diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgghrd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgghrd.c')
-rw-r--r-- | contrib/libs/clapack/zgghrd.c | 336 |
1 files changed, 336 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgghrd.c b/contrib/libs/clapack/zgghrd.c new file mode 100644 index 0000000000..6ad8eb9533 --- /dev/null +++ b/contrib/libs/clapack/zgghrd.c @@ -0,0 +1,336 @@ +/* zgghrd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {1.,0.}; +static doublecomplex c_b2 = {0.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zgghrd_(char *compq, char *compz, integer *n, integer * + ilo, integer *ihi, doublecomplex *a, integer *lda, doublecomplex *b, + integer *ldb, doublecomplex *q, integer *ldq, doublecomplex *z__, + integer *ldz, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, + z_offset, i__1, i__2, i__3; + doublecomplex z__1; + + /* Builtin functions */ + void d_cnjg(doublecomplex *, doublecomplex *); + + /* Local variables */ + doublereal c__; + doublecomplex s; + logical ilq, ilz; + integer jcol, jrow; + extern /* Subroutine */ int zrot_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *, doublereal *, doublecomplex *); + extern logical lsame_(char *, char *); + doublecomplex ctemp; + extern /* Subroutine */ int xerbla_(char *, integer *); + integer icompq, icompz; + extern /* Subroutine */ int zlaset_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, + doublecomplex *, doublecomplex *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZGGHRD reduces a pair of complex matrices (A,B) to generalized upper */ +/* Hessenberg form using unitary transformations, where A is a */ +/* general matrix and B is upper triangular. The form of the */ +/* generalized eigenvalue problem is */ +/* A*x = lambda*B*x, */ +/* and B is typically made upper triangular by computing its QR */ +/* factorization and moving the unitary matrix Q to the left side */ +/* of the equation. */ + +/* This subroutine simultaneously reduces A to a Hessenberg matrix H: */ +/* Q**H*A*Z = H */ +/* and transforms B to another upper triangular matrix T: */ +/* Q**H*B*Z = T */ +/* in order to reduce the problem to its standard form */ +/* H*y = lambda*T*y */ +/* where y = Z**H*x. */ + +/* The unitary matrices Q and Z are determined as products of Givens */ +/* rotations. They may either be formed explicitly, or they may be */ +/* postmultiplied into input matrices Q1 and Z1, so that */ +/* Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H */ +/* Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H */ +/* If Q1 is the unitary matrix from the QR factorization of B in the */ +/* original equation A*x = lambda*B*x, then ZGGHRD reduces the original */ +/* problem to generalized Hessenberg form. */ + +/* Arguments */ +/* ========= */ + +/* COMPQ (input) CHARACTER*1 */ +/* = 'N': do not compute Q; */ +/* = 'I': Q is initialized to the unit matrix, and the */ +/* unitary matrix Q is returned; */ +/* = 'V': Q must contain a unitary matrix Q1 on entry, */ +/* and the product Q1*Q is returned. */ + +/* COMPZ (input) CHARACTER*1 */ +/* = 'N': do not compute Q; */ +/* = 'I': Q is initialized to the unit matrix, and the */ +/* unitary matrix Q is returned; */ +/* = 'V': Q must contain a unitary matrix Q1 on entry, */ +/* and the product Q1*Q is returned. */ + +/* N (input) INTEGER */ +/* The order of the matrices A and B. N >= 0. */ + +/* ILO (input) INTEGER */ +/* IHI (input) INTEGER */ +/* ILO and IHI mark the rows and columns of A which are to be */ +/* reduced. It is assumed that A is already upper triangular */ +/* in rows and columns 1:ILO-1 and IHI+1:N. ILO and IHI are */ +/* normally set by a previous call to ZGGBAL; otherwise they */ +/* should be set to 1 and N respectively. */ +/* 1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ +/* On entry, the N-by-N general matrix to be reduced. */ +/* On exit, the upper triangle and the first subdiagonal of A */ +/* are overwritten with the upper Hessenberg matrix H, and the */ +/* rest is set to zero. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* B (input/output) COMPLEX*16 array, dimension (LDB, N) */ +/* On entry, the N-by-N upper triangular matrix B. */ +/* On exit, the upper triangular matrix T = Q**H B Z. The */ +/* elements below the diagonal are set to zero. