aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zhetri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhetri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhetri.c')
-rw-r--r--contrib/libs/clapack/zhetri.c510
1 files changed, 510 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhetri.c b/contrib/libs/clapack/zhetri.c
new file mode 100644
index 0000000000..7dadd4fb28
--- /dev/null
+++ b/contrib/libs/clapack/zhetri.c
@@ -0,0 +1,510 @@
+/* zhetri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b2 = {0.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int zhetri_(char *uplo, integer *n, doublecomplex *a,
+ integer *lda, integer *ipiv, doublecomplex *work, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ doublereal d__1;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ double z_abs(doublecomplex *);
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ doublereal d__;
+ integer j, k;
+ doublereal t, ak;
+ integer kp;
+ doublereal akp1;
+ doublecomplex temp, akkp1;
+ extern logical lsame_(char *, char *);
+ extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *);
+ integer kstep;
+ extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, doublecomplex *, integer *);
+ logical upper;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *), zswap_(integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *), xerbla_(char *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHETRI computes the inverse of a complex Hermitian indefinite matrix */
+/* A using the factorization A = U*D*U**H or A = L*D*L**H computed by */
+/* ZHETRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the details of the factorization are stored */
+/* as an upper or lower triangular matrix. */
+/* = 'U': Upper triangular, form is A = U*D*U**H; */
+/* = 'L': Lower triangular, form is A = L*D*L**H. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the block diagonal matrix D and the multipliers */
+/* used to obtain the factor U or L as computed by ZHETRF. */
+
+/* On exit, if INFO = 0, the (Hermitian) inverse of the original */
+/* matrix. If UPLO = 'U', the upper triangular part of the */
+/* inverse is formed and the part of A below the diagonal is not */
+/* referenced; if UPLO = 'L' the lower triangular part of the */
+/* inverse is formed and the part of A above the diagonal is */
+/* not referenced. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by ZHETRF. */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
+/* inverse could not be computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZHETRI", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Check that the diagonal matrix D is nonsingular. */
+
+ if (upper) {
+
+/* Upper triangular storage: examine D from bottom to top */
+
+ for (*info = *n; *info >= 1; --(*info)) {
+ i__1 = *info + *info * a_dim1;
+ if (ipiv[*info] > 0 && (a[i__1].r == 0. && a[i__1].i == 0.)) {
+ return 0;
+ }
+/* L10: */
+ }
+ } else {
+
+/* Lower triangular storage: examine D from top to bottom. */
+
+ i__1 = *n;
+ for (*info = 1; *info <= i__1; ++(*info)) {
+ i__2 = *info + *info * a_dim1;
+ if (ipiv[*info] > 0 && (a[i__2].r == 0. && a[i__2].i == 0.)) {
+ return 0;
+ }
+/* L20: */
+ }
+ }
+ *info = 0;
+
+ if (upper) {
+
+/* Compute inv(A) from the factorization A = U*D*U'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+L30:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L50;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ d__1 = 1. / a[i__2].r;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+
