aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zhgeqz.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhgeqz.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhgeqz.c')
-rw-r--r--contrib/libs/clapack/zhgeqz.c1149
1 files changed, 1149 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhgeqz.c b/contrib/libs/clapack/zhgeqz.c
new file mode 100644
index 0000000000..779255908b
--- /dev/null
+++ b/contrib/libs/clapack/zhgeqz.c
@@ -0,0 +1,1149 @@
+/* zhgeqz.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static doublecomplex c_b2 = {1.,0.};
+static integer c__1 = 1;
+static integer c__2 = 2;
+
+/* Subroutine */ int zhgeqz_(char *job, char *compq, char *compz, integer *n,
+ integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
+ doublecomplex *t, integer *ldt, doublecomplex *alpha, doublecomplex *
+ beta, doublecomplex *q, integer *ldq, doublecomplex *z__, integer *
+ ldz, doublecomplex *work, integer *lwork, doublereal *rwork, integer *
+ info)
+{
+ /* System generated locals */
+ integer h_dim1, h_offset, q_dim1, q_offset, t_dim1, t_offset, z_dim1,
+ z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
+ doublereal d__1, d__2, d__3, d__4, d__5, d__6;
+ doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
+
+ /* Builtin functions */
+ double z_abs(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+ double d_imag(doublecomplex *);
+ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), pow_zi(
+ doublecomplex *, doublecomplex *, integer *), z_sqrt(
+ doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ doublereal c__;
+ integer j;
+ doublecomplex s, t1;
+ integer jc, in;
+ doublecomplex u12;
+ integer jr;
+ doublecomplex ad11, ad12, ad21, ad22;
+ integer jch;
+ logical ilq, ilz;
+ doublereal ulp;
+ doublecomplex abi22;
+ doublereal absb, atol, btol, temp;
+ extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublereal *, doublecomplex *);
+ doublereal temp2;
+ extern logical lsame_(char *, char *);
+ doublecomplex ctemp;
+ integer iiter, ilast, jiter;
+ doublereal anorm, bnorm;
+ integer maxit;
+ doublecomplex shift;
+ extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
+ doublecomplex *, integer *);
+ doublereal tempr;
+ doublecomplex ctemp2, ctemp3;
+ logical ilazr2;
+ doublereal ascale, bscale;
+ extern doublereal dlamch_(char *);
+ doublecomplex signbc;
+ doublereal safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ doublecomplex eshift;
+ logical ilschr;
+ integer icompq, ilastm;
+ doublecomplex rtdisc;
+ integer ischur;
+ extern doublereal zlanhs_(char *, integer *, doublecomplex *, integer *,
+ doublereal *);
+ logical ilazro;
+ integer icompz, ifirst;
+ extern /* Subroutine */ int zlartg_(doublecomplex *, doublecomplex *,
+ doublereal *, doublecomplex *, doublecomplex *);
+ integer ifrstm;
+ extern /* Subroutine */ int zlaset_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, doublecomplex *, integer *);
+ integer istart;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHGEQZ computes the eigenvalues of a complex matrix pair (H,T), */
+/* where H is an upper Hessenberg matrix and T is upper triangular, */
+/* using the single-shift QZ method. */
+/* Matrix pairs of this type are produced by the reduction to */
+/* generalized upper Hessenberg form of a complex matrix pair (A,B): */
+
+/* A = Q1*H*Z1**H, B = Q1*T*Z1**H, */
+
+/* as computed by ZGGHRD. */
+
+/* If JOB='S', then the Hessenberg-triangular pair (H,T) is */
+/* also reduced to generalized Schur form, */
+
+/* H = Q*S*Z**H, T = Q*P*Z**H, */
+
+/* where Q and Z are unitary matrices and S and P are upper triangular. */
+
+/* Optionally, the unitary matrix Q from the generalized Schur */
+/* factorization may be postmultiplied into an input matrix Q1, and the */
+/* unitary matrix Z may be postmultiplied into an input matrix Z1. */
+/* If Q1 and Z1 are the unitary matrices from ZGGHRD that reduced */
+/* the matrix pair (A,B) to generalized Hessenberg form, then the output */
+/* matrices Q1*Q and Z1*Z are the unitary factors from the generalized */
+/* Schur factorization of (A,B): */
+
+/* A = (Q1*Q)*S*(Z1*Z)**H, B = (Q1*Q)*P*(Z1*Z)**H. */
