aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zhetrs.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhetrs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhetrs.c')
-rw-r--r--contrib/libs/clapack/zhetrs.c529
1 files changed, 529 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhetrs.c b/contrib/libs/clapack/zhetrs.c
new file mode 100644
index 0000000000..ba566623b4
--- /dev/null
+++ b/contrib/libs/clapack/zhetrs.c
@@ -0,0 +1,529 @@
+/* zhetrs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {1.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int zhetrs_(char *uplo, integer *n, integer *nrhs,
+ doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *b,
+ integer *ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void z_div(doublecomplex *, doublecomplex *, doublecomplex *), d_cnjg(
+ doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer j, k;
+ doublereal s;
+ doublecomplex ak, bk;
+ integer kp;
+ doublecomplex akm1, bkm1, akm1k;
+ extern logical lsame_(char *, char *);
+ doublecomplex denom;
+ extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *);
+ logical upper;
+ extern /* Subroutine */ int zgeru_(integer *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *), xerbla_(char *, integer *), zdscal_(integer *, doublereal *, doublecomplex *,
+ integer *), zlacgv_(integer *, doublecomplex *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHETRS solves a system of linear equations A*X = B with a complex */
+/* Hermitian matrix A using the factorization A = U*D*U**H or */
+/* A = L*D*L**H computed by ZHETRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the details of the factorization are stored */
+/* as an upper or lower triangular matrix. */
+/* = 'U': Upper triangular, form is A = U*D*U**H; */
+/* = 'L': Lower triangular, form is A = L*D*L**H. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* A (input) COMPLEX*16 array, dimension (LDA,N) */
+/* The block diagonal matrix D and the multipliers used to */
+/* obtain the factor U or L as computed by ZHETRF. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by ZHETRF. */
+
+/* B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* On entry, the right hand side matrix B. */
+/* On exit, the solution matrix X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZHETRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Solve A*X = B, where A = U*D*U'. */
+
+/* First solve U*D*X = B, overwriting B with X. */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = *n;
+L10:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L30;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(U(K)), where U(K) is the transformation */
+/* stored in column K of A. */
+
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[k * a_dim1 + 1], &c__1, &b[k +
+ b_dim1], ldb, &b[b_dim1 + 1], ldb);
+
+/* Multiply by the inverse of the diagonal block. */
+
+ i__1 = k + k * a_dim1;
+ s = 1. / a[i__1].r;
+ zdscal_(nrhs, &s, &b[k + b_dim1], ldb);
+ --k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Interchange rows K-1 and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k - 1) {
+ zswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(U(K)), where U(K) is the transformation */
+/* stored in columns K-1 and K of A. */
+
+ i__1 = k - 2;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[k * a_dim1 + 1], &c__1, &b[k +
+ b_dim1], ldb, &b[b_dim1 + 1], ldb);
+ i__1 = k - 2;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k
+ - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
+
+/* Multiply by the inverse of the diagonal block. */
+
+ i__1 = k - 1 + k * a_dim1;
+ akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
+ z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &akm1k);
+ akm1.r = z__1.r, akm1.i = z__1.i;
+ d_cnjg(&z__2, &akm1k);
+ z_div(&z__1, &a[k + k * a_dim1], &z__2);
+ ak.r = z__1.r, ak.i = z__1.i;
+ z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
+ akm1.i * ak.r;
+ z__1.r = z__2.r - 1., z__1.i = z__2.i - 0.;
+ denom.r = z__1.r, denom.i = z__1.i;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ z_div(&z__1, &b[k - 1 + j * b_dim1], &akm1k);
+ bkm1.r = z__1.r, bkm1.i = z__1.i;
+ d_cnjg(&z__2, &akm1k);
+ z_div(&z__1, &b[k + j * b_dim1], &z__2);
+ bk.r = z__1.r, bk.i = z__1.i;
+ i__2 = k - 1 + j * b_dim1;
+ z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
+ bkm1.i + ak.i * bkm1.r;
+ z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
+ z_div(&z__1, &z__2, &denom);
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ i__2 = k + j * b_dim1;
+ z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
+ bk.i + akm1.i * bk.r;
+ z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
+ z_div(&z__1, &z__2, &denom);
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L20: */
+ }
+ k += -2;
+ }
+
+ goto L10;
+L30:
+
+/* Next solve U'*X = B, overwriting B with X. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+L40:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L50;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Multiply by inv(U'(K)), where U(K) is the transformation */
