aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zggev.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zggev.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zggev.c')
-rw-r--r--contrib/libs/clapack/zggev.c599
1 files changed, 599 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zggev.c b/contrib/libs/clapack/zggev.c
new file mode 100644
index 0000000000..6adee6b888
--- /dev/null
+++ b/contrib/libs/clapack/zggev.c
@@ -0,0 +1,599 @@
+/* zggev.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {0.,0.};
+static doublecomplex c_b2 = {1.,0.};
+static integer c__1 = 1;
+static integer c__0 = 0;
+static integer c_n1 = -1;
+
+/* Subroutine */ int zggev_(char *jobvl, char *jobvr, integer *n,
+ doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
+ doublecomplex *alpha, doublecomplex *beta, doublecomplex *vl, integer
+ *ldvl, doublecomplex *vr, integer *ldvr, doublecomplex *work, integer
+ *lwork, doublereal *rwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
+ vr_offset, i__1, i__2, i__3, i__4;
+ doublereal d__1, d__2, d__3, d__4;
+ doublecomplex z__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal), d_imag(doublecomplex *);
+
+ /* Local variables */
+ integer jc, in, jr, ihi, ilo;
+ doublereal eps;
+ logical ilv;
+ doublereal anrm, bnrm;
+ integer ierr, itau;
+ doublereal temp;
+ logical ilvl, ilvr;
+ integer iwrk;
+ extern logical lsame_(char *, char *);
+ integer ileft, icols, irwrk, irows;
+ extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int zggbak_(char *, char *, integer *, integer *,
+ integer *, doublereal *, doublereal *, integer *, doublecomplex *,
+ integer *, integer *), zggbal_(char *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *
+, integer *, doublereal *, doublereal *, doublereal *, integer *);
+ logical ilascl, ilbscl;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ logical ldumma[1];
+ char chtemp[1];
+ doublereal bignum;
+ extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
+ integer *, doublereal *);
+ integer ijobvl, iright;
+ extern /* Subroutine */ int zgghrd_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *
+), zlascl_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, integer *, doublecomplex *,
+ integer *, integer *);
+ integer ijobvr;
+ extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *, integer *
+);
+ doublereal anrmto;
+ integer lwkmin;
+ doublereal bnrmto;
+ extern /* Subroutine */ int zlacpy_(char *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *),
+ zlaset_(char *, integer *, integer *, doublecomplex *,
+ doublecomplex *, doublecomplex *, integer *), ztgevc_(
+ char *, char *, logical *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, integer *, integer *, doublecomplex *,
+ doublereal *, integer *), zhgeqz_(char *, char *,
+ char *, integer *, integer *, integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, integer *, doublereal *, integer *);
+ doublereal smlnum;
+ integer lwkopt;
+ logical lquery;
+ extern /* Subroutine */ int zungqr_(integer *, integer *, integer *,
+ doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *, integer *), zunmqr_(char *, char *, integer *, integer
+ *, integer *, doublecomplex *, integer *, doublecomplex *,
+ doublecomplex *, integer *, doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGGEV computes for a pair of N-by-N complex nonsymmetric matrices */
+/* (A,B), the generalized eigenvalues, and optionally, the left and/or */
+/* right generalized eigenvectors. */
+
+/* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
+/* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
+/* singular. It is usually represented as the pair (alpha,beta), as */
+/* there is a reasonable interpretation for beta=0, and even for both */
+/* being zero. */
+
