - k; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = kcnext + 1; + i__2 = kcnext + 1; + i__3 = *n - k; + zdotc_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], & + c__1); + z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = *n - k; + zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1); + i__1 = *n - k; + z__1.r = -1., z__1.i = -0.; + zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], & + c__1, &c_b2, &ap[kcnext + 2], &c__1); + i__1 = kcnext; + i__2 = kcnext; + i__3 = *n - k; + zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1); + d__1 = z__2.r; + z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i; + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + } + kstep = 2; + kcnext -= *n - k + 3; + } + + kp = (i__1 = ipiv[k], abs(i__1)); + if (kp != k) { + +/* Interchange rows and columns K and KP in the trailing */ +/* submatrix A(k-1:n,k-1:n) */ + + kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1; + if (kp < *n) { + i__1 = *n - kp; + zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], & + c__1); + } + kx = kc + kp - k; + i__1 = kp - 1; + for (j = k + 1; j <= i__1; ++j) { + kx = kx + *n - j + 1; + d_cnjg(&z__1, &ap[kc + j - k]); + temp.r = z__1.r, temp.i = z__1.i; + i__2 = kc + j - k; + d_cnjg(&z__1, &ap[kx]); + ap[i__2].r = z__1.r, ap[i__2].i = z__1.i; + i__2 = kx; + ap[i__2].r = temp.r, ap[i__2].i = temp.i; +/* L70: */ + } + i__1 = kc + kp - k; + d_cnjg(&z__1, &ap[kc + kp - k]); + ap[i__1].r = z__1.r, ap[i__1].i = z__1.i; + i__1 = kc; + temp.r = ap[i__1].r, temp.i = ap[i__1].i; + i__1 = kc; + i__2 = kpc; + ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; + i__1 = kpc; + ap[i__1].r = temp.r, ap[i__1].i = temp.i; + if (kstep == 2) { + i__1 = kc - *n + k - 1; + temp.r = ap[i__1].r, temp.i = ap[i__1].i; + i__1 = kc - *n + k - 1; + i__2 = kc - *n + kp - 1; + ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i; + i__1 = kc - *n + kp - 1; + ap[i__1].r = temp.r, ap[i__1].i = temp.i; + } + } + + k -= kstep; + kc = kcnext; + goto L60; +L80: + ; + } + + return 0; + +/* End of ZHPTRI */ + +} /* zhptri_ */ |