+
+/* To avoid overflow, eigenvalues of the matrix pair (H,T) */
+/* (equivalently, of (A,B)) are computed as a pair of complex values */
+/* (alpha,beta). If beta is nonzero, lambda = alpha / beta is an */
+/* eigenvalue of the generalized nonsymmetric eigenvalue problem (GNEP) */
+/* A*x = lambda*B*x */
+/* and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the */
+/* alternate form of the GNEP */
+/* mu*A*y = B*y. */
+/* The values of alpha and beta for the i-th eigenvalue can be read */
+/* directly from the generalized Schur form: alpha = S(i,i), */
+/* beta = P(i,i). */
+
+/* Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix */
+/* Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973), */
+/* pp. 241--256. */
+
+/* Arguments */
+/* ========= */
+
+/* JOB (input) CHARACTER*1 */
+/* = 'E': Compute eigenvalues only; */
+/* = 'S': Computer eigenvalues and the Schur form. */
+
+/* COMPQ (input) CHARACTER*1 */
+/* = 'N': Left Schur vectors (Q) are not computed; */
+/* = 'I': Q is initialized to the unit matrix and the matrix Q */
+/* of left Schur vectors of (H,T) is returned; */
+/* = 'V': Q must contain a unitary matrix Q1 on entry and */
+/* the product Q1*Q is returned. */
+
+/* COMPZ (input) CHARACTER*1 */
+/* = 'N': Right Schur vectors (Z) are not computed; */
+/* = 'I': Q is initialized to the unit matrix and the matrix Z */
+/* of right Schur vectors of (H,T) is returned; */
+/* = 'V': Z must contain a unitary matrix Z1 on entry and */
+/* the product Z1*Z is returned. */
+
+/* N (input) INTEGER */
+/* The order of the matrices H, T, Q, and Z. N >= 0. */
+
+/* ILO (input) INTEGER */
+/* IHI (input) INTEGER */
+/* ILO and IHI mark the rows and columns of H which are in */
+/* Hessenberg form. It is assumed that A is already upper */
+/* triangular in rows and columns 1:ILO-1 and IHI+1:N. */
+/* If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0. */
+
+/* H (input/output) COMPLEX*16 array, dimension (LDH, N) */
+/* On entry, the N-by-N upper Hessenberg matrix H. */
+/* On exit, if JOB = 'S', H contains the upper triangular */
+/* matrix S from the generalized Schur factorization. */
+/* If JOB = 'E', the diagonal of H matches that of S, but */
+/* the rest of H is unspecified. */
+
+/* LDH (input) INTEGER */
+/* The leading dimension of the array H. LDH >= max( 1, N ). */
+
+/* T (input/output) COMPLEX*16 array, dimension (LDT, N) */
+/* On entry, the N-by-N upper triangular matrix T. */
+/* On exit, if JOB = 'S', T contains the upper triangular */
+/* matrix P from the generalized Schur factorization. */
+/* If JOB = 'E', the diagonal of T matches that of P, but */
+/* the rest of T is unspecified. */
+
+/* LDT (input) INTEGER */
+/* The leading dimension of the array T. LDT >= max( 1, N ). */
+
+/* ALPHA (output) COMPLEX*16 array, dimension (N) */
+/* The complex scalars alpha that define the eigenvalues of */
+/* GNEP. ALPHA(i) = S(i,i) in the generalized Schur */
+/* factorization. */
+
+/* BETA (output) COMPLEX*16 array, dimension (N) */
+/* The real non-negative scalars beta that define the */
+/* eigenvalues of GNEP. BETA(i) = P(i,i) in the generalized */
+/* Schur factorization. */
+
+/* Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
+/* represent the j-th eigenvalue of the matrix pair (A,B), in */
+/* one of the forms lambda = alpha/beta or mu = beta/alpha. */
+/* Since either lambda or mu may overflow, they should not, */
+/* in general, be computed. */
+
+/* Q (input/output) COMPLEX*16 array, dimension (LDQ, N) */
+/* On entry, if COMPZ = 'V', the unitary matrix Q1 used in the */
+/* reduction of (A,B) to generalized Hessenberg form. */
+/* On exit, if COMPZ = 'I', the unitary matrix of left Schur */
+/* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of */
+/* left Schur vectors of (A,B). */
+/* Not referenced if COMPZ = 'N'. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= 1. */
+/* If COMPQ='V' or 'I', then LDQ >= N. */
+
+/* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */
+/* On entry, if COMPZ = 'V', the unitary matrix Z1 used in the */
+/* reduction of (A,B) to generalized Hessenberg form. */
