aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zgetri.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgetri.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgetri.c')
-rw-r--r--contrib/libs/clapack/zgetri.c270
1 files changed, 270 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgetri.c b/contrib/libs/clapack/zgetri.c
new file mode 100644
index 0000000000..246b34ece8
--- /dev/null
+++ b/contrib/libs/clapack/zgetri.c
@@ -0,0 +1,270 @@
+/* zgetri.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b2 = {1.,0.};
+static integer c__1 = 1;
+static integer c_n1 = -1;
+static integer c__2 = 2;
+
+/* Subroutine */ int zgetri_(integer *n, doublecomplex *a, integer *lda,
+ integer *ipiv, doublecomplex *work, integer *lwork, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1;
+
+ /* Local variables */
+ integer i__, j, jb, nb, jj, jp, nn, iws, nbmin;
+ extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
+ integer *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, doublecomplex *,
+ integer *), zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *),
+ zswap_(integer *, doublecomplex *, integer *, doublecomplex *,
+ integer *), ztrsm_(char *, char *, char *, char *, integer *,
+ integer *, doublecomplex *, doublecomplex *, integer *,
+ doublecomplex *, integer *),
+ xerbla_(char *, integer *);
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ integer ldwork, lwkopt;
+ logical lquery;
+ extern /* Subroutine */ int ztrtri_(char *, char *, integer *,
+ doublecomplex *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZGETRI computes the inverse of a matrix using the LU factorization */
+/* computed by ZGETRF. */
+
+/* This method inverts U and then computes inv(A) by solving the system */
+/* inv(A)*L = inv(U) for inv(A). */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the factors L and U from the factorization */
+/* A = P*L*U as computed by ZGETRF. */
+/* On exit, if INFO = 0, the inverse of the original matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* The pivot indices from ZGETRF; for 1<=i<=N, row i of the */
+/* matrix was interchanged with row IPIV(i). */
+
+/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO=0, then WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= max(1,N). */
+/* For optimal performance LWORK >= N*NB, where NB is */
+/* the optimal blocksize returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, U(i,i) is exactly zero; the matrix is */
+/* singular and its inverse could not be computed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ --work;
+
+ /* Function Body */
+ *info = 0;
+ nb = ilaenv_(&c__1, "ZGETRI", " ", n, &c_n1, &c_n1, &c_n1);
+ lwkopt = *n * nb;
+ work[1].r = (doublereal) lwkopt, work[1].i = 0.;
+ lquery = *lwork == -1;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*lda < max(1,*n)) {
+ *info = -3;
+ } else if (*lwork < max(1,*n) && ! lquery) {
+ *info = -6;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZGETRI", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form inv(U). If INFO > 0 from ZTRTRI, then U is singular, */
+/* and the inverse is not computed. */
+
+ ztrtri_("Upper", "Non-unit", n, &a[a_offset], lda, info);
+ if (*info > 0) {
+ return 0;
+ }
+
+ nbmin = 2;
+ ldwork = *n;
+ if (nb > 1 && nb < *n) {
+/* Computing MAX */
+ i__1 = ldwork * nb;
+ iws = max(i__1,1);
+ if (*lwork < iws) {
+ nb = *lwork / ldwork;
+/* Computing MAX */
+ i__1 = 2, i__2 = ilaenv_(&c__2, "ZGETRI", " ", n, &c_n1, &c_n1, &
+ c_n1);
+ nbmin = max(i__1,i__2);
+ }
+ } else {
+ iws = *n;
+ }
+
+/* Solve the equation inv(A)*L = inv(U) for inv(A). */
+
+ if (nb < nbmin || nb >= *n) {
+
+/* Use unblocked code. */
+
+ for (j = *n; j >= 1; --j) {
+
+/* Copy current column of L to WORK and replace with zeros. */
+
+ i__1 = *n;
+ for (i__ = j + 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__ + j * a_dim1;
+ work[i__2].r = a[i__3].r, work[i__2].i = a[i__3].i;
+ i__2 = i__ + j * a_dim1;
+ a[i__2].r = 0., a[i__2].i = 0.;
+/* L10: */
+ }
+
+/* Compute current column of inv(A). */
+
+ if (j < *n) {
+ i__1 = *n - j;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("No transpose", n, &i__1, &z__1, &a[(j + 1) * a_dim1 +
+ 1], lda, &work[j + 1], &c__1, &c_b2, &a[j * a_dim1 +
+ 1], &c__1);
+ }
+/* L20: */
+ }
+ } else {
+
+/* Use blocked code. */
+
+ nn = (*n - 1) / nb * nb + 1;
+ i__1 = -nb;
+ for (j = nn; i__1 < 0 ? j >= 1 : j <= 1; j += i__1) {
+/* Computing MIN */
+ i__2 = nb, i__3 = *n - j + 1;
+ jb = min(i__2,i__3);
+
+/* Copy current block column of L to WORK and replace with */
+/* zeros. */
+
+ i__2 = j + jb - 1;
+ for (jj = j; jj <= i__2; ++jj) {
+ i__3 = *n;
+ for (i__ = jj + 1; i__ <= i__3; ++i__) {
+ i__4 = i__ + (jj - j) * ldwork;
+ i__5 = i__ + jj * a_dim1;
+ work[i__4].r = a[i__5].r, work[i__4].i = a[i__5].i;
+ i__4 = i__ + jj * a_dim1;
+ a[i__4].r = 0., a[i__4].i = 0.;
+/* L30: */
+ }
+/* L40: */
+ }
+
+/* Compute current block column of inv(A). */
+
+ if (j + jb <= *n) {
+ i__2 = *n - j - jb + 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgemm_("No transpose", "No transpose", n, &jb, &i__2, &z__1, &
+ a[(j + jb) * a_dim1 + 1], lda, &work[j + jb], &ldwork,
+ &c_b2, &a[j * a_dim1 + 1], lda);
+ }
+ ztrsm_("Right", "Lower", "No transpose", "Unit", n, &jb, &c_b2, &
+ work[j], &ldwork, &a[j * a_dim1 + 1], lda);
+/* L50: */
+ }
+ }
+
+/* Apply column interchanges. */
+
+ for (j = *n - 1; j >= 1; --j) {
+ jp = ipiv[j];
+ if (jp != j) {
+ zswap_(n, &a[j * a_dim1 + 1], &c__1, &a[jp * a_dim1 + 1], &c__1);
+ }
+/* L60: */
+ }
+
+ work[1].r = (doublereal) iws, work[1].i = 0.;
+ return 0;
+
+/* End of ZGETRI */
+
+} /* zgetri_ */