+/* The right generalized eigenvector v(j) corresponding to the */
+/* generalized eigenvalue lambda(j) of (A,B) satisfies */
+
+/* A * v(j) = lambda(j) * B * v(j). */
+
+/* The left generalized eigenvector u(j) corresponding to the */
+/* generalized eigenvalues lambda(j) of (A,B) satisfies */
+
+/* u(j)**H * A = lambda(j) * u(j)**H * B */
+
+/* where u(j)**H is the conjugate-transpose of u(j). */
+
+/* Arguments */
+/* ========= */
+
+/* JOBVL (input) CHARACTER*1 */
+/* = 'N': do not compute the left generalized eigenvectors; */
+/* = 'V': compute the left generalized eigenvectors. */
+
+/* JOBVR (input) CHARACTER*1 */
+/* = 'N': do not compute the right generalized eigenvectors; */
+/* = 'V': compute the right generalized eigenvectors. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A, B, VL, and VR. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */
+/* On entry, the matrix A in the pair (A,B). */
+/* On exit, A has been overwritten. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of A. LDA >= max(1,N). */
+
+/* B (input/output) COMPLEX*16 array, dimension (LDB, N) */
+/* On entry, the matrix B in the pair (A,B). */
+/* On exit, B has been overwritten. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of B. LDB >= max(1,N). */
+
+/* ALPHA (output) COMPLEX*16 array, dimension (N) */
+/* BETA (output) COMPLEX*16 array, dimension (N) */
+/* On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the */
+/* generalized eigenvalues. */
+
+/* Note: the quotients ALPHA(j)/BETA(j) may easily over- or */
+/* underflow, and BETA(j) may even be zero. Thus, the user */
+/* should avoid naively computing the ratio alpha/beta. */
+/* However, ALPHA will be always less than and usually */
+/* comparable with norm(A) in magnitude, and BETA always less */
+/* than and usually comparable with norm(B). */
+
+/* VL (output) COMPLEX*16 array, dimension (LDVL,N) */
+/* If JOBVL = 'V', the left generalized eigenvectors u(j) are */
+/* stored one after another in the columns of VL, in the same */
+/* order as their eigenvalues. */
+/* Each eigenvector is scaled so the largest component has */
+/* abs(real part) + abs(imag. part) = 1. */
+/* Not referenced if JOBVL = 'N'. */
+
+/* LDVL (input) INTEGER */
+/* The leading dimension of the matrix VL. LDVL >= 1, and */
+/* if JOBVL = 'V', LDVL >= N. */
+
+/* VR (output) COMPLEX*16 array, dimension (LDVR,N) */
+/* If JOBVR = 'V', the right generalized eigenvectors v(j) are */
+/* stored one after another in the columns of VR, in the same */
+/* order as their eigenvalues. */
+/* Each eigenvector is scaled so the largest component has */
+/* abs(real part) + abs(imag. part) = 1. */
+/* Not referenced if JOBVR = 'N'. */
+
+/* LDVR (input) INTEGER */
+/* The leading dimension of the matrix VR. LDVR >= 1, and */
+/* if JOBVR = 'V', LDVR >= N. */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,2*N). */
+/* For good performance, LWORK must generally be larger. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* RWORK (workspace/output) DOUBLE PRECISION array, dimension (8*N) */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* =1,...,N: */
+/* The QZ iteration failed. No eigenvectors have been */
+/* calculated, but ALPHA(j) and BETA(j) should be */
+/* correct for j=INFO+1,...,N. */
+/* > N: =N+1: other then QZ iteration failed in DHGEQZ, */
+/* =N+2: error return from DTGEVC. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Statement Functions .. */
+/* .. */
+/* .. Statement Function definitions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode the input arguments */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --alpha;
+ --beta;
+ vl_dim1 = *ldvl;
+ vl_offset = 1 + vl_dim1;
+ vl -= vl_offset;
+ vr_dim1 = *ldvr;
+ vr_offset = 1 + vr_dim1;
+ vr -= vr_offset;
+ --work;
+ --rwork;
+