+/* On exit, if COMPZ = 'I', the unitary matrix of right Schur */
+/* vectors of (H,T), and if COMPZ = 'V', the unitary matrix of */
+/* right Schur vectors of (A,B). */
+/* Not referenced if COMPZ = 'N'. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1. */
+/* If COMPZ='V' or 'I', then LDZ >= N. */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO >= 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N). */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* = 1,...,N: the QZ iteration did not converge. (H,T) is not */
+/* in Schur form, but ALPHA(i) and BETA(i), */
+/* i=INFO+1,...,N should be correct. */
+/* = N+1,...,2*N: the shift calculation failed. (H,T) is not */
+/* in Schur form, but ALPHA(i) and BETA(i), */
+/* i=INFO-N+1,...,N should be correct. */
+
+/* Further Details */
+/* =============== */
+
+/* We assume that complex ABS works as long as its value is less than */
+/* overflow. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode JOB, COMPQ, COMPZ */
+
+ /* Parameter adjustments */
+ h_dim1 = *ldh;
+ h_offset = 1 + h_dim1;
+ h__ -= h_offset;
+ t_dim1 = *ldt;
+ t_offset = 1 + t_dim1;
+ t -= t_offset;
+ --alpha;
+ --beta;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ if (lsame_(job, "E")) {
+ ilschr = FALSE_;
+ ischur = 1;
+ } else if (lsame_(job, "S")) {
+ ilschr = TRUE_;
+ ischur = 2;
+ } else {
+ ischur = 0;
+ }
+
+ if (lsame_(compq, "N")) {
+ ilq = FALSE_;
+ icompq = 1;
+ } else if (lsame_(compq, "V")) {
+ ilq = TRUE_;
+ icompq = 2;
+ } else if (lsame_(compq, "I")) {
+ ilq = TRUE_;
+ icompq = 3;
+ } else {
+ icompq = 0;
+ }
+
+ if (lsame_(compz, "N")) {
+ ilz = FALSE_;
+ icompz = 1;
+ } else if (lsame_(compz, "V")) {
+ ilz = TRUE_;
+ icompz = 2;
+ } else if (lsame_(compz, "I")) {
+ ilz = TRUE_;
+ icompz = 3;
+ } else {
+ icompz = 0;
+ }
+
+/* Check Argument Values */
+
+ *info = 0;
+ i__1 = max(1,*n);
+ work[1].r = (doublereal) i__1, work[1].i = 0.;
+ lquery = *lwork == -1;
+ if (ischur == 0) {
+ *info = -1;
+ } else if (icompq == 0) {
+ *info = -2;
+ } else if (icompz == 0) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ilo < 1) {
+ *info = -5;
+ } else if (*ihi > *n || *ihi < *ilo - 1) {
+ *info = -6;
+ } else if (*ldh < *n) {
+ *info = -8;
+ } else if (*ldt < *n) {
+ *info = -10;
+ } else if (*ldq < 1 || ilq && *ldq < *n) {
+ *info = -14;
+ } else if (*ldz < 1 || ilz && *ldz < *n) {
+ *info = -16;
+ } else if (*lwork < max(1,*n) && ! lquery) {
+ *info = -18;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZHGEQZ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+/* WORK( 1 ) = CMPLX( 1 ) */
+ if (*n <= 0) {
+ work[1].r = 1., work[1].i = 0.;
+ return 0;
+ }
+
+/* Initialize Q and Z */
+
+ if (icompq == 3) {
+ zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
+ }
+ if (icompz == 3) {
+ zlaset_("Full", n, n, &c_b1, &c_b2, &z__[z_offset], ldz);
+ }
+
+/* Machine Constants */
+
+ in = *ihi + 1 - *ilo;
+ safmin = dlamch_("S");
+ ulp = dlamch_("E") * dlamch_("B");
+ anorm = zlanhs_("F", &in, &h__[*ilo + *ilo * h_dim1], ldh, &rwork[1]);
+ bnorm = zlanhs_("F", &in, &t[*ilo + *ilo * t_dim1], ldt, &rwork[1]);
+/* Computing MAX */
+ d__1 = safmin, d__2 = ulp * anorm;
+ atol = max(d__1,d__2);
+/* Computing MAX */
+ d__1 = safmin, d__2 = ulp * bnorm;
+ btol = max(d__1,d__2);
+ ascale = 1. / max(safmin,anorm);
+ bscale = 1. / max(safmin,bnorm);
+
+
+/* Set Eigenvalues IHI+1:N */
+
+ i__1 = *n;
+ for (j = *ihi + 1; j <= i__1; ++j) {
+ absb = z_abs(&t[j + j * t_dim1]);
+ if (absb > safmin) {
+ i__2 = j + j * t_dim1;
+ z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
+ d_cnjg(&z__1, &z__2);
+ signbc.r = z__1.r, signbc.i = z__1.i;
+ i__2 = j + j * t_dim1;
+ t[i__2].r = absb, t[i__2].i = 0.;
+ if (ilschr) {
+ i__2 = j - 1;
+ zscal_(&i__2, &signbc, &t[j * t_dim1 + 1], &c__1);
+ zscal_(&j, &signbc, &h__[j * h_dim1 + 1], &c__1);
+ } else {
+ i__2 = j + j * h_dim1;
+ i__3 = j + j * h_dim1;
+ z__1.r = h__[i__3].r * signbc.r - h__[i__3].i * signbc.i,
+ z__1.i = h__[i__3].r * signbc.i + h__[i__3].i *
+ signbc.r;
+ h__[i__2].r = z__1.r, h__[i__2].i = z__1.i;
+ }
+ if (ilz) {
+ zscal_(n, &signbc, &z__[j * z_dim1 + 1], &c__1);
