aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zhetrf.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zhetrf.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zhetrf.c')
-rw-r--r--contrib/libs/clapack/zhetrf.c336
1 files changed, 336 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zhetrf.c b/contrib/libs/clapack/zhetrf.c
new file mode 100644
index 0000000000..7fe29075a6
--- /dev/null
+++ b/contrib/libs/clapack/zhetrf.c
@@ -0,0 +1,336 @@
+/* zhetrf.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__2 = 2;
+
+/* Subroutine */ int zhetrf_(char *uplo, integer *n, doublecomplex *a,
+ integer *lda, integer *ipiv, doublecomplex *work, integer *lwork,
+ integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2;
+
+ /* Local variables */
+ integer j, k, kb, nb, iws;
+ extern logical lsame_(char *, char *);
+ integer nbmin, iinfo;
+ logical upper;
+ extern /* Subroutine */ int zhetf2_(char *, integer *, doublecomplex *,
+ integer *, integer *, integer *), zlahef_(char *, integer
+ *, integer *, integer *, doublecomplex *, integer *, integer *,
+ doublecomplex *, integer *, integer *), xerbla_(char *,
+ integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ integer ldwork, lwkopt;
+ logical lquery;
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHETRF computes the factorization of a complex Hermitian matrix A */
+/* using the Bunch-Kaufman diagonal pivoting method. The form of the */
+/* factorization is */
+
+/* A = U*D*U**H or A = L*D*L**H */
+
+/* where U (or L) is a product of permutation and unit upper (lower) */
+/* triangular matrices, and D is Hermitian and block diagonal with */
+/* 1-by-1 and 2-by-2 diagonal blocks. */
+
+/* This is the blocked version of the algorithm, calling Level 3 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
+/* N-by-N upper triangular part of A contains the upper */
+/* triangular part of the matrix A, and the strictly lower */
+/* triangular part of A is not referenced. If UPLO = 'L', the */
+/* leading N-by-N lower triangular part of A contains the lower */
+/* triangular part of the matrix A, and the strictly upper */
+/* triangular part of A is not referenced. */
+
+/* On exit, the block diagonal matrix D and the multipliers used */
+/* to obtain the factor U or L (see below for further details). */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (output) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D. */
+/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
+/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
+/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
+/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
+/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
+/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
+/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of WORK. LWORK >=1. For best performance */
+/* LWORK >= N*NB, where NB is the block size returned by ILAENV. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
+/* has been completed, but the block diagonal matrix D is */
+/* exactly singular, and division by zero will occur if it */
+/* is used to solve a system of equations. */
+
+/* Further Details */
+/* =============== */
+
+/* If UPLO = 'U', then A = U*D*U', where */
+/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
+/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
+/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I v 0 ) k-s */
+/* U(k) = ( 0 I 0 ) s */
+/* ( 0 0 I ) n-k */
+/* k-s s n-k */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
+/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
+/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
+
+/* If UPLO = 'L', then A = L*D*L', where */
+/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
+/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
+/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
+/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
+/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
+/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
+
+/* ( I 0 0 ) k-1 */
+/* L(k) = ( 0 I 0 ) s */
+/* ( 0 v I ) n-k-s+1 */
+/* k-1 s n-k-s+1 */
+
+/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
+/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
+/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1;
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ } else if (*lwork < 1 && ! lquery) {
+ *info = -7;
+ }
+
+ if (*info == 0) {
+
+/* Determine the block size */
+
+ nb = ilaenv_(&c__1, "ZHETRF", uplo, n, &c_n1, &c_n1, &c_n1);
+ lwkopt = *n * nb;
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZHETRF", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = *n;
+ if (nb > 1 && nb < *n) {
+ iws = ldwork * nb;
+ if (*lwork < iws) {
+/* Computing MAX */
+ i__1 = *lwork / ldwork;
+ nb = max(i__1,1);
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "ZHETRF", uplo, n, &c_n1, &c_n1, &
+ c_n1);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = 1;
+ }
+ if (nb < nbmin) {
+ nb = *n;
+ }
+
+ if (upper) {
+
+/* Factorize A as U*D*U' using the upper triangle of A */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* KB, where KB is the number of columns factorized by ZLAHEF; */
+/* KB is either NB or NB-1, or K for the last block */
+
+ k = *n;
+L10:
+
+/* If K < 1, exit from loop */
+
+ if (k < 1) {
+ goto L40;
+ }
+
+ if (k > nb) {
+
+/* Factorize columns k-kb+1:k of A and use blocked code to */
+/* update columns 1:k-kb */
+
+ zlahef_(uplo, &k, &nb, &kb, &a[a_offset], lda, &ipiv[1], &work[1],
+ n, &iinfo);
+ } else {
+
+/* Use unblocked code to factorize columns 1:k of A */
+
+ zhetf2_(uplo, &k, &a[a_offset], lda, &ipiv[1], &iinfo);
+ kb = k;
+ }
+
+/* Set INFO on the first occurrence of a zero pivot */
+
+ if (*info == 0 && iinfo > 0) {
+ *info = iinfo;
+ }
+
+/* Decrease K and return to the start of the main loop */
+
+ k -= kb;
+ goto L10;
+
+ } else {
+
+/* Factorize A as L*D*L' using the lower triangle of A */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* KB, where KB is the number of columns factorized by ZLAHEF; */
+/* KB is either NB or NB-1, or N-K+1 for the last block */
+
+ k = 1;
+L20:
+
+/* If K > N, exit from loop */
+
+ if (k > *n) {
+ goto L40;
+ }
+
+ if (k <= *n - nb) {
+
+/* Factorize columns k:k+kb-1 of A and use blocked code to */
+/* update columns k+kb:n */
+
+ i__1 = *n - k + 1;
+ zlahef_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &ipiv[k],
+ &work[1], n, &iinfo);
+ } else {
+
+/* Use unblocked code to factorize columns k:n of A */
+
+ i__1 = *n - k + 1;
+ zhetf2_(uplo, &i__1, &a[k + k * a_dim1], lda, &ipiv[k], &iinfo);
+ kb = *n - k + 1;
+ }
+
+/* Set INFO on the first occurrence of a zero pivot */
+
+ if (*info == 0 && iinfo > 0) {
+ *info = iinfo + k - 1;
+ }
+
+/* Adjust IPIV */
+
+ i__1 = k + kb - 1;
+ for (j = k; j <= i__1; ++j) {
+ if (ipiv[j] > 0) {
+ ipiv[j] = ipiv[j] + k - 1;
+ } else {
+ ipiv[j] = ipiv[j] - k + 1;
+ }
+/* L30: */
+ }
+
+/* Increase K and return to the start of the main loop */
+
+ k += kb;
+ goto L20;
+
+ }
+
+L40:
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ return 0;
+
+/* End of ZHETRF */
+
+} /* zhetrf_ */