diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhpevx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhpevx.c')
-rw-r--r-- | contrib/libs/clapack/zhpevx.c | 475 |
1 files changed, 475 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhpevx.c b/contrib/libs/clapack/zhpevx.c new file mode 100644 index 0000000000..3f5d87d54e --- /dev/null +++ b/contrib/libs/clapack/zhpevx.c @@ -0,0 +1,475 @@ +/* zhpevx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +/* Subroutine */ int zhpevx_(char *jobz, char *range, char *uplo, integer *n, + doublecomplex *ap, doublereal *vl, doublereal *vu, integer *il, + integer *iu, doublereal *abstol, integer *m, doublereal *w, + doublecomplex *z__, integer *ldz, doublecomplex *work, doublereal * + rwork, integer *iwork, integer *ifail, integer *info) +{ + /* System generated locals */ + integer z_dim1, z_offset, i__1, i__2; + doublereal d__1, d__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, jj; + doublereal eps, vll, vuu, tmp1; + integer indd, inde; + doublereal anrm; + integer imax; + doublereal rmin, rmax; + logical test; + integer itmp1, indee; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + doublereal sigma; + extern logical lsame_(char *, char *); + integer iinfo; + char order[1]; + extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, + doublereal *, integer *); + logical wantz; + extern /* Subroutine */ int zswap_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *); + extern doublereal dlamch_(char *); + logical alleig, indeig; + integer iscale, indibl; + logical valeig; + doublereal safmin; + extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( + integer *, doublereal *, doublecomplex *, integer *); + doublereal abstll, bignum; + integer indiwk, indisp, indtau; + extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, + integer *), dstebz_(char *, char *, integer *, doublereal *, + doublereal *, integer *, integer *, doublereal *, doublereal *, + doublereal *, integer *, integer *, doublereal *, integer *, + integer *, doublereal *, integer *, integer *); + extern doublereal zlanhp_(char *, char *, integer *, doublecomplex *, + doublereal *); + integer indrwk, indwrk, nsplit; + doublereal smlnum; + extern /* Subroutine */ int zhptrd_(char *, integer *, doublecomplex *, + doublereal *, doublereal *, doublecomplex *, integer *), + zstein_(integer *, doublereal *, doublereal *, integer *, + doublereal *, integer *, integer *, doublecomplex *, integer *, + doublereal *, integer *, integer *, integer *), zsteqr_(char *, + integer *, doublereal *, doublereal *, doublecomplex *, integer *, + doublereal *, integer *), zupgtr_(char *, integer *, + doublecomplex *, doublecomplex *, doublecomplex *, integer *, + doublecomplex *, integer *), zupmtr_(char *, char *, char + *, integer *, integer *, doublecomplex *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHPEVX computes selected eigenvalues and, optionally, eigenvectors */ +/* of a complex Hermitian matrix A in packed storage. */ +/* Eigenvalues/vectors can be selected by specifying either a range of */ +/* values or a range of indices for the desired eigenvalues. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found; */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found; */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2) */ +/* On entry, the upper or lower triangle of the Hermitian matrix */ +/* A, packed columnwise in a linear array. The j-th column of A */ +/* is stored in the array AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */ + +/* On exit, AP is overwritten by values generated during the */ +/* reduction to tridiagonal form. If UPLO = 'U', the diagonal */ +/* and first superdiagonal of the tridiagonal matrix T overwrite */ +/* the corresponding elements of A, and if UPLO = 'L', the */ +/* diagonal and first subdiagonal of T overwrite the */ +/* corresponding elements of A. */ + +/* VL (input) DOUBLE PRECISION */ +/* VU (input) DOUBLE PRECISION */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) DOUBLE PRECISION */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing AP to tridiagonal form. */ + +/* Eigenvalues will be computed most accurately when ABSTOL is */ +/* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ +/* If this routine returns with INFO>0, indicating that some */ +/* eigenvectors did not converge, try setting ABSTOL to */ +/* 2*DLAMCH('S'). */ + +/* See "Computing Small Singular Values of Bidiagonal Matrices */ +/* with Guaranteed High Relative Accuracy," by Demmel and */ +/* Kahan, LAPACK Working Note #3. */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) DOUBLE PRECISION array, dimension (N) */ +/* If INFO = 0, the selected eigenvalues in ascending order. */ + +/* Z (output) COMPLEX*16 array, dimension (LDZ, max(1,M)) */ +/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ +/* contain the orthonormal eigenvectors of the matrix A */ +/* corresponding to the selected eigenvalues, with the i-th */ +/* column of Z holding the eigenvector associated with W(i). */ +/* If an eigenvector fails to converge, then that column of Z */ +/* contains the latest approximation to the eigenvector, and */ +/* the index of the eigenvector is returned in IFAIL. */ +/* If JOBZ = 'N', then Z is not referenced. */ +/* Note: the user must ensure that at least max(1,M) columns are */ +/* supplied in the array Z; if RANGE = 'V', the exact value of M */ +/* is not known in advance and an upper bound must be used. