aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zhptri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhptri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhptri.c')
-rw-r--r--contrib/libs/clapack/zhptri.c513
1 files changed, 513 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhptri.c b/contrib/libs/clapack/zhptri.c
new file mode 100644
index 0000000000..f4e4938d9e
--- /dev/null
+++ b/contrib/libs/clapack/zhptri.c
@@ -0,0 +1,513 @@
+/* zhptri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b2 = {0.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int zhptri_(char *uplo, integer *n, doublecomplex *ap,
+ integer *ipiv, doublecomplex *work, integer *info)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3;
+ doublereal d__1;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ double z_abs(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ doublereal d__;
+ integer j, k;
+ doublereal t, ak;
+ integer kc, kp, kx, kpc, npp;
+ doublereal akp1;
+ doublecomplex temp, akkp1;
+ extern logical lsame_(char *, char *);
+ extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *);
+ integer kstep;
+ logical upper;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zhpmv_(char *, integer *,
+ doublecomplex *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, doublecomplex *, integer *), zswap_(
+ integer *, doublecomplex *, integer *, doublecomplex *, integer *)
+ , xerbla_(char *, integer *);
+ integer kcnext;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHPTRI computes the inverse of a complex Hermitian indefinite matrix */
+/* A in packed storage using the factorization A = U*D*U**H or */
+/* A = L*D*L**H computed by ZHPTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the details of the factorization are stored */
+/* as an upper or lower triangular matrix. */
+/* = 'U': Upper triangular, form is A = U*D*U**H; */
+/* = 'L': Lower triangular, form is A = L*D*L**H. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */
+/* On entry, the block diagonal matrix D and the multipliers */
+/* used to obtain the factor U or L as computed by ZHPTRF, */
+/* stored as a packed triangular matrix. */
+
+/* On exit, if INFO = 0, the (Hermitian) inverse of the original */
+/* matrix, stored as a packed triangular matrix. The j-th column */
+/* of inv(A) is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', */
+/* AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by ZHPTRF. */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
+/* inverse could not be computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --work;
+ --ipiv;
+ --ap;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZHPTRI", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Check that the diagonal matrix D is nonsingular. */
+
+ if (upper) {
+
+/* Upper triangular storage: examine D from bottom to top */
+
+ kp = *n * (*n + 1) / 2;
+ for (*info = *n; *info >= 1; --(*info)) {
+ i__1 = kp;
+ if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) {
+ return 0;
+ }
+ kp -= *info;
+/* L10: */
+ }
+ } else {
+
+/* Lower triangular storage: examine D from top to bottom. */
+
+ kp = 1;
+ i__1 = *n;
+ for (*info = 1; *info <= i__1; ++(*info)) {
+ i__2 = kp;
+ if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) {
+ return 0;
+ }
+ kp = kp + *n - *info + 1;
+/* L20: */
+ }
+ }
+ *info = 0;
+
+ if (upper) {
+
+/* Compute inv(A) from the factorization A = U*D*U'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+ kc = 1;
+L30:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L50;
+ }
+
+ kcnext = kc + k;
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ d__1 = 1. / ap[i__2].r;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+
+/* Compute column K of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
+ ap[kc], &c__1);
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = z_abs(&ap[kcnext + k - 1]);
+ i__1 = kc + k - 1;
+ ak = ap[i__1].r / t;
+ i__1 = kcnext + k;
+ akp1 = ap[i__1].r / t;
+ i__1 = kcnext + k - 1;
+ z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t;
+ akkp1.r = z__1.r, akkp1.i = z__1.i;
+ d__ = t * (ak * akp1 - 1.);
+ i__1 = kc + k - 1;
+ d__1 = akp1 / d__;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+ i__1 = kcnext + k;
+ d__1 = ak / d__;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+ i__1 = kcnext + k - 1;
+ z__2.r = -akkp1.r, z__2.i = -akkp1.i;
+ z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+
+/* Compute columns K and K+1 of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
+ ap[kc], &c__1);
+ i__1 = kc + k - 1;
+ i__2 = kc + k - 1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = kcnext + k - 1;