+ /* Function Body */
+ if (lsame_(jobvl, "N")) {
+ ijobvl = 1;
+ ilvl = FALSE_;
+ } else if (lsame_(jobvl, "V")) {
+ ijobvl = 2;
+ ilvl = TRUE_;
+ } else {
+ ijobvl = -1;
+ ilvl = FALSE_;
+ }
+
+ if (lsame_(jobvr, "N")) {
+ ijobvr = 1;
+ ilvr = FALSE_;
+ } else if (lsame_(jobvr, "V")) {
+ ijobvr = 2;
+ ilvr = TRUE_;
+ } else {
+ ijobvr = -1;
+ ilvr = FALSE_;
+ }
+ ilv = ilvl || ilvr;
+
+/* Test the input arguments */
+
+ *info = 0;
+ lquery = *lwork == -1;
+ if (ijobvl <= 0) {
+ *info = -1;
+ } else if (ijobvr <= 0) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -7;
+ } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
+ *info = -11;
+ } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
+ *info = -13;
+ }
+
+/* Compute workspace */
+/* (Note: Comments in the code beginning "Workspace:" describe the */
+/* minimal amount of workspace needed at that point in the code, */
+/* as well as the preferred amount for good performance. */
+/* NB refers to the optimal block size for the immediately */
+/* following subroutine, as returned by ILAENV. The workspace is */
+/* computed assuming ILO = 1 and IHI = N, the worst case.) */
+
+ if (*info == 0) {
+/* Computing MAX */
+ i__1 = 1, i__2 = *n << 1;
+ lwkmin = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = 1, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF", " ", n, &c__1, n,
+ &c__0);
+ lwkopt = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNMQR", " ", n, &
+ c__1, n, &c__0);
+ lwkopt = max(i__1,i__2);
+ if (ilvl) {
+/* Computing MAX */
+ i__1 = lwkopt, i__2 = *n + *n * ilaenv_(&c__1, "ZUNGQR", " ", n, &
+ c__1, n, &c_n1);
+ lwkopt = max(i__1,i__2);
+ }
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+
+ if (*lwork < lwkmin && ! lquery) {
+ *info = -15;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGGEV ", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = dlamch_("E") * dlamch_("B");
+ smlnum = dlamch_("S");
+ bignum = 1. / smlnum;
+ dlabad_(&smlnum, &bignum);
+ smlnum = sqrt(smlnum) / eps;
+ bignum = 1. / smlnum;
+
+/* Scale A if max element outside range [SMLNUM,BIGNUM] */
+
+ anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]);
+ ilascl = FALSE_;
+ if (anrm > 0. && anrm < smlnum) {
+ anrmto = smlnum;
+ ilascl = TRUE_;
+ } else if (anrm > bignum) {
+ anrmto = bignum;
+ ilascl = TRUE_;
+ }
+ if (ilascl) {
+ zlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
+ ierr);
+ }
+
+/* Scale B if max element outside range [SMLNUM,BIGNUM] */
+
+ bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
+ ilbscl = FALSE_;
+ if (bnrm > 0. && bnrm < smlnum) {
+ bnrmto = smlnum;
+ ilbscl = TRUE_;
+ } else if (bnrm > bignum) {
+ bnrmto = bignum;
+ ilbscl = TRUE_;
+ }
+ if (ilbscl) {
+ zlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
+ ierr);
+ }
+
+/* Permute the matrices A, B to isolate eigenvalues if possible */
+/* (Real Workspace: need 6*N) */
+
+ ileft = 1;
+ iright = *n + 1;
+ irwrk = iright + *n;
+ zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
+ ileft], &rwork[iright], &rwork[irwrk], &ierr);
+
+/* Reduce B to triangular form (QR decomposition of B) */
+/* (Complex Workspace: need N, prefer N*NB) */
+
+ irows = ihi + 1 - ilo;
+ if (ilv) {
+ icols = *n + 1 - ilo;
+ } else {
+ icols = irows;
+ }
+ itau = 1;
+ iwrk = itau + irows;
+ i__1 = *lwork + 1 - iwrk;
+ zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
+ iwrk], &i__1, &ierr);
+
+/* Apply the orthogonal transformation to matrix A */
+/* (Complex Workspace: need N, prefer N*NB) */
+
+ i__1 = *lwork + 1 - iwrk;
+ zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
+ work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
+ ierr);
+
+/* Initialize VL */
+/* (Complex Workspace: need N, prefer N*NB) */
+
+ if (ilvl) {
+ zlaset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