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension (7*N) */ + +/* IWORK (workspace) INTEGER array, dimension (5*N) */ + +/* IFAIL (output) INTEGER array, dimension (N) */ +/* If JOBZ = 'V', then if INFO = 0, the first M elements of */ +/* IFAIL are zero. If INFO > 0, then IFAIL contains the */ +/* indices of the eigenvectors that failed to converge. */ +/* If JOBZ = 'N', then IFAIL is not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, then i eigenvectors failed to converge. */ +/* Their indices are stored in array IFAIL. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + --ap; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --rwork; + --iwork; + --ifail; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (alleig || valeig || indeig)) { + *info = -2; + } else if (! (lsame_(uplo, "L") || lsame_(uplo, + "U"))) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -7; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -8; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -9; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -14; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZHPEVX", &i__1); + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (alleig || indeig) { + *m = 1; + w[1] = ap[1].r; + } else { + if (*vl < ap[1].r && *vu >= ap[1].r) { + *m = 1; + w[1] = ap[1].r; + } + } + if (wantz) { + i__1 = z_dim1 + 1; + z__[i__1].r = 1., z__[i__1].i = 0.; + } + return 0; + } + +/* Get machine constants. */ + + safmin = dlamch_("Safe minimum"); + eps = dlamch_("Precision"); + smlnum = safmin / eps; + bignum = 1. / smlnum; + rmin = sqrt(smlnum); +/* Computing MIN */ + d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin)); + rmax = min(d__1,d__2); + +/* Scale matrix to allowable range, if necessary. */ + + iscale = 0; + abstll = *abstol; + if (valeig) { + vll = *vl; + vuu = *vu; + } else { + vll = 0.; + vuu = 0.; + } + anrm = zlanhp_("M", uplo, n, &ap[1], &rwork[1]); + if (anrm > 0. && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + i__1 = *n * (*n + 1) / 2; + zdscal_(&i__1, &sigma, &ap[1], &c__1); + if (*abstol > 0.) { + abstll = *abstol * sigma; + } + if (valeig) { + vll = *vl * sigma; + vuu = *vu * sigma; + } + } + +/* Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form. */ + + indd = 1; + inde = indd + *n; + indrwk = inde + *n; + indtau = 1; + indwrk = indtau + *n; + zhptrd_(uplo, n, &ap[1], &rwork[indd], &rwork[inde], &work[indtau], & + iinfo); + +/* If all eigenvalues are desired and ABSTOL is less than or equal */ +/* to zero, then call DSTERF or ZUPGTR and ZSTEQR. If this fails */ +/* for some eigenvalue, then try DSTEBZ. */ + + test = FALSE_; + if (indeig) { + if (*il == 1 && *iu == *n) { + test = TRUE_; + } + } + if ((alleig || test) && *abstol <= 0.) { + dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1); + indee = indrwk + (*n << 1); + if (! wantz) { + i__1 = *n - 1; + dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); + dsterf_(n, &w[1], &rwork[indee], info); + } else { + zupgtr_(uplo, n, &ap[1], &work[indtau], &z__[z_offset], ldz, & + work[indwrk], &iinfo); + i__1 = *n - 1; + dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1); + zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, & + rwork[indrwk], info); + if (*info == 0) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + ifail[i__] = 0; +/* L10: */ + } + } + } + if (*info == 0) { + *m = *n; + goto L20; + } + *info = 0; + } + +/* Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */ + + if (wantz) { + *(unsigned char *)order = 'B'; + } else { + *(unsigned char *)order = 'E'; + } + indibl = 1; + indisp = indibl + *n; + indiwk = indisp + *n; + dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], & + rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], & + rwork[indrwk], &iwork[indiwk], info); + + if (wantz) { + zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], & + iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[ + indiwk], &ifail[1], info); + +/* Apply unitary matrix used in reduction to tridiagonal */ +/* form to eigenvectors returned by ZSTEIN. */ + + indwrk = indtau + *n; + zupmtr_("L", uplo, "N", n, m, &ap[1], &work[indtau], &z__[z_offset], + ldz, &work[indwrk], &iinfo); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + +L20: + if (iscale == 1) { + if (*info == 0) { + imax = *m; + } else { + imax = *info - 1; + } + d__1 = 1. / sigma; + dscal_(&imax, &d__1, &w[1], &c__1); + } + +/* If eigenvalues are not in order, then sort them, along with */ +/* eigenvectors. */ + + if (wantz) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + i__ = 0; + tmp1 = w[j]; + i__2 = *m; + for (jj = j + 1; jj <= i__2; ++jj) { + if (w[jj] < tmp1) { + i__ = jj; + tmp1 = w[jj]; + } +/* L30: */ + } + + if (i__ != 0) { + itmp1 = iwork[indibl + i__ - 1]; + w[i__] = w[j]; + iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; + w[j] = tmp1; + iwork[indibl + j - 1] = itmp1; + zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], + &c__1); + if (*info != 0) { + itmp1 = ifail[i__]; + ifail[i__] = ifail[j]; + ifail[j] = itmp1; + } + } +/* L40: */ + } + } + + return 0; + +/* End of ZHPEVX */ + +} /* zhpevx_ */ |