+/* Compute column K of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
+ &c_b2, &a[k * a_dim1 + 1], &c__1);
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
+ c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = z_abs(&a[k + (k + 1) * a_dim1]);
+ i__1 = k + k * a_dim1;
+ ak = a[i__1].r / t;
+ i__1 = k + 1 + (k + 1) * a_dim1;
+ akp1 = a[i__1].r / t;
+ i__1 = k + (k + 1) * a_dim1;
+ z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t;
+ akkp1.r = z__1.r, akkp1.i = z__1.i;
+ d__ = t * (ak * akp1 - 1.);
+ i__1 = k + k * a_dim1;
+ d__1 = akp1 / d__;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+ i__1 = k + 1 + (k + 1) * a_dim1;
+ d__1 = ak / d__;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+ i__1 = k + (k + 1) * a_dim1;
+ z__2.r = -akkp1.r, z__2.i = -akkp1.i;
+ z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+
+/* Compute columns K and K+1 of the inverse. */
+
+ if (k > 1) {
+ i__1 = k - 1;
+ zcopy_(&i__1, &a[k * a_dim1 + 1], &c__1, &work[1], &c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
+ &c_b2, &a[k * a_dim1 + 1], &c__1);
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k * a_dim1 + 1], &
+ c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = k + (k + 1) * a_dim1;
+ i__2 = k + (k + 1) * a_dim1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &a[k * a_dim1 + 1], &c__1, &a[(k + 1) *
+ a_dim1 + 1], &c__1);
+ z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = k - 1;
+ zcopy_(&i__1, &a[(k + 1) * a_dim1 + 1], &c__1, &work[1], &
+ c__1);
+ i__1 = k - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[a_offset], lda, &work[1], &c__1,
+ &c_b2, &a[(k + 1) * a_dim1 + 1], &c__1);
+ i__1 = k + 1 + (k + 1) * a_dim1;
+ i__2 = k + 1 + (k + 1) * a_dim1;
+ i__3 = k - 1;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[(k + 1) * a_dim1 + 1]
+, &c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ }
+ kstep = 2;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the leading */
+/* submatrix A(1:k+1,1:k+1) */
+
+ i__1 = kp - 1;
+ zswap_(&i__1, &a[k * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
+ c__1);
+ i__1 = k - 1;
+ for (j = kp + 1; j <= i__1; ++j) {
+ d_cnjg(&z__1, &a[j + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = j + k * a_dim1;
+ d_cnjg(&z__1, &a[kp + j * a_dim1]);
+ a[i__2].r = z__1.r, a[i__2].i = z__1.i;
+ i__2 = kp + j * a_dim1;
+ a[i__2].r = temp.r, a[i__2].i = temp.i;
+/* L40: */
+ }
+ i__1 = kp + k * a_dim1;
+ d_cnjg(&z__1, &a[kp + k * a_dim1]);
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = k + k * a_dim1;
+ temp.r = a[i__1].r, temp.i = a[i__1].i;
+ i__1 = k + k * a_dim1;
+ i__2 = kp + kp * a_dim1;
+ a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
+ i__1 = kp + kp * a_dim1;
+ a[i__1].r = temp.r, a[i__1].i = temp.i;
+ if (kstep == 2) {
+ i__1 = k + (k + 1) * a_dim1;
+ temp.r = a[i__1].r, temp.i = a[i__1].i;
+ i__1 = k + (k + 1) * a_dim1;
+ i__2 = kp + (k + 1) * a_dim1;
+ a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
+ i__1 = kp + (k + 1) * a_dim1;
+ a[i__1].r = temp.r, a[i__1].i = temp.i;
+ }
+ }
+
+ k += kstep;
+ goto L30;
+L50:
+
+ ;
+ } else {
+
+/* Compute inv(A) from the factorization A = L*D*L'. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = *n;
+L60:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L80;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Invert the diagonal block. */
+
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ d__1 = 1. / a[i__2].r;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+