+ if (irows > 1) {
+ i__1 = irows - 1;
+ i__2 = irows - 1;
+ zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[
+ ilo + 1 + ilo * vl_dim1], ldvl);
+ }
+ i__1 = *lwork + 1 - iwrk;
+ zungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
+ itau], &work[iwrk], &i__1, &ierr);
+ }
+
+/* Initialize VR */
+
+ if (ilvr) {
+ zlaset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
+ }
+
+/* Reduce to generalized Hessenberg form */
+
+ if (ilv) {
+
+/* Eigenvectors requested -- work on whole matrix. */
+
+ zgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
+ ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
+ } else {
+ zgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
+ &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
+ vr_offset], ldvr, &ierr);
+ }
+
+/* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
+/* Schur form and Schur vectors) */
+/* (Complex Workspace: need N) */
+/* (Real Workspace: need N) */
+
+ iwrk = itau;
+ if (ilv) {
+ *(unsigned char *)chtemp = 'S';
+ } else {
+ *(unsigned char *)chtemp = 'E';
+ }
+ i__1 = *lwork + 1 - iwrk;
+ zhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
+ b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[
+ vr_offset], ldvr, &work[iwrk], &i__1, &rwork[irwrk], &ierr);
+ if (ierr != 0) {
+ if (ierr > 0 && ierr <= *n) {
+ *info = ierr;
+ } else if (ierr > *n && ierr <= *n << 1) {
+ *info = ierr - *n;
+ } else {
+ *info = *n + 1;
+ }
+ goto L70;
+ }
+
+/* Compute Eigenvectors */
+/* (Real Workspace: need 2*N) */
+/* (Complex Workspace: need 2*N) */
+
+ if (ilv) {
+ if (ilvl) {
+ if (ilvr) {
+ *(unsigned char *)chtemp = 'B';
+ } else {
+ *(unsigned char *)chtemp = 'L';
+ }
+ } else {
+ *(unsigned char *)chtemp = 'R';
+ }
+
+ ztgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
+ &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
+ iwrk], &rwork[irwrk], &ierr);
+ if (ierr != 0) {
+ *info = *n + 2;
+ goto L70;
+ }
+
+/* Undo balancing on VL and VR and normalization */
+/* (Workspace: none needed) */
+
+ if (ilvl) {
+ zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
+ &vl[vl_offset], ldvl, &ierr);
+ i__1 = *n;
+ for (jc = 1; jc <= i__1; ++jc) {
+ temp = 0.;
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+/* Computing MAX */
+ i__3 = jr + jc * vl_dim1;
+ d__3 = temp, d__4 = (d__1 = vl[i__3].r, abs(d__1)) + (
+ d__2 = d_imag(&vl[jr + jc * vl_dim1]), abs(d__2));
+ temp = max(d__3,d__4);
+/* L10: */
+ }
+ if (temp < smlnum) {
+ goto L30;
+ }
+ temp = 1. / temp;
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+ i__3 = jr + jc * vl_dim1;
+ i__4 = jr + jc * vl_dim1;
+ z__1.r = temp * vl[i__4].r, z__1.i = temp * vl[i__4].i;
+ vl[i__3].r = z__1.r, vl[i__3].i = z__1.i;
+/* L20: */
+ }
+L30:
+ ;
+ }
+ }
+ if (ilvr) {
+ zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
+ &vr[vr_offset], ldvr, &ierr);
+ i__1 = *n;
+ for (jc = 1; jc <= i__1; ++jc) {
+ temp = 0.;
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+/* Computing MAX */
+ i__3 = jr + jc * vr_dim1;
+ d__3 = temp, d__4 = (d__1 = vr[i__3].r, abs(d__1)) + (
+ d__2 = d_imag(&vr[jr + jc * vr_dim1]), abs(d__2));
+ temp = max(d__3,d__4);
+/* L40: */
+ }
+ if (temp < smlnum) {
+ goto L60;
+ }
+ temp = 1. / temp;
+ i__2 = *n;
+ for (jr = 1; jr <= i__2; ++jr) {
+ i__3 = jr + jc * vr_dim1;
+ i__4 = jr + jc * vr_dim1;
+ z__1.r = temp * vr[i__4].r, z__1.i = temp * vr[i__4].i;
+ vr[i__3].r = z__1.r, vr[i__3].i = z__1.i;
+/* L50: */
+ }
+L60:
+ ;
+ }
+ }
+ }
+
+/* Undo scaling if necessary */
+
+ if (ilascl) {
+ zlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
+ ierr);
+ }
+
+ if (ilbscl) {
+ zlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
+ ierr);
+ }
+
+L70:
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+
+ return 0;
+
+/* End of ZGGEV */
+
+} /* zggev_ */