+/* stored in column K of A. */
+
+ if (k > 1) {
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
+, ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
+ b_dim1], ldb);
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ }
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ ++k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
+/* stored in columns K and K+1 of A. */
+
+ if (k > 1) {
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
+, ldb, &a[k * a_dim1 + 1], &c__1, &c_b1, &b[k +
+ b_dim1], ldb);
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+
+ zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[b_offset]
+, ldb, &a[(k + 1) * a_dim1 + 1], &c__1, &c_b1, &b[k +
+ 1 + b_dim1], ldb);
+ zlacgv_(nrhs, &b[k + 1 + b_dim1], ldb);
+ }
+
+/* Interchange rows K and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ k += 2;
+ }
+
+ goto L40;
+L50:
+
+ ;
+ } else {
+
+/* Solve A*X = B, where A = L*D*L'. */
+
+/* First solve L*D*X = B, overwriting B with X. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+L60:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L80;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(L(K)), where L(K) is the transformation */
+/* stored in column K of A. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[k + 1 + k * a_dim1], &c__1, &b[
+ k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
+ }
+
+/* Multiply by the inverse of the diagonal block. */
+
+ i__1 = k + k * a_dim1;
+ s = 1. / a[i__1].r;
+ zdscal_(nrhs, &s, &b[k + b_dim1], ldb);
+ ++k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Interchange rows K+1 and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k + 1) {
+ zswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(L(K)), where L(K) is the transformation */
+/* stored in columns K and K+1 of A. */
+
+ if (k < *n - 1) {
+ i__1 = *n - k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[k + 2 + k * a_dim1], &c__1, &b[
+ k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
+ i__1 = *n - k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgeru_(&i__1, nrhs, &z__1, &a[k + 2 + (k + 1) * a_dim1], &
+ c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1],
+ ldb);
+ }
+
+/* Multiply by the inverse of the diagonal block. */
+
+ i__1 = k + 1 + k * a_dim1;
+ akm1k.r = a[i__1].r, akm1k.i = a[i__1].i;
+ d_cnjg(&z__2, &akm1k);
+ z_div(&z__1, &a[k + k * a_dim1], &z__2);
+ akm1.r = z__1.r, akm1.i = z__1.i;
+ z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &akm1k);
+ ak.r = z__1.r, ak.i = z__1.i;
+ z__2.r = akm1.r * ak.r - akm1.i * ak.i, z__2.i = akm1.r * ak.i +
+ akm1.i * ak.r;
+ z__1.r = z__2.r - 1., z__1.i = z__2.i - 0.;
+ denom.r = z__1.r, denom.i = z__1.i;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ d_cnjg(&z__2, &akm1k);
+ z_div(&z__1, &b[k + j * b_dim1], &z__2);
+ bkm1.r = z__1.r, bkm1.i = z__1.i;
+ z_div(&z__1, &b[k + 1 + j * b_dim1], &akm1k);
+ bk.r = z__1.r, bk.i = z__1.i;
+ i__2 = k + j * b_dim1;
+ z__3.r = ak.r * bkm1.r - ak.i * bkm1.i, z__3.i = ak.r *
+ bkm1.i + ak.i * bkm1.r;
+ z__2.r = z__3.r - bk.r, z__2.i = z__3.i - bk.i;
+ z_div(&z__1, &z__2, &denom);
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+ i__2 = k + 1 + j * b_dim1;
+ z__3.r = akm1.r * bk.r - akm1.i * bk.i, z__3.i = akm1.r *
+ bk.i + akm1.i * bk.r;
+ z__2.r = z__3.r - bkm1.r, z__2.i = z__3.i - bkm1.i;
+ z_div(&z__1, &z__2, &denom);
+ b[i__2].r = z__1.r, b[i__2].i = z__1.i;
+/* L70: */
+ }
+ k += 2;
+ }
+
+ goto L60;
+L80:
+
+/* Next solve L'*X = B, overwriting B with X. */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = *n;
+L90:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L100;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Multiply by inv(L'(K)), where L(K) is the transformation */
+/* stored in column K of A. */
+
+ if (k < *n) {
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
+ b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
+ b[k + b_dim1], ldb);
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ }
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ --k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
+/* stored in columns K-1 and K of A. */
+
+ if (k < *n) {
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
+ b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b1, &
+ b[k + b_dim1], ldb);
+ zlacgv_(nrhs, &b[k + b_dim1], ldb);
+
+ zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Conjugate transpose", &i__1, nrhs, &z__1, &b[k + 1 +
+ b_dim1], ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &
+ c_b1, &b[k - 1 + b_dim1], ldb);
+ zlacgv_(nrhs, &b[k - 1 + b_dim1], ldb);
+ }
+
+/* Interchange rows K and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k) {
+ zswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ k += -2;
+ }
+
+ goto L90;
+L100:
+ ;
+ }
+
+ return 0;
+
+/* End of ZHETRS */
+
+} /* zhetrs_ */