+ }
+ } else {
+ i__2 = j + j * t_dim1;
+ t[i__2].r = 0., t[i__2].i = 0.;
+ }
+ i__2 = j;
+ i__3 = j + j * h_dim1;
+ alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
+ i__2 = j;
+ i__3 = j + j * t_dim1;
+ beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
+/* L10: */
+ }
+
+/* If IHI < ILO, skip QZ steps */
+
+ if (*ihi < *ilo) {
+ goto L190;
+ }
+
+/* MAIN QZ ITERATION LOOP */
+
+/* Initialize dynamic indices */
+
+/* Eigenvalues ILAST+1:N have been found. */
+/* Column operations modify rows IFRSTM:whatever */
+/* Row operations modify columns whatever:ILASTM */
+
+/* If only eigenvalues are being computed, then */
+/* IFRSTM is the row of the last splitting row above row ILAST; */
+/* this is always at least ILO. */
+/* IITER counts iterations since the last eigenvalue was found, */
+/* to tell when to use an extraordinary shift. */
+/* MAXIT is the maximum number of QZ sweeps allowed. */
+
+ ilast = *ihi;
+ if (ilschr) {
+ ifrstm = 1;
+ ilastm = *n;
+ } else {
+ ifrstm = *ilo;
+ ilastm = *ihi;
+ }
+ iiter = 0;
+ eshift.r = 0., eshift.i = 0.;
+ maxit = (*ihi - *ilo + 1) * 30;
+
+ i__1 = maxit;
+ for (jiter = 1; jiter <= i__1; ++jiter) {
+
+/* Check for too many iterations. */
+
+ if (jiter > maxit) {
+ goto L180;
+ }
+
+/* Split the matrix if possible. */
+
+/* Two tests: */
+/* 1: H(j,j-1)=0 or j=ILO */
+/* 2: T(j,j)=0 */
+
+/* Special case: j=ILAST */
+
+ if (ilast == *ilo) {
+ goto L60;
+ } else {
+ i__2 = ilast + (ilast - 1) * h_dim1;
+ if ((d__1 = h__[i__2].r, abs(d__1)) + (d__2 = d_imag(&h__[ilast +
+ (ilast - 1) * h_dim1]), abs(d__2)) <= atol) {
+ i__2 = ilast + (ilast - 1) * h_dim1;
+ h__[i__2].r = 0., h__[i__2].i = 0.;
+ goto L60;
+ }
+ }
+
+ if (z_abs(&t[ilast + ilast * t_dim1]) <= btol) {
+ i__2 = ilast + ilast * t_dim1;
+ t[i__2].r = 0., t[i__2].i = 0.;
+ goto L50;
+ }
+
+/* General case: j<ILAST */
+
+ i__2 = *ilo;
+ for (j = ilast - 1; j >= i__2; --j) {
+
+/* Test 1: for H(j,j-1)=0 or j=ILO */
+
+ if (j == *ilo) {
+ ilazro = TRUE_;
+ } else {
+ i__3 = j + (j - 1) * h_dim1;
+ if ((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[j +
+ (j - 1) * h_dim1]), abs(d__2)) <= atol) {
+ i__3 = j + (j - 1) * h_dim1;
+ h__[i__3].r = 0., h__[i__3].i = 0.;
+ ilazro = TRUE_;
+ } else {
+ ilazro = FALSE_;
+ }
+ }
+
+/* Test 2: for T(j,j)=0 */
+
+ if (z_abs(&t[j + j * t_dim1]) < btol) {
+ i__3 = j + j * t_dim1;
+ t[i__3].r = 0., t[i__3].i = 0.;
+
+/* Test 1a: Check for 2 consecutive small subdiagonals in A */
+
+ ilazr2 = FALSE_;
+ if (! ilazro) {
+ i__3 = j + (j - 1) * h_dim1;
+ i__4 = j + 1 + j * h_dim1;
+ i__5 = j + j * h_dim1;
+ if (((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&
+ h__[j + (j - 1) * h_dim1]), abs(d__2))) * (ascale
+ * ((d__3 = h__[i__4].r, abs(d__3)) + (d__4 =
+ d_imag(&h__[j + 1 + j * h_dim1]), abs(d__4)))) <=
+ ((d__5 = h__[i__5].r, abs(d__5)) + (d__6 = d_imag(
+ &h__[j + j * h_dim1]), abs(d__6))) * (ascale *
+ atol)) {
+ ilazr2 = TRUE_;
+ }
+ }
+
+/* If both tests pass (1 & 2), i.e., the leading diagonal */
+/* element of B in the block is zero, split a 1x1 block off */
+/* at the top. (I.e., at the J-th row/column) The leading */
+/* diagonal element of the remainder can also be zero, so */
+/* this may have to be done repeatedly. */
+
+ if (ilazro || ilazr2) {
+ i__3 = ilast - 1;
+ for (jch = j; jch <= i__3; ++jch) {
+ i__4 = jch + jch * h_dim1;
+ ctemp.r = h__[i__4].r, ctemp.i = h__[i__4].i;
+ zlartg_(&ctemp, &h__[jch + 1 + jch * h_dim1], &c__, &
+ s, &h__[jch + jch * h_dim1]);
+ i__4 = jch + 1 + jch * h_dim1;
+ h__[i__4].r = 0., h__[i__4].i = 0.;
+ i__4 = ilastm - jch;
+ zrot_(&i__4, &h__[jch + (jch + 1) * h_dim1], ldh, &
+ h__[jch + 1 + (jch + 1) * h_dim1], ldh, &c__,
+ &s);
+ i__4 = ilastm - jch;
+ zrot_(&i__4, &t[jch + (jch + 1) * t_dim1], ldt, &t[
+ jch + 1 + (jch + 1) * t_dim1], ldt, &c__, &s);
+ if (ilq) {
+ d_cnjg(&z__1, &s);
+ zrot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
+ * q_dim1 + 1], &c__1, &c__, &z__1);
+ }
+ if (ilazr2) {
+ i__4 = jch + (jch - 1) * h_dim1;
+ i__5 = jch + (jch - 1) * h_dim1;
+ z__1.r = c__ * h__[i__5].r, z__1.i = c__ * h__[
+ i__5].i;
