diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhetrf.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhetrf.c')
-rw-r--r-- | contrib/libs/clapack/zhetrf.c | 336 |
1 files changed, 336 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhetrf.c b/contrib/libs/clapack/zhetrf.c new file mode 100644 index 0000000000..7fe29075a6 --- /dev/null +++ b/contrib/libs/clapack/zhetrf.c @@ -0,0 +1,336 @@ +/* zhetrf.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__2 = 2; + +/* Subroutine */ int zhetrf_(char *uplo, integer *n, doublecomplex *a, + integer *lda, integer *ipiv, doublecomplex *work, integer *lwork, + integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + + /* Local variables */ + integer j, k, kb, nb, iws; + extern logical lsame_(char *, char *); + integer nbmin, iinfo; + logical upper; + extern /* Subroutine */ int zhetf2_(char *, integer *, doublecomplex *, + integer *, integer *, integer *), zlahef_(char *, integer + *, integer *, integer *, doublecomplex *, integer *, integer *, + doublecomplex *, integer *, integer *), xerbla_(char *, + integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + integer ldwork, lwkopt; + logical lquery; + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHETRF computes the factorization of a complex Hermitian matrix A */ +/* using the Bunch-Kaufman diagonal pivoting method. The form of the */ +/* factorization is */ + +/* A = U*D*U**H or A = L*D*L**H */ + +/* where U (or L) is a product of permutation and unit upper (lower) */ +/* triangular matrices, and D is Hermitian and block diagonal with */ +/* 1-by-1 and 2-by-2 diagonal blocks. */ + +/* This is the blocked version of the algorithm, calling Level 3 BLAS. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ +/* N-by-N upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading N-by-N lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ + +/* On exit, the block diagonal matrix D and the multipliers used */ +/* to obtain the factor U or L (see below for further details). */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* IPIV (output) INTEGER array, dimension (N) */ +/* Details of the interchanges and the block structure of D. */ +/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */ +/* interchanged and D(k,k) is a 1-by-1 diagonal block. */ +/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */ +/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */ +/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */ +/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */ +/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of WORK. LWORK >=1. For best performance */ +/* LWORK >= N*NB, where NB is the block size returned by ILAENV. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */ +/* has been completed, but the block diagonal matrix D is */ +/* exactly singular, and division by zero will occur if it */ +/* is used to solve a system of equations. */ + +/* Further Details */ +/* =============== */ + +/* If UPLO = 'U', then A = U*D*U', where */ +/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */ +/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */ +/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ +/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ +/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */ +/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ + +/* ( I v 0 ) k-s */ +/* U(k) = ( 0 I 0 ) s */ +/* ( 0 0 I ) n-k */ +/* k-s s n-k */ + +/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */ +/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */ +/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */ + +/* If UPLO = 'L', then A = L*D*L', where */ +/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */ +/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */ +/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */ +/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */ +/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */ +/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */ + +/* ( I 0 0 ) k-1 */ +/* L(k) = ( 0 I 0 ) s */ +/* ( 0 v I ) n-k-s+1 */ +/* k-1 s n-k-s+1 */ + +/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */ +/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */ +/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */ + +/* ===================================================================== */ + +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --ipiv; + --work; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + lquery = *lwork == -1; + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } else if (*lwork < 1 && ! lquery) { + *info = -7; + } + + if (*info == 0) { + +/* Determine the block size */ + + nb = ilaenv_(&c__1, "ZHETRF", uplo, n, &c_n1, &c_n1, &c_n1); + lwkopt = *n * nb; + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZHETRF", &i__1); + return 0; + } else if (lquery) { + return 0; + } + + nbmin = 2; + ldwork = *n; + if (nb > 1 && nb < *n) { + iws = ldwork * nb; + if (*lwork < iws) { +/* Computing MAX */ + i__1 = *lwork / ldwork; + nb = max(i__1,1); +/* Computing MAX */ + i__1 = 2, i__2 = ilaenv_(&c__2, "ZHETRF", uplo, n, &c_n1, &c_n1, & + c_n1); + nbmin = max(i__1,i__2); + } + } else { + iws = 1; + } + if (nb < nbmin) { + nb = *n; + } + + if (upper) { + +/* Factorize A as U*D*U' using the upper triangle of A */ + +/* K is the main loop index, decreasing from N to 1 in steps of */ +/* KB, where KB is the number of columns factorized by ZLAHEF; */ +/* KB is either NB or NB-1, or K for the last block */ + + k = *n; +L10: + +/* If K < 1, exit from loop */ + + if (k < 1) { + goto L40; + } + + if (k > nb) { + +/* Factorize columns k-kb+1:k of A and use blocked code to */ +/* update columns 1:k-kb */ + + zlahef_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1], + n, &iinfo); + } else { + +/* Use unblocked code to factorize columns 1:k of A */ + + zhetf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo); + kb = k; + } + +/* Set INFO on the first occurrence of a zero pivot */ + + if (*info == 0 && iinfo > 0) { + *info = iinfo; + } + +/* Decrease K and return to the start of the main loop */ + + k -= kb; + goto L10; + + } else { + +/* Factorize A as L*D*L' using the lower triangle of A */ + +/* K is the main loop index, increasing from 1 to N in steps of */ +/* KB, where KB is the number of columns factorized by ZLAHEF; */ +/* KB is either NB or NB-1, or N-K+1 for the last block */ + + k = 1; +L20: + +/* If K > N, exit from loop */ + + if (k > *n) { + goto L40; + } + + if (k <= *n - nb) { + +/* Factorize columns k:k+kb-1 of A and use blocked code to */ +/* update columns k+kb:n */ + + i__1 = *n - k + 1; + zlahef_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k], + &work[1], n, &iinfo); + } else { + +/* Use unblocked code to factorize columns k:n of A */ + + i__1 = *n - k + 1; + zhetf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo); + kb = *n - k + 1; + } + +/* Set INFO on the first occurrence of a zero pivot */ + + if (*info == 0 && iinfo > 0) { + *info = iinfo + k - 1; + } + +/* Adjust IPIV */ + + i__1 = k + kb - 1; + for (j = k; j <= i__1; ++j) { + if (ipiv[j] > 0) { + ipiv[j] = ipiv[j] + k - 1; + } else { + ipiv[j] = ipiv[j] - k + 1; + } +/* L30: */ + } + +/* Increase K and return to the start of the main loop */ + + k += kb; + goto L20; + + } + +L40: + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + return 0; + +/* End of ZHETRF */ + +} /* zhetrf_ */ |