+/* Compute column K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
+ &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
+ &c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ }
+ kstep = 1;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Invert the diagonal block. */
+
+ t = z_abs(&a[k + (k - 1) * a_dim1]);
+ i__1 = k - 1 + (k - 1) * a_dim1;
+ ak = a[i__1].r / t;
+ i__1 = k + k * a_dim1;
+ akp1 = a[i__1].r / t;
+ i__1 = k + (k - 1) * a_dim1;
+ z__1.r = a[i__1].r / t, z__1.i = a[i__1].i / t;
+ akkp1.r = z__1.r, akkp1.i = z__1.i;
+ d__ = t * (ak * akp1 - 1.);
+ i__1 = k - 1 + (k - 1) * a_dim1;
+ d__1 = akp1 / d__;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+ i__1 = k + k * a_dim1;
+ d__1 = ak / d__;
+ a[i__1].r = d__1, a[i__1].i = 0.;
+ i__1 = k + (k - 1) * a_dim1;
+ z__2.r = -akkp1.r, z__2.i = -akkp1.i;
+ z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+
+/* Compute columns K-1 and K of the inverse. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ zcopy_(&i__1, &a[k + 1 + k * a_dim1], &c__1, &work[1], &c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
+ &work[1], &c__1, &c_b2, &a[k + 1 + k * a_dim1], &c__1);
+ i__1 = k + k * a_dim1;
+ i__2 = k + k * a_dim1;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + k * a_dim1],
+ &c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = k + (k - 1) * a_dim1;
+ i__2 = k + (k - 1) * a_dim1;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &a[k + 1 + k * a_dim1], &c__1, &a[k + 1
+ + (k - 1) * a_dim1], &c__1);
+ z__1.r = a[i__2].r - z__2.r, z__1.i = a[i__2].i - z__2.i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = *n - k;
+ zcopy_(&i__1, &a[k + 1 + (k - 1) * a_dim1], &c__1, &work[1], &
+ c__1);
+ i__1 = *n - k;
+ z__1.r = -1., z__1.i = -0.;
+ zhemv_(uplo, &i__1, &z__1, &a[k + 1 + (k + 1) * a_dim1], lda,
+ &work[1], &c__1, &c_b2, &a[k + 1 + (k - 1) * a_dim1],
+ &c__1);
+ i__1 = k - 1 + (k - 1) * a_dim1;
+ i__2 = k - 1 + (k - 1) * a_dim1;
+ i__3 = *n - k;
+ zdotc_(&z__2, &i__3, &work[1], &c__1, &a[k + 1 + (k - 1) *
+ a_dim1], &c__1);
+ d__1 = z__2.r;
+ z__1.r = a[i__2].r - d__1, z__1.i = a[i__2].i;
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ }
+ kstep = 2;
+ }
+
+ kp = (i__1 = ipiv[k], abs(i__1));
+ if (kp != k) {
+
+/* Interchange rows and columns K and KP in the trailing */
+/* submatrix A(k-1:n,k-1:n) */
+
+ if (kp < *n) {
+ i__1 = *n - kp;
+ zswap_(&i__1, &a[kp + 1 + k * a_dim1], &c__1, &a[kp + 1 + kp *
+ a_dim1], &c__1);
+ }
+ i__1 = kp - 1;
+ for (j = k + 1; j <= i__1; ++j) {
+ d_cnjg(&z__1, &a[j + k * a_dim1]);
+ temp.r = z__1.r, temp.i = z__1.i;
+ i__2 = j + k * a_dim1;
+ d_cnjg(&z__1, &a[kp + j * a_dim1]);
+ a[i__2].r = z__1.r, a[i__2].i = z__1.i;
+ i__2 = kp + j * a_dim1;
+ a[i__2].r = temp.r, a[i__2].i = temp.i;
+/* L70: */
+ }
+ i__1 = kp + k * a_dim1;
+ d_cnjg(&z__1, &a[kp + k * a_dim1]);
+ a[i__1].r = z__1.r, a[i__1].i = z__1.i;
+ i__1 = k + k * a_dim1;
+ temp.r = a[i__1].r, temp.i = a[i__1].i;
+ i__1 = k + k * a_dim1;
+ i__2 = kp + kp * a_dim1;
+ a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
+ i__1 = kp + kp * a_dim1;
+ a[i__1].r = temp.r, a[i__1].i = temp.i;
+ if (kstep == 2) {
+ i__1 = k + (k - 1) * a_dim1;
+ temp.r = a[i__1].r, temp.i = a[i__1].i;
+ i__1 = k + (k - 1) * a_dim1;
+ i__2 = kp + (k - 1) * a_dim1;
+ a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
+ i__1 = kp + (k - 1) * a_dim1;
+ a[i__1].r = temp.r, a[i__1].i = temp.i;
+ }
+ }
+
+ k -= kstep;
+ goto L60;
+L80:
+ ;
+ }
+
+ return 0;
+
+/* End of ZHETRI */
+
+} /* zhetri_ */