diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zheevd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zheevd.c')
-rw-r--r-- | contrib/libs/clapack/zheevd.c | 382 |
1 files changed, 382 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zheevd.c b/contrib/libs/clapack/zheevd.c new file mode 100644 index 0000000000..cf766e45e2 --- /dev/null +++ b/contrib/libs/clapack/zheevd.c @@ -0,0 +1,382 @@ +/* zheevd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static integer c__0 = 0; +static doublereal c_b18 = 1.; + +/* Subroutine */ int zheevd_(char *jobz, char *uplo, integer *n, + doublecomplex *a, integer *lda, doublereal *w, doublecomplex *work, + integer *lwork, doublereal *rwork, integer *lrwork, integer *iwork, + integer *liwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2; + doublereal d__1; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + doublereal eps; + integer inde; + doublereal anrm; + integer imax; + doublereal rmin, rmax; + integer lopt; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *); + doublereal sigma; + extern logical lsame_(char *, char *); + integer iinfo, lwmin, liopt; + logical lower; + integer llrwk, lropt; + logical wantz; + integer indwk2, llwrk2; + extern doublereal dlamch_(char *); + integer iscale; + doublereal safmin; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal bignum; + extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *, + integer *, doublereal *); + integer indtau; + extern /* Subroutine */ int dsterf_(integer *, doublereal *, doublereal *, + integer *), zlascl_(char *, integer *, integer *, doublereal *, + doublereal *, integer *, integer *, doublecomplex *, integer *, + integer *), zstedc_(char *, integer *, doublereal *, + doublereal *, doublecomplex *, integer *, doublecomplex *, + integer *, doublereal *, integer *, integer *, integer *, integer + *); + integer indrwk, indwrk, liwmin; + extern /* Subroutine */ int zhetrd_(char *, integer *, doublecomplex *, + integer *, doublereal *, doublereal *, doublecomplex *, + doublecomplex *, integer *, integer *), zlacpy_(char *, + integer *, integer *, doublecomplex *, integer *, doublecomplex *, + integer *); + integer lrwmin, llwork; + doublereal smlnum; + logical lquery; + extern /* Subroutine */ int zunmtr_(char *, char *, char *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a */ +/* complex Hermitian matrix A. If eigenvectors are desired, it uses a */ +/* divide and conquer algorithm. */ + +/* The divide and conquer algorithm makes very mild assumptions about */ +/* floating point arithmetic. It will work on machines with a guard */ +/* digit in add/subtract, or on those binary machines without guard */ +/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */ +/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */ +/* without guard digits, but we know of none. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of A contains the */ +/* upper triangular part of the matrix A. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of A contains */ +/* the lower triangular part of the matrix A. */ +/* On exit, if JOBZ = 'V', then if INFO = 0, A contains the */ +/* orthonormal eigenvectors of the matrix A. */ +/* If JOBZ = 'N', then on exit the lower triangle (if UPLO='L') */ +/* or the upper triangle (if UPLO='U') of A, including the */ +/* diagonal, is destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* W (output) DOUBLE PRECISION array, dimension (N) */ +/* If INFO = 0, the eigenvalues in ascending order. */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of the array WORK. */ +/* If N <= 1, LWORK must be at least 1. */ +/* If JOBZ = 'N' and N > 1, LWORK must be at least N + 1. */ +/* If JOBZ = 'V' and N > 1, LWORK must be at least 2*N + N**2. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal sizes of the WORK, RWORK and */ +/* IWORK arrays, returns these values as the first entries of */ +/* the WORK, RWORK and IWORK arrays, and no error message */ +/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ + +/* RWORK (workspace/output) DOUBLE PRECISION array, */ +/* dimension (LRWORK) */ +/* On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */ + +/* LRWORK (input) INTEGER */ +/* The dimension of the array RWORK. */ +/* If N <= 1, LRWORK must be at least 1. */ +/* If JOBZ = 'N' and N > 1, LRWORK must be at least N. */ +/* If JOBZ = 'V' and N > 1, LRWORK must be at least */ +/* 1 + 5*N + 2*N**2. */ + +/* If LRWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates the optimal sizes of the WORK, RWORK */ +/* and IWORK arrays, returns these values as the first entries */ +/* of the WORK, RWORK and