+ h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
+ }
+ ilazr2 = FALSE_;
+ i__4 = jch + 1 + (jch + 1) * t_dim1;
+ if ((d__1 = t[i__4].r, abs(d__1)) + (d__2 = d_imag(&t[
+ jch + 1 + (jch + 1) * t_dim1]), abs(d__2)) >=
+ btol) {
+ if (jch + 1 >= ilast) {
+ goto L60;
+ } else {
+ ifirst = jch + 1;
+ goto L70;
+ }
+ }
+ i__4 = jch + 1 + (jch + 1) * t_dim1;
+ t[i__4].r = 0., t[i__4].i = 0.;
+/* L20: */
+ }
+ goto L50;
+ } else {
+
+/* Only test 2 passed -- chase the zero to T(ILAST,ILAST) */
+/* Then process as in the case T(ILAST,ILAST)=0 */
+
+ i__3 = ilast - 1;
+ for (jch = j; jch <= i__3; ++jch) {
+ i__4 = jch + (jch + 1) * t_dim1;
+ ctemp.r = t[i__4].r, ctemp.i = t[i__4].i;
+ zlartg_(&ctemp, &t[jch + 1 + (jch + 1) * t_dim1], &
+ c__, &s, &t[jch + (jch + 1) * t_dim1]);
+ i__4 = jch + 1 + (jch + 1) * t_dim1;
+ t[i__4].r = 0., t[i__4].i = 0.;
+ if (jch < ilastm - 1) {
+ i__4 = ilastm - jch - 1;
+ zrot_(&i__4, &t[jch + (jch + 2) * t_dim1], ldt, &
+ t[jch + 1 + (jch + 2) * t_dim1], ldt, &
+ c__, &s);
+ }
+ i__4 = ilastm - jch + 2;
+ zrot_(&i__4, &h__[jch + (jch - 1) * h_dim1], ldh, &
+ h__[jch + 1 + (jch - 1) * h_dim1], ldh, &c__,
+ &s);
+ if (ilq) {
+ d_cnjg(&z__1, &s);
+ zrot_(n, &q[jch * q_dim1 + 1], &c__1, &q[(jch + 1)
+ * q_dim1 + 1], &c__1, &c__, &z__1);
+ }
+ i__4 = jch + 1 + jch * h_dim1;
+ ctemp.r = h__[i__4].r, ctemp.i = h__[i__4].i;
+ zlartg_(&ctemp, &h__[jch + 1 + (jch - 1) * h_dim1], &
+ c__, &s, &h__[jch + 1 + jch * h_dim1]);
+ i__4 = jch + 1 + (jch - 1) * h_dim1;
+ h__[i__4].r = 0., h__[i__4].i = 0.;
+ i__4 = jch + 1 - ifrstm;
+ zrot_(&i__4, &h__[ifrstm + jch * h_dim1], &c__1, &h__[
+ ifrstm + (jch - 1) * h_dim1], &c__1, &c__, &s)
+ ;
+ i__4 = jch - ifrstm;
+ zrot_(&i__4, &t[ifrstm + jch * t_dim1], &c__1, &t[
+ ifrstm + (jch - 1) * t_dim1], &c__1, &c__, &s)
+ ;
+ if (ilz) {
+ zrot_(n, &z__[jch * z_dim1 + 1], &c__1, &z__[(jch
+ - 1) * z_dim1 + 1], &c__1, &c__, &s);
+ }
+/* L30: */
+ }
+ goto L50;
+ }
+ } else if (ilazro) {
+
+/* Only test 1 passed -- work on J:ILAST */
+
+ ifirst = j;
+ goto L70;
+ }
+
+/* Neither test passed -- try next J */
+
+/* L40: */
+ }
+
+/* (Drop-through is "impossible") */
+
+ *info = (*n << 1) + 1;
+ goto L210;
+
+/* T(ILAST,ILAST)=0 -- clear H(ILAST,ILAST-1) to split off a */
+/* 1x1 block. */
+
+L50:
+ i__2 = ilast + ilast * h_dim1;
+ ctemp.r = h__[i__2].r, ctemp.i = h__[i__2].i;
+ zlartg_(&ctemp, &h__[ilast + (ilast - 1) * h_dim1], &c__, &s, &h__[
+ ilast + ilast * h_dim1]);
+ i__2 = ilast + (ilast - 1) * h_dim1;
+ h__[i__2].r = 0., h__[i__2].i = 0.;
+ i__2 = ilast - ifrstm;
+ zrot_(&i__2, &h__[ifrstm + ilast * h_dim1], &c__1, &h__[ifrstm + (
+ ilast - 1) * h_dim1], &c__1, &c__, &s);
+ i__2 = ilast - ifrstm;
+ zrot_(&i__2, &t[ifrstm + ilast * t_dim1], &c__1, &t[ifrstm + (ilast -
+ 1) * t_dim1], &c__1, &c__, &s);
+ if (ilz) {
+ zrot_(n, &z__[ilast * z_dim1 + 1], &c__1, &z__[(ilast - 1) *
+ z_dim1 + 1], &c__1, &c__, &s);
+ }
+
+/* H(ILAST,ILAST-1)=0 -- Standardize B, set ALPHA and BETA */
+
+L60:
+ absb = z_abs(&t[ilast + ilast * t_dim1]);
+ if (absb > safmin) {
+ i__2 = ilast + ilast * t_dim1;
+ z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
+ d_cnjg(&z__1, &z__2);
+ signbc.r = z__1.r, signbc.i = z__1.i;
+ i__2 = ilast + ilast * t_dim1;
+ t[i__2].r = absb, t[i__2].i = 0.;
+ if (ilschr) {
+ i__2 = ilast - ifrstm;
+ zscal_(&i__2, &signbc, &t[ifrstm + ilast * t_dim1], &c__1);
+ i__2 = ilast + 1 - ifrstm;
+ zscal_(&i__2, &signbc, &h__[ifrstm + ilast * h_dim1], &c__1);
+ } else {
+ i__2 = ilast + ilast * h_dim1;
+ i__3 = ilast + ilast * h_dim1;
+ z__1.r = h__[i__3].r * signbc.r - h__[i__3].i * signbc.i,
+ z__1.i = h__[i__3].r * signbc.i + h__[i__3].i *
+ signbc.r;
+ h__[i__2].r = z__1.r, h__[i__2].i = z__1.i;
+ }
+ if (ilz) {
+ zscal_(n, &signbc, &z__[ilast * z_dim1 + 1], &c__1);
+ }
+ } else {
+ i__2 = ilast + ilast * t_dim1;
+ t[i__2].r = 0., t[i__2].i = 0.;
+ }
+ i__2 = ilast;
+ i__3 = ilast + ilast * h_dim1;
+ alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
+ i__2 = ilast;
+ i__3 = ilast + ilast * t_dim1;
+ beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
+
+/* Go to next block -- exit if finished. */
