aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgtsvx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgtsvx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgtsvx.c')
-rw-r--r--contrib/libs/clapack/zgtsvx.c353
1 files changed, 353 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgtsvx.c b/contrib/libs/clapack/zgtsvx.c
new file mode 100644
index 0000000000..aeffccd5ec
--- /dev/null
+++ b/contrib/libs/clapack/zgtsvx.c
@@ -0,0 +1,353 @@
+/* zgtsvx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int zgtsvx_(char *fact, char *trans, integer *n, integer *
+ nrhs, doublecomplex *dl, doublecomplex *d__, doublecomplex *du,
+ doublecomplex *dlf, doublecomplex *df, doublecomplex *duf,
+ doublecomplex *du2, integer *ipiv, doublecomplex *b, integer *ldb,
+ doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr,
+ doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
+ info)
+{
+ /* System generated locals */
+ integer b_dim1, b_offset, x_dim1, x_offset, i__1;
+
+ /* Local variables */
+ char norm[1];
+ extern logical lsame_(char *, char *);
+ doublereal anorm;
+ extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *);
+ extern doublereal dlamch_(char *);
+ logical nofact;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern doublereal zlangt_(char *, integer *, doublecomplex *,
+ doublecomplex *, doublecomplex *);
+ logical notran;
+ extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *),
+ zgtcon_(char *, integer *, doublecomplex *, doublecomplex *,
+ doublecomplex *, doublecomplex *, integer *, doublereal *,
+ doublereal *, doublecomplex *, integer *), zgtrfs_(char *,
+ integer *, integer *, doublecomplex *, doublecomplex *,
+ doublecomplex *, doublecomplex *, doublecomplex *, doublecomplex *
+, doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublereal *, doublereal *,
+ doublecomplex *, doublereal *, integer *), zgttrf_(
+ integer *, doublecomplex *, doublecomplex *, doublecomplex *,
+ doublecomplex *, integer *, integer *), zgttrs_(char *, integer *,
+ integer *, doublecomplex *, doublecomplex *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGTSVX uses the LU factorization to compute the solution to a complex */
+/* system of linear equations A * X = B, A**T * X = B, or A**H * X = B, */
+/* where A is a tridiagonal matrix of order N and X and B are N-by-NRHS */
+/* matrices. */
+
+/* Error bounds on the solution and a condition estimate are also */
+/* provided. */
+
+/* Description */
+/* =========== */
+
+/* The following steps are performed: */
+
+/* 1. If FACT = 'N', the LU decomposition is used to factor the matrix A */
+/* as A = L * U, where L is a product of permutation and unit lower */
+/* bidiagonal matrices and U is upper triangular with nonzeros in */
+/* only the main diagonal and first two superdiagonals. */
+
+/* 2. If some U(i,i)=0, so that U is exactly singular, then the routine */
+/* returns with INFO = i. Otherwise, the factored form of A is used */
+/* to estimate the condition number of the matrix A. If the */
+/* reciprocal of the condition number is less than machine precision, */
+/* INFO = N+1 is returned as a warning, but the routine still goes on */
+/* to solve for X and compute error bounds as described below. */
+
+/* 3. The system of equations is solved for X using the factored form */
+/* of A. */
+
+/* 4. Iterative refinement is applied to improve the computed solution */
+/* matrix and calculate error bounds and backward error estimates */
+/* for it. */
+
+/* Arguments */
+/* ========= */
+
+/* FACT (input) CHARACTER*1 */
+/* Specifies whether or not the factored form of A has been */
+/* supplied on entry. */
+/* = 'F': DLF, DF, DUF, DU2, and IPIV contain the factored form */
+/* of A; DL, D, DU, DLF, DF, DUF, DU2 and IPIV will not */
+/* be modified. */
+/* = 'N': The matrix will be copied to DLF, DF, and DUF */
+/* and factored. */
+
+/* TRANS (input) CHARACTER*1 */
+/* Specifies the form of the system of equations: */
+/* = 'N': A * X = B (No transpose) */
+/* = 'T': A**T * X = B (Transpose) */
+/* = 'C': A**H * X = B (Conjugate transpose) */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* DL (input) COMPLEX*16 array, dimension (N-1) */
+/* The (n-1) subdiagonal elements of A. */
+
+/* D (input) COMPLEX*16 array, dimension (N) */
+/* The n diagonal elements of A. */
+
+/* DU (input) COMPLEX*16 array, dimension (N-1) */
+/* The (n-1) superdiagonal elements of A. */
+
+/* DLF (input or output) COMPLEX*16 array, dimension (N-1) */
+/* If FACT = 'F', then DLF is an input argument and on entry */
+/* contains the (n-1) multipliers that define the matrix L from */
+/* the LU factorization of A as computed by ZGTTRF. */
+
+/* If FACT = 'N', then DLF is an output argument and on exit */
+/* contains the (n-1) multipliers that define the matrix L from */
+/* the LU factorization of A. */
+
+/* DF (input or output) COMPLEX*16 array, dimension (N) */
+/* If FACT = 'F', then DF is an input argument and on entry */
+/* contains the n diagonal elements of the upper triangular */
+/* matrix U from the LU factorization of A. */
+
+/* If FACT = 'N', then DF is an output argument and on exit */
+/* contains the n diagonal elements of the upper triangular */
+/* matrix U from the LU factorization of A. */
+
+/* DUF (input or output) COMPLEX*16 array, dimension (N-1) */
+/* If FACT = 'F', then DUF is an input argument and on entry */