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* Q (input/output) COMPLEX*16 array, dimension (LDQ, N) */ +/* On entry, if COMPQ = 'V', the unitary matrix Q1, typically */ +/* from the QR factorization of B. */ +/* On exit, if COMPQ='I', the unitary matrix Q, and if */ +/* COMPQ = 'V', the product Q1*Q. */ +/* Not referenced if COMPQ='N'. */ + +/* LDQ (input) INTEGER */ +/* The leading dimension of the array Q. */ +/* LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise. */ + +/* Z (input/output) COMPLEX*16 array, dimension (LDZ, N) */ +/* On entry, if COMPZ = 'V', the unitary matrix Z1. */ +/* On exit, if COMPZ='I', the unitary matrix Z, and if */ +/* COMPZ = 'V', the product Z1*Z. */ +/* Not referenced if COMPZ='N'. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. */ +/* LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit. */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ + +/* Further Details */ +/* =============== */ + +/* This routine reduces A to Hessenberg and B to triangular form by */ +/* an unblocked reduction, as described in _Matrix_Computations_, */ +/* by Golub and van Loan (Johns Hopkins Press). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode COMPQ */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + q_dim1 = *ldq; + q_offset = 1 + q_dim1; + q -= q_offset; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + + /* Function Body */ + if (lsame_(compq, "N")) { + ilq = FALSE_; + icompq = 1; + } else if (lsame_(compq, "V")) { + ilq = TRUE_; + icompq = 2; + } else if (lsame_(compq, "I")) { + ilq = TRUE_; + icompq = 3; + } else { + icompq = 0; + } + +/* Decode COMPZ */ + + if (lsame_(compz, "N")) { + ilz = FALSE_; + icompz = 1; + } else if (lsame_(compz, "V")) { + ilz = TRUE_; + icompz = 2; + } else if (lsame_(compz, "I")) { + ilz = TRUE_; + icompz = 3; + } else { + icompz = 0; + } + +/* Test the input parameters. */ + + *info = 0; + if (icompq <= 0) { + *info = -1; + } else if (icompz <= 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*ilo < 1) { + *info = -4; + } else if (*ihi > *n || *ihi < *ilo - 1) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } else if (*ldb < max(1,*n)) { + *info = -9; + } else if (ilq && *ldq < *n || *ldq < 1) { + *info = -11; + } else if (ilz && *ldz < *n || *ldz < 1) { + *info = -13; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZGGHRD", &i__1); + return 0; + } + +/* Initialize Q and Z if desired. */ + + if (icompq == 3) { + zlaset_("Full", n, n, &c_b2, &c_b1, &q[q_offset], ldq); + } + if (icompz == 3) { + zlaset_("Full", n, n, &c_b2, &c_b1, &z__[z_offset], ldz); + } + +/* Quick return if possible */ + + if (*n <= 1) { + return 0; + } + +/* Zero out lower triangle of B */ + + i__1 = *n - 1; + for (jcol = 1; jcol <= i__1; ++jcol) { + i__2 = *n; + for (jrow = jcol + 1; jrow <= i__2; ++jrow) { + i__3 = jrow + jcol * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; +/* L10: */ + } +/* L20: */ + } + +/* Reduce A and B */ + + i__1 = *ihi - 2; + for (jcol = *ilo; jcol <= i__1; ++jcol) { + + i__2 = jcol + 2; + for (jrow = *ihi; jrow >= i__2; --jrow) { + +/* Step 1: rotate rows JROW-1, JROW to kill A(JROW,JCOL) */ + + i__3 = jrow - 1 + jcol * a_dim1; + ctemp.r = a[i__3].r, ctemp.i = a[i__3].i; + zlartg_(&ctemp, &a[jrow + jcol * a_dim1], &c__, &s, &a[jrow - 1 + + jcol * a_dim1]); + i__3 = jrow + jcol * a_dim1; + a[i__3].r = 0., a[i__3].i = 0.; + i__3 = *n - jcol; + zrot_(&i__3, &a[jrow - 1 + (jcol + 1) * a_dim1], lda, &a[jrow + ( + jcol + 1) * a_dim1], lda, &c__, &s); + i__3 = *n + 2 - jrow; + zrot_(&i__3, &b[jrow - 1 + (jrow - 1) * b_dim1], ldb, &b[jrow + ( + jrow - 1) * b_dim1], ldb, &c__, &s); + if (ilq) { + d_cnjg(&z__1, &s); + zrot_(n, &q[(jrow - 1) * q_dim1 + 1], &c__1, &q[jrow * q_dim1 + + 1], &c__1, &c__, &z__1); + } + +/* Step 2: rotate columns JROW, JROW-1 to kill B(JROW,JROW-1) */ + + i__3 = jrow + jrow * b_dim1; + ctemp.r = b[i__3].r, ctemp.i = b[i__3].i; + zlartg_(&ctemp, &b[jrow + (jrow - 1) * b_dim1], &c__, &s, &b[jrow + + jrow * b_dim1]); + i__3 = jrow + (jrow - 1) * b_dim1; + b[i__3].r = 0., b[i__3].i = 0.; + zrot_(ihi, &a[jrow * a_dim1 + 1], &c__1, &a[(jrow - 1) * a_dim1 + + 1], &c__1, &c__, &s); + i__3 = jrow - 1; + zrot_(&i__3, &b[jrow * b_dim1 + 1], &c__1, &b[(jrow - 1) * b_dim1 + + 1], &c__1, &c__, &s); + if (ilz) { + zrot_(n, &z__[jrow * z_dim1 + 1], &c__1, &z__[(jrow - 1) * + z_dim1 + 1], &c__1, &c__, &s); + } +/* L30: */ + } +/* L40: */ + } + + return 0; + +/* End of ZGGHRD */ + +} /* zgghrd_ */ |