+
+ --ilast;
+ if (ilast < *ilo) {
+ goto L190;
+ }
+
+/* Reset counters */
+
+ iiter = 0;
+ eshift.r = 0., eshift.i = 0.;
+ if (! ilschr) {
+ ilastm = ilast;
+ if (ifrstm > ilast) {
+ ifrstm = *ilo;
+ }
+ }
+ goto L160;
+
+/* QZ step */
+
+/* This iteration only involves rows/columns IFIRST:ILAST. We */
+/* assume IFIRST < ILAST, and that the diagonal of B is non-zero. */
+
+L70:
+ ++iiter;
+ if (! ilschr) {
+ ifrstm = ifirst;
+ }
+
+/* Compute the Shift. */
+
+/* At this point, IFIRST < ILAST, and the diagonal elements of */
+/* T(IFIRST:ILAST,IFIRST,ILAST) are larger than BTOL (in */
+/* magnitude) */
+
+ if (iiter / 10 * 10 != iiter) {
+
+/* The Wilkinson shift (AEP p.512), i.e., the eigenvalue of */
+/* the bottom-right 2x2 block of A inv(B) which is nearest to */
+/* the bottom-right element. */
+
+/* We factor B as U*D, where U has unit diagonals, and */
+/* compute (A*inv(D))*inv(U). */
+
+ i__2 = ilast - 1 + ilast * t_dim1;
+ z__2.r = bscale * t[i__2].r, z__2.i = bscale * t[i__2].i;
+ i__3 = ilast + ilast * t_dim1;
+ z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
+ z_div(&z__1, &z__2, &z__3);
+ u12.r = z__1.r, u12.i = z__1.i;
+ i__2 = ilast - 1 + (ilast - 1) * h_dim1;
+ z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
+ i__3 = ilast - 1 + (ilast - 1) * t_dim1;
+ z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
+ z_div(&z__1, &z__2, &z__3);
+ ad11.r = z__1.r, ad11.i = z__1.i;
+ i__2 = ilast + (ilast - 1) * h_dim1;
+ z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
+ i__3 = ilast - 1 + (ilast - 1) * t_dim1;
+ z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
+ z_div(&z__1, &z__2, &z__3);
+ ad21.r = z__1.r, ad21.i = z__1.i;
+ i__2 = ilast - 1 + ilast * h_dim1;
+ z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
+ i__3 = ilast + ilast * t_dim1;
+ z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
+ z_div(&z__1, &z__2, &z__3);
+ ad12.r = z__1.r, ad12.i = z__1.i;
+ i__2 = ilast + ilast * h_dim1;
+ z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
+ i__3 = ilast + ilast * t_dim1;
+ z__3.r = bscale * t[i__3].r, z__3.i = bscale * t[i__3].i;
+ z_div(&z__1, &z__2, &z__3);
+ ad22.r = z__1.r, ad22.i = z__1.i;
+ z__2.r = u12.r * ad21.r - u12.i * ad21.i, z__2.i = u12.r * ad21.i
+ + u12.i * ad21.r;
+ z__1.r = ad22.r - z__2.r, z__1.i = ad22.i - z__2.i;
+ abi22.r = z__1.r, abi22.i = z__1.i;
+
+ z__2.r = ad11.r + abi22.r, z__2.i = ad11.i + abi22.i;
+ z__1.r = z__2.r * .5, z__1.i = z__2.i * .5;
+ t1.r = z__1.r, t1.i = z__1.i;
+ pow_zi(&z__4, &t1, &c__2);
+ z__5.r = ad12.r * ad21.r - ad12.i * ad21.i, z__5.i = ad12.r *
+ ad21.i + ad12.i * ad21.r;
+ z__3.r = z__4.r + z__5.r, z__3.i = z__4.i + z__5.i;
+ z__6.r = ad11.r * ad22.r - ad11.i * ad22.i, z__6.i = ad11.r *
+ ad22.i + ad11.i * ad22.r;
+ z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
+ z_sqrt(&z__1, &z__2);
+ rtdisc.r = z__1.r, rtdisc.i = z__1.i;
+ z__1.r = t1.r - abi22.r, z__1.i = t1.i - abi22.i;
+ z__2.r = t1.r - abi22.r, z__2.i = t1.i - abi22.i;
+ temp = z__1.r * rtdisc.r + d_imag(&z__2) * d_imag(&rtdisc);
+ if (temp <= 0.) {
+ z__1.r = t1.r + rtdisc.r, z__1.i = t1.i + rtdisc.i;
+ shift.r = z__1.r, shift.i = z__1.i;
+ } else {
+ z__1.r = t1.r - rtdisc.r, z__1.i = t1.i - rtdisc.i;
+ shift.r = z__1.r, shift.i = z__1.i;
+ }
+ } else {
+
+/* Exceptional shift. Chosen for no particularly good reason. */
+
+ i__2 = ilast - 1 + ilast * h_dim1;
+ z__4.r = ascale * h__[i__2].r, z__4.i = ascale * h__[i__2].i;
+ i__3 = ilast - 1 + (ilast - 1) * t_dim1;
+ z__5.r = bscale * t[i__3].r, z__5.i = bscale * t[i__3].i;
+ z_div(&z__3, &z__4, &z__5);
+ d_cnjg(&z__2, &z__3);
+ z__1.r = eshift.r + z__2.r, z__1.i = eshift.i + z__2.i;
+ eshift.r = z__1.r, eshift.i = z__1.i;
+ shift.r = eshift.r, shift.i = eshift.i;
+ }
+
+/* Now check for two consecutive small subdiagonals. */
+
+ i__2 = ifirst + 1;
+ for (j = ilast - 1; j >= i__2; --j) {
+ istart = j;
+ i__3 = j + j * h_dim1;
+ z__2.r = ascale * h__[i__3].r, z__2.i = ascale * h__[i__3].i;
+ i__4 = j + j * t_dim1;
+ z__4.r = bscale * t[i__4].r, z__4.i = bscale * t[i__4].i;
+ z__3.r = shift.r * z__4.r - shift.i * z__4.i, z__3.i = shift.r *