+ i__2 = kcnext + k - 1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1);
+ z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = k - 1;
+ zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
+ ap[kcnext], &c__1);
+ i__1 = kcnext + k;
+ i__2 = kcnext + k;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ }
+ kstep = 2;
+ kcnext = kcnext + k + 1;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the leading */
+/* submatrix A(1:k+1,1:k+1) */
+
+ kpc = (kp - 1) * kp / 2 + 1;
+ i__1 = kp - 1;
+ zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
+ kx = kpc + kp - 1;
+ i__1 = k - 1;
+ for (j = kp + 1; j <= i__1; ++j) {
+ kx = kx + j - 1;
+ d_cnjg(&z__1, &ap[kc + j - 1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = kc + j - 1;
+ d_cnjg(&z__1, &ap[kx]);
+ ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
+ i__2 = kx;
+ ap[i__2].r = temp.r, ap[i__2].i = temp.i;
+/* L40: */
+ }
+ i__1 = kc + kp - 1;
+ d_cnjg(&z__1, &ap[kc + kp - 1]);
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = kc + k - 1;
+ temp.r = ap[i__1].r, temp.i = ap[i__1].i;
+ i__1 = kc + k - 1;
+ i__2 = kpc + kp - 1;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kpc + kp - 1;
+ ap[i__1].r = temp.r, ap[i__1].i = temp.i;
+ if (kstep == 2) {
+ i__1 = kc + k + k - 1;
+ temp.r = ap[i__1].r, temp.i = ap[i__1].i;
+ i__1 = kc + k + k - 1;
+ i__2 = kc + k + kp - 1;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kc + k + kp - 1;
+ ap[i__1].r = temp.r, ap[i__1].i = temp.i;
+ }
+ }
+
+ k += kstep;
+ kc = kcnext;
+ goto L30;
+L50:
+
+ ;
+ } else {
+
+/* Compute inv(A) from the factorization A = L*D*L'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ npp = *n * (*n + 1) / 2;
+ k = *n;
+ kc = npp;
+L60:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L80;
+ }
+
+ kcnext = kc - (*n - k + 2);
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ i__1 = kc;
+ i__2 = kc;
+ d__1 = 1. / ap[i__2].r;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+
+/* Compute column K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], &
+ c__1, &c_b2, &ap[kc + 1], &c__1);
+ i__1 = kc;
+ i__2 = kc;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = z_abs(&ap[kcnext + 1]);
+ i__1 = kcnext;
+ ak = ap[i__1].r / t;
+ i__1 = kc;
+ akp1 = ap[i__1].r / t;
+ i__1 = kcnext + 1;
+ z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t;
+ akkp1.r = z__1.r, akkp1.i = z__1.i;
+ d__ = t * (ak * akp1 - 1.);
+ i__1 = kcnext;
+ d__1 = akp1 / d__;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+ i__1 = kc;
+ d__1 = ak / d__;
+ ap[i__1].r = d__1, ap[i__1].i = 0.;
+ i__1 = kcnext + 1;
+ z__2.r = -akkp1.r, z__2.i = -akkp1.i;
+ z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+
+/* Compute columns K-1 and K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
+ c__1, &c_b2, &ap[kc + 1], &c__1);
+ i__1 = kc;
+ i__2 = kc;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = kcnext + 1;
+ i__2 = kcnext + 1;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], &
+ c__1);
+ z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = *n - k;
+ zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
+ c__1, &c_b2, &ap[kcnext + 2], &c__1);
+ i__1 = kcnext;
+ i__2 = kcnext;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1);
+ d__1 = z__2.r;
+ z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ }
+ kstep = 2;
+ kcnext -= *n - k + 3;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the trailing */
+/* submatrix A(k-1:n,k-1:n) */
+
+ kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
+ if (kp < *n) {
+ i__1 = *n - kp;
+ zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
+ c__1);
+ }
+ kx = kc + kp - k;
+ i__1 = kp - 1;
+ for (j = k + 1; j <= i__1; ++j) {
+ kx = kx + *n - j + 1;
+ d_cnjg(&z__1, &ap[kc + j - k]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = kc + j - k;
+ d_cnjg(&z__1, &ap[kx]);
+ ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
+ i__2 = kx;
+ ap[i__2].r = temp.r, ap[i__2].i = temp.i;
+/* L70: */
+ }
+ i__1 = kc + kp - k;
+ d_cnjg(&z__1, &ap[kc + kp - k]);
+ ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
+ i__1 = kc;
+ temp.r = ap[i__1].r, temp.i = ap[i__1].i;
+ i__1 = kc;
+ i__2 = kpc;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kpc;
+ ap[i__1].r = temp.r, ap[i__1].i = temp.i;
+ if (kstep == 2) {
+ i__1 = kc - *n + k - 1;
+ temp.r = ap[i__1].r, temp.i = ap[i__1].i;
+ i__1 = kc - *n + k - 1;
+ i__2 = kc - *n + kp - 1;
+ ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
+ i__1 = kc - *n + kp - 1;
+ ap[i__1].r = temp.r, ap[i__1].i = temp.i;
+ }
+ }
+
+ k -= kstep;
+ kc = kcnext;
+ goto L60;
+L80:
+ ;
+ }
+
+ return 0;
+
+/* End of ZHPTRI */
+
+} /* zhptri_ */