+/* contains the (n-1) elements of the first superdiagonal of U. */
+
+/* If FACT = 'N', then DUF is an output argument and on exit */
+/* contains the (n-1) elements of the first superdiagonal of U. */
+
+/* DU2 (input or output) COMPLEX*16 array, dimension (N-2) */
+/* If FACT = 'F', then DU2 is an input argument and on entry */
+/* contains the (n-2) elements of the second superdiagonal of */
+/* U. */
+
+/* If FACT = 'N', then DU2 is an output argument and on exit */
+/* contains the (n-2) elements of the second superdiagonal of */
+/* U. */
+
+/* IPIV (input or output) INTEGER array, dimension (N) */
+/* If FACT = 'F', then IPIV is an input argument and on entry */
+/* contains the pivot indices from the LU factorization of A as */
+/* computed by ZGTTRF. */
+
+/* If FACT = 'N', then IPIV is an output argument and on exit */
+/* contains the pivot indices from the LU factorization of A; */
+/* row i of the matrix was interchanged with row IPIV(i). */
+/* IPIV(i) will always be either i or i+1; IPIV(i) = i indicates */
+/* a row interchange was not required. */
+
+/* B (input) COMPLEX*16 array, dimension (LDB,NRHS) */
+/* The N-by-NRHS right hand side matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* X (output) COMPLEX*16 array, dimension (LDX,NRHS) */
+/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of the array X. LDX >= max(1,N). */
+
+/* RCOND (output) DOUBLE PRECISION */
+/* The estimate of the reciprocal condition number of the matrix */
+/* A. If RCOND is less than the machine precision (in */
+/* particular, if RCOND = 0), the matrix is singular to working */
+/* precision. This condition is indicated by a return code of */
+/* INFO > 0. */
+
+/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The estimated forward error bound for each solution vector */
+/* X(j) (the j-th column of the solution matrix X). */
+/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
+/* is an estimated upper bound for the magnitude of the largest */
+/* element in (X(j) - XTRUE) divided by the magnitude of the */
+/* largest element in X(j). The estimate is as reliable as */
+/* the estimate for RCOND, and is almost always a slight */
+/* overestimate of the true error. */
+
+/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
+/* The componentwise relative backward error of each solution */
+/* vector X(j) (i.e., the smallest relative change in */
+/* any element of A or B that makes X(j) an exact solution). */
+
+/* WORK (workspace) COMPLEX*16 array, dimension (2*N) */
+
+/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, and i is */
+/* <= N: U(i,i) is exactly zero. The factorization */
+/* has not been completed unless i = N, but the */
+/* factor U is exactly singular, so the solution */
+/* and error bounds could not be computed. */
+/* RCOND = 0 is returned. */
+/* = N+1: U is nonsingular, but RCOND is less than machine */
+/* precision, meaning that the matrix is singular */
+/* to working precision. Nevertheless, the */
+/* solution and error bounds are computed because */
+/* there are a number of situations where the */
+/* computed solution can be more accurate than the */
+/* value of RCOND would suggest. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ --dl;
+ --d__;
+ --du;
+ --dlf;
+ --df;
+ --duf;
+ --du2;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+ --ferr;
+ --berr;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ *info = 0;
+ nofact = lsame_(fact, "N");
+ notran = lsame_(trans, "N");
+ if (! nofact && ! lsame_(fact, "F")) {
+ *info = -1;
+ } else if (! notran && ! lsame_(trans, "T") && !
+ lsame_(trans, "C")) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*ldb < max(1,*n)) {
+ *info = -14;
+ } else if (*ldx < max(1,*n)) {
+ *info = -16;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGTSVX", &i__1);
+ return 0;
+ }
+
+ if (nofact) {
+
+/* Compute the LU factorization of A. */
+
+ zcopy_(n, &d__[1], &c__1, &df[1], &c__1);
+ if (*n > 1) {
+ i__1 = *n - 1;
+ zcopy_(&i__1, &dl[1], &c__1, &dlf[1], &c__1);
+ i__1 = *n - 1;
+ zcopy_(&i__1, &du[1], &c__1, &duf[1], &c__1);
+ }
+ zgttrf_(n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], info);
+
+/* Return if INFO is non-zero. */
+
+ if (*info > 0) {
+ *rcond = 0.;
+ return 0;
+ }
+ }
+
+/* Compute the norm of the matrix A. */
+
+ if (notran) {
+ *(unsigned char *)norm = '1';
+ } else {
+ *(unsigned char *)norm = 'I';
+ }
+ anorm = zlangt_(norm, n, &dl[1], &d__[1], &du[1]);
+
+/* Compute the reciprocal of the condition number of A. */
+
+ zgtcon_(norm, n, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &anorm,
+ rcond, &work[1], info);
+
+/* Compute the solution vectors X. */
+
+ zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
+ zgttrs_(trans, n, nrhs, &dlf[1], &df[1], &duf[1], &du2[1], &ipiv[1], &x[
+ x_offset], ldx, info);
+
+/* Use iterative refinement to improve the computed solutions and */
+/* compute error bounds and backward error estimates for them. */
+
+ zgtrfs_(trans, n, nrhs, &dl[1], &d__[1], &du[1], &dlf[1], &df[1], &duf[1],
+ &du2[1], &ipiv[1], &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1]
+, &berr[1], &work[1], &rwork[1], info);
+
+/* Set INFO = N+1 if the matrix is singular to working precision. */
+
+ if (*rcond < dlamch_("Epsilon")) {
+ *info = *n + 1;
+ }
+
+ return 0;
+
+/* End of ZGTSVX */
+
+} /* zgtsvx_ */