+ z__4.i + shift.i * z__4.r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ temp = (d__1 = ctemp.r, abs(d__1)) + (d__2 = d_imag(&ctemp), abs(
+ d__2));
+ i__3 = j + 1 + j * h_dim1;
+ temp2 = ascale * ((d__1 = h__[i__3].r, abs(d__1)) + (d__2 =
+ d_imag(&h__[j + 1 + j * h_dim1]), abs(d__2)));
+ tempr = max(temp,temp2);
+ if (tempr < 1. && tempr != 0.) {
+ temp /= tempr;
+ temp2 /= tempr;
+ }
+ i__3 = j + (j - 1) * h_dim1;
+ if (((d__1 = h__[i__3].r, abs(d__1)) + (d__2 = d_imag(&h__[j + (j
+ - 1) * h_dim1]), abs(d__2))) * temp2 <= temp * atol) {
+ goto L90;
+ }
+/* L80: */
+ }
+
+ istart = ifirst;
+ i__2 = ifirst + ifirst * h_dim1;
+ z__2.r = ascale * h__[i__2].r, z__2.i = ascale * h__[i__2].i;
+ i__3 = ifirst + ifirst * t_dim1;
+ z__4.r = bscale * t[i__3].r, z__4.i = bscale * t[i__3].i;
+ z__3.r = shift.r * z__4.r - shift.i * z__4.i, z__3.i = shift.r *
+ z__4.i + shift.i * z__4.r;
+ z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+L90:
+
+/* Do an implicit-shift QZ sweep. */
+
+/* Initial Q */
+
+ i__2 = istart + 1 + istart * h_dim1;
+ z__1.r = ascale * h__[i__2].r, z__1.i = ascale * h__[i__2].i;
+ ctemp2.r = z__1.r, ctemp2.i = z__1.i;
+ zlartg_(&ctemp, &ctemp2, &c__, &s, &ctemp3);
+
+/* Sweep */
+
+ i__2 = ilast - 1;
+ for (j = istart; j <= i__2; ++j) {
+ if (j > istart) {
+ i__3 = j + (j - 1) * h_dim1;
+ ctemp.r = h__[i__3].r, ctemp.i = h__[i__3].i;
+ zlartg_(&ctemp, &h__[j + 1 + (j - 1) * h_dim1], &c__, &s, &
+ h__[j + (j - 1) * h_dim1]);
+ i__3 = j + 1 + (j - 1) * h_dim1;
+ h__[i__3].r = 0., h__[i__3].i = 0.;
+ }
+
+ i__3 = ilastm;
+ for (jc = j; jc <= i__3; ++jc) {
+ i__4 = j + jc * h_dim1;
+ z__2.r = c__ * h__[i__4].r, z__2.i = c__ * h__[i__4].i;
+ i__5 = j + 1 + jc * h_dim1;
+ z__3.r = s.r * h__[i__5].r - s.i * h__[i__5].i, z__3.i = s.r *
+ h__[i__5].i + s.i * h__[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ i__4 = j + 1 + jc * h_dim1;
+ d_cnjg(&z__4, &s);
+ z__3.r = -z__4.r, z__3.i = -z__4.i;
+ i__5 = j + jc * h_dim1;
+ z__2.r = z__3.r * h__[i__5].r - z__3.i * h__[i__5].i, z__2.i =
+ z__3.r * h__[i__5].i + z__3.i * h__[i__5].r;
+ i__6 = j + 1 + jc * h_dim1;
+ z__5.r = c__ * h__[i__6].r, z__5.i = c__ * h__[i__6].i;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
+ h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
+ i__4 = j + jc * h_dim1;
+ h__[i__4].r = ctemp.r, h__[i__4].i = ctemp.i;
+ i__4 = j + jc * t_dim1;
+ z__2.r = c__ * t[i__4].r, z__2.i = c__ * t[i__4].i;
+ i__5 = j + 1 + jc * t_dim1;
+ z__3.r = s.r * t[i__5].r - s.i * t[i__5].i, z__3.i = s.r * t[
+ i__5].i + s.i * t[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp2.r = z__1.r, ctemp2.i = z__1.i;
+ i__4 = j + 1 + jc * t_dim1;
+ d_cnjg(&z__4, &s);
+ z__3.r = -z__4.r, z__3.i = -z__4.i;
+ i__5 = j + jc * t_dim1;
+ z__2.r = z__3.r * t[i__5].r - z__3.i * t[i__5].i, z__2.i =
+ z__3.r * t[i__5].i + z__3.i * t[i__5].r;
+ i__6 = j + 1 + jc * t_dim1;
+ z__5.r = c__ * t[i__6].r, z__5.i = c__ * t[i__6].i;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
+ t[i__4].r = z__1.r, t[i__4].i = z__1.i;
+ i__4 = j + jc * t_dim1;
+ t[i__4].r = ctemp2.r, t[i__4].i = ctemp2.i;
+/* L100: */
+ }
+ if (ilq) {
+ i__3 = *n;
+ for (jr = 1; jr <= i__3; ++jr) {
+ i__4 = jr + j * q_dim1;
+ z__2.r = c__ * q[i__4].r, z__2.i = c__ * q[i__4].i;
+ d_cnjg(&z__4, &s);
+ i__5 = jr + (j + 1) * q_dim1;
+ z__3.r = z__4.r * q[i__5].r - z__4.i * q[i__5].i, z__3.i =
+ z__4.r * q[i__5].i + z__4.i * q[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ i__4 = jr + (j + 1) * q_dim1;
+ z__3.r = -s.r, z__3.i = -s.i;
+ i__5 = jr + j * q_dim1;
+ z__2.r = z__3.r * q[i__5].r - z__3.i * q[i__5].i, z__2.i =
+ z__3.r * q[i__5].i + z__3.i * q[i__5].r;
+ i__6 = jr + (j + 1) * q_dim1;
+ z__4.r = c__ * q[i__6].r, z__4.i = c__ * q[i__6].i;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ q[i__4].r = z__1.r, q[i__4].i = z__1.i;
+ i__4 = jr + j * q_dim1;
+ q[i__4].r = ctemp.r, q[i__4].i = ctemp.i;
+/* L110: */
+ }
+ }
+
+ i__3 = j + 1 + (j + 1) * t_dim1;
+ ctemp.r = t[i__3].r, ctemp.i = t[i__3].i;
+ zlartg_(&ctemp, &t[j + 1 + j * t_dim1], &c__, &s, &t[j + 1 + (j +
+ 1) * t_dim1]);
+ i__3 = j + 1 + j * t_dim1;