IWORK arrays, and no error message */ +/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ + +/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */ +/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */ + +/* LIWORK (input) INTEGER */ +/* The dimension of the array IWORK. */ +/* If N <= 1, LIWORK must be at least 1. */ +/* If JOBZ = 'N' and N > 1, LIWORK must be at least 1. */ +/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */ + +/* If LIWORK = -1, then a workspace query is assumed; the */ +/* routine only calculates the optimal sizes of the WORK, RWORK */ +/* and IWORK arrays, returns these values as the first entries */ +/* of the WORK, RWORK and IWORK arrays, and no error message */ +/* related to LWORK or LRWORK or LIWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i and JOBZ = 'N', then the algorithm failed */ +/* to converge; i off-diagonal elements of an intermediate */ +/* tridiagonal form did not converge to zero; */ +/* if INFO = i and JOBZ = 'V', then the algorithm failed */ +/* to compute an eigenvalue while working on the submatrix */ +/* lying in rows and columns INFO/(N+1) through */ +/* mod(INFO,N+1). */ + +/* Further Details */ +/* =============== */ + +/* Based on contributions by */ +/* Jeff Rutter, Computer Science Division, University of California */ +/* at Berkeley, USA */ + +/* Modified description of INFO. Sven, 16 Feb 05. */ +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + --work; + --rwork; + --iwork; + + /* Function Body */ + wantz = lsame_(jobz, "V"); + lower = lsame_(uplo, "L"); + lquery = *lwork == -1 || *lrwork == -1 || *liwork == -1; + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } + + if (*info == 0) { + if (*n <= 1) { + lwmin = 1; + lrwmin = 1; + liwmin = 1; + lopt = lwmin; + lropt = lrwmin; + liopt = liwmin; + } else { + if (wantz) { + lwmin = (*n << 1) + *n * *n; +/* Computing 2nd power */ + i__1 = *n; + lrwmin = *n * 5 + 1 + (i__1 * i__1 << 1); + liwmin = *n * 5 + 3; + } else { + lwmin = *n + 1; + lrwmin = *n; + liwmin = 1; + } +/* Computing MAX */ + i__1 = lwmin, i__2 = *n + ilaenv_(&c__1, "ZHETRD", uplo, n, &c_n1, + &c_n1, &c_n1); + lopt = max(i__1,i__2); + lropt = lrwmin; + liopt = liwmin; + } + work[1].r = (doublereal) lopt, work[1].i = 0.; + rwork[1] = (doublereal) lropt; + iwork[1] = liopt; + + if (*lwork < lwmin && ! lquery) { + *info = -8; + } else if (*lrwork < lrwmin && ! lquery) { + *info = -10; + } else if (*liwork < liwmin && ! lquery) { + *info = -12; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZHEEVD", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (*n == 1) { + i__1 = a_dim1 + 1; + w[1] = a[i__1].r; + if (wantz) { + i__1 = a_dim1 + 1; + a[i__1].r = 1., a[i__1].i = 0.; + } + return 0; + } + +/* Get machine constants. */ + + safmin = dlamch_("Safe minimum"); + eps = dlamch_("Precision"); + smlnum = safmin / eps; + bignum = 1. / smlnum; + rmin = sqrt(smlnum); + rmax = sqrt(bignum); + +/* Scale matrix to allowable range, if necessary. */ + + anrm = zlanhe_("M", uplo, n, &a[a_offset], lda, &rwork[1]); + iscale = 0; + if (anrm > 0. && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + zlascl_(uplo, &c__0, &c__0, &c_b18, &sigma, n, n, &a[a_offset], lda, + info); + } + +/* Call ZHETRD to reduce Hermitian matrix to tridiagonal form. */ + + inde = 1; + indtau = 1; + indwrk = indtau + *n; + indrwk = inde + *n; + indwk2 = indwrk + *n * *n; + llwork = *lwork - indwrk + 1; + llwrk2 = *lwork - indwk2 + 1; + llrwk = *lrwork - indrwk + 1; + zhetrd_(uplo, n, &a[a_offset], lda, &w[1], &rwork[inde], &work[indtau], & + work[indwrk], &llwork, &iinfo); + +/* For eigenvalues only, call DSTERF. For eigenvectors, first call */ +/* ZSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */ +/* tridiagonal matrix, then call ZUNMTR to multiply it to the */ +/* Householder transformations represented as Householder vectors in */ +/* A. */ + + if (! wantz) { + dsterf_(n, &w[1], &rwork[inde], info); + } else { + zstedc_("I", n, &w[1], &rwork[inde], &work[indwrk], n, &work[indwk2], + &llwrk2, &rwork[indrwk], &llrwk, &iwork[1], liwork, info); + zunmtr_("L", uplo, "N", n, n, &a[a_offset], lda, &work[indtau], &work[ + indwrk], n, &work[indwk2], &llwrk2, &iinfo); + zlacpy_("A", n, n, &work[indwrk], n, &a[a_offset], lda); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + + if (iscale == 1) { + if (*info == 0) { + imax = *n; + } else { + imax = *info - 1; + } + d__1 = 1. / sigma; + dscal_(&imax, &d__1, &w[1], &c__1); + } + + work[1].r = (doublereal) lopt, work[1].i = 0.; + rwork[1] = (doublereal) lropt; + iwork[1] = liopt; + + return 0; + +/* End of ZHEEVD */ + +} /* zheevd_ */ |