+ t[i__3].r = 0., t[i__3].i = 0.;
+
+/* Computing MIN */
+ i__4 = j + 2;
+ i__3 = min(i__4,ilast);
+ for (jr = ifrstm; jr <= i__3; ++jr) {
+ i__4 = jr + (j + 1) * h_dim1;
+ z__2.r = c__ * h__[i__4].r, z__2.i = c__ * h__[i__4].i;
+ i__5 = jr + j * h_dim1;
+ z__3.r = s.r * h__[i__5].r - s.i * h__[i__5].i, z__3.i = s.r *
+ h__[i__5].i + s.i * h__[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ i__4 = jr + j * h_dim1;
+ d_cnjg(&z__4, &s);
+ z__3.r = -z__4.r, z__3.i = -z__4.i;
+ i__5 = jr + (j + 1) * h_dim1;
+ z__2.r = z__3.r * h__[i__5].r - z__3.i * h__[i__5].i, z__2.i =
+ z__3.r * h__[i__5].i + z__3.i * h__[i__5].r;
+ i__6 = jr + j * h_dim1;
+ z__5.r = c__ * h__[i__6].r, z__5.i = c__ * h__[i__6].i;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
+ h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
+ i__4 = jr + (j + 1) * h_dim1;
+ h__[i__4].r = ctemp.r, h__[i__4].i = ctemp.i;
+/* L120: */
+ }
+ i__3 = j;
+ for (jr = ifrstm; jr <= i__3; ++jr) {
+ i__4 = jr + (j + 1) * t_dim1;
+ z__2.r = c__ * t[i__4].r, z__2.i = c__ * t[i__4].i;
+ i__5 = jr + j * t_dim1;
+ z__3.r = s.r * t[i__5].r - s.i * t[i__5].i, z__3.i = s.r * t[
+ i__5].i + s.i * t[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ i__4 = jr + j * t_dim1;
+ d_cnjg(&z__4, &s);
+ z__3.r = -z__4.r, z__3.i = -z__4.i;
+ i__5 = jr + (j + 1) * t_dim1;
+ z__2.r = z__3.r * t[i__5].r - z__3.i * t[i__5].i, z__2.i =
+ z__3.r * t[i__5].i + z__3.i * t[i__5].r;
+ i__6 = jr + j * t_dim1;
+ z__5.r = c__ * t[i__6].r, z__5.i = c__ * t[i__6].i;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
+ t[i__4].r = z__1.r, t[i__4].i = z__1.i;
+ i__4 = jr + (j + 1) * t_dim1;
+ t[i__4].r = ctemp.r, t[i__4].i = ctemp.i;
+/* L130: */
+ }
+ if (ilz) {
+ i__3 = *n;
+ for (jr = 1; jr <= i__3; ++jr) {
+ i__4 = jr + (j + 1) * z_dim1;
+ z__2.r = c__ * z__[i__4].r, z__2.i = c__ * z__[i__4].i;
+ i__5 = jr + j * z_dim1;
+ z__3.r = s.r * z__[i__5].r - s.i * z__[i__5].i, z__3.i =
+ s.r * z__[i__5].i + s.i * z__[i__5].r;
+ z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
+ ctemp.r = z__1.r, ctemp.i = z__1.i;
+ i__4 = jr + j * z_dim1;
+ d_cnjg(&z__4, &s);
+ z__3.r = -z__4.r, z__3.i = -z__4.i;
+ i__5 = jr + (j + 1) * z_dim1;
+ z__2.r = z__3.r * z__[i__5].r - z__3.i * z__[i__5].i,
+ z__2.i = z__3.r * z__[i__5].i + z__3.i * z__[i__5]
+ .r;
+ i__6 = jr + j * z_dim1;
+ z__5.r = c__ * z__[i__6].r, z__5.i = c__ * z__[i__6].i;
+ z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
+ z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
+ i__4 = jr + (j + 1) * z_dim1;
+ z__[i__4].r = ctemp.r, z__[i__4].i = ctemp.i;
+/* L140: */
+ }
+ }
+/* L150: */
+ }
+
+L160:
+
+/* L170: */
+ ;
+ }
+
+/* Drop-through = non-convergence */
+
+L180:
+ *info = ilast;
+ goto L210;
+
+/* Successful completion of all QZ steps */
+
+L190:
+
+/* Set Eigenvalues 1:ILO-1 */
+
+ i__1 = *ilo - 1;
+ for (j = 1; j <= i__1; ++j) {
+ absb = z_abs(&t[j + j * t_dim1]);
+ if (absb > safmin) {
+ i__2 = j + j * t_dim1;
+ z__2.r = t[i__2].r / absb, z__2.i = t[i__2].i / absb;
+ d_cnjg(&z__1, &z__2);
+ signbc.r = z__1.r, signbc.i = z__1.i;
+ i__2 = j + j * t_dim1;
+ t[i__2].r = absb, t[i__2].i = 0.;
+ if (ilschr) {
+ i__2 = j - 1;
+ zscal_(&i__2, &signbc, &t[j * t_dim1 + 1], &c__1);
+ zscal_(&j, &signbc, &h__[j * h_dim1 + 1], &c__1);
+ } else {
+ i__2 = j + j * h_dim1;
+ i__3 = j + j * h_dim1;
+ z__1.r = h__[i__3].r * signbc.r - h__[i__3].i * signbc.i,
+ z__1.i = h__[i__3].r * signbc.i + h__[i__3].i *
+ signbc.r;
+ h__[i__2].r = z__1.r, h__[i__2].i = z__1.i;
+ }
+ if (ilz) {
+ zscal_(n, &signbc, &z__[j * z_dim1 + 1], &c__1);
+ }
+ } else {
+ i__2 = j + j * t_dim1;
+ t[i__2].r = 0., t[i__2].i = 0.;
+ }
+ i__2 = j;
+ i__3 = j + j * h_dim1;
+ alpha[i__2].r = h__[i__3].r, alpha[i__2].i = h__[i__3].i;
+ i__2 = j;
+ i__3 = j + j * t_dim1;
+ beta[i__2].r = t[i__3].r, beta[i__2].i = t[i__3].i;
+/* L200: */
+ }
+
+/* Normal Termination */
+
+ *info = 0;
+
+/* Exit (other than argument error) -- return optimal workspace size */
+
+L210:
+ z__1.r = (doublereal) (*n), z__1.i = 0.;
+ work[1].r = z__1.r, work[1].i = z__1.i;
+ return 0;
+
+/* End of ZHGEQZ */
+
+} /* zhgeqz_ */